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Introduction

Recently investigations have been made on the Lie algebras of infinite di-
mension. As the Lie analogues of the infinite group theory, B. Hartley [1] has
considered the notions of subideals and ascendant subalgebras and studied the
locally nilpotent radicals which reduce to the nilpotent radical in finite-dimen-
sional case. In [4, 5] we have introduced and studied the locally solvable radicals
which reduce to the solvable radical in finite-dimensional case. If X is a coales-
cent (resp. an ascendantly coalescent) class of Lie algebras, for an arbitrary Lie
algebra L we there defined the radical Rad,_;(L) (resp. Rad;_,..(L)) as the
subalgebra generated by all the X subideals (resp. all the ascendant X subalgebras)
of L. In particular, if the basic field is of characteristic 0, Radgng_;(L) and
Radgng_,.(L) are respectively the Baer radical (L) and the Gruenberg radical
y(L) which are locally nilpotent [1], and Radgng_¢;(L) and Radgng_,s(L) are
locally solvable radicals [4, 5], where N, © and & denote respectively the classes
of nilpotent, solvable and finite-dimensional Lie algebras.

The purpose of this paper is to investigate the radicals of Lie algebras, es-
pecially to present certain characterizations of Rad;_;(L) and Rady_,, (L) and
to study two new radicals.

For a class X of Lie algebras, we denoted by LX the collection of Lie al-
gebras L such that any finite subset of L lies inside an X subalgebra of L [4]. In
Section 2, in connection with LX we define MX (resp. #1X) as the class of Lie
algebras L such that any finite subset of L lies inside an X subideal (resp. an
ascendant X subalgebra) of L and study their properties. In Section 3 we show
that if X is coalescent (resp. ascendantly coalescent), any Lie algebra L has a
unique maximal MX (resp. MX) ideal (Theorem 3.2) and Rad;_ (L) (resp.
Rad;_,..(L)) is the subalgebra generated by all the mX subideals (resp. all the as-
cendant MX subalgebras) of L and belongs to MmX (resp. ¥1X) (Theorem 3.5). Hence
if furthermore Rady_ (L) (resp. Rad;_,..(L)) is an ideal of Lthen it is the unique
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maximal MX (resp. MX) ideal of L (Theorem 3.6). In Section 4 we apply these
results to B(L), (L), Rad gng_¢;(L) and Radgng_,..(L) to get their characteri-
zations. E.g., B(L) is the unique maximal M(9 N &) ideal and the unique maxi-
mal M(MNGF) subideal of L (Theorem 4.1). In Section 5 we study the two new
radicals Radygng) (L) and Radggng)(L). We show that each of them is an ideal
but not necessarily a characteristic ideal of L, and that if the basic field is of char-
acteristic 0 then f(L)< Rad ggng)(L)Sy(L) and Rad gng_g;(L) S Rad yyeng) (L) S
Radgng_,s.(L) where the equalities do not hold in general (Theorems 5.1 and 5.3).

§1. Preliminaries

We shall be concerned with Lie algebras over a field @ which are not
necessarily finite-dimensional. Throughout this paper, L will be an arbitrary
Lie algebra over a field @, and X an arbitrary class of Lie algebras, that is, an
arbitrary collection of Lie algebras over a field ¢ such that (0) X and if He X
and H~K then Ke X, unless otherwise specified.

We mainly employ the terminology and notations which were used in [4, 5].

H<L, HL, H si Land H asc L mean that H is respectively a subalgebra,
an ideal, a subideal and an ascendant subalgebra of L. A Lie algebra (resp. a
subalgebra, an ideal, a subideal and an ascendant subalgebra of L) belonging to
X is called an X algebra (resp. an X subalgebra, an X ideal, an X subideal and
an ascendant X subalgebra of L). X is coalescent (resp. ascendantly coalescent)
provided H, K si L(resp. H, K asc L) and H, K€ X imply <H, K> si L(resp.
<H, K> asc L) and <H, K>X. &, RN, S and & denote respectively the
classes of finite-dimensional, nilpotent, solvable, and finitely generated Lie alge-
bras. Then both MNF and SNF are coalescent and ascendantly coalescent
if the basic field @ is of characteristic 0.

LX denotes the class of locally X algebras, that is, the class of Lie algebras
L such that any finite subset of L lies inside an X subalgebra of L.

