# On the m-Accretiveness of Nonlinear Operators in Banach Spaces

Nobuyuki Kenmochi (Received September 19, 1972)

#### Introduction

In the theory of nonlinear contraction semigroups, the notion of accretive operators was introduced as a generalization of the notion of the infinitesimal generators, and studied by many authors (see e.g., [1], [2], [3], [4], [6], [8], [10], [11]).

In the present paper we study a multivalued accretive operator A from a Banach space X into itself. It is called m-accretive if the range of I+A is the whole of X. The studies on the m-accretiveness of nonlinear operators were made by T. Kato [6], R.H. Martin, Jr. [9], G.F. Webb [12], the author [7] and others. The purpose of this paper is to give a necessary and sufficient condition for m-accretiveness; under certain conditions, an accretive operator A from X into X is m-accretive if and only if it is demiclosed and the initial value problem

$$\begin{cases} \frac{du(t)}{dt} + Au(t) \ni z \\ u(0) = x \end{cases}$$

has a solution (in a certain sense) on  $[0, \infty)$  for each  $x \in D(A)$  and  $z \in X$  (Theorem 1). It was announced by F.E. Browder [2] that if the dual space of X is uniformly convex, then a densely defined singlevalued accretive operator A is m-accretive if and only if -(A+z) is the weak infinitesimal generator of a nonlinear contraction semigroup on X for each  $z \in X$ . This was proved by M.G. Crandall and A. Pazy [4] in case X is a Hilbert space. In this paper we shall prove Browder's announcement in a more general form, namely, when A is multivalued.

#### § 1. Definitions and notation

Throughout this paper let X be a real Banach space and  $X^*$  be its dual space. The natural pairing between  $x \in X$  and  $x^* \in X^*$  is denoted by  $\langle x, x^* \rangle$ . The norms in X and  $X^*$  are denoted by  $\|\cdot\|$  and the identity mapping in X by

I. For a subset E of X we denote by  $\overline{E}$  and co(E) the strong closure and the convex hull of E respectively, and define  $||E|| = \inf_{x \in E} ||x||$  if  $E \neq \phi$ .

Let A be a multivalued operator from X into X, that is, to each  $x \in X$  a subset Ax of X be assigned. We define  $D(A) = \{x \in X; Ax \neq \phi\}$ ,  $R(A) = \bigcup_{x \in X} Ax$ ,  $G(A) = \{(x, x') \in X \times X; x' \in Ax\}$  and for a subset E of X,  $A(E) = \bigcup_{x \in E} Ax$ . For a point  $z \in X$  the multivalued operator A + z is defined by  $(A + z)x = Ax + z = \{x' + z; x' \in Ax\}$ . Then D(A + z) = D(A).

In what follows an operator means a multivalued operator unless otherwise stated.

Let A and A' be operators from X into X. By  $A \supset A'$  we mean that A is an extension of A', that is,  $G(A) \supset G(A')$ . We say that A is demiclosed if  $(x_n, x_n') \in G(A), n = 1, 2, \dots, x_n \to x$  strongly and  $x_n' \to x'$  weakly in X imply that  $(x, x') \in G(A)$ .

The duality mapping F from X into  $X^*$  is defined by

$$Fx = \{x^* \in X^*; \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\}.$$

In general, F is multivalued and its domain is the whole of X. We know that if  $X^*$  is uniformly convex, then  $F_X$  consists of a single point for each  $x \in X$  and F is strongly uniformly continuous on each bounded subset of X (see T. Kato [5]).

An operator A from X into X is called *accretive* if for any (x, x'),  $(y, y') \in G(A)$  there is  $f \in F(x-y)$  such that (x'-y'), f > 0. An accretive operator A is called *maximal accretive* if there is no proper accretive extension of A, and called *m-accretive* if  $R(I+A) = \bigcup_{x \in X} (x+Ax) = X$ .

We use symbols " $\stackrel{s}{\rightarrow}$ " (or "s-lim") and " $\stackrel{w}{\rightarrow}$ " (or "w-lim") to denote the convergence in the strong and the weak topology, respectively.

#### § 2. Lemmas

Four lemmas which will be used in the proof of our main theorems are stated below without proof.

