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Introduction

Let X be a real Banach space and let A be a multivalued operator from X
into X, that is, to each x^X a subset Ax of X be assigned. We define D(A) =
{x<=X; Axφφ}, R(A) = \J Ax and G(A) = {[x, x ' ]<EXxX; x'eΛx}. We denote

xeX
by F the duality mapping of X into the dual space X*, i.e., it is defined by Fx =

{X*<Ξ**; <x, x*> = iMI2 = l |x*H 2} for x e X, where < , > denotes the natural
pairing between X and Z* and || || denotes the norms in X and X*. An operator
A is called accretive in X9 if for any [xf, x{] e G(y4), i = l,2, there is an element

f^F(xi — x2)
 sucn tnat <XΊ ~~ X2>f> ^0> or equivalently,

(1) lim-^-[||x1-x2 + K^ι~^2)!|-Hχι-X2ll]>0
A 4 - 0 Λ

(see R. H. Martin, Jr. [7]). An accretive operator A is called m-accretive, if

It was shown in [6; THEOREM 1] that, under the uniform convexity of X*9

an accretive operator A is m-accretive if and only if it is demiclosed (i.e., for any
sequence {[xn, x'J}cG(,4), xπ-»x strongly and x'n->x' weakly in X imply that
[x, x']eG(4)) and for each z&X and each x^D(A), the initial value problem:
u'(i) + Au(t) + z^Q, w(0) = x has a strong solution on [0, oo). In this note we
do not require the uniform convexity of X* and shall show an analogue of the
above result in more general spaces, namely, in reflexive Banach spaces, by making
use of the inequality (1) for accretiveness.

1 . Main results

Let A be an operator from X into X and Ω = [0, r) or [0, r] where 0< r < oo .
Then an X-valued function u on Ω is called a strong solution of the initial value
problem

if u(f) is strongly absolutely continuous on any bounded closed interval contained
in Ω, u(0) = a and the strong derivative u'(t) exists, u(i)eD(A)andu'(ί) + Au(
for a.e. ίeΩ. We denote by β(A) the set
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{xeX; there is a sequence {[*„, x'n]}cG(A) such that

xπ -
5— > x in X as n-»oo and {||x^||} is bounded},

where c< -s-* " means convergence in the strong topology. We say that A is
almost demiclosed, if D(A) = D(A). It is obvious that if A is demiclosed, then it is
almost demiclosed, provided that X is reflexive.

THEOREM 1. Suppose that X is reflexive. Let A be an accretive operator
from X into X. Then the following statements are equivalent to each other:

(αx) A is m-accretive.
(α2) A is almost demiclosed, and for each x^D(A) and each z^X the initial
value problem

u'(t) + Au(t) + z 3 0, w(0) = x

has a strong solution on [0, oo).
(α3) For each x^D(A) and each z^X, the initial value problem

(2)

has a strong solution on [0, oo).

Let X0 be a subset of X and let T = {T(ί); ί>0} be a family of singlevalued
operators from X0 into X0. We say that Tis a contraction semigroup on X0, if

(i) T(t + 1' )x = T(t)T(t')x for f, ί' > 0 and x e X0,

(ii) \\T(t)x-T(t)y\\£\\x-y\\ for ί>0 and x, yeX*,

(iii) T(0)x = x for xeX0 ?

(iv) the function t-+T(t)x is strongly continuous on [0, oo) for each x^X0.
We define the strong (resp. weak) infinitesimal generator Gs (resp. Gw) of Γ by

(resp.Gwx=w-lim
\ F w t i o

whenever the limit exists. Here, the symbol "s-lim" (resp. "w-lim") means

convergence in the strong (resp. weak) topology.

THEOREM 2. Suppose that X is reflexive. Let A be an accretive operator
from X into X. Then the following statements are equivalent to each other:

(bι) A is m-accretive.

(b2) For each z^X9 there is a contraction semigroup T(z) = {T^z)(ί); ί>0} on

D(A) such that G(-G^)dG(A-\-z) and

(3) D(A) c { x e= J5C4) liminf HΓ(Z) (*)*-*!! <00\
( ί 4 0 t }

where G^z) is the strong infinitesimal generator of T(2).
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(b3) For each z<=X, there is a contraction semigroup T<Z> = {Γ<Z>(0; ί>0}

on D(A) with the property (3) such that G( - GJ?>) c <7(A + z), where G^ is the
weak infinitesimal generator 0/T(z).

The following two corollaries are obtained from Theorem 2 by the same
method as in the proofs of Corollaries 1 and 2 in [6].

COROLLARY 1. (F.E.Browder [2]) Suppose that X is reflexive. Let
A be a singlevalued accretive operator from X into X. Then A is m-accretive

if and only if for each z^X there is a contraction semigroup on D(A) whose
weak infinitesimal generator is —(A + z).

