Some Remarks to the Construction of Branching Markov Processes with Age and Sign

Kusuo Kobayashi
(Received May 26, 1973)

§ 1. Introduction

Some semi-linear equations are in close connection with branching Markov processes. Suppose we are given the infinitesimal generator A of a Markov process x_{t} on a topological space S together with the following quantities: (i) a non-negative Borel function $k(x)$ on S, (ii) a sequence $\left\{q_{n}(x)\right\}_{n=0,2,3, \ldots}$ of Borel functions on S, and (iii) a sequence $\left\{\pi_{n}(x, d \boldsymbol{y})\right\}_{n=0}, 2,3, \ldots$ of stochastic kernels from S to the n-fold symmetric product S^{n} of S. We consider the following equations:

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=A u(t, x)+k(x)\left\{\sum_{n \neq 1} q_{n}(x) \int_{S^{n}} \pi_{n}(x, d \mathbf{y}) u(t, \mathbf{y})-u(t, x)\right\} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=A u(t, x)+k(x) \sum_{n \neq 1} q_{n}(x) \int_{S^{n}} \pi_{n}(x, d y) u(t, y), x \in S, t \geq 0 . \tag{II}
\end{equation*}
$$

In the equation (I) it is assumed that $q_{n}(x) \geq 0, n=0,2,3, \ldots, \Sigma_{n \neq 1} q_{n}(x)=1$, while in the equation (II) $q_{n}(x)$ can be negative but $\Sigma_{n \neq 1}\left|q_{n}(x)\right|=1$. Then, it is known that the equation (I) corresponds to the branching Markov process (abbreviated: BM-process) whose non-branching part and branching system are $\exp \left(-\int_{0}^{t} k\left(x_{s}\right) d s\right)$-subprocess of x_{t} and $\left(q_{n}(x), \pi_{n}(x, d y)\right)_{n=0,2,3, \ldots}$, respectively (see N. Ikeda-M. Nagasawa-S. Watanabe [2]). BM-processes of this type do not correspond to the equation (II) in a straightforward way. After a while, M. Nagasawa and T. Sirao ([3], [4], [6]) constructed another type of branching Markov process with age and sign (abbreviated: BMAS-process) corresponding to the equation (II).

The purpose of this paper is to remark that BMAS-processes can be constructed in a frame of the ordinary BM-processes due to Ikeda-Nagasawa-Watanabe, by introducing two extra states. More precisely, taking two extra points a and b not belonging to S, we extend the state space S of the given Markov process x_{t} to $S_{0}=S \cup\{a, b\}$ so that the new states a and b become traps. We then introduce new quantities $k^{0}(x), q_{n}^{0}(x), \pi_{n}^{0}(x, d y)$ for $x \in S_{0}$ and $d \mathbf{y} \subset S_{0}^{n}$ by the formulas (3.1), (3.2.a) and (3.2.b) in §3. Let \mathbf{X} be the BM-process determined by
this extended system $\left\{X^{0}, k^{0}(x),\left(q_{n}^{0}(x), \pi_{n}^{0}(x, d y)\right)_{n=0,1,2, \ldots}\right\}$ where X^{0} is the extended Markov process on the enlarged state space S_{0}. In the terminology of Sevast'yanov [5], $\{a, b\}$ is a final class. Our result is that the BMAS-process \mathbf{Z} due to Nagasawa and Sirao is equivalent in law to a certain factor process of \mathbf{X} (Theorem in §3).

§ 2. Preliminaries

We here introduce some notations following [2]. Let S be a compact Hausdorff space with a countable open base, S^{n} the n-fold symmetric product of $S, \mathbf{S}=\cup_{n=0}^{\infty} S^{n}$ the topological sum of S^{n} and $\hat{\mathbf{S}}=\mathbf{S} \cup\{\Delta\}$ the one point compactification of \mathbf{S} where $S^{0}=\{\partial\}$ and ∂ is an extra point. We put $\mathbf{N}=\{0,1,2, \ldots\}$, $\mathbf{J}=\{0,1\}$ and
$\mathscr{B}(S)=$ the topological Borel field of S (also similar notations $\mathscr{B}(\mathbf{S})$, etc. will be used),
$\mathbf{B}(S)=$ the set of all bounded Borel functions on S,
$\mathbf{C}^{*}(S)=\left\{f: f\right.$ is continuous on S and $\left.\sup _{x \in S}|f(x)|<1\right\}$,
$\mathbf{C}_{0}(\mathbf{S} \times \mathbf{N} \times \mathbf{J})=\left\{f: f\right.$ is continuous on $\mathbf{S} \times \mathbf{N} \times \mathbf{J}$ and $\left.\lim _{\mathbf{x} \rightarrow 4} f(\mathbf{x})=0\right\}$,
where Δ is an extra point added by the one-point compactification of $\mathbf{S} \times \mathbf{N} \times \mathbf{J}$, and define a function $\hat{f}(\mathbf{x})$ on $\hat{\mathbf{S}}$ for a function $f \in \mathbf{B}(S)$ as follows:

$$
\hat{f}(\mathbf{x})=\left\{\begin{array}{cl}
1 & \text { if } \mathbf{x}=\partial \tag{2.1}\\
f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right) & \text { if } \mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \in S^{n} \\
0 & \text { if } \mathbf{x}=\Delta
\end{array}\right.
$$

In this paper we are given a conservative strong Markov process $X=(W$, $\mathscr{B}_{t}, x_{t}, P_{x}, x \in S$) on S with right continuous sample paths having left limits such that $\mathscr{B}_{t}=\overline{\mathscr{B}}_{t+0}$, and also the following quantities (i), (ii) and (iii):
(i) a non-negative Borel function $k(x)$ on S,
(ii) Borel functions $q_{n}(x)$ on $S, n=0,2,3, \ldots$, satisfying $\Sigma_{n \neq 1}\left|q_{n}(x)\right|=1$,
(iii) stochastic kernels $\pi_{n}(x, d \mathbf{y})$ on $S \times S^{n}, n=0,2,3, \ldots$.