Lemma 1. Suppose that  $X^*$  is uniformly convex. If A is an accretive operator from X into X, then,

- (i) the operator  $\tilde{A}$  given by  $G(\tilde{A}) = \{(x, x') \in X \times X; \text{ there is a sequence } \{(x_n, x'_n)\} \subset G(A) \text{ such that } x_n \xrightarrow{s} x \text{ and } x'_n \xrightarrow{w} x'\} \text{ is accretive,}$
- (ii) the operator  $x \to \overline{co(Ax)}$  is accretive and its domain is D(A),

- (iii) if A is maximal accretive, then it is demiclosed,
- (iv) if A is m-accretive, then it is maximal accretive,
- (v) if A is demiclosed and if  $\{(x_n, x'_n)\}$  is a sequence in G(A) such that  $x_n \stackrel{s}{\Rightarrow} x_0$  and  $\{x'_n\}$  is bounded in X, then  $x_0 \in D(A)$ .

Proofs of (i), (ii), (iii) and (v) are elementary. A proof of (iv) is found in T. Kato [6].

The following two lemmas are due to T. Kato ( $\lceil 5 \rceil$ ,  $\lceil 6 \rceil$ ).

Lemma 2. Let u(t) be an X-valued function on a real interval. Suppose that u(t) has the weak derivative u'(s) at t=s and ||u(t)|| is differentiable at t=s. Then,

$$\frac{d}{ds}(||u(s)||^2)=2< u'(s), f> \qquad \textit{for every } f \in Fu(s).$$

LEMMA 3. Suppose that X is reflexive. Let  $\{u_n\}$  be a sequence in  $L^p(0, r; X)$ ,  $1 , <math>0 < r \le \infty$ , such that  $\{u_n(t)\}$  is bounded for a.e.  $t \in (0, r)$ . Let V(t) be the set of all weak cluster points of  $\{u_n(t)\}$ . If  $u_n \xrightarrow{w} u$  in  $L^p(0, r; X)$ , then

$$u(t) \in \overline{co(V(t))}$$
 for a.e.  $t \in (0, r)$ .

Now we consider the initial value problem of the form

(E) 
$$u'(t) + Au(t) \ni 0, \quad u(0) = a,$$

where A is an operator from X into X and the unknown u(t) is an X-valued function on a real interval  $\Omega$ . Let  $\Omega = [0, r)$  or [0, r], where  $0 < r \le \infty$ . Then u(t) is called a *strong solution* of (E) on  $\Omega$  if

- (a) u(t) is strongly absolutely continuous on any bounded closed interval contained in  $\Omega$  and u(0)=a,
- (b) the strong derivative u'(t) exists,  $u(t) \in D(A)$  and  $u'(t) + Au(t) \ni 0$  for a.e.  $t \in \Omega$ .

Lemma 4. Let A be an accretive operator from X into X,  $a \in D(A)$  and  $\lambda$  be a non-negative real number. Let u(t) be a strong solution of

(2.1) 
$$u'(t) + (\lambda I + A)u(t) \ni 0, \quad u(0) = a$$

on [0, r). Then,

- (i) u(t) is uniquely determined by the intitial value a,
- (ii)  $||u'(t)|| = ||(\lambda I + A)u(t)|| \le ||(\lambda I + A)a||$  for a.e.  $t \in [0, r)$ ,
- (iii) if u(t) is strongly differentiable and satisfies (2.1) at t=s, s', 0 < s < s' < r, then

$$||u'(s')|| \le e^{\lambda(s-s')}||u'(s)||.$$

This lemma is a special case of Lemma 6.2 in T. Kato [6]. In case  $\lambda = 0$ , a simple proof of Lemma 4 is also found in H. Brezis and A. Pazy [1].

## §3. A necessary and sufficient condition for m-accretiveness

Throughout this section we assume that  $X^*$  is uniformly convex. Note that X is reflexive in this case. Our main result is the following.

THEOREM 1. Let A be an accretive operator from X into X. Then A is m-accretive if and only if it is demiclosed and satisfies the following condition: for each  $x \in D(A)$  and each  $z \in X$ , the initial value problem

(3.1) 
$$u'(t) + Au(t) + z \ni 0, \quad u(0) = x$$

has a strong solution on  $[0, \infty)$ .

The "only if" part of the theorem is already known. In fact, if A is maccretive, then it is demiclosed by (iii) and (iv) of Lemma 2 and A+z is also m-accretive for each  $z \in X$ . Now we recall the following result by T. Kato [6; Theorem 7.1]:

THEOREM A. Let B be an m-accretive operator from X into X. Then, for each  $a \in D(B)$  the initial value problem

$$u'(t)+Bu(t)\ni 0, \qquad u(0)=a$$

has a unique strong solution on  $[0, \infty)$ .

This theorem implies that for each  $x \in D(A)$  and each  $z \in X$  the problem (3.1) has a strong solution on  $[0, \infty)$ , if A is m-accretive. Therefore, to complete the proof of Theorem 1 it is sufficient to show only the "if" part. We shall prove it by means of a sequence of lemmas which are valid under the assumptions that A is demiclosed and that for each  $x \in D(A)$  and each  $z \in X$  the problem (3.1) has a strong solution on  $[0, \infty)$ .

