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Introduction

In the theory of nonlinear contraction semigroups, the notion of accretive
operators was introduced as a generalization of the notion of the infinitesimal
generators, and studied by many authors (see e.g., [1], [2], [3],[4], (6], (8],
(107, [117]).

In the present paper we study a multivalued accretive operator 4 from
a Banach space X into itself. It is called m-accretive if the range of I+ 4
is the whole of X. The studies on the m-accretiveness of nonlinear operators
were made by T. Kato [6], R.H. Martin, Jr. [9], G.F. Webb [12], the author
[7] and others. The purpose of this paper is to give a necessary and sufficient
condition for m-accretiveness; under certain conditions, an accretive operator
A from X into X is m-accretive if and only if it is demiclosed and the initial
value problem

du(t)
7 + Au(t) 3 z
©(0)=x«

has a solution (in a certain sense) on [0, «) for each x € D(4) and ze€ X
(Tueorem 1). It was announced by F.E. Browder [ 2] that if the dual space
of X is uniformly convex, then a densely defined singlevalued accretive
operator A4 is m-accretive if and only if —(A4+2z) is the weak infinitesimal
generator of a nonlinear contraction semigroup on X for each z€ X. This
was proved by M.G. Crandall and A. Pazy [4]in case X is a Hilbert space. In
this paper we shall prove Browder’s announcement in a more general form,
namely, when A4 is multivalued.

§1. Definitions and notation
Throughout this paper let X be a real Banach space and X* be its dual

space. The natural pairing between » € X and x* € X* is denoted by <=x, x*>.
The norms in X and X* are denoted by ||-|| and the identity mapping in X by
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I For a subset E of X we denote by E and co(E) the strong closure and the
convex hull of E respectively, and define || E|| =inf ||x|| if E=~4.
xEFE

Let A be a multivalued operator from X into X, that is, to each x € X a
subset Ax of X be assigned. We define D(4)={x € X; Ax+¢}, R(4)= UXAx,
F1S

G(A)={(x,x")e X x X; x’ € Ax} and for a subset E of X, A(E)=\/J Ax. For

xEE

a point z € X the multivalued operator 4+ z is defined by (4+2)x=Ax+z=
{x'+2z; x"€ Ax}. Then D(A+z)=D(A).

In what follows an operator means a multivalued operator unless other-
wise stated.

Let 4 and A4’ be operators from X into X. By 4> A’ we mean that A4 is
an extension of A’, that is, G(4)DG(4"). We say that A4 is demiclosed if
(%ny 1) €G(A),n=1,2,..., x,— x strongly and x,— x” weakly in X imply that
(x, ") € G(A).

The duality mapping F from X into X* is defined by
Frx={x*€ X*; <x, x*>=||x[[*=||x*|?}.

In general, F is multivalued and its domain is the whole of X. We know that
if X* is uniformly convex, then Fx consists of a single point for each x € X
and F is strongly uniformly continuous on each bounded subset of X (see T.
Kato [57)).

An operator 4 from X into X is called accretive if for any (x, x'),
(7, ¥') € G(4) there is f€ F(x—y) such that <x'—y’, f>>0. An accretive
operator A is called maximal accretive if there is no proper accretive extens-
ion of 4, and called m-accretive if R(I+ A)(= \E/X(x +Ax))=2X.

We use symbols “-5” (or “s-lim”) and “%” (or “w-lim”) to denote the
convergence in the strong and the weak topology, respectively.

§2. Lemmas

Four lemmas which will be used in the proof of our main theorems are
stated below without proof.

LemMa 1. Suppose that X* is uniformly convex. If A ts an accretive
operator from X into X, then,

(i) the operator A given by G(A)={(x, x’) € Xx X ; there is a sequence
{(%n x[)} CG(A) such that x,->x and x.%> x'} is accretive,
(ii) the operator x — co(Ax) is accretive and its domain is D(A),
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(iii) if A is maximal accretive, then it is demiclosed,

(iv) 4f A is m-accretive, then it is maximal accretive,

(v) if A1is demiclosed and if {(x,, x,)} 18 a sequence in G(A) such that
%, %0 and {x.} is bounded in X, then x, € D(A).

