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Introduction

In the theory of nonlinear contraction semigroups, the notion of accretive
operators was introduced as a generalization of the notion of the infinitesimal
generators, and studied by many authors (see e.g., p.], [2], [3], [4], Q6], [8],
[10], [11]).

In the present paper we study a multivalued accretive operator A from
a Banach space X into itself. It is called m-accretive if the range of 1+ A
is the whole of X. The studies on the m-accretiveness of nonlinear operators
were made by T. Kato [6], R.H. Martin, Jr. [9], G.F. Webb [12], the author
[7] and others. The purpose of this paper is to give a necessary and sufficient
condition for m-accretiveness under certain conditions, an accretive operator
A from X into X is m-accretive if and only if it is demiclosed and the initial
value problem

dt

has a solution (in a certain sense) on [0, oo) for each x c D(A) and z e X
(THEOREM 1). It was announced by F.E. Browder [2] that if the dual space
of X is uniformly convex, then a densely defined singlevalued accretive
operator A is m-accretive if and only if — (A + z) is the weak infinitesimal
generator of a nonlinear contraction semigroup on X for each z e X. This
was proved by M.G. Crandall and A. Pazy [4] in case X is a Hubert space. In
this paper we shall prove Browder's announcement in a more general form,
namely, when A is multivalued.

§ 1. Definitions and notation

Throughout this paper let X be a real Banach space and X* be its dual
space. The natural pairing between x e X and ** e X* is denoted by < x, x* >.
The norms in X and X* are denoted by || || and the identity mapping in X by
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/. For a subset E of X we denote by E and co(E) the strong closure and the
convex hull of E respectively, and define |||2?|||=inf \\x\\ if Eφφ.

χt=E

Let A be a multivalued operator from X into X, that is, to each x e X a
subset ^Λ; of X be assigned. We define Z>U) = {x e X; Axφφ}, R(A) = \J Ax,

x<=X

G(A) = {O, x')e Xx X; x' e Ax} and for a subset E of X, A(E) = \J Ax. For
χ(=E

a point z e X the multivalued operator 4̂ + z is defined by (A + z)x = A
{x' + z; x' € Ax}. Then D(A + z) = D(A).

In what follows an operator means a multivalued operator unless other-
wise stated.

Let A and Ar be operators from X into X. By ^O Ar we mean that A is
an extension of A', that is, G(A)^)G(A/). We say that 4̂ is demiclosed if
(#„, #£) e GG4), 7i = l, 2,-.., Λ;W-*Λ; strongly and χf

n-+ χr weakly in X imply that
(*, χf) e

The duality mapping F from X into X* is defined by

In general, F is multivalued and its domain is the whole of X We know that
if X* is uniformly convex, then Fx consists of a single point for each x e X
and F is strongly uniformly continuous on each bounded subset of X (see T.
Kato

An operator A from X into X is called accretive if for any O, #0,
(y, j θ e GG4) there is / e F(> — j) such that <χr — y\f> > 0 . An accretive
operator J is called maximal accretive if there is no proper accretive extens-
ion of A, and called m-accretive if R(I+A)(= \J (x + Ax)) = X.

X€=X

We use symbols " - V (or Vlim") and "^>" (or "w-lim") to denote the
convergence in the strong and the weak topology, respectively.

§ 2. Lemmas

Four lemmas which will be used in the proof of our main theorems are
stated below without proof.

LEMMA 1. Suppose that X* is uniformly convex. If A is an accretive
operator from X into X, then,

( i ) the operator A given by G(A) = {(x, xf) e XxX; there is a sequence
{{xm x'n)}CG(A) such that xn^>x and x'n^x'} is accretive,

(ii) the operator x-+co(Ax) is accretive and its domain is D(A),
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(iii) if A is maximal accretive, then it is demiclosed,
(iv) if A is m-accretive, then it is maximal accretive,
( v) if A is demiclosed and if {(χn, x'n)} ^s a sequence in G(A) such that

Xn-^xo omd {χf

n} is bounded in X, then x0 e D(J).