Nagasawa [3], [4] and Sirao [6] constructed a BMAS-process corresponding to the equation (II) on the basis of the Markov process $X, k(x)$ and $\left(q_{n}(x)\right.$, $\left.\pi_{n}(x, d \mathbf{y})\right)_{n=0,2,3}, \cdots$. In this section we list some properties of the BMAS-process $\mathbf{Z}=\left(\mathbf{Z}_{t}, \mathbf{P}_{(\mathbf{x}, k, j)}^{0}\right)$ with state space $\hat{\mathbf{Q}}=(\mathbf{S} \times \mathbf{N} \times \mathbf{J}) \cup\{\Delta\}$ constructed in [3] ${ }^{1)}$

[^0]for later use. We put
\[

$$
\begin{aligned}
& \xi_{t}=n, a_{t}=k \quad \text { if } \quad \mathbf{Z}_{t}=(\mathbf{x}, k, j) \in \mathbf{S} \times \mathbf{N} \times \mathbf{J}, \mathbf{x} \in S^{n}, \\
& \tau=\inf \left\{t: \xi_{t} \neq \xi_{0}\right\}, \quad=\infty \quad \text { if }\{\quad\}=\emptyset \\
& \tau_{0}=0, \tau_{1}=\tau, \tau_{n}=\tau_{n-1}+\tau \circ \theta_{\tau_{n-1}}, \quad n=2,3, \ldots,
\end{aligned}
$$
\]

and introduce the following quantities:

$$
\begin{aligned}
& \mathbf{U}_{t}^{(r)}(\cdot, \mathrm{B})=\mathbf{P}^{0}\left(\mathbf{Z}_{t} \in \mathrm{~B}, \tau_{r} \leq t<\tau_{r+1}\right) \\
& \mathbf{U}_{t}(\cdot, \mathrm{~B})=\mathbf{P}_{.0}^{0}\left(\mathbf{Z}_{t} \in \mathrm{~B}\right), \\
& \tilde{f}(\mathbf{x}, k, j)=(-1)^{j} \lambda^{k} \hat{f}(\mathbf{x}) \quad \text { for } \lambda \geq 0, f \in \mathbf{B}(S) .
\end{aligned}
$$

Then
(2.2) $\quad \mathbf{U}_{t}^{(r)} \tilde{f}(\mathbf{x}, k, j)=(-1)^{j} \lambda^{k} \sum^{(r, n)} \prod_{i=1}^{n} \mathbf{U}_{t}^{\left(r_{i}\right)} f\left(x_{i}\right), \quad \mathbf{x}=\left[x_{1}, \ldots, x_{n}\right] \in S^{n}$,

$$
\begin{equation*}
\mathbf{U}_{t} \tilde{f}(\mathbf{x}, k, j)=\left.\widetilde{\mathbf{U}_{t} \tilde{f}}\right|_{s}(\mathbf{x}, k, j) \tag{2.3}
\end{equation*}
$$

where $\left.F\right|_{S}=F(x, 0,0), x \in S, F \in \mathbf{B}(\mathbf{Q})$ and $\Sigma^{(r, n)}$ denotes the sum over all $\left(r_{1}\right.$, r_{2}, \ldots, r_{n}) satisfying $\sum_{i=1}^{n} r_{i}=r$. Furthermore,

$$
\begin{align*}
& \mathbf{E}_{(x, 0,0)}^{0}\left[\tilde{f}\left(\mathbf{Z}_{t}\right): a_{t}=k, t<\tau\right] \tag{2.4}\\
& \quad=\frac{1}{k!} E_{x}\left[f\left(x_{t}\right)\left\{\lambda \int_{0}^{t} k\left(x_{s}\right) d s\right\}^{k} \exp \left(-2 \int_{0}^{t} k\left(x_{s}\right) d s\right)\right]
\end{align*}
$$

$$
\begin{align*}
& \mathbf{P}_{(x, 0,0)}^{0}\left(\tau \leq t, \mathbf{Z}_{\tau} \in d(\mathbf{y}, k, j)\right) \tag{2.5}\\
& =\frac{1}{k!} \int_{0}^{t} E_{x}\left[\left\{\mu^{+}\left(\left(x_{s}, k, 0\right), d\left(\mathbf{y}, k^{\prime}, j\right)\right)+\mu^{-}\left(\left(x_{s}, k, 0\right), d\left(\mathbf{y}, k^{\prime}, j\right)\right)\right\}\right. \\
& \left.\quad \cdot k\left(x_{s}\right)\left\{\int_{0}^{s} k\left(x_{u}\right) d u\right\}^{k} \exp \left(-2 \int_{0}^{s} k\left(x_{u}\right) d u\right)\right] d s
\end{align*}
$$

where $\mu^{ \pm}\left((x, k, 0), d\left(\mathbf{y}, k^{\prime}, j\right)\right)=q_{n}^{ \pm}(x) \pi_{n}(x, d \mathbf{y}) \delta_{k k^{\prime}} \delta_{j}^{ \pm}, \quad d\left(\mathbf{y}, k^{\prime}, j\right) \subset S^{n} \times \mathbf{N} \times \mathbf{J}$, $n=0,2,3, \ldots$ and $\delta_{j}^{+}=\delta_{0 j}, \delta_{j}^{-}=\delta_{1 j}$. Finally, if we put

$$
\begin{align*}
& u(t, x)=\mathbf{U}_{t} \tilde{f}(x, 0,0), \quad \lambda=2, \tag{2.6}\\
& T_{t} f(x)=E_{x}\left[f\left(x_{t}\right)\right], \\
& K(x, d s, d y)=E_{x}\left[k\left(x_{s}\right) d s: x_{s} \in d y\right]
\end{align*}
$$

then the following S-equation holds:

$$
\begin{equation*}
u(t, x)=T_{t} f(x)+\int_{0}^{t} \int_{S} K(x, d s, d y) \sum_{n \neq 1} q_{n}(y) \int_{S^{n}} \pi_{n}(y, d \mathbf{z}) u_{t-s}(\mathbf{z}), \tag{2.7}
\end{equation*}
$$

which is an integral equation corresponding to the equation (II). The BMASprocess \mathbf{Z} corresponding to the equation (II) is a strong Markov process with state space $\hat{\mathbf{Q}}$ characterized by the three properties (2.3), (2.4) and (2.5).