LEMMA 5. For each  $x \in D(A)$ , Ax is closed and convex in X.

PROOF. Let B be the operator  $x \to co(Ax)$ . Then, by (ii) of Lemma 1, B is accretive and D(B) = D(A). Let (y, y') be an arbitrary point of G(B). Then, by our assumption, there is a strong solution u(t) of the problem

$$u'(t) + Au(t) - y' \ni 0, \qquad u(0) = y.$$

Since  $B \supset A$ , this function u(t) is also a strong solution of

$$u'(t) + Bu(t) - \gamma' \ni 0, \qquad u(0) = \gamma.$$

Observe that this is a special case of (2.1) because B-y' is an accretive operator. Hence from (i) of Lemma 4 we infer that u(t)=y for all  $t \ge 0$ . This implies that  $(y, y') \in G(A)$ . Thus A=B. q.e.d.

Now for any given  $a \in D(A)$  we consider the initial value problem

(3.2) 
$$u'(t) + Au(t) + u(t) \ni 0, \quad u(0) = a,$$

and shall show the existence of a strong solution of (3.2) on  $[0, \infty)$ .

For each positive integer n, we define an X-valued function  $u_n(t)$  on [0,1] as follows. Let  $u_n(t)$  be a strong solution of (3.1) with z=x=a on  $\left[0,\frac{1}{n}\right]$ . Next, assume that for a positive integer  $k,1\leq k < n,\ u_n(t)$  is already defined on  $\left[0,\frac{k}{n}\right]$  in such a way that  $u_n\left(\frac{k}{n}\right)\in D(A)$ . Let v(t) be a strong solution of (3.1) with  $z=x=u_n\left(\frac{k}{n}\right)$ , and define

$$u_n(t) = v\left(t - \frac{k}{n}\right)$$
 for  $t \in \left[\frac{k}{n}, \frac{k+1}{n}\right]$ .

Then, by (ii) of Lemma 4 we have

$$||u_n'(t)|| \le \left|\left|\left|Au_n\left(\frac{k}{n}\right) + u_n\left(\frac{k}{n}\right)\right|\right|\right|$$
 a.e. on  $\left(\frac{k}{n}, \frac{k+1}{n}\right)$ ,

and hence,  $u_n\left(\frac{k+1}{n}\right) \in D(A)$  by (v) of Lemma 1, since  $u_n(t) \stackrel{s}{\to} u_n\left(\frac{k+1}{n}\right)$  as  $t \nearrow \frac{k+1}{n}$ . Thus  $u_n(t)$  is defined on [0,1] by induction. Clearly  $u_n(t)$  is strongly absolutely continuous on [0,1].

LEMMA 6. Set K = ||Aa + a||. Then,

Proof. By the above argument we have

$$||u_n'(t)|| \leq \left| \left| \left| Au_n\left(\frac{k}{n}\right) + u_n\left(\frac{k}{n}\right) \right| \right|$$

$$a.e. \ on \left(\frac{k}{n}, \frac{k+1}{n}\right), \ k=0, \ 1, \dots, \ n-1.$$

Furthermore we shall show that for  $k=0, 1, \dots, n-1$ ,

$$\left\| Au_n\left(\frac{k+1}{n}\right) + u_n\left(\frac{k}{n}\right) \right\| \leq \left\| Au_n\left(\frac{k}{n}\right) + u_n\left(\frac{k}{n}\right) \right\|.$$

In fact, by (3.4) there exists a sequence  $\{t_j\}$  such that  $t_j \nearrow \frac{k+1}{n}, -u'_n(t_j) \in Au_n(t_j)$ 

 $+u_n\left(\frac{k}{n}\right)$ ,  $||u_n'(t_j)|| \le \left|\left|\left|Au_n\left(\frac{k}{n}\right)+u_n\left(\frac{k}{n}\right)\right|\right|\right|$  and  $-u_n'(t_j) \xrightarrow{w} y$  in X for some  $y \in X$  as  $j \to \infty$ . Since  $u_n(t_j) \xrightarrow{s} u_n\left(\frac{k+1}{n}\right)$  and A is demiclosed, we have  $y \in Au_n\left(\frac{k+1}{n}\right) + u_n\left(\frac{k}{n}\right)$ , and hence,

$$\left|\left|\left|Au_n\left(\frac{k+1}{n}\right)+u_n\left(\frac{k}{n}\right)\right|\right|\leq \left|\left|y\right|\right|\leq \left|\left|\left|Au_n\left(\frac{k}{n}\right)+u_n\left(\frac{k}{n}\right)\right|\right|.$$