Proofs of (i), (ii), (iii) and (v) are elementary. A proof of (iv) is found
in T. Kato [6].

The following two lemmas are due to T. Kato ([ΊΓ], E6H)

LEMMA 2. Let u(t) be an X-valued function on a real interval. Suppose
that u(t) has the weak derivative u'(s) at t = s and \\u(t)\\ is differentiate at

t=s. Then,

^ for every feFu(s).

LEMMA 3. Suppose that Xis reflexive. Let {un} be a sequence in Lp(0, r X),
, 0<r<C©o5 such that {un(t)} is bounded for a.e. t e (0, r). Let F(ί) be

the set of all weak cluster points of {un(t)}. If un^u in Lp(0, r; X), then

u(t) 6 co(V(t)) for a.e. t 6 (0, r).

Now we consider the initial value problem of the form

(E) u\t) + Au(t) 3 0, u(0) =a,

where A is an operator from X into X and the unknown u(t) is an X-valued
function on a real interval Ω. Let Ω = [j), r) or [0, r], where 0< r <oo. Then
u(t) is called a strong solution of (E) on Ω if

(a) u{t) is strongly absolutely continuous on any bounded closed interval
contained in Ω and u(0)=a,

(b) the strong derivative u\t) exists, u(t) c D(A) and u'(t) + Au(i) B 0
for a.e. t e Ω.

LEMMA 4. Let A be an accretive operator from X into X, a c D(A) and λ
be a non-negative real number. Let u(t) be a strong solution of

(2.1) u'(t) + (λI+A)u(t) B 0, u(0)=a

on [0, r). Then,

( i ) u(t) is uniquely determined by the intitial value a,
(ii) | |u /(ί)| | = lllW/+^)α(ί)lll^lllW/+^)o||| for a.e. t € [0, r),
(iii) if u(t) is strongly differentiable and satisfies (2.1) at t = s, s',

0<s<s'<r, then
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This lemma is a special case of LEMMA 6.2 in T. Kato [6]. In case λ =
a simple proof of LEMMA 4 is also found in H. Brezis and A. Pazy [ Ί ] .

§ 3. A necessary and sufficient condition for m-accretiveness

Throughout this section we assume that X* is uniformly convex. Note
that X is reflexive in this case. Our main result is the following.

THEOREM 1. Let A be an accretive operator from X into X. Then A is
m-accretive if and only if it is demiclosed and satisfies the following condition:
for each x e D(A) and each z e X, the initial value problem

(3.1) u'(t) + Au(t) + z B 0, u(0) = x

has a strong solution on [Ό, oo).

The "only if" part of the theorem is already known. In fact, if A is m-
accretive, then it is demiclosed by (iii) and (iv) of LEMMA 2 and A + z is also
m-accretive for each z e l Now we recall the following result by T. Kato
[6; THEOREM 7.1]:

THEOREM A. Let B be an m-accretive operator from X into X. Then, for
each a € D(B) the initial value problem

(t)Bθ, u(0)=a

has a unique strong solution on [0, oo).

This theorem implies that for each x e D(A) and each z e X the problem
(3.1) has a strong solution on [β, ©o)5 if A is m-accretive. Therefore, to
complete the proof of THEOREM 1 it is sufficient to show only the "if" part.
We shall prove it by means of a sequence of lemmas which are valid under
the assumptions that A is demiclosed and that for each x e D(A) and each
z e X the problem (3.1) has a strong solution on [0> ©o).

LEMMA 5. For each x e D(A), Ax is closed and convex in X.

PROOF. Let B be the operator x -> co(Ax). Then, by (ii) of LEMMA 1, B
is accretive and D(B)=D(A). Let ( j , yr) be an arbitrary point of G(B).
Then, by our assumption, there is a strong solution u(t) of the problem

Since B^)A, this function u(t) is also a strong solution of

u'<Jb) + Bu(t) - y' 2 0, H(0) = y.
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Observe that this is a special case of (2.1) because B — yf is an accretive
operator. Hence from (i) of LEMMA 4 we infer that u(t) = y for all £ > 0 .
This implies that (y, / ) e G(A). Thus A = B. q. e. d.