§ 3. Construction of branching Markov processes with age and sign

In this section we construct the BM-process \mathbf{X} stated in § 1, and then prove that the BMAS-process \mathbf{Z} in Nagasawa [3] is equivalent to a certain factor process of \mathbf{X}, that is, \mathbf{Z} is obtained from \mathbf{X} by means of a certain transformation on the state space.

Let $S_{0}=S \cup\{a, b\}$, where a and b are extra points outside S. Given a system $\left\{X, k,\left(q_{n}, \pi_{n}\right)_{n=0,2,3, \ldots}\right\}$ as in $\S 2$, we first introduce a new system $\left\{X^{0}\right.$, $\left.k^{0},\left(q_{n}^{0}, \pi_{n}^{0}\right)_{n=0,1,2, \ldots}\right\}$ on S_{0} as follows. $X^{0}=\left(W^{0}, \mathscr{B}_{t}^{0}, x_{t}^{0}, P_{x}^{0}, x \in S_{0}\right)$ is a right continuous conservative strong Markov process with state space S_{0} satisfying the following (i), (ii) and (iii):
(i) $W^{0} \supset W, \mathscr{B}_{t}^{0}=\left\{B: B \cap W \in \mathscr{B}_{t}\right\}$,
(ii) $\left.x_{t}^{0}\right|_{W}=x_{t}, P_{x}^{0}\left(x_{t}^{0} \in A\right)=P_{x}\left(x_{t} \in A\right) \quad$ for $x \in S, A \in \mathscr{B}_{t}$,
(iii) a and b are traps for the process X^{0}.
$k^{0}(x)$ is a non-negative Borel function on S_{0} such that

$$
\begin{equation*}
\left.k^{0}\right|_{s}=2 k, k^{0}(a)=k^{0}(b)=0, \tag{3.1}
\end{equation*}
$$

and $\left(q_{n}^{0}(x), \pi_{n}^{0}(x, A)\right)_{n=0,1,2, \ldots}$ is a branching system on S_{0} defined by the following (3.2.a) and (3.2.b).
(3.2.a) For $x \in S$, we put

$$
\begin{aligned}
& q_{2}^{0}(x)=\frac{1}{2}\left(q_{2}^{+}(x)+1\right), \\
& q_{n}^{0}(x)=\frac{1}{2}\left(q_{n}^{+}(x)+q_{n-1}^{-}(x)\right), n \neq 2, n \geq 0, \\
& \pi_{2}^{0}(x, A \cdot\{a\})=\frac{1}{q_{2}^{+}(x)+1} \delta(x, A), A \in \mathscr{B}(S), \\
& \pi_{2}^{0}(x, A)=\frac{q_{2}^{+}(x)}{q_{2}^{+}(x)+1} \pi_{2}(x, A), A \in \mathscr{B}\left(S^{2}\right), \\
& \pi_{n}^{0}(x, A \cdot\{b\})=\frac{q_{n-1}^{-}(x)}{q_{n}^{+}(x)+q_{n}^{-}-1}(x) \\
& \pi_{n-1}(x, A), A \in \mathscr{B}\left(S^{n-1}\right), n \neq 2, n \geq 1, \\
& \pi_{n}^{0}(x, A)=\frac{q_{n}^{+}(x)}{q_{n}^{+}(x)+q_{n}^{-}-1}(x) \\
& \pi_{n}(x, A), A \in \mathscr{B}\left(S^{n}\right), n \neq 2, n \geq 0,
\end{aligned}
$$

where $q_{1}(x)=q_{-1}^{-}(x)=0, \quad A \cdot\{a\}=\left\{\left[x_{1}, \ldots, x_{n}, a\right] \in S^{n+1}:\left[x_{1}, \ldots, x_{n}\right] \in A\right\} \quad$ for $A \subset S^{n}$ and $A \cdot\{a\} \cdot\{b\}$ is defined similarly. If the form $\frac{0}{0}$ appears in the definition of π_{n}^{0}, it is interpreted as 0 .
(3.2.b) For $x=a$ or $b, q_{n}^{0}(x)$ and $\pi_{n}^{0}(x, A)$ are defined arbitrarily but subject to the condition:

$$
q_{n}^{0}(x) \geq 0, \sum_{n=0}^{\infty} q_{n}^{0}(x)=1,
$$

$\pi_{n}^{0}(x, \cdot)$ is a probability measure on $S_{0}^{n}, \quad n=0,1,2, \ldots$
Remark. We can see immediately that for $x \in S$

$$
\begin{aligned}
& \pi_{n}^{0}(x, A \cdot\{a\})=0, A \in \mathscr{B}\left(S^{n-1}\right), n \neq 2, n \geq 1, \\
& \pi_{n}^{0}(x, A \cdot\{a\} \cdot\{b\})=0, A \in \mathscr{B}\left(S^{n-2}\right), n \geq 2,
\end{aligned}
$$

where $\{\partial\} \cdot\{a\}=\{a\},\{\partial\} \cdot\{a\} \cdot\{b\}=\{[a, b]\} \subset S_{0}^{2}$.
We next define a stochastic kernel $\pi^{0}(x, A)$ on $S_{0} \times \hat{\mathbf{S}}_{0}{ }^{2)}$ by

$$
\begin{equation*}
\pi^{0}(x, A)=q_{n}^{0}(x) \pi_{n}^{0}(x, A) \quad \text { for } x \in S_{0}, A \in \mathscr{B}\left(S_{0}^{n}\right) \tag{3.3}
\end{equation*}
$$

or what is the same, by

$$
\left\{\begin{array}{l}
\pi^{0}(x, A \cdot\{a\})=\frac{1}{2} \delta(x, A) \quad \text { if } x \in S, A \in \mathscr{B}(S), \\
\pi^{0}(x, A \cdot\{b\})=\frac{1}{2} q_{n-1}^{-}(x) \pi_{n-1}(x, A) \quad \text { if } x \in S, A \in \mathscr{B}\left(S^{n-1}\right), \tag{3.4.a}\\
n \neq 2, n \geq 1, \\
\pi^{0}(x, A)=\frac{1}{2} q_{n}^{+}(x) \pi_{n}(x, A) \quad \text { if } x \in S, A \in \mathscr{B}\left(S^{n}\right), n \neq 1,
\end{array}\right.
$$

(3.4.b) $\pi^{0}(x, \cdot)$ is an arbitrary probability measure on S_{0} if $x=a, b$.

