Some Remarks to the Construction of Branching Markov Processes with Age and Sign

Kusuo KOBAYASHI (Received May 26, 1973)

§1. Introduction

Some semi-linear equations are in close connection with branching Markov processes. Suppose we are given the infinitesimal generator A of a Markov process x_t on a topological space S together with the following quantities: (i) a non-negative Borel function k(x) on S, (ii) a sequence $\{q_n(x)\}_{n=0,2,3,...}$ of Borel functions on S, and (iii) a sequence $\{\pi_n(x, dy)\}_{n=0,2,3,...}$ of stochastic kernels from S to the *n*-fold symmetric product S^n of S. We consider the following equations:

(I)
$$\frac{\partial u(t, x)}{\partial t} = Au(t, x) + k(x) \Big\{ \sum_{n \neq 1} q_n(x) \int_{S^n} \pi_n(x, dy) u(t, y) - u(t, x) \Big\},$$

(II)
$$\frac{\partial u(t, x)}{\partial t} = Au(t, x) + k(x) \sum_{n \neq 1} q_n(x) \int_{S^n} \pi_n(x, dy) u(t, y), \ x \in S, \ t \ge 0.$$

In the equation (I) it is assumed that $q_n(x) \ge 0$, $n=0, 2, 3, ..., \Sigma_{n\neq 1}q_n(x)=1$, while in the equation (II) $q_n(x)$ can be negative but $\Sigma_{n\neq 1}|q_n(x)|=1$. Then, it is known that the equation (I) corresponds to the branching Markov process (abbreviated: BM-process) whose non-branching part and branching system are $\exp\left(-\int_0^t k(x_s)ds\right)$ -subprocess of x_t and $(q_n(x), \pi_n(x, dy))_{n=0,2,3,...}$, respectively (see N. Ikeda-M. Nagasawa-S. Watanabe [2]). BM-processes of this type do not correspond to the equation (II) in a straightforward way. After a while, M. Nagasawa and T. Sirao ([3], [4], [6]) constructed another type of branching Markov process with age and sign (abbreviated: BMAS-process) corresponding to the equation (II).

The purpose of this paper is to remark that BMAS-processes can be constructed in a frame of the ordinary BM-processes due to Ikeda-Nagasawa-Watanabe, by introducing two extra states. More precisely, taking two extra points a and b not belonging to S, we extend the state space S of the given Markov process x_t to $S_0 = S \cup \{a, b\}$ so that the new states a and b become traps. We then introduce new quantities $k^0(x)$, $q_n^0(x)$, $\pi_n^0(x, dy)$ for $x \in S_0$ and $dy \subset S_0^n$ by the formulas (3.1), (3.2.a) and (3.2.b) in § 3. Let X be the BM-process determined by this extended system $\{X^0, k^0(x), (q_n^0(x), \pi_n^0(x, dy))_{n=0,1,2,...}\}$ where X^0 is the extended Markov process on the enlarged state space S_0 . In the terminology of Sevast'yanov [5], $\{a, b\}$ is a final class. Our result is that the BMAS-process **Z** due to Nagasawa and Sirao is equivalent in law to a certain factor process of **X** (THEOREM in § 3).

§2. Preliminaries

We here introduce some notations following [2]. Let S be a compact Hausdorff space with a countable open base, S^n the *n*-fold symmetric product of S, $S = \bigcup_{n=0}^{\infty} S^n$ the topological sum of S^n and $\hat{S} = S \cup \{\Delta\}$ the one point compactification of S where $S^0 = \{\partial\}$ and ∂ is an extra point. We put $N = \{0, 1, 2, ...\}$, $J = \{0, 1\}$ and

 $\mathscr{B}(S)$ = the topological Borel field of S (also similar notations $\mathscr{B}(S)$, etc. will be used),

 $\mathbf{B}(S)$ = the set of all bounded Borel functions on S,

 $\mathbf{C}^*(S) = \{ f : f \text{ is continuous on } S \text{ and } \sup_{x \in S} |f(x)| < 1 \},\$

 $C_0(S \times N \times J) = \{f : f \text{ is continuous on } S \times N \times J \text{ and } \lim_{x \to A} f(x) = 0\},\$

where Δ is an extra point added by the one-point compactification of $\mathbf{S} \times \mathbf{N} \times \mathbf{J}$, and define a function $\hat{f}(\mathbf{x})$ on $\hat{\mathbf{S}}$ for a function $f \in \mathbf{B}(S)$ as follows:

(2.1)
$$\hat{f}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} = \partial, \\ f(x_1)f(x_2)\dots f(x_n) & \text{if } \mathbf{x} = [x_1, x_2, \dots, x_n] \in S^n, \\ 0 & \text{if } \mathbf{x} = \Delta. \end{cases}$$

In this paper we are given a conservative strong Markov process $X = (W, \mathscr{B}_t, x_t, P_x, x \in S)$ on S with right continuous sample paths having left limits such that $\mathscr{B}_t = \overline{\mathscr{B}}_{t+0}$, and also the following quantities (i), (ii) and (iii):

- (i) a non-negative Borel function k(x) on S,
- (ii) Borel functions $q_n(x)$ on S, n=0, 2, 3,..., satisfying $\sum_{n \neq 1} |q_n(x)| = 1$,
- (iii) stochastic kernels $\pi_n(x, dy)$ on $S \times S^n$, $n = 0, 2, 3, \dots$