Now for any given a e D(A) we consider the initial value problem

(3.2) u'(t) + Au(t) + u(t)Bθ, u(0)=a,

and shall show the existence of a strong solution of (3.2) on [0, ©o).

For each positive integer n, we define an X-valued function un(t) on
[0, 1] as follows. Let un(t) be a strong solution of (3.1) with z = χ=a on

0, — . Next, assume that for a positive integer k, l<ik<n, un(t) is already
L 71 J

defined on 0, — in such a way that un(—j e D(A). Let v(t) be a strong

solution of (3.1) with z = x = un(—\ and define

u.(ί) = »(t - —) forte ΓA * ± ! Ί
\ n / Ln n J

Then, by (ii) of LEMMA 4 we have

and hence, un(——) e D(-4) by (v) of LEMMA 1, since uw(0^>^»( _ ) as
Λ n /

ί /*——. Thus z^(0 is defined on Γ0,1Ί by induction. Clearly un(t) is strongly
n

absolutely continuous on [0, 1].

LEMMA 6. Set K=\\\Aa + a\\\. Then,

(3.3) \u'n(t)\\< A ( k\ , (k\\ ^(ΛΛ_ 1\Aun(—) + un[ — ) < ( 1 + — kκ

a.e. on ( A
n n

= 0, 1, , n-1.

PROOF. By the above argument we have

(3.4) Aun(—) + un( —

a.e. on(—
9

Tb Ti

Furthermore we shall show that for &=0,1, , n — 1,

n -1.
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(3.5) jΛun
β + Λ-i. ίk

n[ ) + un[ —
\ n J \n

Aun\ — ) + un{ —

In fact, by (3.4) there exists a sequence {tj} such that , — uf

n(tj) e Aun(tj)

+ uH(—\ \\uί(t/)\\^. ΛuJ-t) + B / A ) and - aί(ίy) ^ y in X for some y f l

as /-> oo. Since !*„(*/) -^ M J - ^ - ) and 4̂ is demiclosed, we have y e Aun( )

+ un(—), and hence,

Obviously \\uίt(t)\\<^Ka.e. on 0,— by (ii) of LEMMA 4. Now assume that

(3.3) holds for k-1. Then we have by (3.5)

and by (3.4)

Hence,

Thus (3.3) is proved by induction.

For the sequence {un}~=1 we prove

q.e.d.

LEMMA 7. The sequence {un} is strongly uniformly convergent on Q0,
and the limit u(t) is strongly continuous on [Ό, 1] and satisfies u(0)=a.

PROOF. From the definition of un it follows that

(3.6) K(t)+Un(t) + un(^Ά = 0 a.e. on [0, 1],

where Un(t) is an X-valued function on [0, 1] such that UH(t) e Aun(t) a. e. on
Q0, 1J, and {_ . J denotes the Gaussian bracket. For positive integers n, m we
have by (3.6), LEMMA 2 and the accretiveness of A
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m
F{un{s)-um(s))>

-2<Un( !=—^ ) - uj != ^ j , F(un(s) - Um(s)) ~ Fl Un{ ^—=± ) — uj ^ ^ ) ) >

α. e. on [0, ΪJ.

Furthermore, by (3.3) we have \\un(t)\\<\\a\\ + eK for all t 6 [0, 1] and all n.
Hence, we obtain

\un(s)-um(s)\\>)
ds

F(un(s) — um(s)) — F( uJ L—-) — u
\ \ n /

a. e. on [0, 1J. Integrating this inequality on [0, ί ] ,

(3.7) | |«.(t)-u»

)
n / \ m

for all t e [0, 1], On the other hand, we have by LEMMA 6 again

ds

Un(s) - Um(s) -Un[ ±—^ ) + U
\ n / m

X

Ymf
m

\\K(r)\\dr+\S \\u

Th 771

Hence, by the strong uniform continuity of F on bounded subsets of X, the
right hand side of (3.7) converges to 0 as n, 771—>oo? that is, {un} is strongly
uniformly convergent on Q0, 1]. Then, it is easily seen that the limit u(t) is
strongly continuous on [0, 1] and u(0)=a. q.e.d.

