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§1. Introduction

This note is concerned with the irreducibility of representations of SU(2, 1)
induced from one-dimensional representations of its minimal parabolic subgroup.
Let B=MA, N be the minimal parabolic subgroup of G associated with an
Iwasawa decomposition KA, N of the group G=SU(2, 1). Let go=5u(2, 1) be
the Lie algebra of G, and a, (resp. ny) the subalgebra of g, corresponding to A,
(resp. N), and we define a linear form p on a, by

p(H)=2"'Trace(ad, (H))

for every Hea,. Then a unitary character ¢ of M and a complex number A
define a representation u,, of B by

Hox(m(exp H)n) =a(m)exp (Ap(H))

for meM, Hea, and neN. Let X°* be the space of all C-valued C®-dif-
ferentiable functions f on G such that

JGxeb)=pg,241(bHf (x)

for every x&G and beB. The group G acts on X°* by left-translations, and
there exists a canonical G-invariant non-singular pairing between X% and X %,
The universal enveloping algebra U of the complexification g of g, acts on Xo*
as infinitesimal representations of left-translations, and stabilizes the subspace
Xeoi of X4 consisting of all K-finite elements. The K-module X°* has the
irreducible decomposition

X";‘=(-D Xctr).

I
t€E

where E¢ is the set of all equivalence classes of irreducible unitary representations
of K which contain ¢ when restricted to the subgroup M, and X?* denotes the
K-submodule of X?* equivalent to . We shall make investigations into the
irreducibility of the W-module X°* by using its K-module structure and a can-
onical pairing ( , )of X°*and X>~* The set E% contains a one-dimensional
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representation of K, which we shall denote by 7,. Choose fo€X?* and f{e&
X2:7* such that (f,, fo)=1. There exists a K-submodule H* of U such that

) Ufo=H*o,  Ufo=H*,
and

i) H*®@X7} is K-isomorphic to X%,
Now the set of matrix elements

anm =(unmf0’ unmf’())

gives us an information about the irreducibility of the U-module X%, where
{u,m: n and m are non-negative integers} is a set of highest weight vectors of the
K-module H* constructed in a standard way. These matrix elements are cal-
culated by using Casimir elements of g and f, and our main result can be stated as
follows:

THEOREM. 1) The U-module X'¥:* is irreducible if and only if || is
not a positive integer, and

2) when o3 1,,, the U-module X°* is irreducible if and only if A—v is not
an integer, where 1,, denotes the trivial representation of M and v is a parameter
of a unitary character o of M which will be introduced in § 2.

§2. A characterization of E}

Throughout this paper, we put G=SU(2, 1) and go=su(2, 1). Let 0
be a Cartan involution of g, and go=%,+p, be the Cartan decomposition of
go associated to 0, where f, is a maximal compact subalgebra of g,. Let b,
be a Cartan subalgebra of g, contained in f,. We denote by g, I, p and b the
complexifications of g, ¥y, po and b, respectively. Let 4 be the non-zero root
system of g with repect to . For a root « in 4, we set

g*={Xeg; ad(H) X =a(H)X  for every He<b}.

Then the set 4 is the disjoint union of 4, and 4,, where 4, (resp. 4,) is the set
of all compact (resp. non-compact) roots:

4,={ae4d; g*ct},

A,={a€4; g*Cp}.
For each a € 4, the element H, in | is defined by
B(H,, H)=o(H)
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for every Hel, where B is the Killing form of g. Let h be the real linear
subspace of Iy generated by {H,; a= 4}, and b} its dual vector space. Then a
lexicographic linear order in h¥ determines a positive root system 4*. We set

Af =4* N 4= the set of all positive compact roots,
and
4 =4*N 4, = the set of all positive non-compact roots.

Since G=SU(2, 1) is a simple Lie group of Hermitian type, a lexicographic linear
order in h% can be so chosen that 4,Ud4} and 4,U4; are additively closed
subsets of 4. We fix a linear order in 4 as above. Let I7 ={«,, «,} be the fun-
damental root system of 4 with respect to this linear order, where we may assume
that o, is compact and a, is non-compact. For a root a4, we define a linear
form o* on hi by

a*=2<H, H,> 1a,

where < , > is the inner product on [ via the Killing form B of g. The set
{a%, a3} is a basis of b%, and let {e%, ¢4} be its dual basis of hg. The inner
product < , > on | defines a linear isomorphism of b} onto bz, and under
this linear isomorphism, we have

oy =28T —8;,
and

o, = —¢e% +2¢%.
LemMMA 2.1. For each a€ 4, a vector X, g* can be chosen so that
1) B(X, X_»)=1,
2) oX,=—X_, if ae4,,
3) oX,=X_, if ae 4,
where o denotes the conjugation of g with respect to g,.
Proor. For each a4, we select E, < g* such that

B(E, E_)=1 for all as 4.

Since b is a Cartan subalgebra of g contained in ¥, we have o(g*)=g * for
every a€ 4. So there exists a non-zero scalar a,& C*=C—{0} such that

oE,=a,E_,.

Since B(0E,, 6E_,)=B(E,, E_,)=1, we have
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a,a_,=1.