Nagasawa [3], [4] and Sirao [6] constructed a BMAS-process corresponding to the equation (II) on the basis of the Markov process X, k(x) and $(q_n(x), \pi_n(x, dy))_{n=0,2,3,...}$ In this section we list some properties of the BMAS-process $\mathbf{Z} = (\mathbf{Z}_t, \mathbf{P}_{(\mathbf{x}, k, j)}^0)$ with state space $\mathbf{\hat{Q}} = (\mathbf{S} \times \mathbf{N} \times \mathbf{J}) \cup \{\Delta\}$ constructed in [3]¹⁾

440

¹⁾ In [3], S^n is the *n*-fold Cartesian product of S, but for simplicity we assume here S^n to be the symmetric product.

for later use. We put

$$\begin{aligned} \xi_t &= n, \ a_t = k \quad \text{if} \quad \mathbf{Z}_t = (\mathbf{x}, \ k, \ j) \in \mathbf{S} \times \mathbf{N} \times \mathbf{J}, \ \mathbf{x} \in S^n, \\ \tau &= \inf \{t: \xi_t \neq \xi_0\}, \qquad = \infty \quad \text{if} \quad \{ \ \} = \emptyset, \\ \tau_0 &= 0, \ \tau_1 = \tau, \ \tau_n = \tau_{n-1} + \tau \circ \theta_{\tau_{n-1}}, \qquad n = 2, \ 3, \dots, \end{aligned}$$

and introduce the following quantities:

$$\mathbf{U}_{t}^{(r)}(\cdot, \mathbf{B}) = \mathbf{P}_{\cdot}^{0}(\mathbf{Z}_{t} \in \mathbf{B}, \tau_{r} \leq t < \tau_{r+1})$$
$$\mathbf{U}_{t}(\cdot, \mathbf{B}) = \mathbf{P}_{\cdot}^{0}(\mathbf{Z}_{t} \in \mathbf{B}),$$
$$\tilde{f}(\mathbf{x}, k, j) = (-1)^{j} \lambda^{k} \hat{f}(\mathbf{x}) \quad \text{for } \lambda \geq 0, f \in \mathbf{B}(S).$$

Then

(2.2)
$$\mathbf{U}_{t}^{(r)}\tilde{f}(\mathbf{x}, k, j) = (-1)^{j}\lambda^{k} \sum_{i=1}^{(r,n)} \prod_{i=1}^{n} \mathbf{U}_{t}^{(r_{i})}f(x_{i}), \quad \mathbf{x} = [x_{1}, ..., x_{n}] \in S^{n},$$

(2.3)
$$\mathbf{U}_{t}\tilde{f}(\mathbf{x}, k, j) = \widetilde{\mathbf{U}_{t}}\tilde{f}|_{S}(\mathbf{x}, k, j),$$

where $F|_{S} = F(x, 0, 0)$, $x \in S$, $F \in \mathbf{B}(\mathbf{Q})$ and $\Sigma^{(r, n)}$ denotes the sum over all $(r_1, r_2, ..., r_n)$ satisfying $\Sigma_{i=1}^n r_i = r$. Furthermore,

(2.4)
$$\mathbf{E}_{(x,0,0)}^{0}[\tilde{f}(\mathbf{Z}_{t}):a_{t}=k, t<\tau] = \frac{1}{k!} E_{x}[f(x_{t})\{\lambda \int_{0}^{t} k(x_{s})ds\}^{k} \exp(-2\int_{0}^{t} k(x_{s})ds)],$$

(2.5)
$$\mathbf{P}_{(x,0,0)}^{0}(\tau \leq t, \mathbf{Z}_{\tau} \in d(\mathbf{y}, k, j))$$

$$= \frac{1}{k!} \int_{0}^{t} E_{x} \left[\left\{ \mu^{+}((x_{s}, k, 0), d(\mathbf{y}, k', j)) + \mu^{-}((x_{s}, k, 0), d(\mathbf{y}, k', j)) \right\} \right. \\ \left. \cdot k(x_{s}) \left\{ \int_{0}^{s} k(x_{u}) du \right\}^{k} \exp \left(-2 \int_{0}^{s} k(x_{u}) du \right) \right] ds,$$

where $\mu^{\pm}((x, k, 0), d(\mathbf{y}, k', j)) = q_n^{\pm}(x)\pi_n(x, d\mathbf{y})\delta_{kk'}\delta_j^{\pm}, \quad d(\mathbf{y}, k', j) \subset S^n \times \mathbf{N} \times \mathbf{J},$ $n = 0, 2, 3, \dots$ and $\delta_j^{\pm} = \delta_{0j}, \delta_j^{\pm} = \delta_{1j}$. Finally, if we put

(2.6)
$$u(t, x) = U_t f(x, 0, 0), \quad \lambda = 2,$$

 $T_t f(x) = E_x [f(x_t)],$
 $K(x, ds, dy) = E_x [k(x_s) ds: x_s \in dy],$

then the following S-equation holds:

Kusuo Kobayashi

(2.7)
$$u(t, x) = T_t f(x) + \int_0^t \int_S K(x, ds, dy) \sum_{n \neq 1} q_n(y) \int_{S^n} \pi_n(y, dz) u_{t-s}(z),$$

which is an integral equation corresponding to the equation (II). The BMASprocess Z corresponding to the equation (II) is a strong Markov process with state space $\hat{\mathbf{Q}}$ characterized by the three properties (2.3), (2.4) and (2.5).

§ 3. Construction of branching Markov processes with age and sign

In this section we construct the BM-process X stated in § 1, and then prove that the BMAS-process Z in Nagasawa [3] is equivalent to a certain factor process of X, that is, Z is obtained from X by means of a certain transformation on the state space.