Then we can get the branching Markov process $\mathbf{X}=\left(\Omega, \mathscr{M}_{t}, \mathbf{X}_{t}, \mathbf{P}_{\mathbf{x}}, \mathbf{x} \in \hat{\mathbf{S}}_{0}\right)$ determined by (X^{0}, k^{0}, π^{0}), that is, the branching Markov process with the branching law π^{0} and $\exp \left(-\int_{0}^{t} k^{0}\left(x_{s}^{0}\right) d s\right)$-subprocess of X^{0} for the non-branching part (cf. Ikeda-Nagasawa-Watanabe [2]).

Now we shall make a transformation of \mathbf{X} so that the transformed process is equivalent to the BMAS-process \mathbf{Z}. For $\mathbf{x}=\left[\mathbf{x}_{0}, a, \ldots, a, b, \ldots, b\right] \in \boldsymbol{S}_{0}$ we put $n(\mathbf{x})=n$ if $\mathbf{x}_{0}=\left[x_{1}, \ldots, x_{n}\right] \in S^{n}, n^{a}(\mathbf{x})=$ the number of a in $\mathbf{x}, n^{b}(\mathbf{x})=$ the number of b in $\mathbf{x}, j(\mathbf{x})=0$ (if $n^{b}(\mathbf{x})$ is even) and $=1$ (if $n^{b}(\mathbf{x})$ is odd), and in-

[^1]troduce the mapping $\gamma: \hat{\mathbf{S}}_{0} \rightarrow \mathbf{S} \times \mathbf{N} \times \mathbf{J} \cup\{\Delta\}$ defined by $\gamma(\mathbf{x})=\left(\mathbf{x}_{0}, n^{a}(\mathbf{x}), j(\mathbf{x})\right)$ and $\gamma(\Delta)=\Delta$.

Lemma 1. $\gamma(\mathbf{X})=\left(\widetilde{\mathbf{X}}_{t}, \tilde{\mathscr{M}}_{t}, \widetilde{\mathbf{P}}_{\tilde{\mathbf{x}}}\right)$ is a strong Markov process on $\hat{\mathbf{Q}}=\mathbf{S} \times \mathbf{N} \times \boldsymbol{J} \cup$ $\{\Delta\}$, where $\tilde{\mathbf{X}}_{t}=\gamma \mathbf{X}_{t}, \tilde{\mathcal{N}}^{0}=\sigma\left\{\left\{\mathbf{X}_{t} \in \Gamma\right\}: t \geq 0, \Gamma \in \mathscr{B}(\hat{\mathbf{Q}})\right\}, \tilde{\mathscr{M}}_{t}=\mathscr{M}_{t} \cap \tilde{\mathcal{N}}^{0}$ and $\widetilde{\mathbf{P}}_{\gamma \mathbf{x}}(A)=\mathbf{P}_{\mathbf{x}}(A) \quad$ for $A \in \tilde{\mathcal{N}}^{0}, \mathbf{x} \in \hat{\mathbf{S}}_{0}$.

Proof. Put $\tilde{f}(\tilde{\mathbf{x}})=(-1)^{j} \lambda^{k} \hat{f}\left(\mathbf{x}_{0}\right)$ and $\hat{f}(\tilde{\mathbf{x}})=\lambda^{k} \hat{f}\left(\mathbf{x}_{0}\right)$ for $\tilde{\mathbf{x}}=\left(\mathbf{x}_{0}, k, j\right), f \in$ $\mathbf{C}^{*}(S), \lambda \geq 0$. Then the linear hull of the subset $\left\{f, f: 0 \leq \lambda<1, f \in \mathbf{C}^{*}(S)\right\}$ of $\mathbf{C}_{0}(\mathbf{S} \times \mathbf{N} \times \mathbf{J})$ is dense in $\mathbf{C}_{0}(\mathbf{S} \times \mathbf{N} \times \mathbf{J})$. Since

$$
\begin{array}{ll}
\hat{f}(\mathbf{x})=\hat{f}(\gamma \mathbf{x}) & \text { if } \quad f(a)=\lambda, f(b)=-1 \\
\hat{f}(\mathbf{x})=\bar{f}(\gamma \mathbf{x}) & \text { if } \quad f(a)=\lambda, f(b)=1
\end{array}
$$

we can see, by the branching property of \mathbf{X}, that

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{x}}\left[\tilde{f}\left(\gamma \mathbf{X}_{t}\right)\right]=\mathbf{E}_{\mathbf{x}}\left[\hat{f}\left(\mathbf{X}_{t}\right)\right]=(-1)^{m} \lambda^{k} \prod_{i=1}^{n} \mathbf{E}_{x_{t}}\left[\hat{f}\left(\mathbf{X}_{t}\right)\right]=\mathbf{E}_{\mathbf{x}^{\prime}}\left[\tilde{f}\left(\gamma \mathbf{X}_{t}\right)\right], \\
& \mathbf{E}_{\mathbf{x}}\left[\tilde{f}\left(\gamma \mathbf{X}_{t}\right)\right]=\mathbf{E}_{\mathbf{x}} \cdot\left[\bar{f}\left(\gamma \mathbf{X}_{t}\right)\right],
\end{aligned}
$$

provided $\gamma \mathbf{x}=\gamma \mathbf{x}^{\prime}, \mathbf{x}=\left[x_{1}, \ldots, x_{n}, a, \ldots, a, b, \ldots, b\right], n^{a}(\mathbf{x})=k, n^{b}(\mathbf{x})=m$. Therefore, by Theorem 10.13 of Dynkin [1] $\gamma(\mathbf{X})$ is a strong Markov process.

Theorem. The Markov process $\gamma(\mathbf{X})$ and the BMAS-process \mathbf{Z} in Nagasawa [3] are equivalent.