LEMMA 8. The function u(t) is a strong solution of (3.2) on [Ό, 1] and
u(t) e D(A) for all t e [0, 1].

PROOF. For a positive number p, 1< p < oo5 {u

f

n} is bounded in 1^(0,1 X)
by LEMMA 6. It follows that there exists a subsequence {unj} of {un} such
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that u'n^υ in Lp (0, 1; X). Moreover, since un.(t)-±m(t) in X uniformly on
CO, 1] by LEMMA 7, it follows that u' = v in the distribution sense, and hence,
u(t) is strongly absolutely continuous and u'(t) = v(t) a.e. on [0, 1]. Let V(t)
be the set of all weak cluster points of {uf

n.{t)}. Then, by LEMMAS 3 and 6,

u\t) e co(V(t)) for a.e.te [0, 1] .

Since

(pp) 0 a.e. on [0, 1],

Unj\ l )-*»**(*) f° r aH * 6 CO, 1H as y->oo and A is demiclosed, it follows that

V(t) e -(Au(t) + u(t)) for a.e. t 6 [0, 1].

By LEMMA 5 we have

co(F(t))C-(Au(t) + u(t)) a.e. on [0, 1],

and hence

u'(t) e -(Au(t) + u(t)) a.e. on [0, 1].

Thus u is a strong solution of (3.2) on [0, 1]. The fact that u(t) e D(A) for
all t 6 [0, 1] follows easily from (v) of LEMMA 1. q.e.d.

Finally, to complete the proof of THEOREM 1 we prove

LEMMA 9. A is m-accretive.

PROOF. In LEMMA 8 we have shown that for any given aeD(A) the
initial value problem (3.2) has a strong solution u(t) on [0, 1]. Applying
LEMMA 8 with the initial time t = 1 and the initial value a(l) e D(A), we obtain
a strong solution of (3.2) on [0, 2]. Thus, successively we obtain a strong
solution u(t) on Q0, oo). By (iii) of LEMMA 4 there is a sequence {tj} such
that tj/oo5 Au(tj) + u(tj) B —u'(tj) and u'(tj)^>0 in X as ;->oo. By (iii) of
LEMMA 4 again, for a positive number t0 we have

for all tj and tf, to<tj<,tj ', and hence, ||u(ί/) —u(ίy')||-» 0 as /, j'-*°°, that
is, s-Ίim u(tj) = u0 exists. Since A is demiclosed, we have 0 e Auo + uo. Thus

R(I+A) 3 0.
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For an arbitrary point z e l , replacing A by A — z in the above argument,
we conclude that z e R(I+ A). q. e.d.

§ 4. Contraction semigroups and their generators

Let Xo be a subset of Xand let T={T(t); t^>0} be a family of nonlinear
singlevalued operators from Xo into itself. We say that T is a contraction
semigroup on Xo if

(a) Γ(ί+ *')*= T(t)T(tr)x for t, t'^0 and x e Xo,
(b) \\T(t)x-T(t)y\\^\\x-y\\ for t>0 and x, ye Xo,
(c) T(0)x = x forxeXo,
(d) the function t -> T(t)x is strongly continuous on [0, oo) for each x e Xo.