Let $S_0 = S \cup \{a, b\}$, where a and b are extra points outside S. Given a system $\{X, k, (q_n, \pi_n)_{n=0,2,3,...}\}$ as in §2, we first introduce a new system $\{X^0, k^0, (q_n^0, \pi_n^0)_{n=0,1,2,...}\}$ on S_0 as follows. $X^0 = (W^0, \mathscr{B}_t^0, x_t^0, P_x^0, x \in S_0)$ is a right continuous conservative strong Markov process with state space S_0 satisfying the following (i), (ii) and (iii):

- (i) $W^0 \supset W, \mathscr{B}^0_t = \{B \colon B \cap W \in \mathscr{B}_t\},\$
- (ii) $x_t^0|_W = x_t, P_x^0(x_t^0 \in A) = P_x(x_t \in A)$ for $x \in S, A \in \mathscr{B}_t$,
- (iii) a and b are traps for the process X^{0} .

 $k^{0}(x)$ is a non-negative Borel function on S_{0} such that

(3.1)
$$k^{0}|_{s} = 2k, \ k^{0}(a) = k^{0}(b) = 0,$$

and $(q_n^0(x), \pi_n^0(x, A))_{n=0,1,2,...}$ is a branching system on S_0 defined by the following (3.2.*a*) and (3.2.*b*).

(3.2.a) For $x \in S$, we put

$$\begin{split} q_{2}^{0}(x) &= \frac{1}{2} (q_{2}^{+}(x) + 1), \\ q_{n}^{0}(x) &= \frac{1}{2} (q_{n}^{+}(x) + q_{n-1}^{-}(x)), \, n \neq 2, \, n \ge 0, \\ \pi_{2}^{0}(x, \, A \cdot \{a\}) &= \frac{1}{q_{2}^{+}(x) + 1} \delta(x, \, A), \, A \in \mathscr{B}(S), \\ \pi_{2}^{0}(x, \, A) &= \frac{q_{2}^{+}(x)}{q_{2}^{+}(x) + 1} \pi_{2}(x, \, A), \, A \in \mathscr{B}(S^{2}), \\ \pi_{n}^{0}(x, \, A \cdot \{b\}) &= \frac{q_{n-1}^{-}(x)}{q_{n}^{+}(x) + q_{n-1}^{-}(x)} \pi_{n-1}(x, \, A), \, A \in \mathscr{B}(S^{n-1}), \, n \neq 2, \, n \ge 1, \\ \pi_{n}^{0}(x, \, A) &= \frac{q_{n}^{+}(x)}{q_{n}^{+}(x) + q_{n-1}^{-}(x)} \pi_{n}(x, \, A), \, A \in \mathscr{B}(S^{n}), \, n \neq 2, \, n \ge 0, \end{split}$$

where $q_1(x) = q_{-1}^-(x) = 0$, $A \cdot \{a\} = \{[x_1, ..., x_n, a] \in S^{n+1} : [x_1, ..., x_n] \in A\}$ for $A \subset S^n$ and $A \cdot \{a\} \cdot \{b\}$ is defined similarly. If the form $\frac{0}{0}$ appears in the definition of π_n^0 , it is interpreted as 0.

(3.2.b) For x = a or b, $q_n^0(x)$ and $\pi_n^0(x, A)$ are defined arbitrarily but subject to the condition:

$$q_n^0(x) \ge 0, \ \Sigma_{n=0}^\infty q_n^0(x) = 1,$$

 $\pi_n^0(x, \cdot)$ is a probability measure on S_0^n , $n=0, 1, 2, \dots$

REMARK. We can see immediately that for $x \in S$

$$\pi_n^0(x, A \cdot \{a\}) = 0, A \in \mathscr{B}(S^{n-1}), n \neq 2, n \ge 1,$$

$$\pi_n^0(x, A \cdot \{a\} \cdot \{b\}) = 0, A \in \mathscr{B}(S^{n-2}), n \ge 2,$$

where $\{\partial\}\cdot\{a\} = \{a\}, \{\partial\}\cdot\{a\}\cdot\{b\} = \{[a, b]\} \subset S_0^2$.

We next define a stochastic kernel $\pi^0(x, A)$ on $S_0 \times \hat{\mathbf{S}}_0^{(2)}$ by

(3.3) $\pi^0(x, A) = q_n^0(x) \pi_n^0(x, A)$ for $x \in S_0, A \in \mathscr{B}(S_0^n)$

or what is the same, by

(3.4.a)
$$\begin{cases} \pi^{0}(x, A \cdot \{a\}) = \frac{1}{2} \delta(x, A) & \text{if } x \in S, A \in \mathscr{B}(S), \\ \pi^{0}(x, A \cdot \{b\}) = \frac{1}{2} q_{n-1}^{-}(x) \pi_{n-1}(x, A) & \text{if } x \in S, A \in \mathscr{B}(S^{n-1}), \\ n \neq 2, n \ge 1, \\ \pi^{0}(x, A) = \frac{1}{2} q_{n}^{+}(x) \pi_{n}(x, A) & \text{if } x \in S, A \in \mathscr{B}(S^{n}), n \neq 1, \end{cases}$$

(3.4.b) $\pi^0(x, \cdot)$ is an arbitrary probability measure on S_0 if x = a, b.

Then we can get the branching Markov process $\mathbf{X} = (\Omega, \mathcal{M}_t, \mathbf{X}_t, \mathbf{P}_x, \mathbf{x} \in \hat{\mathbf{S}}_0)$ determined by (X^0, k^0, π^0) , that is, the branching Markov process with the branching law π^0 and $\exp\left(-\int_0^t k^0(x_s^0)ds\right)$ -subprocess of X^0 for the non-branching part (cf. Ikeda-Nagasawa-Watanabe [2]).