Corollary. We extend a function $f \in \mathbf{B}(S)$ to a function f on S_{0} so that $f(a)=2, f(b)=-1$. If $u(t, x)=\mathbf{E}_{x}\left[\hat{f}\left(\mathbf{X}_{t}\right)\right], x \in S$, has definite value, $u(t, x)$ is a solution of

$$
u(t, x)=T_{t} f(x)+\int_{0}^{t} \int_{S} K(x, d s, d y) \sum_{n \neq 1} q_{n}(y) \int_{S^{n}} \pi_{n}(y, d \mathbf{z}) u_{t-s}(\mathbf{z}),
$$

where $T_{t}(x)=E_{x}\left[f\left(x_{t}\right)\right]$ and $K(x, d s, d y)=E_{x}\left[k\left(x_{s}\right) d s: x_{s} \in d y\right]$.
For the proof of the theorem we shall prepare some lemmas. Let Z_{t}^{0}, n_{t}^{a} and n_{t}^{b} denote the number of particles in S, in $\{a\}$ and in $\{b\}$, respectively. More precisely, we put $Z_{t}^{0}=n\left(\mathbf{X}_{t}\right), n_{t}^{a}=n^{a}\left(\mathbf{X}_{t}\right)$ and $n_{t}^{b}=n^{b}\left(\mathbf{X}_{t}\right)$. We define some Markov times of \mathbf{X} as follows.

$$
\tau^{0}=\left\{\begin{array}{l}
\inf \left\{t: Z_{t}^{0} \neq Z_{0}^{0} \text { or } n_{t}^{a} \neq n_{0}^{a} \text { or } n_{t}^{b} \neq n_{0}^{b}\right\}, \\
\infty \quad \text { if }\{ \}=\varnothing
\end{array}\right.
$$

$$
\begin{aligned}
& \tau_{0}^{0}=0, \tau_{1}^{0}=\tau^{0}, \tau_{n}^{0}=\tau_{n-1}^{0}+\tau^{0} \circ \theta_{\tau_{n-1}^{0}} \text { for } n=2,3, \ldots, \\
& \sigma= \begin{cases}\inf \left\{t: Z_{t}^{0} \neq Z_{0}^{0} \text { or } n_{t}^{b} \neq n_{0}^{b}\right\}, \\
\infty & \text { if }\{\quad\}=\varnothing,\end{cases} \\
& \sigma_{0}=0, \sigma_{1}=\sigma, \sigma_{n}=\sigma_{n-1}+\sigma \circ \theta_{\sigma_{n-1}} \quad \text { for } n=2,3, \ldots
\end{aligned}
$$

Since $q_{1}=0$ by the assumption, the condition $n_{t}^{b} \neq n_{0}^{b}$ in the definition of τ^{0} and σ is not necessary here. The Markov time σ corresponds to the Markov time τ of the BMAS-process \mathbf{Z}. In fact, $\mathbf{P}_{x}\left(\sigma \leq t, \gamma \mathbf{X}_{\sigma} \in E\right)=\mathbf{P}_{(x, 0,0)}^{0}\left(\tau \leq t, \mathbf{Z}_{\tau} \in E\right)$, $E \in \mathscr{B}(\mathbf{Q})$, as will be seen later by comparing (2.5) with Lemma 4.

Lemma 2. For $\mathbf{x}=\left[x_{1}, \ldots, x_{n}, a, \ldots, a, b, \ldots, b\right]$ with $n^{a}(\mathbf{x})=k, n^{b}(\mathbf{x})=m$ and for $f \in \mathbf{B}\left(S_{0}\right)$, we have

$$
\mathbf{E}_{\mathbf{x}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \sigma_{r} \leq t<\sigma_{r+1}\right]=\{f(a)\}^{k}\{f(b)\}^{m} \sum^{(r, n)} \prod_{i=1}^{n} \mathbf{E}_{x_{t}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \sigma_{r_{i}} \leq t<\sigma_{r_{i}+1}\right] .
$$

Proof. Since

$$
\mathbf{E}_{\mathbf{x}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \sigma_{r} \leq t<\sigma_{r+1}\right]=\{f(a)\}^{k}\{f(b)\}^{m} \mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \sigma_{r} \leq t<\sigma_{r+1}\right]
$$

where $\mathbf{x}_{0}=\left[x_{1}, \ldots, x_{n}\right]$, it is sufficient to prove that

$$
\mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \sigma_{r} \leq t<\sigma_{r+1}\right]=\stackrel{(r, n)}{\sum \prod_{i=1}^{n} \mathbf{E}_{x_{i}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \sigma_{r_{i}} \leq t<\sigma_{r_{i}+1}\right], \mathbf{x}_{0} \in \mathbf{S}}
$$

If f_{0} is a function in $\mathbf{B}\left(S_{0}\right)$ such that $f_{0}=f$ on $S \cup\{b\}$ and $f_{0}(a)=\lambda f(a), 0 \leq \lambda<1$, then it is known [2: I, p. 271] that

$$
\mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}_{0}\left(\mathbf{X}_{t}\right) ; \tau_{r}^{0} \leq t<\tau_{r+1}^{0}\right]=\stackrel{(r, n)}{\sum} \prod_{i=1}^{n} \mathbf{E}_{x_{i}}\left[\hat{f}_{0}\left(\mathbf{X}_{t}\right) ; \tau_{r_{i}}^{0} \leq t<\tau_{r_{i}+1}^{0}\right] .
$$

On the other hand

$$
\begin{equation*}
\mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}_{0}\left(\mathbf{X}_{t}\right) ; \tau_{r}^{0} \leq t<\tau_{r+1}^{0}\right]=\sum_{k=0}^{r} \lambda^{k} \mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; n_{t}^{a}=k, \tau_{r}^{0} \leq t<\tau_{r+1}^{0}\right], \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \stackrel{(r, n)}{\sum} \prod_{i=1}^{n} \mathbf{E}_{x_{i}}\left[\hat{f}_{0}\left(\mathbf{X}_{t}\right): \tau_{r_{i}}^{0} \leq t<\tau_{r_{i}+1}^{0}\right] \\
& \quad=\sum^{(r, n)} \prod_{i=1}^{n} \sum_{k_{i}=0}^{r_{i}} \mathbf{E}_{x_{i}}\left[\hat{f}_{0}\left(\mathbf{X}_{t}\right): n_{t}^{a}=k_{i}, \tau_{r_{i}}^{0} \leq t<\tau_{r_{i}+1}^{0}\right] \tag{3.6}\\
& \quad=\sum_{k=0}^{r} \lambda^{k} \sum^{(k, n)\left(r_{n}, n\right)^{\prime}} \prod_{i=1}^{n} \mathbf{E}_{x_{i}}\left[\hat{f}\left(\mathbf{X}_{t}\right): n_{t}^{a}=k_{i}, \tau_{r_{i}}^{0} \leq t<\tau_{r_{i}+1}^{0}\right]
\end{align*}
$$