We define the strong infinitesimal generator Gs of T by

r> i w» T(t)x — x
&sx=s — lim—^^

and the weak infinitesimal generator Gw of T by

Gwx=w — lιm—^
ί \ 0

whenever the right sides exist. It is easy to see that if X* is uniformly
convex, then — Gs and — Gw are accretive and GsCGw

By using THEOREM 1 we shall prove

THEOREM 2. Suppose that X* is uniformly convex. Let A be an accretive
operator from X into X. Then the following statements are equivalent to each
other:

( i ) A is m-accretive.
(ii) For each z e X, there is a contraction semigroup T(z) = { T(z)(t) t ;> 0} on

D(A) such that -G{

s

z)CA + z and D(A)C \χ e D(A); liminf'' T * W * —*ll

(iii) For βαcfe * f X, ίΛere is α contraction semigroup T(z) = { T(z\t) t^>0} on

D(A) such that -G^CA + z and D(A)C \x £ D(A)\ liminf ί' T zyί)χ — χW
I t\Q t

< o o | .

Here, G[z) and G^ are the strong and the weak infinitesimal generators of T(z\
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respectively.

The assertion (iii) -» (ii) of THEOREM 2 immediately follows from the fact
t h a t G[z) CG{

W

Z) for each z a X.

Now we recall results on generation of semigroups by M. G. Crandall and
T.M. Liggett [3] and I. Miyadera [10].

THEOREM B. (M.G. Crandall and T.M. Liggett [3 ; THEOREMS I and IΓ|)
Let B be an m-accretive operator from X into X. Then,

(a) there exists a contraction semigroup T={T(t); £>0} on D(B) such
that

T(t)χ=s-\im(l +—B) Hχ for x e D(B)
n-+°° \ 7 1 /

uniformly on every bounded interval in [0, oo)3

(b) if X is reflexive, then for each x e D(B) the function T(t)x is a strong
solution of

θ, u(0) = x.

For an operator B from X into X we define B° by

B°x = {x'<:Bx; \\χ'\\ = 1115*111}

and call it the canonical restriction of B.

THEOREM C. (I. Miyadera [10 COROLLARY 1 and THEOREM 3]) Let B be
an m-accretive operator from Xinto X, and let T={T(t); ί]>0} be the contrac-
tion semigroup on D(B) given by THEOREM B. Then we have

(a) if x e B(B) and if for some sequence {tn} with tn\0

x'=w-\im WJx-x ?

then (x, xf) e G(BQ), where B° is the canonical restriction of B,
(b) if X is reflexive, then

*\o t

(c) if X is reflexive and if B° is singlevalued, then .D(B°) = D(B) and
— B° is the weak infinitesimal generator of T,

(d) if X is reflexive and X and X* are strictly convex, then B° is single-
valued and — B° is the weak infinitesimal generator of T.

Proof of the assertion (i) -• (iii) of THEOREM 2. Since A is m-accretive,
A + z is also m-accretive for each z e X. Therefore, there is a contraction
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semigroup T(z) = {T(z\t); *;>0} generated by B = A + z in the sense of
THEOREM B. We see from (a) of THEOREM C that — G^CA + z, and from (b)
of THEOREM C that

t\o t

Thus we have (iii). q.e.d.

To prove that (ii) implies (i), we use the following lemma that is due to
M. G. Crandall and A. Pazy [4; LEMMA 1.1 and LEMMA 6.1]].

LEMMA 10. Let T= { T(t) t > } be a contraction semigroup on a subset Xo

of Xand B be an accretive operator such that — GSCB, where Gs is the strong
infinitesimal generator of T. If x e D(B)ΓΛX0 and

t\Q t

then L<^\\\Bχ\\\ and \\T(t)x-T(t')χ\\<L\ t-tf\ for t, t'

Proof of the assertion (ii) -> (i) of THEOREM 2. Let A be the operator
given by

= {(x, xf)e XxX; there is a sequence {(xn, xf

n)}CG(A)

such that xn-^x and x'n^x' in X},

and let z be an arbitrary point of X. Put

D. = \x e 7 ^ ; liminf J ί ^ W * = * l l <

Then we first have

(4.1) D(A)CDZ.