Now we shall make a transformation of X so that the transformed process is equivalent to the BMAS-process Z. For $\mathbf{x} = [\mathbf{x}_0, a, ..., a, b, ..., b] \in S_0$ we put $n(\mathbf{x}) = n$ if $\mathbf{x}_0 = [x_1, ..., x_n] \in S^n$, $n^a(\mathbf{x}) =$ the number of a in \mathbf{x} , $n^b(\mathbf{x}) =$ the number of b in \mathbf{x} , $j(\mathbf{x}) = 0$ (if $n^b(\mathbf{x})$ is even) and = 1 (if $n^b(\mathbf{x})$ is odd), and in-

²⁾ $\mathbf{S}_0 = \bigcup_{n=0}^{\infty} \mathbf{S}_0^n$ and $\hat{\mathbf{S}}_0 = \mathbf{S}_0 \cup \{ \Delta \}$

troduce the mapping $\gamma: \mathbf{\hat{S}}_0 \to \mathbf{S} \times \mathbf{N} \times \mathbf{J} \cup \{\Delta\}$ defined by $\gamma(\mathbf{x}) = (\mathbf{x}_0, n^a(\mathbf{x}), j(\mathbf{x}))$ and $\gamma(\Delta) = \Delta$.

LEMMA 1. $\gamma(\mathbf{X}) = (\widetilde{\mathbf{X}}_t, \widetilde{\mathscr{M}}_t, \widetilde{\mathbf{P}}_{\widetilde{\mathbf{x}}})$ is a strong Markov process on $\widehat{\mathbf{Q}} = \mathbf{S} \times \mathbf{N} \times J \cup \{\Delta\}$, where $\widetilde{\mathbf{X}}_t = \gamma \mathbf{X}_t, \ \widetilde{\mathscr{N}}^0 = \sigma\{\{\mathbf{X}_t \in \Gamma\}: t \ge 0, \ \Gamma \in \mathscr{B}(\widehat{\mathbf{Q}})\}, \ \widetilde{\mathscr{M}}_t = \mathscr{M}_t \cap \widetilde{\mathscr{N}}^0$ and $\widetilde{\mathbf{P}}_{\gamma \mathbf{x}}(A) = \mathbf{P}_{\mathbf{x}}(A)$ for $A \in \widetilde{\mathscr{N}}^0, \ \mathbf{x} \in \widehat{\mathbf{S}}_0$.

PROOF. Put $\tilde{f}(\tilde{\mathbf{x}}) = (-1)^j \lambda^k \hat{f}(\mathbf{x}_0)$ and $\tilde{f}(\tilde{\mathbf{x}}) = \lambda^k \hat{f}(\mathbf{x}_0)$ for $\tilde{\mathbf{x}} = (\mathbf{x}_0, k, j), f \in \mathbf{C}^*(S), \lambda \ge 0$. Then the linear hull of the subset $\{\tilde{f}, \tilde{f}: 0 \le \lambda < 1, f \in \mathbf{C}^*(S)\}$ of $\mathbf{C}_0(\mathbf{S} \times \mathbf{N} \times \mathbf{J})$ is dense in $\mathbf{C}_0(\mathbf{S} \times \mathbf{N} \times \mathbf{J})$. Since

$$\hat{f}(\mathbf{x}) = \tilde{f}(\gamma \mathbf{x}) \quad \text{if} \quad f(a) = \lambda, \ f(b) = -1,$$
$$\hat{f}(\mathbf{x}) = \bar{f}(\gamma \mathbf{x}) \quad \text{if} \quad f(a) = \lambda, \ f(b) = 1,$$

we can see, by the branching property of X, that

$$\mathbf{E}_{\mathbf{x}}[\tilde{f}(\gamma \mathbf{X}_{t})] = \mathbf{E}_{\mathbf{x}}[\tilde{f}(\mathbf{X}_{t})] = (-1)^{m} \lambda^{k} \prod_{i=1}^{n} \mathbf{E}_{x_{i}}[\tilde{f}(\mathbf{X}_{t})] = \mathbf{E}_{\mathbf{x}'}[\tilde{f}(\gamma \mathbf{X}_{t})],$$
$$\mathbf{E}_{\mathbf{x}}[\tilde{f}(\gamma \mathbf{X}_{t})] = \mathbf{E}_{\mathbf{x}'}[\tilde{f}(\gamma \mathbf{X}_{t})],$$

provided $\gamma \mathbf{x} = \gamma \mathbf{x}', \mathbf{x} = [x_1, ..., x_n, a, ..., a, b, ..., b], n^a(\mathbf{x}) = k, n^b(\mathbf{x}) = m$. Therefore, by Theorem 10.13 of Dynkin [1] $\gamma(\mathbf{X})$ is a strong Markov process.

THEOREM. The Markov process $\gamma(\mathbf{X})$ and the BMAS-process Z in Nagasawa [3] are equivalent.

COROLLARY. We extend a function $f \in \mathbf{B}(S)$ to a function f on S_0 so that f(a)=2, f(b)=-1. If $u(t, x)=\mathbf{E}_x[\hat{f}(\mathbf{X}_t)]$, $x \in S$, has definite value, u(t, x) is a solution of

$$u(t, x) = T_t f(x) + \int_0^t \int_S K(x, ds, dy) \sum_{n \neq 1} q_n(y) \int_{S^n} \pi_n(y, dz) u_{t-s}(z),$$

where $T_t(x) = E_x[f(x_t)]$ and $K(x, ds, dy) = E_x[k(x_s)ds: x_s \in dy]$.