where $\sum^{(r, n)^{\prime}}$ denotes the sum over all $\left(r_{1}, \ldots, r_{n}\right)$ satisfying $\sum_{i=1}^{n} r_{i}=r$ and $r_{i} \geq k_{i}$. Putting $r-k=r^{\prime}, r_{i}-k_{i}=r_{i}^{\prime}$ and comparing the coefficients of λ^{k} in (3.5) with those of (3.6), we have

$$
\begin{align*}
& \mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; n_{t}^{a}=k, \tau_{r^{\prime}+k}^{0} \leq t<\tau_{r^{\prime}+k+1}^{0}\right] \tag{3.7}\\
& \quad=\sum^{\left(r^{\prime}, n\right)(k, n)} \sum_{i=1}^{n} \prod_{x_{i}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; n_{t}^{a}=k_{i}, \tau_{r_{i}+k_{i}}^{0} \leq t<\tau_{r_{i}^{\prime}+k_{i}+1}^{0}\right] .
\end{align*}
$$

Noting the definition of τ_{n}^{0} and σ_{n}, we have

$$
\begin{align*}
& \mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; n_{t}^{a}=k, \tau_{r^{\prime}+k}^{0} \leq t<\tau_{r^{\prime}+k+1}^{0}\right] \tag{3.8}\\
& \quad=\mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; n_{t}^{a}=k, \sigma_{r^{\prime}} \leq t<\sigma_{r^{\prime}+1}\right]
\end{align*}
$$

and hence, using (3.7) we obtain

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \sigma_{r^{\prime}} \leq t<\sigma_{r^{\prime}+1}\right]=\sum_{k=0}^{\infty} \mathbf{E}_{\mathbf{x}_{0}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; n_{t}^{a}=k, \sigma_{r^{\prime}} \leq t<\sigma_{r^{\prime}+1}\right] \\
& \quad=\sum^{\left(r^{\prime}, n\right)} \prod_{i=1}^{n} \mathbf{E}_{x_{i}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \sigma_{r_{i}} \leq t<\sigma_{r_{i}^{\prime}+1}\right],
\end{aligned}
$$

completing the proof of the lemma.
In the next two lemmas, we use the following formulas [2: III, p. 99]: for $f \in \mathbf{B}(S), x \in S$,

$$
\begin{gather*}
\mathbf{E}_{x}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; t<\tau^{0}\right]=E_{x}^{0}\left[f\left(x_{t}^{0}\right) \exp \left(-\int_{0}^{t} k^{0}\left(x_{s}^{0}\right) d s\right)\right] \tag{3.9}\\
=E_{x}\left[f\left(x_{t}\right) \exp \left(-2 \int_{0}^{t} k\left(x_{s}\right) d s\right)\right], \\
\int_{0}^{t} \int_{S_{0}} \mathbf{P}_{x}\left(\tau^{0} \in d s, \mathbf{X}_{\tau} \underline{0} \in d y\right) f(y)=E_{x}^{0}\left[\int_{0}^{t} f\left(x_{s}^{0}\right) k^{0}\left(x_{s}\right)\right. \tag{3.10}\\
\left.\cdot \exp \left(-\int_{0}^{s} k^{0}\left(x_{u}^{0}\right) d u\right) d s\right]=2 \int_{0}^{t} E_{x}\left[f\left(x_{s}\right) k\left(x_{s}\right) \exp \left(-2 \int_{0}^{s} k\left(x_{u}\right) d u\right)\right] d s
\end{gather*}
$$

Lemma 3. For $f \in \mathbf{B}(S)$ and $x \in S$,

$$
\begin{gather*}
\mathbf{E}_{x}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; t<\sigma, n_{t}^{a}=k\right]=\frac{1}{k!} E_{x}\left[f\left(x_{t}\right)\left\{f(a) \int_{0}^{t} k\left(x_{u}\right) d u\right\}^{k}\right. \tag{3.11}\\
\left.\cdot \exp \left(-2 \int_{0}^{t} k\left(x_{u}\right) d u\right)\right], \quad k=0,1,2, \ldots
\end{gather*}
$$

Proof. Put

$$
\Phi(\mathbf{x}, t, r, k)=\mathbf{E}_{\mathbf{x}}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; \tau_{r}^{0} \leq t<\tau_{r+1}^{0}, \mathbf{X}_{\tau_{r}^{0}} \in S \cdot\{a\}^{k}\right], \quad \mathbf{x} \in \mathbf{S}_{0} .
$$

Then $\mathbf{E}_{x}\left[\hat{f}\left(\mathbf{X}_{t}\right) ; t<\sigma, n_{t}^{a}=k\right]=\Phi(x, t, k, k)$ for $x \in S$. If $k=0$, (3.11) is nothing but (3.9). Now assume that (3.11) is true for k. Then using the strong Markov property of $\mathbf{X},(3.10)$ and the induction hypothesis successively, we have

$$
\begin{aligned}
& \Phi(x, t, k+1, k+1)=\mathbf{E}_{x}\left[\Phi\left(\mathbf{X}_{\tau^{0}}, t-\tau^{0}, k, k+1\right): \mathbf{X}_{\tau^{0}} \in S \cdot\{a\}, \tau^{0} \leq t\right] \\
&= \frac{1}{2} \int_{0}^{t} \int_{S} \mathbf{P}\left(\tau^{0} \in d s, \mathbf{X}_{\tau-} \in d y\right) \Phi([y, a], t-s, k, k+1)^{3)} \\
&= f(a) \int_{0}^{t} E_{x}\left[k\left(x_{s}\right) \exp \left(-2 \int_{0}^{s} k\left(x_{u}\right) d u\right) \Phi\left(x_{s}, t-s, k, k\right)\right] \mathrm{ds}^{4)} \\
&= f(a) \int_{0}^{t} E_{x}\left[k\left(x_{s}\right) \exp \left(-2 \int_{0}^{s} k\left(x_{u}\right) d u\right)\right. \\
&\left.\cdot \frac{1}{k!} E_{x_{s}}\left[f\left(x_{t-s}\right)\left\{f(a) \int_{0}^{t-s} k\left(x_{u}\right) d u\right\}^{k} \exp \left(-2 \int_{0}^{t-s} k\left(x_{u}\right) d u\right)\right]\right] d s
\end{aligned}
$$