Obviously  $||u'_n(t)|| \le K$  a.e. on  $\left[0, \frac{1}{n}\right]$  by (ii) of Lemma 4. Now assume that (3.3) holds for k-1. Then we have by (3.5)

$$\left|\left|\left|Au_n\left(\frac{k}{n}\right)+u_n\left(\frac{k-1}{n}\right)\right|\right|\leq \left|\left|\left|Au_n\left(\frac{k-1}{n}\right)+u_n\left(\frac{k-1}{n}\right)\right|\right|\leq \left(1+\frac{1}{n}\right)^{k-1}K.$$

and by (3.4)

$$\left\| u_n\left(\frac{k-1}{n}\right) - u_n\left(\frac{k}{n}\right) \right\| \le \int_{\frac{k-1}{n}}^{\frac{k}{n}} \|u_n'(s)\| ds \le \frac{1}{n} \left(1 + \frac{1}{n}\right)^{k-1} K.$$

Hence,

$$\left\| \left\| Au_n\left(\frac{k}{n}\right) + u_n\left(\frac{k}{n}\right) \right\| \le \left\| \left\| Au_n\left(\frac{k}{n}\right) + u_n\left(\frac{k-1}{n}\right) \right\| + \left\| u_n\left(\frac{k-1}{n}\right) - u_n\left(\frac{k}{n}\right) \right\| \le \left(1 + \frac{1}{n}\right)^k K.$$

Thus (3.3) is proved by induction.

q.e.d.

For the sequence  $\{u_n\}_{n=1}^{\infty}$  we prove

Lemma 7. The sequence  $\{u_n\}$  is strongly uniformly convergent on [0, 1], and the limit u(t) is strongly continuous on [0, 1] and satisfies u(0) = a.

Proof. From the definition of  $u_n$  it follows that

$$(3.6) u_n'(t) + U_n(t) + u_n\left(\frac{[nt]}{n}\right) = 0 a.e. on [0, 1],$$

where  $U_n(t)$  is an X-valued function on [0, 1] such that  $U_n(t) \in Au_n(t)$  a. e. on [0, 1], and [.] denotes the Gaussian bracket. For positive integers n, m we have by (3.6), Lemma 2 and the accretiveness of A

$$\begin{split} &\frac{d}{ds}(\|u_n(s)-u_m(s)\|^2) \\ &= -2 < U_n(s) + u_n \left(\frac{\lfloor ns \rfloor}{n}\right) - U_m(s) - u_m \left(\frac{\lfloor ms \rfloor}{m}\right), \ F(u_n(s)-u_m(s)) > \\ &\leq -2 < u_n \left(\frac{\lfloor ns \rfloor}{n}\right) - u_m \left(\frac{\lfloor ms \rfloor}{m}\right), \ F(u_n(s)-u_m(s)) - F\left(u_n \left(\frac{\lfloor ns \rfloor}{n}\right) - u_m \left(\frac{\lfloor ms \rfloor}{m}\right)\right) > \\ &\quad a.e. \ on \ \lceil 0, 1 \rceil. \end{split}$$

Furthermore, by (3.3) we have  $||u_n(t)|| \le ||a|| + eK$  for all  $t \in [0, 1]$  and all n. Hence, we obtain

$$\frac{d}{ds}(||u_n(s)-u_m(s)||^2)$$

$$\leq 4(||a||+eK) \left\| F(u_n(s)-u_m(s)) - F\left(u_n\left(\frac{\lceil ns \rceil}{n}\right) - u_m\left(\frac{\lceil ms \rceil}{m}\right)\right) \right\|$$

a.e. on [0, 1]. Integrating this inequality on [0, t],

(3.7) 
$$||u_n(t)-u_m(t)||^2$$

$$\leq 4(||a|| + eK) \int_0^1 \left\| F(u_n(s) - u_m(s)) - F\left(u_n\left(\frac{\lceil ns \rceil}{n}\right) - u_m\left(\frac{\lceil ms \rceil}{m}\right)\right) \right\| ds$$

for all  $t \in [0, 1]$ . On the other hand, we have by Lemma 6 again

$$\begin{aligned} & \left\| u_n(s) - u_m(s) - u_n\left(\frac{\lceil ns \rceil}{n}\right) + u_m\left(\frac{\lceil ms \rceil}{m}\right) \right\| \\ & \leq \left\| u_n(s) - u_n\left(\frac{\lceil ns \rceil}{n}\right) \right\| + \left\| u_m(s) - u_m\left(\frac{\lceil ms \rceil}{m}\right) \right\| \\ & \leq \int_{\frac{\lceil ns \rceil}{n}}^{s} \left\| u_n'(r) \right\| dr + \int_{\frac{\lceil ms \rceil}{m}}^{s} \left\| u_m'(r) \right\| dr \\ & \leq eK\left(\frac{1}{n} + \frac{1}{m}\right). \end{aligned}$$

Hence, by the strong uniform continuity of F on bounded subsets of X, the right hand side of (3.7) converges to 0 as  $n, m \to \infty$ , that is,  $\{u_n\}$  is strongly uniformly convergent on [0, 1]. Then, it is easily seen that the limit u(t) is strongly continuous on [0, 1] and u(0) = a. q.e.d.