For an operator B from X into X we define B° by B°x = {x' <=Bx; \\x'\\ =
\\\Bx\\\}, where |j|E|||=inf||);|| for a subset E of X.

yeE

COROLLARY 2. Suppose that X is reflexive and X and X* are strictly
convex. Let A be an accretive operator from X into X. Then A is m-accretive
if and only if for each z^X the operator (A + z)° is singlevalued, D((A + z)°) =

D(A) and there is a contraction semigroup on D(A) whose weak infinitesimal
generator is — (A + z)°.

2. Proof of Theorem 1.

Hereafter we assume that X is reflexive. For the proof of the assertion
of Theorem 1 we first show the following lemma.

LEMMA 1. If A is m-accretive, then it is almost demίclosed.

PROOF. First we recall the generation theorem by M. G. Crandall and
T. M. Liggett [3; THEOREM I]. The theorem says that if A is m-accretive, then

there is a contraction semigroup T = {T(t); f>0} on D(A) such that

Γ(0x=s-liπ//+— A\nx for f>0 and χ(=D(A)

and this contraction semigroup has the following property :

\\T(t)x-T(t')x\\<\\\Ax\\\\t-t'\ for ί, ί'>0 and x<EΞD(A).

Now, assume that [*„, x'n]^G(A), xn -*-+ x as n-»oo and ||x'n||<M for all n.
Then, from the above property of Tit follows that \\T(i)xn-xH\\£ \\x'n\\t for f>0.
Hence, letting n-»oo, we have \\T(i)x — x\\£Mt for f >0. By Corollary 1 in
I. Miyadera [8] we have x^D(A). Thus A is almost demiclosed. q.e.d.

The assertion (a1)-*(a2) of Theorem 1 easily follows from the above lemma
and Theorems I and II in [3], and the assertion (α2)~>(ίϊ3) °f Theorem 1 is trivial.
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Next we shall prove the assertion (α3)^(α1) of Theorem 1 by means of a
sequence of lemmas which are valid under the assumption (α3). Thus, hereafter,
assume (α3).

LEMMA 2. (α) A is closed (i.e., [xπ, x J e G(A)9 xn -?—* x and x'n -
J-» x'

in X imply that [x, x']eG(,4)).
(β) Let A be any accretive operator such that G(Ά)^G(A). Then D(A)Γ\D(Ά)
= D(A) and Ax = Ax for every

PROOF. Assume that [xw, x;]eG(X), xn -
5—» x and x'n -*-» x' in X as

n-χχ>. Then x^D(A). By (03), the initial value problem: u'(i) + Au(t)-x' 30,
w(0) = x has a strong solution u(t) on [0, oo). Let B be the operator given by
G(B) = G(A)\j{[x9 x']}. Then u(t) is also a strong solution of the initial value
problem: u'(i) + Bu(t) — x'3θ, w(0) = x. Therefore, since B is also accretive,
the uniqueness of a strong solution (cf., T. Kato [5; LEMMA 6.2] or H. Brezis
and A. Pazy [1; LEMMA 2.2]) implies that u(i) = x for all ί>0, and hence
[x, x']eG(X). Thus (α) is proved, and (β) is also proved just as (α).

q.e.d.

Now we consider the initial value problem

(4) w'(0 + ̂ w(0 + w(θΞ>0, ιι(0) = α

and shall show that (4) has a strong solution on [0, oo) for each a^D(A).
Let a^D(A). For a positive integer n we define an X- valued function un

as follows. Let v(f) be a strong solution of (2) with χ = z = a and choose a posi-

tive number δ* such that— -- V <δ± <— , -v'(d}.)<= Av(δ^) + a and
n n2 n

||t>'(5ί)IHI|At<5ί) +fl | l |^ l | |Xα + fl|||. In fact, in view of Lemma 2.2 in [1],
such δ* exists. Let us define un(t) = v(t) if ίe[0, ί^], ίi=5^. Next we assume
that un is already defined on [0, ί*], l<k<n. Let w(ί) be a strong solution of

(2) with x = z = wπ(^), and choose a positive number <5*+1 such that --- ^

) + un(t^

\. Let us define un(t) = w(t-t*) if

Thus by induction un is defined on [0, f"]. Clearly 1 — — < ί" < 1. We see that
n

un is strongly absolutely continuous on [0, t J] and satisfies

w;(0 + Λwn(0 + wn(ί*)Bθ α.e. on [ίj, ίϋ+1]

for fc = 0, 1, ..., n— 1.

LEMMA 3. Seί JC=|||X0 + fl|||. Then for each n
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(5) H«i(OI|£eK a.e. on [0, tfl.

This lemma is obtained by a simple modification of the proof of Lemma 6
in [6].

LEMMA 4. The sequence {un}*=1 is strongly uniformly convergent on
[0, 1), and the limit u(i) satisfies

(6) ||«(0

(7) u(0) = α and u(f)<=£(4) for all t>0.