NX (resp. KX) denotes the class of Lie algebras generated by X subideals
(resp. ascendant X subalgebras). X is said to be N,-closed provided the sum of
any two X ideals of any Lie algebra always belongs to X.

For a coalescent (resp. an ascendantly coalescent) class X, the radical
Rad;_;(L) (resp. Rad;_,..(L)) of L is the subalgebra generated by all the X sub-
ideals (resp. all the ascendant X subalgebras) of L. For an Ny-closed class X, the
radical Radgz(L) of Lis the sum of all the X ideals of L. These three radicals
belong to LX. Rad,g(L) is the Hirsch-Plotkin radical p(L). If the basic field ¢
is of characteristic 0, then Radgng_,;(L) is the Baer radical (L), and Radgng_,..(L)
is the Gruenberg radical y(L). These reduce to the nilpotent radical in finite-
dimensional case. Corresponding to these radicals, Rady gng)(L), Radgng_g(L),
and Radgng_,s.(L) have been investigated in [4, 5]. These reduce to the solvable
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radical in finite-dimensional case.

§2. Operations M, ¥1, M; and M,

We begin with introducing new closure operations M, M, M, and %1, which
are intimately connected with the operation L.

DEeFINITION 2.1. For any class X of Lie algebras, we denote by MX
(resp. MX) the class of Lie algebras L such that any finite subset of L lies inside
an X subideal (resp. an ascendant X subalgebra) of L and by M,X (resp.
M, X) the class of Lie algebras L such that any element of L lies inside an X
subideal (resp. an ascendant X subalgebra) of L.

Then these classes and LX are related to each other as in the following dia-
gram:
XcmXcm¥cLX
n- Nl
M XcMm X

Generally these six classes are different from each other. This fact will be shown
by examples in Section 6.

LemMMA 2.2. If X is a coalescent (resp. an ascendantly coalescent) class
of Lie algebras, then

MX=M X=NX (resp. MX =%, X =KX).
Proor. For any class X it is evident that
MXcMm,XcNX and MXcCMm, XSKX.

Now let X be coalescent (resp. ascendantly coalescent) and assume that LeNX
(resp. KX). Let {x;, ..., x,} be any finite subset of L. Then for each i there
exist H;;’s such that

x,€ <Hy, ..., Hy,,>, H;; si L (resp. H;; asc L) and H;;€ X.

Denote the join of all the H;; by H. Since X is coalescent (resp. ascendantly
coalescent),

Hsi L(resp. Hasc L) and HeX.
Hence LemX (resp. MX). Therefore
NXcMX  (resp. KXo MmX),

which establishes the lemma,
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LEMMA 2.3. (1) MR=MANF) (resp. MR=M(N N F)) and these classes
are equal to the collection of LeLR such that H<L and HEg imply H si
L (resp. H asc L).

@ MR=MNNT) and M N=M,(NNF).

3) NR=NRNF) and INR="NNF).

(4) If the basic field @ is of characteristic 0, then

MR=MNRNF) =M, N=M,(NNF=NN=NNNF),
MR=MRNF) =M R=M,(NNF)=MN=/(NNF).

ProoF. (1) Assume LeMN (resp. MRN). Let K be any finite subset of L.
Then there exists H such that

KCH, Hsi L (resp. H asc L) and HeN.

Since HEN, <K > si H and therefore <K > si L(resp. <K> asc L). Taking
account of the fact that RN G F, we have <K>eNNF. Hence LeM(NNF)
(resp. M(MN F)). Consequently

MRSMRNF) (resp. MRS M(N N F)).

Since the converse inclusion is evident, we have the first statement of (1).

Assume LeM(RNF) (resp. MR N F)). Evidently LerLR. Let H be an
& subalgebra of L. Then H=(xy, ..., X,). By assumption, there exists K such
that

{x{ ..., X,} S K, K si L(resp. K asc L) and KeRNF.

Since KeN, H si K and therefore H si L(resp. H asc L). Conversely, assume
that LeLN and any § subalgebra of L is a subideal (resp. an ascendant subal-
gebra). Let K be any finite subset of L. Since LM=r(NNF) by Lemma 4.1
in [5], there exists H such that

KCH, H<Land HeNNg.

Hence, by assumption, H si L (resp. H asc L). This shows that LeM(R N F)
(resp. M(N N F)).
The statement in (2) can be proved in the same way as the first part of (1).
(3) Assume LeN® (resp. NN). Let H be any one of M subideals (resp.
ascendant N subalgebras) generating L. For any xe H, (x) si H since HeMN.
It follows that

(x)si L  (resp. (x) asc L).