Proofs of (i), (ii), (iii) and (v) are elementary. A proof of (iv) is found
in T. Kato [6]].

The following two lemmas are due to T. Kato (5], [6]).

LemMA 2. Let u(t) be an X-valued function on a real interval. Suppose
that u(t) has the weak derivative u'(s) at t=s and ||u(?)|| s differentiable at

t=s. Then,
Ti-(HU(S)HZ)=2< u'(s), f> for every f € Fu(s).

Lemma 8. Suppose that X is reflexive. Let {u,} be a sequence in L?(0,r; X),
1<p< oo, 0<r<{oo, such that {u,(¢)} is bounded for a.e. t € (0,r). Let V(¢) be
the set of all weak cluster points of {u,(t)}. If u,®u in L?(0,r; X), then

u(t) € co(V(t)) Jor a.e. t € (0, ).
Now we consider the initial value problem of the form
(E) u'(t)+ Au(z) 3 0, ©(0)=a,

where A4 is an operator from X into X and the unknown u(¢) is an X-valued
function on a real interval 2. Let 2=[0,r) or [0, r], where 0< r<oco. Then
u(t) is called a strong solution of (E) on 2 if

(a) u(?) is strongly absolutely continuous on any bounded closed interval
contained in £ and u(0)=a,

(b) the strong derivative u’(z) exists, u(z) € D(4) and uw'(z)+ Au(t) 30
fora.e. ¢t € 2.

Lemma 4. Let A be an accretive operator from X into X, a € D(A) and 2
be a non-negative real number. Let u(t) be a strong solution of

2.1 u'(t)+ AT+ Au(?) 3 0, ©(0)=a
on [0,7). Then,

(i) u(t) is uniquely determined by the intitial value a,

(ii) e’ =01QRI+Du@) Il <N (AI+ A)all for a.e. t €[0,r),

(iii) <f u(r) is strongly differentiable and satisfies (2.1) at t=s, s/,
0<s<s'<r, then

'O <e [/ $) .
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This lemma is a special case of LEmma 6.2 in T. Kato [6]. In case 1=0,
a simple proof of LEmma 4 is also found in H. Brezis and A. Pazy [1]].

§8. A necessary and sufficient condition for m-accretiveness

Throughout this section we assume that X* is uniformly convex. Note
that X is reflexive in this case. Our main result is the following.

TuroreM 1. Let A be an accretive operator from X into X. Then A is
m-accretive if and only if it is demiclosed and satisfies the following condition :
for each x € D(A) and each z € X, the initial value problem

3.1) u'(t)+ Au(t)+2z 30, u(0)=x«
has a strong solution on [0, o).

The “only if” part of the theorem is already known. In fact, if 4 is m-
accretive, then it is demiclosed by (iii) and (iv) of Lemma 2 and 4+z is also
m-accretive for each z € X. Now we recall the following result by T. Kato
[6; TueoreM 7.17]:

TueoreM A. Let B be an m-accretive operator from X into X. Then, for
each a € D(B) the initial value problem

u'(t)+ Bu(t) 30, u(0)=a
has a unique strong solution on [0, oo).

This theorem implies that for each x € D(4) and each z € X the problem
(8.1) has a strong solution on [0, =), if 4 is m-accretive. Therefore, to
complete the proof of Tueorem 1 it is sufficient to show only the “if” part.
We shall prove it by means of a sequence of lemmas which are valid under
the assumptions that A4 is demiclosed and that for each x € D(4) and each
z € X the problem (8.1) has a strong solution on [0, o).

Lemma 5. For each x € D(A), Ax is closed and convex in X.