PROOF. Set Λ,m(/) = ll"β(0-«m(ί)ll on [o, l— 1— JL]. if se(ίB> f^
1],

se(<i, ί£»], u'B(s)+t7B(S)+uB(fB)=0 and u^S)+[7m(s) + um(ίiI)=0) where C7n(s)
e/l«B(s) and Um(s)eAum(s), then

P;, m(s) = lim - JL[ ||ttπ(s) - um(s) + Λ(l/Λ(s) + MB(ί ) - C7m(s) - ujίi)) ||
no

< lim -
Λ 4 0

Now, Un(s)+uB(s)e(^+/)uπ(s) and [7m(s)+um(s)e (^l+/)um(s). Since A +7
is also accretive, it follows from (1) in the introduction that

lim J-[ ||tίn(s) - «m(s) + h(Ua(S) + «B(s) - Um(s) - u
Λ O n

Hence, by (5),

P'π,m(^ H«n(s)-un(ίB)||+ ||um(S)-MBI

Thus,

for «.,

Hence \\ua(t)-um(t)\\^eκ(— +-1- ") for all ίeΓθ, 1--^ --- LΊ and hence
\ Λ IW / L Λ / W J

l|w«(0-"m(OIH0 uniformly on [0, 1) as n, m->oo. Let u(t) be the limit. Since
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\\un(i)-un(t')\\<eK\t-t'\ for any f, f ' e o , 1-- ~- bY (5)> bY letting n-»oo

we have (6). Clearly u(0) = a. The fact that u(t)t=D(A) for all ί>0 follows
from (5). Thus we have (7). q.e.d.

We define <x, y>s= sup <x, y*> foτx,y^X. Then <, >s:
y*eFy

( — oo, oo ) is upper semicontinuous in the strong topology of X x X(SQQ [3; LEMMA
2.16]). Then the limit function u of {un} has the following property:

LEMMA 5. For any [x, x'~\^G(A) and any t, se[0, 1) with t>s,

(8) ||M(0_X||2_||M(S)_

PROOF. By the definition of WM, w;(i)+l/n(0 + w«(^) = 0 a.e. on [ίj, ί*+1],
fc = 0, 1, ..., n — 1, where Un(t)^Aun(i) a.e. on [0, ίj). For each ί, by the accretive-
ness of A9 there is Sn(t)eF(un(i)-x) such that <Un(t)-x'9 Sn(f)> >0. Hence,
by using Lemma 1.3 of T. Kato [4] and Lemma 3, we have

2 '

-«„(<„), SB(ί)>

< < -X'-Un(t), un(f)-X>s+(

Integrating the first and the last members of the above inequalities on [s, ί], we have

(9)

On the other hand, since un -*-+ u and {un} is uniformly bounded on [0, 1), it
follows from Fatou's lemma and the upper semicontinuity of <5 >s: XxX-+R
that

limsup \ < - x' - wπ(τ), un(τ) -x>sdτ
n-»oo Js

f t
< \ limsup < - xf - un(τ\ un(τ) -x>sdτ

Js n-*oo

<\ < — x' - M(T), u(τ) — x> sdτ.
Js
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Therefore, letting n-»oo in (9), we obtain (8). q.e.d.

LEMMA 6. u(t) is a strong solution on [0, 1) of u'(t) + Au(t) + u(i)^Q,

u(0) = a.

PROOF. We shall prove that

(10) <-u'(t)-u(t)-x'9 u(t)-x>s>Q for a.e. ίe[0, 1)

for any [x, x'] e G(A). In fact, let [x, x'] e G(A) be an arbitrary element. Then

we first observe that for s, t > 0 with s > t

<tι(s)-ιι(0, w(0-x>s

< <w(s)-x, w(0-x>s- ||ιι(0-x||2

<Ks)-x|| ||t,(0-χ|H|t«(0-*ll2

Hence from (8) we obtain

^ s

Here, if u is strongly differentiable at f, then we infer from the above inequality
and the upper semicontinuity of <, >s that

<w'(0, u(t)-x>s<<-x'-u(i), u(f)-x>s.

Thus (10) holds. Next, fix any t at which u is strongly differentiable and define

an operator A by G(Ά) = G(A)v{[u(i), -u'(ί)-u(i)~]}. Then (10) implies that
A is accretive. Applying (β) of Lemma 2 for this Ά, we have u(t)^D(A) and

= Au(t\ since w(ί) e D(A) by (7). Thus

a.e. on [0, 1).

PROOF of the assertion (03)-Ktfι) of Theorem 1: We have seen that for each
a e D(A) the initial value problem (4) has a local strong solution u(i). By using

a standard argument we deduce that u(t) can be extended to a strong solution of
(4) on [0, oo). Therefore, by Lemma 9 in [6] and (α) of Lemma 2, Q<=R(A + I).
For an arbitrary point zeJΓ, replacing A by A — z in the above argument, we

conclude that z e £(4 4- /). Thus #(yl + /) = X. q.e.d.

REMARK. The assertion of Theorem 1 is false without the reflexivity of the

space X\ in fact there are a non-reflexive Banach space X and an m-accretive
operator A in X such that the Cauchy problem: u'(f) + Au(t)^Q9 w(0) = α does
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not have a strong solution, even if a^D(A). For an example, see G. F. Webb

[9].

3. Proof of Theorem 2.

We can prove Theorem 2 just as Theorem 2 in [6], using Theorem 1.
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