For the proof of the theorem we shall prepare some lemmas. Let Z_t^0 , n_t^a and n_t^b denote the number of particles in S, in $\{a\}$ and in $\{b\}$, respectively. More precisely, we put $Z_t^0 = n(\mathbf{X}_t)$, $n_t^a = n^a(\mathbf{X}_t)$ and $n_t^b = n^b(\mathbf{X}_t)$. We define some Markov times of X as follows.

$$\tau^{0} = \begin{cases} \inf \{t : Z_{t}^{0} \neq Z_{0}^{0} \text{ or } n_{t}^{a} \neq n_{0}^{a} \text{ or } n_{t}^{b} \neq n_{0}^{b} \}, \\ \infty \quad \text{if } \{ \} = \emptyset, \end{cases}$$

Some Remarks to the Construction of Branching Markov Processes

$$\tau_{0}^{0} = 0, \ \tau_{1}^{0} = \tau^{0}, \ \tau_{n}^{0} = \tau_{n-1}^{0} + \tau^{0} \circ \theta_{\tau_{n-1}^{0}} \text{ for } n = 2, 3, \dots,$$

$$\sigma = \begin{cases} \inf \{t : Z_{t}^{0} \neq Z_{0}^{0} \text{ or } n_{t}^{b} \neq n_{0}^{b} \}, \\ \infty & \text{ if } \{ \} = \emptyset, \end{cases}$$

$$\sigma_{0} = 0, \ \sigma_{1} = \sigma, \ \sigma_{n} = \sigma_{n-1} + \sigma \circ \theta_{\sigma_{n-1}} \text{ for } n = 2, 3, \dots.$$

Since $q_1 = 0$ by the assumption, the condition $n_t^b \neq n_0^b$ in the definition of τ^0 and σ is not necessary here. The Markov time σ corresponds to the Markov time τ of the BMAS-process Z. In fact, $\mathbf{P}_x(\sigma \leq t, \gamma \mathbf{X}_{\sigma} \in E) = \mathbf{P}_{(x, 0, 0)}^0(\tau \leq t, \mathbf{Z}_{\tau} \in E)$, $E \in \mathscr{B}(\mathbf{Q})$, as will be seen later by comparing (2.5) with LEMMA 4.

LEMMA 2. For $\mathbf{x} = [x_1, \dots, x_n, a, \dots, a, b, \dots, b]$ with $n^a(\mathbf{x}) = k$, $n^b(\mathbf{x}) = m$ and for $f \in \mathbf{B}(S_0)$, we have

$$\mathbf{E}_{\mathbf{x}}[\hat{f}(\mathbf{X}_{t}); \sigma_{r} \le t < \sigma_{r+1}] = \{f(a)\}^{k} \{f(b)\}^{m} \sum_{i=1}^{(r,n)} \prod_{i=1}^{n} \mathbf{E}_{x_{i}}[\hat{f}(\mathbf{X}_{t}); \sigma_{r_{i}} \le t < \sigma_{r_{i}+1}].$$

PROOF. Since

$$\mathbf{E}_{\mathbf{x}}[\hat{f}(\mathbf{X}_{t}); \ \sigma_{r} \le t < \sigma_{r+1}] = \{f(a)\}^{k} \{f(b)\}^{m} \mathbf{E}_{\mathbf{x}_{0}}[\hat{f}(\mathbf{X}_{t}); \ \sigma_{r} \le t < \sigma_{r+1}]$$

where $\mathbf{x}_0 = [x_1, ..., x_n]$, it is sufficient to prove that

$$\mathbf{E}_{\mathbf{x}_{0}}[\hat{f}(\mathbf{X}_{t}); \ \sigma_{r} \leq t < \sigma_{r+1}] = \sum_{i=1}^{(r,n)} \prod_{i=1}^{n} \mathbf{E}_{x_{i}}[\hat{f}(\mathbf{X}_{t}); \ \sigma_{r_{i}} \leq t < \sigma_{r_{i}+1}], \mathbf{x}_{0} \in \mathbf{S}.$$

If f_0 is a function in **B**(S_0) such that $f_0 = f$ on $S \cup \{b\}$ and $f_0(a) = \lambda f(a), 0 \le \lambda < 1$, then it is known [2: I, p. 271] that

$$\mathbf{E}_{\mathbf{x}_{0}}[\hat{f}_{0}(\mathbf{X}_{t}); \tau_{r}^{0} \leq t < \tau_{r+1}^{0}] = \sum_{i=1}^{(r,n)} \prod_{i=1}^{n} \mathbf{E}_{x_{i}}[\hat{f}_{0}(\mathbf{X}_{t}); \tau_{r_{i}}^{o} \leq t < \tau_{r_{i}+1}^{0}].$$