In fact, let (x, χr) be any element of G(A+z). Then, there is a sequence
{(xn, %n)}CG(A + z) such that χn-^x and χ'n^x' in X as n^°o. Since
D(A + z)=D(A)CDz by our assumption, xn e Dz for each n. Hence we infer
from LEMMA 10 that

\\T<z\i)xn-xn\\^\\x'H\\t fort^O.

Since {||#£||} is bounded, letting n-+oo in the above inequality, we have for
some M>0

and hence, x e Dz. Thus (4.1) holds true. From (4.1) and LEMMA 10 it follows
that the function T(z\t)x on [0, oo) is Lipschitz continuous for each x e D(A\
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and hence, it is strongly differentiable a.e. on [0, oo). Therefore,

4T(zKt)χ-G(

s

z)(T(z\t)x)=0 a.e. on [0, oo).-4
at

By our assumption we have

4TKt)χ + A(T\t)χ) + zBθ a.e. on [ 0 , oo).
at

Thus we have seen that for each z e X and each x e D(A) the function T(z\t)x
is a strong solution of (3.1) on [0, oo). Now, let O, χf) be any element of
G(A). Then T(-χ/)(t)x is a strong solution of (3.1) with z=-x'. Since
it is also a strong solution of

t)-xr 9 0, u(0) = x.

By the uniqueness of a strong solution ((i) of LEMMA 4), we have

T{~x\t)χ = x for all t ;> 0.

This means that u(t) = x is a strong solution of (3.1) with z= — x\ Therefore,
x e D(A) and χ/ e Ax. Thus A=A, and hence, A is demiclosed. Therefore
from THEOREM 1 we obtain the m-accretiveness of A. q. e. d.

REMARK. Assume that X* is uniformly convex. Let A be an m-accretive
operator from X into X. Then, for each z e X, the contraction semigroup
given by (ii) (or (iii)) of THEOREM 2 coincides with the contraction semigroup
generated by B = A + z in the sense of THEOREM B. In fact, let denote the
former by T(z) and the latter by T(z\ Then, as we have seen in the above
proof, for each x e D(A) the function T(z)(t)x is a strong solution of (3.1) on
[0, oo)5 and by (b) of THEOREM B the function T{z\t)x is also a strong solution
of (3.1) on [0, oo). Hence, by the uniqueness of a strong solution,

T(z\t)χ = T(z\t)x for allt^O and all x 6 D(A).

Furthermore, by the strong continuity of T(z)(t) and T(z)(t),

T^z\t) = T <*>(f) on D(A) for all t ̂  0.

Thus τ^=Tiz\

The next two corollaries are obtained from THEOREMS B and C and our
THEOREM 2.

COROLLARY 1. (F.E. Browder [βj) Suppose that X* is uniformly convex.
Let A be a singlevalued accretive operator from X into X. Then A is m-accretive
if and only if for each z e X there is a contraction semigroup on D(A) whose
weak infinitesimal generator is —(A + z).
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PROOF. The "only if" part immediately follows from the assertion (iii)
-> (i) of THEOREM 2. Next, assume that A is m-accretive. Then, by (i) —• (iii)
of THEOREM 2, for each z e X there exists a contraction semigroup T{z) on

D(A) such that —G^CA+z and D(A)CD2. By the above REMARK this semi-
group T{z) is the contraction semigroup generated by B = A + z in the sense of
THEOREM B. Therefore from (c) of THEOREM C it follows that — G{J) = A + z.

q.e.d.

COROLLARY 2. Suppose that X is strictly convex and X* is uniformly
convex. Let A be an accretive operator from X into X. Then A is m-accretive
if and only if for each z e X, the canonical restriction (A + z)° is singlevalued,

z)°)=D(A) and there is a contraction semigroup on D(A) whose weak
infinitesimal generator is —(A + z)°.

PROOF. The "only if" part immediately follows from the assertion (iii)
-> (i) of THEOREM 2. The "if" part is also proved just as in the proof of
COROLLARY 1 by using (d) of THEOREM C.
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