Hence H is a union of NG subideals (resp. ascendant RN F subalgebras)
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of L. Therefore LEN(M N F) (resp. KN N F)). Consequently
NRCNRNG)  (resp. ARCSI(NN F)).

Since the converse inclusion is evident, we have the statement of (3).
(4) If & is of characteristic 0, then M N F is coalescent and ascendantly
coalescent. Hence the statement is immediate from (1)-(3) and Lemma 2.2.
The proof is complete.

§3. Characterizations of Rad;_ ;(L) and Rad;_, (L)

In this section, for any coalescent (resp. ascendantly coalescent) class X we
shall show the existence of a unique maximal MmX (resp. MX) ideal of L and use
it to give characterizations of the radical Rady_ (L) (resp. Rad;_,..(L)).

LemMmA 3.1. If X is coalescent (resp. ascendantly coalescent), then the
sum of any collection of MX (resp. MX) ideals of L belongs to MX (resp. M¥).
In particular MX and MX are Ny-closed.

Proor. Let € be any collection of MX (resp. MX) ideals of L and R be the
sum of ideals in €. Suppose {x,, ..., x,} is any finite subset of R. Then

xi=j§1xij, x;;€N;;eC.
Since N;;€MX (resp. MX), there exist H;;’s such that
x;;€H;;, H;jsi Njj(resp. H;; asc N;;), H;eX.
It follows that
H;;si L  (resp. H;; asc L).

Denote the join of all the H;; by H. Then coalescency (resp. ascendant coales-
cency) of X tells us that

Hsi L (resp. Hasc L), HeX.
Taking account of the fact that HCS R, we have
HsiR (resp. H asc R).
Since H2{xy, ..., X,}, R belongs to MX (resp. MX), and this completes the proof.

THEOREM 3.2. If X is coalescent (resp. ascendantly coalescent), then
Radyz(L) (resp. Radyz(L)) is the unique maximal MX (resp. M%) ideal of L.

Proor. Since MX (resp. MX) is Ny-closed by Lemma 3.1, Rady(L) (resp.
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Rady (L)) can be defined. By Lemma 3.1 it belongs to mX (resp. MX). There-
fore it is the unique maximal MX (resp. MX) ideal of L.

LemMMA 3.3. Every MX subideal (resp. ascendant MX subalgebra) of L
is a union of X subideals (resp. ascendant X subalgebras) of L.

Proor. Let H be an mMX subideal (resp. an ascendant MX subalgebra) of
L. For any xe H, there exists an X subideal (resp. an ascendant X subalgebra)
of H containing x. It is then an X subideal (resp. an ascendant X subalgebra)
of L. Therefore H is a union of X subideals (resp. ascendant X subalgebras)
of L.

LeMMA 3.4. If X is coalescent (resp. ascendantly coalescent), the subalge-
bra generated by any collection of X subideals (resp. ascendant X subalgebras)
of L belongs to MX (resp. MX%).

Proor. Let € be any collection of X subideals (resp. ascendant X sub-
algebras) of L and R be the subalgebra generated by all the subalgebras in €.
Suppose {x, ..., X,} is any finite subset of R. Then for each i there exist H;;’s
such that

X € <Xigs ooos Xim > x;€H;;eC.

Denote the join of all the H;; by H. Since X is coalescent (resp. ascendantly
coalescent),

H si L (resp. H asc L), HeX.
Taking account of the fact that H< R, we have
HsiR (resp. H asc R).
Since H2 {xy, ..., x,}, R belongs to MX (resp. MX), and this completes the proof.

THEOREM 3.5. If X is coalescent (resp. ascendantly coalescent), Rady_ (L)
(resp. Rady_,..(L)) is the subalgebra generated by all the MX subideals
(resp. ascendant MX subalgebras) of L and belongs to MX (resp. MX).

Proor. Let R be the subalgebra generated by all the mX subideals (resp.
all the ascendant MX subalgebras) of L. Then by Lemma 3.3

RcRad,_ (L) (resp. R& Rady_,..(L)).
The converse inclusion is immediate from the fact that X<wmX. Therefore
R=Rad;_ (L) (resp. R=Rady_,..(L)).

The other part of the statement follows from Lemma 3.4.