Proor. Let B be the operator x — co(Ax). Then, by (ii) of Lemma 1, B
is accretive and D(B)=D(A). Let (y, ¥') be an arbitrary point of G(B).
Then, by our assumption, there is a strong solution u(z) of the problem

u'(@)+Au(t)—y 30, u(0)=y.
Since BD A4, this function u(t) is also a strong solution of

u'(6)+ Bu(t)—y’ 30, u(0)=y.
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Observe that this is a special case of (2.1) because B—y’ is an accretive
operator. Hence from (i) of Lemma 4 we infer that u(:)=y for all =>0.
This implies that (y, y') € G(4). Thus 4=B. q.e.d.

Now for any given a € D(A) we consider the initial value problem
3.2) u'(t)+ Au(t)+u(t) 50, u(0)=a,
and shall show the existence of a strong solution of (3.2) on [0, o).

For each positive integer n, we define an X-valued function u,(z) on
[0,1] as follows. Let u,(t) be a strong solution of (3.1) with z=x=a on

[0, %] Next, assume that for a positive integer k, 1 <k<n, u,(t) is already

defined on [0, ::] in such a way that u,,( k ) € D(A). Let v(¢t) be a strong

solution of (3.1) with z=x=u,,<%), and define
w=i(—E)  for e[k B51]
Then, by (ii) of LEMMa 4 we have

Hu’(t)lISWAu )+ (£ m a.e. on (£, E£1)

and hence, u, ( k : 1

)‘ED(A) by (v) of Lemma 1, since un(t)-§+un<k1_1> as

t,/ k+1, Thus u,(t) is defined on [0, 1] by induction. Clearly u,(¢) is strongly

absolutely continuous on [0, 17.

Lemma 6.  Set K=||da+all. Then,
(33) s < || dun(£) (2| < (14 L)
a.e. on(k k+1> k=0,1,.., n—1.
Proor. By the above argument we have
34 sl < | Aua(£) (2|
a.e. on(" "H) k=0,1,.., n—1.

Furthermore we shall show that for k=0, 1,..., n—1,
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®5) N = A O]

In fact, by (3.4) there exists a sequence {z;} such that ¢; k +1 ul(t;) € Aun(t;)

+u(2), uu;,(zj)ngH Aun( ), ﬁ)'”and —ul(t))® y in X for some y € X

as j—oco. Since u,(t;) = u,,<k+1) and 4 is demiclosed, we have y € Au,,(k +1>

+ u,,(-f—), and hence,

[l (|t e+ G

Obviously [|u.()]| <K a.e. on [o, %] by (ii) of Lemma 4. Now assume that
(8.3) holds for k-1. Then we have by (3.5)

Jan ) )oY o 2)
and by (3.4)
u”<k;1>—u"(§> ISS; IPHOl dsﬁ%(l-}-%)k—l[g

Hence,

()l

m Aun<§)+ u(%)mﬁ“ Aun<§>+ Un
< +%)k1<.
Thus (8.8) is proved by induction. q.e.d.

For the sequence {u,};_, we prove

Lemma 7. The sequence {u,} is strongly uniformly convergent on [0, 17,
and the limit u(t) is strongly continuous on [0, 1] and satisfies u(0)=a.

Proor. From the definition of u, it follows that
(3.6) wl(t)+ Un(t) + un(D;L])=O a.e. on [0, 17,
where U,(t) is an X-valued function on [0, 1] such that U,(z) € Au,(¢) a.e. on

[0, 1], and [ . ] denotes the Gaussian bracket. For positive integers n, m we
have by (8.6), LEmma 2 and the accretiveness of 4
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2 (un®) — umII)
=2 < U,(0) + (L)~ 0,05 — wa(F), Fus5) — wn))>

<G () (e ()5
a.e. on [0,1].

Furthermore, by (3.3) we have ||u,(2)|| <||a||+eK for all ¢ €[0,1] and all =.
Hence, we obtain

A (lans) = )

<4(all+ eK)“F(un(s) —un($))—F (u(Dfl—ﬂ)— “m([":%]»ll

a.e.on [0, 17]. Integrating this inequality on [0, ¢],
(37) ”un(t)_um(t)llz

<4llall+ O | Fun() = un()— F (s L2) (L)) | 25

forall ze [0,1]. On the other hand, we have by LEmva 6 again

un(s) — um(s) — un<—[—r:%]> + u,,,(E—’::—]) l
uas)— uﬂ(&;_sj) Um(s)— um(En’;—S]>

<f Nu@lar+§lunoldr

n m

<

|+

|

<ex(2eb).