On the other hand

(3.5)
$$\mathbf{E}_{\mathbf{x}_0}[\hat{f}_0(\mathbf{X}_t); \tau_r^0 \le t < \tau_{r+1}^0] = \sum_{k=0}^r \lambda^k \mathbf{E}_{\mathbf{x}_0}[\hat{f}(\mathbf{X}_t); n_t^a = k, \tau_r^0 \le t < \tau_{r+1}^0],$$

and

(3.6)

$$\sum_{i=1}^{(r,n)} \prod_{i=1}^{n} \mathbf{E}_{x_{i}} [\hat{f}_{0}(\mathbf{X}_{t}): \tau_{r_{i}}^{0} \le t < \tau_{r_{i}+1}^{0}]$$

$$= \sum_{i=1}^{(r,n)} \prod_{i=1}^{n} \sum_{k_{i}=0}^{r_{i}} \mathbf{E}_{x_{i}} [\hat{f}_{0}(\mathbf{X}_{t}): n_{t}^{a} = k_{i}, \tau_{r_{i}}^{0} \le t < \tau_{r_{i}+1}^{0}]$$

$$= \sum_{k=0}^{r} \lambda^{k} \sum_{i=1}^{(k,n)} \sum_{i=1}^{(r,n)'} \prod_{i=1}^{n} \mathbf{E}_{x_{i}} [\hat{f}(\mathbf{X}_{t}): n_{t}^{a} = k_{i}, \tau_{r_{i}}^{0} \le t < \tau_{r_{i}+1}^{0}]$$

where $\sum_{i=1}^{(r,n)'}$ denotes the sum over all (r_1, \ldots, r_n) satisfying $\sum_{i=1}^{n} r_i = r$ and $r_i \ge k_i$. Putting r-k=r', $r_i-k_i=r'_i$ and comparing the coefficients of λ^k in (3.5) with those of (3.6), we have

(3.7)
$$\mathbf{E}_{\mathbf{x}_{0}}[\hat{f}(\mathbf{X}_{t}); n_{t}^{a} = k, \tau_{r'+k}^{0} \leq t < \tau_{r'+k+1}^{0}] = \sum_{i=1}^{(r',n)} \sum_{i=1}^{(k,n)} \prod_{i=1}^{n} \mathbf{E}_{\mathbf{x}_{i}}[\hat{f}(\mathbf{X}_{t}); n_{t}^{a} = k_{i}, \tau_{r'+k_{i}}^{0} \leq t < \tau_{r'+k_{i}+1}^{0}].$$

Noting the definition of τ_n^0 and σ_n , we have

(3.8)
$$\mathbf{E}_{\mathbf{x}_{0}}[\hat{f}(\mathbf{X}_{t}); n_{t}^{a} = k, \tau_{r'+k}^{0} \leq t < \tau_{r'+k+1}^{0}] \\ = \mathbf{E}_{\mathbf{x}_{0}}[\hat{f}(\mathbf{X}_{t}); n_{t}^{a} = k, \sigma_{r'} \leq t < \sigma_{r'+1}]$$

and hence, using (3.7) we obtain

$$\mathbf{E}_{\mathbf{x}_{0}}[\hat{f}(\mathbf{X}_{t}); \sigma_{r'} \le t < \sigma_{r'+1}] = \sum_{k=0}^{\infty} \mathbf{E}_{\mathbf{x}_{0}}[\hat{f}(\mathbf{X}_{t}); n_{t}^{a} = k, \sigma_{r'} \le t < \sigma_{r'+1}]$$

$$= \sum_{i=1}^{(r', n)} \prod_{i=1}^{n} \mathbf{E}_{\mathbf{x}_{i}}[\hat{f}(\mathbf{X}_{t}); \sigma_{r'_{i}} \le t < \sigma_{r'_{i}+1}],$$

completing the proof of the lemma.

In the next two lemmas, we use the following formulas [2: III, p. 99]: for $f \in \mathbf{B}(S), x \in S$,

(3.9)
$$\mathbf{E}_{\mathbf{x}}[\hat{f}(\mathbf{X}_{t}); t < \tau^{0}] = E_{\mathbf{x}}^{0} \bigg[f(x_{t}^{0}) \exp \bigg(-\int_{0}^{t} k^{0}(x_{s}^{0}) ds \bigg) \bigg]$$
$$= E_{\mathbf{x}} \bigg[f(x_{t}) \exp \bigg(-2 \int_{0}^{t} k(x_{s}) ds \bigg) \bigg],$$

(3.10)
$$\int_{0}^{t} \int_{s_{0}} \mathbf{P}_{x}(\tau^{0} \in ds, \mathbf{X}_{\tau^{0}} \in dy) f(y) = E_{x}^{0} \left[\int_{0}^{t} f(x_{s}^{0}) k^{0}(x_{s}) + \exp\left(-\int_{0}^{s} k^{0}(x_{u}^{0}) du\right) ds \right] = 2 \int_{0}^{t} E_{x} \left[f(x_{s}) k(x_{s}) \exp\left(-2 \int_{0}^{s} k(x_{u}) du\right) \right] ds.$$

LEMMA 3. For $f \in \mathbf{B}(S)$ and $x \in S$,

(3.11)
$$\mathbf{E}_{x}[\hat{f}(\mathbf{X}_{t}); t < \sigma, n_{t}^{a} = k] = \frac{1}{k!} E_{x} \Big[f(x_{t}) \Big\{ f(a) \int_{0}^{t} k(x_{u}) du \Big\}^{k} \\ \cdot \exp\Big(-2 \int_{0}^{t} k(x_{u}) du \Big) \Big], \quad k = 0, 1, 2, \dots$$

PROOF. Put

$$\Phi(\mathbf{x}, t, r, k) = \mathbf{E}_{\mathbf{x}}[\hat{f}(\mathbf{X}_{t}); \tau_{r}^{0} \le t < \tau_{r+1}^{0}, \mathbf{X}_{\tau_{r}^{0}} \in S \cdot \{a\}^{k}], \qquad \mathbf{x} \in \mathbf{S}_{0}.$$