Characterizations of Radicals of Infinite Dimensional Lie Algebras 31

THEOREM 3.6. Let X be coalescent (resp. ascendantly coalescent). If
Rad;_,;,(L) (resp. Rady_,,.(L)) is a subideal (resp. an ascendant subalgebra)
of L, then it is the unique maximal MX subideal (resp. ascendant MX subalge-
bra) of L. If Rad;_ (L) (resp. Rady_,,.(L)) is an ideal of L, then it is the
unique maximal MX (resp. MX) ideal of L.

Proor. This is an immediate consequence of Theorems 3.2 and 3.5.

It is finally to be noted that by Lemma 2.2 the theorems and lemmas in this
section are valid with MX (resp. MX) replaced by each of M, X, NX (resp. M, X,
NX).

§4. Characterizations of (L), y(L), Radgng_;(L)
and Radgng_,s.(L)

In this section we assume that the basic field @ is of characteristic 0. We
shall apply the results of the preceding section for (L), y(L), Radgng_;(L) and
Radgng_,sc(L) to obtain their characterizations.

The Baer radical (L) of Lis equal to the subalgebra generated by all the
N (resp. all the one-dimensional) subideals of L and to the set of x & Lsuch that
(x) si L[2, Theorem 10.4]. We have further characterizations of B(L) in the
following

THEOREM 4.1. The Baer radical B(L) of L is the unique maximal M(M N F)
ideal, the unique maximal M(MNF) subideal and the unique maximal char-
acteristic M(MN §) ideal of L.

Proor. It is shown in Corollary to Theorem 3 of [1] that B(L) is a char-
acteristic ideal of L. Hence the statement follows from Theorem 3.6.

Lis called [2] a Baer algebra if L=f(L). We call an ideal of L which is
itself a Baer algebra a Baer ideal of L. Then the M(M N &) ideals of L are the
Baer ideals of L, since MM NF)=NMNF) by Lemma 2.2. Therefore a part
of the theorem may be expressed as in the following

COROLLARY 4.2. The Baer radical of L is the sum of all the Baer ideals
of L and is the unique maximal Baer ideal of L.

The Gruenberg radical y(L) of L is equal to the subalgebra generated by
all the ascendant M (resp. one-dimensional) subalgebras of L and to the set of
x € L such that (x) asc L. The proof may be carried out in the same way as that
of the corresponding characterizations of B(L) given in [2]. We have further
characterizations of y(L) in the following statements.

THEOREM 4.3. The Gruenberg radical y(L) of L is the subalgebra gener-
ated by the ascendant M(N N §) subalgebras of L and belongs to M(N N F).
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Proor. This follows from Theorem 3.5.

COROLLARY 4.4. The Gruenberg radical of L is the subalgebra gener-
ated by all the ascendant M(MN &) subalgebras of L.

Proor. This follows from Theorem 4.3 and the fact that
RNFSMBRNF)SMRNG).

THEOREM 4.5. The radical Radgng_ (L) of L is the unique maximal
M(SNG) ideal, the unique maximal M(SNF) subideal and the unique maxi-
mal characteristic M(&N ) ideal of L.

Proor. It is shown in Theorem 8.3 of [4] that Radgng_,;(L) is a character-
istic ideal of L. Hence the statement follows from Theorem 3.6.

THEOREM 4.6. The radical Radgng_,s(L) of L is the subalgebra generat-
ed by all the ascendant M(S N §) subalgebras of L and belongs to M(SN§).

Proor. This follows from Theorem 3.5.

CorOLLARY 4.7. The radical Radgng_,..(L) of L is the subalgebra
generated by all the ascendant M(S N §) subalgebras of L.

Proor. This follows from Theorem 4.6 and the fact that
SNFeME@nNF)M(SNG).

It is to be noted that, by Lemma 2.3, Theorems 4.1, 4.3 and Corollary 4.4 are
valid with M(M N F) (resp. M(It N &F)) replaced by each of MM, M N, M;(NN F),
NI, NN F) (resp. MR, M N, M;(RNF), IR, KRN F)) and, by Lemma 2.2,
Theorems 4.5, 4.6 and Corollary 4.7 are valid with M(& N &) (resp. M(SN §)) re-
placed by each of M;(ENF), N(ENF) (resp. M,(SNF), N(ENF)).