Hence, by the strong uniform continuity of F on bounded subsets of X, the
right hand side of (3.7) converges to 0 as n, m — oo, that is, {u,} is strongly
uniformly convergent on [0, 1. Then, it is easily seen that the limit u(z) is
strongly continuous on [0, 1] and u(0)=a. g.e.d.

Lemma 8. The function u(t) is a strong solution of (3.2) on [0, 1] and
u(t) € D(A) for all t € [0, 1.

Proor. For a positive number p, 1< p<oo, {u,} is bounded in L?(0,1; X)
by Lemma 6. It follows that there exists a subsequence {u,} of {u,} such
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that u, % v in L? (0,1; X). Moreover, since u, ()5 u(t) in X uniformly on
[0, 17 by Lemma 7, it follows that »’=v in the distribution sense, and hence,
u(2) is strongly absolutely continuous and u/(¢)=v(¢) a.e. on [0, 1]. Let 7 (¢)
be the set of all weak cluster points of {u,(:)}. Then, by Lemmas 3 and 6,

u’(t) € co(V (1)) for a.e.t€[0,1].

Since

ut @)+ dun O+ un (L) 50 ae.on 0,17,
7

w,(%)—s»u(t) for all t € [0, 1] as j—>cc and 4 is demiclosed, it follows that
7

V() € —(Au(t)+u(t)) for a.e. t €[0,1].
By Lemma 5 we have

co(V (£)) C —(Au(t)+u(t)) a.e.on [0, 1],
and hence
u'(t) € —(Au(t)+u(t)) a.e.on [0,1].

Thus u is a strong solution of (3.2) on [0,1]. The fact that u(¢) € D(4) for
all t € [0, 1] follows easily from (v) of LEmma 1. qg.e.d.

Finally, to complete the proof of THEOREM 1 We prove

LemMma 9. A s m-accretive.

Proor. In LEmma 8 we have shown that for any given a € D(A) the
initial value problem (8.2) has a strong solution z(t) on [0,1]. Applying
LemMa 8 with the initial time ¢ =1 and the initial value u(1) € D(A4), we obtain
a strong solution of (8.2) on [0, 2]. Thus, successively we obtain a strong
solution u(¢) on [0, ). By (iii) of LEMMA 4 there is a sequence {;} such
that ¢; oo, Au(t))+u(t;) 3> —u'(¢;) and u'(¢)50 in X as j—>oo. By (iii) of
LemMma 4 again, for a positive number ¢, we have

lute) = (e < w6l ds
<N Gollef e ds
= [l Cto)le’o(— e +¢7)

for all ¢; and t;, t,<t;<t;, and hence, ||u(t;,)—u(¢7)|| >0 as j, j/— oo, that
is, s-lim u(#;)=u, exists. Since 4 is demiclosed, we have 0 € 4uo+u,. Thus

RIS+ 4) 50.
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For an arbitrary point z € X, replacing 4 by 4— z in the above argument,
we conclude that z € R(I+ A). q.e.d.

§4. Contraction semigroups and their generators
Let X, be a subset of X and let T={T(t); t >0} be a family of nonlinear

singlevalued operators from X, into itself. We say that T is a contraction
semigroup on X, if

@ T+tHhx=TE)T)x for t,t’>0and x € X,,
®) [[TOx—TOyI<llx—yll  fort>0and x, y€ X,,
() TOx=x« for x € X,,

(d) the function t — T(t)x is strongly continuous on [0, o) for each x € X,.

We define the strong infinitesimal generator G, of T by

Gsx :s—limm
\O t

and the weak infinitesimal generator G, of T by

Gox=w—lim L)xr—%
\O t

whenever the right sides exist. It is easy to see that if X* is uniformly
convex, then —G, and —G, are accretive and G, CG,.