By the Markov property of x_{t} the last term is equal to

$$
\begin{aligned}
& \frac{1}{k!}\{f(a)\}^{k+1} \int_{0}^{t} E_{x}\left[f\left(x_{t}\right) k\left(x_{s}\right)\left\{\int_{s}^{t} k\left(x_{u}\right) d u\right\}^{k}\right. \\
& \left.\qquad \cdot \exp \left(-2 \int_{0}^{s} k\left(x_{u}\right) d u\right) \exp \left(-2 \int_{s}^{t} k\left(x_{u}\right) d u\right)\right] d s \\
& =\frac{1}{k!}\{f(a)\}^{k+1} E_{x}\left[f\left(x_{t}\right) \exp \left(-2 \int_{0}^{t} k\left(x_{u}\right) d u\right) \int_{0}^{t} k\left(x_{s}\right)\left\{\int_{s}^{t} k\left(x_{u}\right) d u\right\}^{k} d s\right] \\
& =\frac{1}{(k+1)!}\{f(a)\}^{k+1} E_{x}\left[f\left(x_{t}\right)\left\{f(a) \int_{0}^{t} k\left(x_{u}\right) d u\right\}^{k+1} \exp \left(-2 \int_{0}^{t} k\left(x_{u}\right) d u\right)\right]
\end{aligned}
$$

and hence the proof is finished.
Lemma 4. For $x \in S, A \in \mathscr{B}\left(\mathbf{S}_{b} \cup\{\Delta\}\right)^{5)}$ and $k=0,1,2, \ldots$,

$$
\begin{array}{r}
\mathbf{P}_{x}\left(\sigma \leq t, \quad \mathbf{X}_{\sigma} \in A \cdot\{a\}^{k}\right)=\frac{2}{k!} \int_{0}^{t} E_{x}\left[k\left(x_{s}\right)\left\{\int_{0}^{s} k\left(x_{u}\right) d u\right\}^{k}\right. \tag{3.12}\\
\left.\cdot \exp \left(-2 \int_{0}^{s} k\left(x_{u}\right) d u\right) \pi^{0}\left(x_{s}, A\right)\right] d s
\end{array}
$$

Proof. Put

$$
\Psi(\mathbf{x}, t, r, k)=\mathbf{P}_{\mathbf{x}}\left(\tau_{r+1}^{0} \leq t, \mathbf{X}_{\tau_{r+1}^{0}} \in A \cdot\{a\}^{k}, \mathbf{X}_{\tau_{r}^{0}}^{0} \in \mathbf{S}_{b} \cdot\{a\}^{k}\right) \text { for } \mathbf{x} \in \mathbf{S}_{0}
$$

[^2]Then $\mathbf{P}_{x}\left(\sigma \leq t, \mathbf{X}_{\sigma} \in A \cdot\{a\}^{k}\right)=\Psi(x, t, k, k)$. For $k=0$, (3.12) is true by (3.10). Let us assume that (3.12) is true for k. Then using the strong Markov property of \mathbf{X}, (3.10) and induction hypothesis successively, we have

$$
\begin{aligned}
& \Psi(x, t, k+1, k+1)=\mathbf{E}_{x}\left[\Psi\left(\mathbf{X}_{\tau^{0}}, t-\tau^{0}, k, k+1\right): \mathbf{X}_{\tau^{0}} \in S \cdot\{a\}, \tau^{0} \leq t\right] \\
& = \\
& =\frac{1}{2} \int_{0}^{t} \int_{S} \mathbf{P}_{x}\left(\tau^{0} \in d u, \mathbf{X}_{\tau_{-}} \in d y\right) \Psi([y, a], t-u, k, k+1) \\
& =\int_{0}^{t} E_{x}\left[k\left(x_{u}\right) \exp \left(-2 \int_{0}^{u} k\left(x_{v}\right) d v\right) \Psi\left(x_{u}, t-u, k, k\right)\right] d u \\
& =2 \int_{0}^{t} E_{x}\left[k\left(x_{u}\right) \exp \left(-2 \int_{0}^{u} k\left(x_{v}\right) d v\right)\right. \\
& \left.\quad \cdot \frac{1}{k!} \int_{0}^{t-u} E_{x_{u}}\left[k\left(x_{s}\right)\left\{\int_{0}^{s} k\left(x_{v}\right) d v\right\}^{k} \exp \left(-2 \int_{0}^{s} k\left(x_{v}\right) d v\right) \pi^{0}\left(x_{s}, A\right)\right] d s\right] d u .
\end{aligned}
$$

Then, by the Markov property of x_{t} the last term is equal to

$$
\begin{aligned}
& \frac{2}{k!} \int_{0}^{t} \int_{0}^{t-u} E_{x}\left[k\left(x_{u}\right) k\left(x_{s+u}\right)\left\{\int_{u}^{s+u} k\left(x_{v}\right) d v\right\}^{k} \exp \left(-2 \int_{0}^{s+u} k\left(x_{v}\right) d v\right)\right. \\
& \left.\quad=\pi^{0}\left(x_{s+u}, A\right)\right] d s d u \\
& =\frac{2}{k!} \int_{0}^{t} E_{x}\left[k\left(x_{s}\right) \exp \left(-2 \int_{0}^{s} k\left(x_{v}\right) d v\right) \pi^{0}\left(x_{s}, A\right) \int_{0}^{s} k\left(x_{u}\right)\left\{\int_{u}^{s} k\left(x_{v}\right) d v\right\}^{k} d u\right] d s \\
& =\frac{2}{(k+1)!} \int_{0}^{t} E_{x}\left[k\left(x_{s}\right)\left\{\int_{0}^{s} k\left(x_{u}\right) d u\right\}^{k+1} \exp \left(-2 \int_{0}^{s} k\left(x_{v}\right) d v\right) \pi^{0}\left(x_{s}, A\right)\right] d s,
\end{aligned}
$$