§5. Radﬁ(glng)(L) and Radﬁ(@ng)(L)

Radymngy(L) and Radyeng)(L) are respectively locally nilpotent and locally
solvable radicals of L whose existence was shown in Theorem 3.2. This section
is devoted to investigation of the properties of these two new radicals. We first
show the following

THEOREM 5.1. (1) Radygng)(L) is not necessarily a characteristic ideal
of L and

Radﬁ(mng)(L) c p(L)
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(2) If the basic field @ is of characteristic 0, then
B(L) = Rady;gng)(L) S v(L)
and these are generally different from each other.

Proor. Since M(M N F) LN, we have Rad g yng)(L)S p(L). Assume that
the basic field @ is of characteristic 0. Then by Theorem 4.1 B(L)is an M(M N F)
ideal of L and therefore an M(9tN ) ideal of L. Hence B(L)< Radygygpng)(L).
By Theorem 4.3, y(L) is the subalgebra generated by all the ascendant M(R N F)
subalgebras of L. Hence Radyqngy(L)Sy(L). PB(L) is a characteristic ideal
of Land y(L) is not necessarily an ideal of L. Since Radygng)(L) is an ideal of
L, it only remains to show that it is not necessarily a characteristic ideal of L.

Let L be the Lie algebra in Example C in [4]. That is, Lis the semi-direct
sum of an infinite-dimensional abelian Lie algebra A=(e,, e, e,, ...) and a nil-
potent Lie algebra (x, y, z) of derivations of 4 with [x, y]l=z, [x, z1=[y, z]1=0,
where

X:€;—>€; 41 (iZO),
y:eo—0, e—ie;_y (i1,
z:e—e;  (i=0).

Let L,=A+(y, z). Then the !N § subalgebras of L, containing z are (z) and
(y, z). The idealizers of (z) and (y, z) in L, are (y, z). Hence neither (z) nor
(y, z) is an ascendant subalgebra of L;. This shows that L; ¢M(NNF). On
the other hand, any finite subset of 4+ (y) lies inside some ascendant MN F
subalgebra A4,+(y) where 4,=(ey, €y, ..., €,). Hence A+(y) is an M(RNF)
ideal of L,;. Therefore Radygngy(Ly)=A+(y). ad.x induces the derivation
D of L, sending y to —z. Hence A+(y) is not invariant under D. Thus
Radgng)(Ly) is not a characteristic ideal of L;.

The proof is completed.

By imposing certain conditions on L we have the following

PROPOSITION 5.2. Let L be a Lie algebra of countable dimension. Then
Radgmng)(L)=p(L). If furthermore the basic field ® is of characteristic 0
and LeLy, then Radggng)(L)=p(L)="y(L).

Proor. Let H be any L9 ideal of L and K be any finite subset of H. If
{e,, ey, ...} denotes a basis of H, KC H,=<e,, e,, ..., ¢,> for some n. Since
HewN, H,e NN F and therefore H, si Hy, , for any k. It follows that H, asc H.
Hence HeM(MNE). Thus the LN ideals of L are the M(N N ) ideals of L.
Therefore Radyymngy(L)=p(L). If @ is of characteristic 0 and LeL, it is
shown in Corollary 3.9 of [3] that y(L)S p(L). Hence Radygng(L)Sy(L)S
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p(L) and therefore Radygng)(L)=y(L)=p(L).

THEOREM 5.3. (1) Radyyeng)(L) is not necessarily a characteristic ideal
of L,

and these are generally different.
(2) If the basic field @ is of characteristic 0, then

Radgng_i(L) S Radggeng)(L) S Radgng_as(L)
and these are generally different from each other.

Proor. Since M(ENF)SL(SNF), we have Radyeng)(L) S Rady gng)(L)-
Assume that the basic field @ is of characteristic 0. Then by Theorem 4.5
Radgng_si(L) is an M(SN F) ideal of L and therefore an M(SN &) ideal of L.
Hence Radgng ;(L)SRadgeng(L). By Theorem 3.2 Radgeng)(L) is the
unique maximal M(& N &) ideal of L and by Theorem 4.6 Radgng_,(L) is the
subalgebra generated by all the ascendant M(S N &) subalgebras of L. Hence
Radgjeng)(L) S Radgng_asc(L).

By Theorem 8.3 in [4] Radgng_;(L) is a characteristic ideal of L and by
Theorem 4.2 in [5] Radgng_,s.(L) is not necessarily an ideal of L. To show
that Radgng_si(L), Radyjeng)(L) and Radgng_,..(L) are generally different from
each other, it therefore suffices to show that Radyeng)(L) is not necessarily a
characteristic ideal of L.