By using Tueorem 1 we shall prove

THEOREM 2. Suppose that X* is uniformly convex. Let A be an accretive

operator from X into X. Then the following statements are equivalent to each
other:

(i) A is m-accretive.
(ii) For each z € X, there is a contraction semigroup T ={T(t); t=>0} on

- - (2 _
D(A) such that —G C A+ z and D(A)C {x € DCA); 1iminf“_T_(‘t)—x—x”
t\O
<o,
(iii) For each z € X, there is a contraction semigroup TP ={T*(t); t >0} on

. ’ - (2) .

DA such that —G C A+z and D(A)C {x ¢ DA lirriinfu—z‘—(it)—’c——J‘—”
t

< oo}.

Here, G2 and G2 are the strong and the weak infinitesimal generators of T®,
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respectively.

The assertion (iii) — (ii) of TueoreEM 2 immediately follows from the fact
that G CG? for each z € X.

Now we recall results on generation of semigroups by M.G. Crandall and
T.M. Liggett [3] and 1. Miyadera [107].

Tueorem B. (M.G. Crandall and T.M. Liggett [3; Turorems I and II7)
Let B be an m-accretive operator from X into X. Then,
(a) there exists a contraction semigroup T={T(t); t>0} on D(B) such
that

T(t)x=s—lim <I—|—niB>7nx for x € D(B)

e
uniformly on every bounded interval in [0, o),

(b) if X is reflexive, then for each x € D(B) the function T(¢)x is a strong
solution of

u'(¢)+ Bu(t) 30, u(0)=x.
For an operator B from X into X we define B° by
Bx={x"€ Bx; ||2’|| = Bx|l}
and call it the canonical restriction of B.

TureoreMm C. (I. Miyadera [10; CoroLLARY 1 and Tueorem 8]) Let B be
an m-accretive operator from X into X, and let T={T(¢); t >0} be the contrac-
tion semigroup on D(B) given by TuEorEM B. Then we have

@) tf x e D(B) and if for some sequence {t,} with t,\ 0

x’———w—lim—————T(t”)x —_x
n—>oo ty

then (x, x') € G(B®), where B° is the canonical restriction of B,
(b) if X ts reflexive, then '

D(B)= {x € D(B); liminfw)x_—fcﬂ<oo}’
1N\O t

(©) if X 1is reflexive and if B° is singlevalued, then D(B°)=D(B) and
— B° is the weak infinitesimal generator of T,

(d) if X is reflexive and X and X* are strictly convex, then B° is single-
valued and — B° is the weak infinitesimal generator of T.

Proof of the assertion (i) — (iii) of THEorREM 2. Since 4 is m-accretive,
A+ z is also m-accretive for each z € X. Therefore, there is a contraction
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semigroup T@={T®(¢); t>0} generated by B=A-+z in the sense of
Tueorem B. We see from (a) of Tueorem C that — G2 C 4+ z, and from (b)
of Tueorem C that

D(A)=D(A+ z)= {x ¢ D(A); liming 1 T2 — =l oo}.
\.0 t

Thus we have (iii). q.e.d.

To prove that (ii) implies (i), we use the following lemma that is due to
M. G. Crandall and A. Pazy [4; LEmma 1.1 and LEmMma 6.17].

Lemma 10. Let T={T(t); t=>} be a contraction semigroup on a subset X,
of X and B be an accretive operator such that —G,C B, where G, is the strong
infinitestmal generator of T. If x € D(B)NX, and

liminfl TOx ==l _ p o
t\0 13

then L <||Bx|| and ||T(¢)x— T(¢)x||<L| t—1¢'| for t,t'>0.

Proof of the assertion (ii)— (i) of Tueorem 2. Let 4 be the operator
given by '

G(A)=A{(x, x') € Xx X; there is a sequence {(x,, x.)} CG(A)
such that x,-%> x and x.% x’' in X},

and let z be an arbitrary point of X. Put
(2) _
D.={x ¢ DCA); liming IT2Wx 2 oo,
t\O0 t

Then we first have
4.1) D(A)CD..