Lemma 8. The function u(t) is a strong solution of (3.2) on [0, 1] and  $u(t) \in D(A)$  for all  $t \in [0, 1]$ .

PROOF. For a positive number  $p, 1 is bounded in <math>L^p(0, 1; X)$  by Lemma 6. It follows that there exists a subsequence  $\{u_n,\}$  of  $\{u_n\}$  such

that  $u'_{n_j} \xrightarrow{w} v$  in  $L^p(0, 1; X)$ . Moreover, since  $u_{n_j}(t) \xrightarrow{s} u(t)$  in X uniformly on [0, 1] by Lemma 7, it follows that u' = v in the distribution sense, and hence, u(t) is strongly absolutely continuous and u'(t) = v(t) a.e. on [0, 1]. Let V(t) be the set of all weak cluster points of  $\{u'_{n_j}(t)\}$ . Then, by Lemmas 3 and 6,

$$u'(t) \in \overline{co(V(t))}$$
 for a.e.  $t \in [0, 1]$ .

Since

$$u'_{n_j}(t) + Au_{n_j}(t) + u_{n_j}\left(\frac{[n_jt]}{n_i}\right) \ni 0$$
 a.e. on  $[0, 1]$ ,

 $u_{n_j}(\underbrace{\lceil n_j t \rceil}_{n_j}) \xrightarrow{s} u(t)$  for all  $t \in [0, 1]$  as  $j \to \infty$  and A is demiclosed, it follows that

$$V(t) \in -(Au(t)+u(t))$$
 for a.e.  $t \in [0, 1]$ .

By Lemma 5 we have

$$\overline{co(V(t))} \subset -(Au(t)+u(t))$$
 a.e. on  $[0, 1]$ ,

and hence

$$u'(t) \in -(Au(t)+u(t))$$
 a.e. on  $\lceil 0, 1 \rceil$ .

Thus u is a strong solution of (3.2) on [0, 1]. The fact that  $u(t) \in D(A)$  for all  $t \in [0, 1]$  follows easily from (v) of Lemma 1. q.e.d.

Finally, to complete the proof of Theorem 1 we prove

Lemma 9. A is m-accretive.

PROOF. In Lemma 8 we have shown that for any given  $a \in D(A)$  the initial value problem (3.2) has a strong solution u(t) on [0, 1]. Applying Lemma 8 with the initial time t=1 and the initial value  $u(1) \in D(A)$ , we obtain a strong solution of (3.2) on [0, 2]. Thus, successively we obtain a strong solution u(t) on  $[0, \infty)$ . By (iii) of Lemma 4 there is a sequence  $\{t_j\}$  such that  $t_j \nearrow \infty$ ,  $Au(t_j) + u(t_j) \ni -u'(t_j)$  and  $u'(t_j) \stackrel{s}{\to} 0$  in X as  $j \to \infty$ . By (iii) of Lemma 4 again, for a positive number  $t_0$  we have

$$||u(t_{j})-u(t_{j}')|| \leq \int_{t_{j}}^{t_{j'}} ||u'(s)|| ds$$

$$\leq ||u'(t_{0})||e^{t_{0}} \int_{t_{j}}^{t_{j'}} e^{-s} ds$$

$$= ||u'(t_{0})||e^{t_{0}} (-e^{-t_{j'}} + e^{-t_{j}})$$

for all  $t_j$  and  $t_{j'}$ ,  $t_0 < t_j \le t_{j'}$ , and hence,  $||u(t_j) - u(t_{j'})|| \to 0$  as  $j, j' \to \infty$ , that is, s-lim  $u(t_j) = u_0$  exists. Since A is demiclosed, we have  $0 \in Au_0 + u_0$ . Thus  $R(I + A) \ni 0$ .

For an arbitrary point  $z \in X$ , replacing A by A-z in the above argument, we conclude that  $z \in R(I+A)$ . q.e.d.