Then $\mathbf{E}_x[\hat{f}(\mathbf{X}_t); t < \sigma, n_t^a = k] = \Phi(x, t, k, k)$ for $x \in S$. If k = 0, (3.11) is nothing but (3.9). Now assume that (3.11) is true for k. Then using the strong Markov property of **X**, (3.10) and the induction hypothesis successively, we have

$$\Phi(x, t, k+1, k+1) = \mathbf{E}_{x}[\Phi(\mathbf{X}_{\tau^{0}}, t-\tau^{0}, k, k+1): \mathbf{X}_{\tau^{0}} \in S \cdot \{a\}, \tau^{0} \leq t]$$

$$= \frac{1}{2} \int_{0}^{t} \int_{s} \mathbf{P}(\tau^{0} \in ds, \mathbf{X}_{\tau^{0}} \in dy) \Phi([y, a], t-s, k, k+1)^{3})$$

$$= f(a) \int_{0}^{t} E_{x}[k(x_{s})\exp(-2\int_{0}^{s} k(x_{u})du) \Phi(x_{s}, t-s, k, k)] ds^{4})$$

$$= f(a) \int_{0}^{t} E_{x}[k(x_{s})\exp(-2\int_{0}^{s} k(x_{u})du)$$

$$\cdot \frac{1}{k!} E_{x_{s}}[f(x_{t-s}) \{f(a) \int_{0}^{t-s} k(x_{u})du \}^{k} \exp(-2\int_{0}^{t-s} k(x_{u})du)]] ds.$$

By the Markov property of x_t the last term is equal to

$$\frac{1}{k!} \{f(a)\}^{k+1} \int_0^t E_x [f(x_t)k(x_s) \{\int_s^t k(x_u) du\}^k \\ \cdot \exp\left(-2\int_0^s k(x_u) du\right) \exp\left(-2\int_s^t k(x_u) du\right)] ds \\ = \frac{1}{k!} \{f(a)\}^{k+1} E_x [f(x_t) \exp\left(-2\int_0^t k(x_u) du\right) \int_0^t k(x_s) \{\int_s^t k(x_u) du\}^k ds] \\ = \frac{1}{(k+1)!} \{f(a)\}^{k+1} E_x [f(x_t) \{f(a)\int_0^t k(x_u) du\}^{k+1} \exp\left(-2\int_0^t k(x_u) du\right)],$$

and hence the proof is finished.

LEMMA 4. For $x \in S$, $A \in \mathscr{B}(\mathbf{S}_b \cup \{\Delta\})^{5}$ and k = 0, 1, 2, ...,

(3.12)
$$\mathbf{P}_{x}(\sigma \leq t, \ \mathbf{X}_{\sigma} \in A \cdot \{a\}^{k}) = \frac{2}{k!} \int_{0}^{t} E_{x}[k(x_{s}) \left\{ \int_{0}^{s} k(x_{u}) du \right\}^{k} \cdot \exp\left(-2 \int_{0}^{s} k(x_{u}) du \right) \pi^{0}(x_{s}, A)] ds.$$

PROOF. Put

$$\Psi(\mathbf{x}, t, r, k) = \mathbf{P}_{\mathbf{x}}(\tau_{r+1}^0 \leq t, \mathbf{X}_{\tau_{r+1}^0} \in A \cdot \{a\}^k, \mathbf{X}_{\tau_r^0} \in \mathbf{S}_b \cdot \{a\}^k) \text{ for } \mathbf{x} \in \mathbf{S}_0.$$

- 3) Use $\mathbf{P}_{x}(\tau^{0} \in ds, \mathbf{X}_{\tau^{0}} \in A \cdot \{a\}) = \int_{S} \mathbf{P}_{x}(\tau^{0} \in ds, \mathbf{X}_{\tau^{0}} \in dy) \delta(y, A), A \in \mathscr{B}(S).$
- 4) Use $\Phi([x, a], t, k, k+1) = f(a)\Phi(x, t, k, k)$.
- 5) $\mathbf{S}_b = \bigcup_{n=0}^{\infty} (S \cup \{b\})^n$ where $(S \cup \{b\})^0 = \{\partial\}$.

Then $\mathbf{P}_x(\sigma \le t, \mathbf{X}_{\sigma} \in A \cdot \{a\}^k) = \Psi(x, t, k, k)$. For k = 0, (3.12) is true by (3.10). Let us assume that (3.12) is true for k. Then using the strong Markov property of **X**, (3.10) and induction hypothesis successively, we have

$$\begin{split} \Psi(x, t, k+1, k+1) &= \mathbf{E}_{x} [\Psi(\mathbf{X}_{\tau^{0}}, t-\tau^{0}, k, k+1) \colon \mathbf{X}_{\tau^{0}} \in S \cdot \{a\}, \tau^{0} \leq t] \\ &= \frac{1}{2} \int_{0}^{t} \int_{S} \mathbf{P}_{x} (\tau^{0} \in du, \mathbf{X}_{\tau^{0}} \in dy) \Psi([y, a], t-u, k, k+1) \\ &= \int_{0}^{t} E_{x} [k(x_{u}) \exp(-2 \int_{0}^{u} k(x_{v}) dv) \Psi(x_{u}, t-u, k, k)] du \\ &= 2 \int_{0}^{t} E_{x} [k(x_{u}) \exp(-2 \int_{0}^{u} k(x_{v}) dv) \\ &\cdot \frac{1}{k!} \int_{0}^{t-u} E_{x_{u}} [k(x_{s}) \{ \int_{0}^{s} k(x_{v}) dv \}^{k} \exp(-2 \int_{0}^{s} k(x_{v}) dv) \pi^{0}(x_{s}, A)] ds] du. \end{split}$$