Let L, be the Lie algebra as in the proof of Theorem 5.1. The SN F sub-
algebras of L, containing z are

(@), (0,2, B+(2), A4,+(2)

where B is any § subalgebra of A. The idealizer of (z) is (y, z) and that of
B+(2) is either B+(z) or A,+(y, z). (), z) and A4,+(y, z) are equal to their ide-
alizers in L,. Hence any SN & subalgebra of L, containing z is not an ascend-
ant subalgebra of L;. Thus L; ¢M(€NE). On the other hand any finite
subset of 4+ (y) lies inside some ascendant SN & subalgebra 4,+(y) of A+(y).
Hence A+(y) is an M(&N{) ideal of L;. Therefore Radyeng)(L1)=4+(y).
It is not characteristic since it is not invariant under the derivation of L,
induced by adx.

Thus it only remains to show that Radygeng(L) and Radpgng)(L) are
different in general. Let L be the Lie algebra as in the proof of Theorem 5.1.
Then it is shown in the proofs of Theorems 4.2 and 4.3 in [5] that

Radgng_asc(L)=A4+(y) and Radygng(L)=A4+(y, 2).
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Since Radyjgng)(L) S Radgng_asc(L), it follows that Radyeng)(L)7=Rad gng) (L)
This completes the proof.

§6. Examples

This section is devoted to showing by examples that the six classes X, Mm%,
Mm%, M; X, M, X and LX are generally different from each other as announced
in Section 2.

ExAMPLE 6.1. X=£MX generally. Take X=9 and let L be the Lie algebra
over a field of characteristic 0 in Theorem 12.1 in [2]. Then it is known that
L¢M and L=p(L). Hence LeN(M N §F) and therefore by Lemms 2.3 LeMN.

ExaMPLE 6.2. MX=+MX and M;Xs£=M,X generally. Take X=9 and
let L=A+(y) be a subalgebra of the Lie algebra A+ (x, y, z) in the proof of
Theorem 5.1. Suppose that there exists an 9 subideal H of L containing y.
Then H=~=Land H=~(y). Therefore H contains

k
u= g}oaie,+by, a;+0.

But
u(ad y)k=klae,.

Hence e,=H. Considering u—age, and (ad y)*~! instead of u and (ad y)*,
we obtain e, € H. By induction we see that H2 A, +(y). It follows that H=
A,+(y) for some n and H is not a subideal of L. Thus no N subideals of L
contain y. Hence L¢ M, and therefore L¢MMN. On the other hand, any
finite subset of L is obviously contained in a subalgebra A,+(y) for some n
which is an ascendant R subalgebra of L. Hence LeMN and therefore L, €
MN.

ExAMPLE 6.3. MX=~LX, M;X~LX and M,;X=~LX generally. Take X=
SN and let L=A4+(z) be a subalgebra of the Lie algebra in the proof of
Theorem 5.1. Suppose that H is an ascendant SN § subalgebra of L con-
taining z. Then H=£L, H==A and H=A(z). It follows that H is the sum of
(z) and a subalgebra of A. But H is then its own idealizer in L, which con-
tradicts our supposition on H. Thus there exist no ascendant SN subal-
gebras of L containing z. Hence L¢M,(€NF). It follows that LEM(SNF)
and L¢&M,(€NgF). On the other hand, any finite subset of L obviously lies
inside some A,+(z). Hence LeL(&Ng). Thus we conclude that each of
MENT), M(SNF) and M,(SNF) is different from L(S N F).
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ExAMPLE 6.4. MX=£M,X generally. Take X=2U and let L=(x, y, z) be
a subalgebra of the Lie algebra in the proof of Theorem 5.1. For any element
u=ax+by+czof L,

()< (ax+by, z)< L.

Hence (u) is an U subideal of L. Therefore Lem,%A. However L ¢ M, since
the subalgebra containing {x, y} is not abelian.

ExaMpPLE 6.5. MX=Fm;X generally. Take X=U and let L be a sub-
algebra A+ (y) of the Lie algebra in the proof of Theorem 5.1. Let u be any
non-zero element of L. If u=ay, (u) asc L. Otherwise we have

u= Z"]aiei+by, a,=~0.
i=0
Then
@) <eo, 2 aie+by)<(eos ex, 3 ae+by) ... <A+,

Since 4,4+ (y) asc L, it follows that (u) asc L. Therefore L&, . It is however
obvious that L ¢ M.
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