## Contraction semigroups and their generators

Let  $X_0$  be a subset of X and let  $T = \{T(t); t \ge 0\}$  be a family of nonlinear singlevalued operators from  $X_0$  into itself. We say that T is a contraction semigroup on  $X_0$  if

- (a) T(t+t')x = T(t)T(t')x for  $t, t' \ge 0$  and  $x \in X_0$ , (b)  $||T(t)x T(t)y|| \le ||x y||$  for  $t \ge 0$  and  $x, y \in X_0$ ,
- T(0)x = xfor  $x \in X_0$ , (c)
- (d) the function  $t \to T(t)x$  is strongly continuous on  $[0, \infty)$  for each  $x \in X_0$ .

We define the strong infinitesimal generator  $G_s$  of T by

$$G_s x = s - \lim_{t \to 0} \frac{T(t)x - x}{t}$$

and the weak infinitesimal generator  $G_w$  of T by

$$G_w x = w - \lim_{t \searrow 0} \frac{T(t)x - x}{t}$$

whenever the right sides exist. It is easy to see that if  $X^*$  is uniformly convex, then  $-G_s$  and  $-G_w$  are accretive and  $G_s \subset G_w$ .

By using Theorem 1 we shall prove

Theorem 2. Suppose that  $X^*$  is uniformly convex. Let A be an accretive operator from X into X. Then the following statements are equivalent to each other:

- (i) A is m-accretive.
- For each  $z \in X$ , there is a contraction semigroup  $T^{(z)} = \{T^{(z)}(t); t \geq 0\}$  on  $\overline{D(A)}$  such that  $-G_s^{(z)} \subset A + z$  and  $D(A) \subset \left\{ x \in \overline{D(A)}; \liminf_{t > 0} \frac{\|T^{(z)}(t)x - x\|}{t} \right\}$  $<\infty$ .
- For each  $z \in X$ , there is a contraction semigroup  $T^{(z)} = \{T^{(z)}(t); t \geq 0\}$  on  $\overline{D(A)}$  such that  $-G_w^{(z)} \subset A + z$  and  $D(A) \subset \left\{ x \in \overline{D(A)}; \lim_{t \to 0} \frac{||T^{(z)}(t)x - x||}{t} \right\}$ <∞}.

Here,  $G_s^{(z)}$  and  $G_w^{(z)}$  are the strong and the weak infinitesimal generators of  $T^{(z)}$ ,

respectively.

The assertion (iii)  $\rightarrow$  (ii) of Theorem 2 immediately follows from the fact that  $G_s^{(z)} \subset G_w^{(z)}$  for each  $z \in X$ .

Now we recall results on generation of semigroups by M.G. Crandall and T.M. Liggett  $\lceil 3 \rceil$  and I. Miyadera  $\lceil 10 \rceil$ .

THEOREM B. (M.G. Crandall and T.M. Liggett [3; Theorems I and II]) Let B be an m-accretive operator from X into X. Then,

(a) there exists a contraction semigroup  $T = \{T(t); t \ge 0\}$  on  $\overline{D(B)}$  such that

$$T(t)x = s - \lim_{n \to \infty} \left(I + \frac{t}{n}B\right)^{-n}x$$
 for  $x \in \overline{D(B)}$ 

uniformly on every bounded interval in  $[0, \infty)$ ,

(b) if X is reflexive, then for each  $x \in D(B)$  the function T(t)x is a strong solution of

$$u'(t)+Bu(t)\ni 0, \qquad u(0)=x.$$

For an operator B from X into X we define  $B^0$  by

$$B^0x = \{x' \in Bx; ||x'|| = ||Bx|||\}$$

and call it the canonical restriction of B.

THEOREM C. (I. Miyadera [10; COROLLARY 1 and THEOREM 3]) Let B be an m-accretive operator from X into X, and let  $T = \{T(t); t \ge 0\}$  be the contraction semigroup on  $\overline{D(B)}$  given by Theorem B. Then we have

(a) if  $x \in D(B)$  and if for some sequence  $\{t_n\}$  with  $t_n \searrow 0$ 

$$x' = w - \lim_{n \to \infty} \frac{T(t_n)x - x}{t_n},$$

then  $(x, x') \in G(B^0)$ , where  $B^0$  is the canonical restriction of B,

(b) if X is reflexive, then

$$D(B) = \left\{ x \in \overline{D(B)}; \underset{t \searrow 0}{\operatorname{liminf}} \frac{||T(t)x - x||}{t} < \infty \right\},$$

- (c) if X is reflexive and if  $B^0$  is singlevalued, then  $D(B^0)=D(B)$  and  $-B^0$  is the weak infinitesimal generator of T,
- (d) if X is reflexive and X and  $X^*$  are strictly convex, then  $B^0$  is single-valued and  $-B^0$  is the weak infinitesimal generator of T.