and the proof is finished.
Proof of Theorem. Put $f_{1}^{*}=f$ and $f_{2}^{*}=f$ for a function f on S. Since the linear hull of $\left\{\tilde{f}, f: 0 \leq \lambda<1, f \in \mathbf{C}^{*}(S)\right\}$ is dense in $\mathbf{C}_{0}(\mathbf{S} \times \mathbf{N} \times \mathbf{J})$ and

$$
\widetilde{\mathbf{E}}_{\tilde{\mathbf{z}}}\left[f_{i}^{*}\left(\gamma \mathbf{X}_{t}\right)\right]=\sum_{r=0}^{\infty} \widetilde{\mathbf{E}}_{\tilde{\mathbf{z}}}\left[f_{i}^{*}\left(\gamma \mathbf{X}_{t}\right): \sigma_{r} \leq t<\sigma_{r+1}\right]
$$

it is sufficient to show that

$$
\begin{equation*}
\mathbf{E}_{\tilde{\mathbf{x}}}^{0}\left[f_{i}^{*}\left(\mathbf{Z}_{t}\right): \tau_{r} \leq t<\tau_{r+1}\right]=\tilde{\mathbf{E}}_{\tilde{\mathbf{z}}}\left[f_{i}^{*}\left(\gamma \mathbf{X}_{t}\right): \sigma_{r} \leq t<\sigma_{r+1}\right] \tag{3.13}
\end{equation*}
$$

for $r=0,1,2, \ldots, i=1,2, \tilde{\mathbf{x}} \in \mathbf{S} \times \mathbf{N} \times \mathbf{J}$ and $f \in \mathbf{C}^{*}(S)$. Let f_{i} be a function in $\mathbf{B}\left(S_{0}\right)$ such that $f_{i}=f$ on $S, f_{i}(a)=\lambda$ and $f_{i}(b)=(-1)^{i}$ for $i=1,2$. Then right hand side of (3.13) is equal to

$$
\mathbf{E}_{\mathbf{x}}\left[\hat{f}_{i}\left(\mathbf{X}_{t}\right): \sigma_{r} \leq t<\sigma_{r+1}\right]
$$

where $\widetilde{\mathbf{x}}=\gamma \mathbf{x}$, and therefore it is sufficient to prove that

$$
\begin{gather*}
\mathbf{E}_{\mathbf{\mathbf { x }}}^{0}\left[f_{i}^{*}\left(\mathbf{Z}_{t}\right): \tau_{r} \leq t<\tau_{r+1}\right]=\mathbf{E}_{\mathbf{x}}\left[\hat{f}_{i}\left(\mathbf{X}_{t}\right): \sigma_{r} \leq t<\sigma_{r+1}\right], \tag{3.14}\\
r=0,1,2, \ldots, i=1,2 .
\end{gather*}
$$

When $r=0$, Lemma 3 and (2.4) imply

$$
\begin{aligned}
& \mathbf{E}_{x}\left[\hat{f}_{i}\left(\mathbf{X}_{t}\right): t<\sigma\right]=\sum_{k=0}^{\infty} \mathbf{E}_{x}\left[\hat{f}_{i}\left(\mathbf{X}_{t}\right): t<\sigma, n_{t}^{a}=k\right] \\
& \quad=\mathbf{E}_{(x, 0,0)}^{0}\left[f_{i}^{*}\left(\mathbf{Z}_{t}\right): t<\tau\right] \text { for } x \in S,
\end{aligned}
$$

and therefore (3.14) for $r=0$ is obtained by Lemma 2 and (2.2). Since

$$
\begin{gathered}
\mathbf{E}_{x}\left[\hat{f}_{i}\left(\mathbf{X}_{t}\right): \sigma_{r} \leq t<\sigma_{r+1}\right]=\int_{0}^{t} \int_{S_{0}} \mathbf{E}_{x}\left[\sigma \in d s, \mathbf{X}_{\sigma} \in d \mathbf{y}\right] \\
\cdot E_{y}\left[\hat{f}_{i}\left(\mathbf{X}_{t-s}\right): \sigma_{r-1} \leq t-s<\sigma_{r}\right]
\end{gathered}
$$

we can prove (3.14) by induction in r using Lemma 4, (2.5), Lemma 2 and (2.2). Thus the proof of the theorem is completed.

References

[1] E. B. Dynkin, Markov processes, Springer, 1965.
[2] N. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes, I, II, III, J. Math. Kyoto Univ., 8 (1968), 233-278, 365-410, 9 (1969), 95-160.
[3] M. Nagasawa, Branching property of Markov processes, Lecture Note in Math. 258, 177-196, Springer, 1972.
[4] M. Nagasawa, Construction of branching Markov processes with age and sign, Ködai Math. Semi. Rep., 20 (1968), 469-508.
[5] B. A. Sevast'yanov, Branching processes, Nauka, Moscow, 1971.
[6] T. Sirao, On signed branching Markov processes with age, Nagoya Math. J., 32 (1968), 155-225.

Department of Mathematics,
Faculty of Science,
Hiroshima University

[^0]: 1) In [3], S^{n} is the n-fold Cartesian product of S, but for simplicity we assume here S^{n} to be the symmetric product.
[^1]: 2) $\mathbf{S}_{0}=\cup_{n=0}^{\infty} \mathrm{S}_{0}^{n}$ and $\hat{\mathbf{S}}_{0}=\mathbf{S}_{0} \cup\{\Delta\}$
[^2]: 3) Use $\mathbf{P}_{x}\left(\tau^{0} \in d s, \mathbf{X}_{\tau} \in A \cdot\{a\}\right)=\int_{S} \mathbf{P}_{x}\left(\tau^{0} \in d s, \mathbf{X}_{\tau-} \in d y\right) \delta(y, A), A \in \mathscr{B}(S)$.
 4) Use $\Phi([x, a], t, k, k+1)=f(a) \Phi(x, t, k, k)$.
 5) $\mathbf{S}_{b}=\cup_{n=0}^{\infty}(S \cup\{b\})^{n}$ where $(S \cup\{b\})^{0}=\{\partial\}$.