In fact, let (x, ”) be any element of G(4+z). Then, there is a sequence
{(%n, )} CG(A+2z) such that x,5x and x,%x’ in X as n—>co. Since
D(A+z)=D(A4) D, by our assumption, x, € D, for each n. Hence we infer
from Lemma 10 that

| TO@)x,—xall <llzylle  for ¢ 0.

Since {||x.||} is bounded, letting n — oo in the above inequality, we have for
some M >0

[T —x|| <Mt  for t>>0,

and hence, x € D,. Thus (4.1) holds true. From (4.1) and Lemma 10 it follows
that the function 7™ (¢)x on [0, o) is Lipschitz continuous for each x € D(A),
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and hence, it is strongly differentiable a.e. on [0, o). Therefore,

-g—tT(’)(t)x—GL"’( TO()x)=0  a.e. on [0, co).
By our assumption we have

—;lt—T(")(t)x+A( TO()x)+220  a.e. on [0, o).

Thus we have seen that for each z € X and each x € D(4) the function 7(¢)x
is a strong solution of (3.1) on [0, o). Now, let («, x’) be any element of
G(A). Then T *)(t)x is a strong solution of (3.1) with z=—x’. Since 4> A4,
it is also a strong solution of

uw'(t)+Au(t)—x" 30, u(0)==x.
By the uniqueness of a strong solution ((i) of LEMMa 4), we have
T (x=x for all t>>0.

This means that u(¢)==x is a strong solution of (3.1) with z=—x’. Therefore,
x €D(A) and x’ € Ax. Thus A=A, and hence, 4 is demiclosed. Therefore
from TrHEOREM 1 we obtain the m-accretiveness of A. q.e.d.

Remark. Assume that X* is uniformly convex. Let A4 be an m-accretive
operator from X into X. Then, for each z e X, the contraction semigroup
given by (ii) (or (iii)) of THEOREM 2 coincides with the contraction semigroup
generated by B=A+z in the sense of Tueorem B. In fact, let denote the
former by T and the latter by 7. Then, as we have seen in the above
proof, for each x € D(A) the function 7‘*(z)x is a strong solution of (3.1) on
[0, o), and by (b) of TueoreM B the function 7¢*(¢)x is also a strong solution
of (8.1) on [0, ). Hence, by the uniqueness of a strong solution,

TOWx=T(t)x Sfor all t=>0 and all x € D(A).
Furthermore, by the strong continuity of 7*)(¢) and T (z),
TO()=T®(t) onD(4)  for all t>0.
Thus T@=T®,

The next two corollaries are obtained from Turorems B and C and our
THEOREM 2.

CororLLArY 1. (F.E. Browder [27]) Suppose that X* is uniformly convex.
Let A be a singlevalued accretive operator from X into X. Then A is m-accretive

if and only if for each z € X there is a contraction semigroup on D(A) whose
weak infinitesimal generator is —(A+z).
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Proor. The “only if” part immediately follows from the assertion (iii)

— (i) of Tueorem 2. Next, assume that 4 is m-accretive. Then, by (i) — (iii)
of Tueorem 2, for each z € X there exists a contraction semigroup T on
D(A) such that —G» C A+ z and D{4)C D,. By the above REMARK this semi-
group T is the contraction semigroup generated by B= 4+ z in the sense of
Turorem B. Therefore from (¢) of Tueorem C it follows that —GZ =4+ z.
g.e.d.

CoroLLARY 2. Suppose that X is strictly convex and X* is uniformly
convex. Let A be an accretive operator from X into X. Then A is m-accretive
if and only if for each z € X, the canonical restriction (A+z)° is singlevalued,

D((A+2z)°)=D(A) and there is a contraction semigroup on D(A) whose weak
infinitesimal generator is —(A+z)°.

Proor. The “only if” part immediately follows from the assertion (iii)
— (i) of Turorem 2. The “if” part is also proved just as in the proof of
CoroLLArY 1 by using (d) of Turorem C.
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