Proof of the assertion (i)  $\rightarrow$  (iii) of Theorem 2. Since A is m-accretive, A+z is also m-accretive for each  $z \in X$ . Therefore, there is a contraction

semigroup  $T^{(z)} = \{T^{(z)}(t); t \ge 0\}$  generated by B = A + z in the sense of Theorem B. We see from (a) of Theorem C that  $-G_w^{(z)} \subset A + z$ , and from (b) of Theorem C that

$$D(A) = D(A+z) = \left\{ x \in \overline{D(A)}; \lim_{t \to 0} \inf \frac{||T^{(z)}(t)x - x||}{t} < \infty \right\}.$$

Thus we have (iii).

q.e.d.

To prove that (ii) implies (i), we use the following lemma that is due to M. G. Crandall and A. Pazy [4; Lemma 1.1 and Lemma 6.1].

LEMMA 10. Let  $T = \{ T(t); t \geq \}$  be a contraction semigroup on a subset  $X_0$  of X and B be an accretive operator such that  $-G_s \subset B$ , where  $G_s$  is the strong infinitesimal generator of T. If  $x \in D(B) \cap X_0$  and

$$\liminf_{t \to 0} \frac{||T(t)x - x||}{t} = L < \infty,$$

then  $L \leq ||Bx||$  and  $||T(t)x - T(t')x|| \leq L||t - t'||$  for  $t, t' \geq 0$ .

Proof of the assertion (ii)  $\rightarrow$  (i) of Theorem 2. Let  $\tilde{A}$  be the operator given by

$$G(\tilde{A}) = \{(x, x') \in X \times X; \text{ there is a sequence } \{(x_n, x'_n)\} \subset G(A)$$

such that 
$$x_n \xrightarrow{s} x$$
 and  $x'_n \xrightarrow{w} x'$  in  $X$ ,

and let z be an arbitrary point of X. Put

$$D_z = \left\{ x \in \overline{D(A)}; \underset{t \searrow 0}{\underset{t \searrow 0}{\text{liminf}}} \frac{||T^{(z)}(t)x - x||}{t} < \infty \right\}.$$

Then we first have

$$(4.1) D(\tilde{A}) \subset D_z.$$

In fact, let (x, x') be any element of  $G(\tilde{A}+z)$ . Then, there is a sequence  $\{(x_n, x'_n)\}\subset G(A+z)$  such that  $x_n\stackrel{s}{\to} x$  and  $x'_n\stackrel{w}{\to} x'$  in X as  $n\to\infty$ . Since  $D(A+z)=D(A)\subset D_z$  by our assumption,  $x_n\in D_z$  for each n. Hence we infer from Lemma 10 that

$$||T^{(z)}(t)x_n-x_n|| \le ||x_n'||t$$
 for  $t \ge 0$ .

Since  $\{||x_n'||\}$  is bounded, letting  $n \to \infty$  in the above inequality, we have for some M > 0

$$||T^{(z)}(t)x-x|| \leq Mt$$
 for  $t \geq 0$ ,

and hence,  $x \in D_z$ . Thus (4.1) holds true. From (4.1) and Lemma 10 it follows that the function  $T^{(z)}(t)x$  on  $[0, \infty)$  is Lipschitz continuous for each  $x \in D(\tilde{A})$ ,

and hence, it is strongly differentiable a.e. on  $[0, \infty)$ . Therefore,

$$\frac{d}{dt}T^{(z)}(t)x - G_s^{(z)}(T^{(z)}(t)x) = 0 \qquad a.e. \ on \ [0, \infty).$$

By our assumption we have

$$\frac{d}{dt}T^{(z)}(t)x + A(T^{(z)}(t)x) + z \ni 0 \quad a.e. \text{ on } [0, \infty).$$

Thus we have seen that for each  $z \in X$  and each  $x \in D(\tilde{A})$  the function  $T^{(z)}(t)x$  is a strong solution of (3.1) on  $[0, \infty)$ . Now, let (x, x') be any element of  $G(\tilde{A})$ . Then  $T^{(-x')}(t)x$  is a strong solution of (3.1) with z = -x'. Since  $\tilde{A} \supset A$ , it is also a strong solution of

$$u'(t) + \tilde{A}u(t) - x' \ni 0, \qquad u(0) = x.$$

By the uniqueness of a strong solution ((i) of Lemma 4), we have

$$T^{(-x')}(t)x = x$$
 for all  $t \ge 0$ .