Then, by the Markov property of x_t the last term is equal to

$$\frac{2}{k!} \int_{0}^{t} \int_{0}^{t-u} E_{x} [k(x_{u})k(x_{s+u}) \left\{ \int_{u}^{s+u} k(x_{v}) dv \right\}^{k} \exp\left(-2 \int_{0}^{s+u} k(x_{v}) dv\right) \\ \cdot \pi^{0}(x_{s+u}, A)] ds du$$

$$= \frac{2}{k!} \int_{0}^{t} E_{x} [k(x_{s}) \exp\left(-2 \int_{0}^{s} k(x_{v}) dv\right) \pi^{0}(x_{s}, A) \int_{0}^{s} k(x_{u}) \left\{ \int_{u}^{s} k(x_{v}) dv \right\}^{k} du] ds$$

$$= \frac{2}{(k+1)!} \int_{0}^{t} E_{x} [k(x_{s}) \left\{ \int_{0}^{s} k(x_{u}) du \right\}^{k+1} \exp\left(-2 \int_{0}^{s} k(x_{v}) dv\right) \pi^{0}(x_{s}, A)] ds,$$

and the proof is finished.

PROOF OF THEOREM. Put $f_1^* = \tilde{f}$ and $f_2^* = \tilde{f}$ for a function f on S. Since the linear hull of $\{\tilde{f}, \tilde{f}: 0 \le \lambda < 1, f \in \mathbb{C}^*(S)\}$ is dense in $\mathbb{C}_0(\mathbf{S} \times \mathbf{N} \times \mathbf{J})$ and

$$\widetilde{\mathbf{E}}_{\widetilde{\mathbf{x}}}[f_i^*(\gamma \mathbf{X}_t)] = \sum_{r=0}^{\infty} \widetilde{\mathbf{E}}_{\widetilde{\mathbf{x}}} [f_i^*(\gamma \mathbf{X}_t): \sigma_r \le t < \sigma_{r+1}],$$

it is sufficient to show that

$$(3.13) \qquad \qquad \mathbf{E}_{\tilde{\mathbf{x}}}^{0}[f_{i}^{*}(\mathbf{Z}_{t}):\tau_{r} \leq t < \tau_{r+1}] = \widetilde{\mathbf{E}}_{\tilde{\mathbf{x}}}[f_{i}^{*}(\gamma \mathbf{X}_{t}):\sigma_{r} \leq t < \sigma_{r+1}]$$

for $r=0, 1, 2, ..., i=1, 2, \tilde{\mathbf{x}} \in \mathbf{S} \times \mathbf{N} \times \mathbf{J}$ and $f \in \mathbf{C}^{\bullet}(S)$. Let f_i be a function in $\mathbf{B}(S_0)$ such that $f_i = f$ on S, $f_i(a) = \lambda$ and $f_i(b) = (-1)^i$ for i=1, 2. Then right hand side of (3.13) is equal to

$$\mathbf{E}_{\mathbf{x}}[\hat{f}_{i}(\mathbf{X}_{t}):\sigma_{r}\leq t<\sigma_{r+1}]$$

448

where $\mathbf{\tilde{x}} = \gamma \mathbf{x}$, and therefore it is sufficient to prove that

(3.14)
$$\mathbf{E}_{\mathbf{x}}^{0}[f_{i}^{*}(\mathbf{Z}_{t}):\tau_{r} \leq t < \tau_{r+1}] = \mathbf{E}_{\mathbf{x}}[\hat{f}_{i}(\mathbf{X}_{t}):\sigma_{r} \leq t < \sigma_{r+1}],$$
$$r = 0, 1, 2, ..., i = 1, 2.$$

When r=0, Lemma 3 and (2.4) imply

$$\mathbf{E}_{\mathbf{x}}[\hat{f}_{i}(\mathbf{X}_{t}): t < \sigma] = \sum_{k=0}^{\infty} \mathbf{E}_{\mathbf{x}}[\hat{f}_{i}(\mathbf{X}_{t}): t < \sigma, n_{t}^{a} = k]$$
$$= \mathbf{E}_{(x,0,0)}^{0}[f_{i}^{*}(\mathbf{Z}_{t}): t < \tau] \text{ for } x \in S,$$

and therefore (3.14) for r=0 is obtained by Lemma 2 and (2.2). Since

$$\mathbf{E}_{\mathbf{x}}[\hat{f}_{i}(\mathbf{X}_{t}): \sigma_{r} \leq t < \sigma_{r+1}] = \int_{0}^{t} \int_{S_{0}} \mathbf{E}_{\mathbf{x}}[\sigma \in ds, \mathbf{X}_{\sigma} \in d\mathbf{y}]$$
$$\cdot E_{\mathbf{y}}[\hat{f}_{i}(\mathbf{X}_{t-s}): \sigma_{r-1} \leq t-s < \sigma_{r}],$$

we can prove (3.14) by induction in r using Lemma 4, (2.5), Lemma 2 and (2.2). Thus the proof of the theorem is completed.

References

- [1] E. B. Dynkin, Markov processes, Springer, 1965.
- [2] N. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes, I, II, III, J. Math. Kyoto Univ., 8 (1968), 233-278, 365-410, 9 (1969), 95-160.
- [3] M. Nagasawa, Branching property of Markov processes, Lecture Note in Math. 258, 177-196, Springer, 1972.
- [4] M. Nagasawa, Construction of branching Markov processes with age and sign, Ködai Math. Semi. Rep., 20 (1968), 469–508.
- [5] B. A. Sevast'yanov, Branching processes, Nauka, Moscow, 1971.
- [6] T. Sirao, On signed branching Markov processes with age, Nagoya Math. J., 32 (1968), 155-225.

Department of Mathematics, Faculty of Science, Hiroshima University