This means that  $u(t) \equiv x$  is a strong solution of (3.1) with z = -x'. Therefore,  $x \in D(A)$  and  $x' \in Ax$ . Thus  $\tilde{A} = A$ , and hence, A is demiclosed. Therefore from Theorem 1 we obtain the m-accretiveness of A. q.e.d.

Remark. Assume that  $X^*$  is uniformly convex. Let A be an m-accretive operator from X into X. Then, for each  $z \in X$ , the contraction semigroup given by (ii) (or (iii)) of Theorem 2 coincides with the contraction semigroup generated by B = A + z in the sense of Theorem B. In fact, let denote the former by  $T^{(z)}$  and the latter by  $\tilde{T}^{(z)}$ . Then, as we have seen in the above proof, for each  $x \in D(A)$  the function  $T^{(z)}(t)x$  is a strong solution of (3.1) on  $[0, \infty)$ , and by (b) of Theorem B the function  $\tilde{T}^{(z)}(t)x$  is also a strong solution of (3.1) on  $[0, \infty)$ . Hence, by the uniqueness of a strong solution,

$$T^{(z)}(t)x = \tilde{T}^{(z)}(t)x$$
 for all  $t \ge 0$  and all  $x \in D(A)$ .

Furthermore, by the strong continuity of  $T^{(z)}(t)$  and  $\tilde{T}^{(z)}(t)$ ,

$$T^{(z)}(t) = \hat{T}^{(z)}(t)$$
 on  $\overline{D(A)}$  for all  $t \ge 0$ .

Thus  $T^{(z)} = \tilde{T}^{(z)}$ .

The next two corollaries are obtained from Theorems B and C and our Theorem 2.

COROLLARY 1. (F. E. Browder [2]) Suppose that  $X^*$  is uniformly convex. Let A be a singlevalued accretive operator from X into X. Then A is m-accretive if and only if for each  $z \in X$  there is a contraction semigroup on  $\overline{D(A)}$  whose weak infinitesimal generator is -(A+z).

PROOF. The "only if" part immediately follows from the assertion (iii)  $\rightarrow$  (i) of Theorem 2. Next, assume that A is m-accretive. Then, by (i)  $\rightarrow$  (iii) of Theorem 2, for each  $z \in X$  there exists a contraction semigroup  $T^{(z)}$  on  $\overline{D(A)}$  such that  $-G_w^{(z)} \subset A + z$  and  $D(A) \subset D_z$ . By the above Remark this semigroup  $T^{(z)}$  is the contraction semigroup generated by B = A + z in the sense of Theorem B. Therefore from (c) of Theorem C it follows that  $-G_w^{(z)} = A + z$ . q.e.d.

COROLLARY 2. Suppose that X is strictly convex and  $X^*$  is uniformly convex. Let A be an accretive operator from X into X. Then A is m-accretive if and only if for each  $z \in X$ , the canonical restriction  $(A+z)^{\circ}$  is singlevalued,  $D((A+z)^{\circ})=D(A)$  and there is a contraction semigroup on  $\overline{D(A)}$  whose weak infinitesimal generator is  $-(A+z)^{\circ}$ .

PROOF. The "only if" part immediately follows from the assertion (iii)  $\rightarrow$  (i) of Theorem 2. The "if" part is also proved just as in the proof of Corollary 1 by using (d) of Theorem C.

### References

- H. Brezis and A. Pazy, Accretive sets and differential equations in Banach spaces, Israel J. Math., 8 (1970), 367-383.
- [2] F. E. Browder, Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc., 73 (1967), 867-874.
- [3] M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265–298.
- [4] M. G. Crandall and A. Pazy, Semigroups of nonlinear contractions and dissipative sets, J. Functional Analysis, 3 (1969), 376-418.
- [5] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508–520.
- [6] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Symp. Nonlinear Functional Analysis, Amer. Math. Soc., Part 1 (1970), 138-161.
- [7] N. Kenmochi, Accretive mappings in Banach spaces, Hiroshima Math. J., 2 (1972), 163-177.
- [8] Y. Kōmura, Nonlinear semigroups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507.
- [9] R. H. Martin, Jr., A global existence theorem for autonomous differential equations in a Banach space, Proc. Amer. Math. Soc., 26 (1970), 307-314.
- [10] I. Miyadera, Some remarks on semigroups of nonlinear operators, Tōhoku Math. J., 23 (1971), 245-258.
- [11] I. Miyadera and S. Ōharu, Approximation of semigroups of nonlinear operators, Tōhoku Math. J., 22 (1970), 24-47.
- [12] G. F. Webb, Continuous nonlinear perturbations of linear accretive operators in Banach spaces, J. Functional Analysis, 10 (1972), 191-203.

Department of Mathematics, Faculty of Science, Hiroshima University