Also, by 62 =1, we have

aa_,=1.
So a, is real, and by setting Xa=|qa|‘%E,, we have
B(X,, X_;)=1,
and
0X,=|aJ 10E,=|a| 2a,E_,=(la] 'a)la2E
=(sgnay)la_,|2E_,=(sgna)X _,,

where sgn a (a is a non-zero real number) designates the signature of a.
2) Suppose that o is a compact root. If ¢X,=X_, then X, +X_,
belongs to f,. Since B is negative definite on ,, we have

B(X,+X_op X,+X_))<O0.

This implies B(X,, X_,)<0, which contradicts B(X,, X_,)=1. Thus we have
ocX,=—X_, for every aE 4,.

3) Suppose that « is a non-compact root. If 6X,=—X_,, then X,+X _,
belongs to /—1p,. Since B is negative definite on \/—Ip,, we have

B(X,+X_,, X,+X_,))<O0,

which is inconsistent with B(X,, X_,)=1. Thus we have ¢X,=X_, for every
aed,. Q.E.D.

We define the number N,; (¢, f € 4) by
[Xa’ Xﬁ]=NaBXa+ﬂ if a+BEA,
Nop=0 if a+p&Aa.
Then

LEMMA 2.2. |N,42=2"1q(1—p)u(H,), where B+na (p=n=gq) is the a-
series containing f.

ProoOF. Let =00 be the conjugation of g with respect to a compact real
form g,=fy,+./—1po. Then the vectors in Lemma 2.1 satisfy

X, =—X_,

for every as4. Now we have
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[ X, Xp] =[tX,, TX/;] =[-X_, _X——ﬂ]
=[X-0 X pl=N_u, pX-@+p),
and
[ X, Xﬁ] =T(NaﬂXa+ ﬂ) =Eﬂ—TXa+p =:N—aﬂX—(a+ B).
Hence
Ney_py=—N,,
From Lemma 5.2 (Chap. III) of Helgason [2], we have
NogN _q,— p=—27"q(1— p)o(H,).

Thus we have

INaﬂlz =2_1q(1 - p)a(Hu)'
Q.E.D.

By Lemma 2.1, the element Ho=\/<a, a>/2(X,, 44, + X —(a;+ap)) 1S in
po. Let Int(g) denote the group of all inner automorphisms of g.

LEMMA 2.3 There exists an element w in Int(g) such that w(H,, +.,)=H,
and wH,,—H,,)=H, —H,,.

Proor. We shall show that

T
W—CXP<__Wad (Xa—X_¢)>

has the required properties, where a =0, +a,. We set

Z= —ﬁm—x_,).
Then we have
ad(Z) (H,,~H,,)=0
ad(Z)(H)=2"'n/27 "<, a>(X,+ X _,)
(adZ)*(H,) = —(n/2)*H,.
So we have

(exp ad(z)) (Ha1 —Haz) =Ha1 _Hdz’
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and
(exp ad(Z)) (H,, +4,) =cos(n/2)++/ <a, a>[2sin(n/2) (X, + X _,)
=<0, 0> 2(X,+ X ).
Q.E.D.
We set

a,=RH,,

a_=,/—1R(H,,— H,,)=./— IR(c% —¢%),

ag=a_+ay,,

30 =R(\/——_18’§)s
to=R(J/—-1H,,)+ (3" +¢7*1) N go,

and let af, a¢, a, 3, I’ be the complexifications of a,, a_, ay, 3¢, fp respectively.
Then a, is a f-stable Cartan subalgebra of g, with a maximal vector part.
Let A be the non-zero root system of g with respect to a. Since wh=a, each
element y in h* =Hom .(}, €) is transformed to a linear form wyu on a:

(wu) (H)y=u(w=1H) for every Hea.
Under this transformation, we have A=w(4). We set
gvr=wg*  (a€4),

H,,=wH

wa a

ﬂi=wai (l=19 2),

(x4),

and
At =w(4).

Since a,=R(f,+p,) and <p;, By+p,> >0 for i=1, 2, this linear order in
A is compatible relative to (ag, a,) where ag=whg=./ —la_+a,. Weset

no=(2 ¢f)Ngo.
pedt

Let K, A, and N be the analytic subgroups of G generated by f,, a, and a,
respectively. The centralizer M of a, in K is connected and coincides with
A_=ANK, where A is the Cartan subgroup of G corresponding to a,.

The set M of all unitary characters of M is given by {o,; ve%Z (i.e., 2v
eZ)}, where o, is the unitary character of M whose derivative is the restriction of
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v(e*—e%)toa_. We define a linear form p on a, by
p(H)=2“ﬂZeTA B(H)=(B+ B2)(H).

Then the set 4 of all characters of A4 is given by {{,; A& C}, where &, is the cha-
racter of A defined by &,(exp H)=exp(ip)(H) for every Hea,. For ve% Z
and 1eC, we set

X =(feC™(G); f(xman)=0,(m~ )¢, ,(a~ 1) f(x) 1
for every x€G, meM, ae A, and
neN J,

and define a G-module structure 7** on X** by

@) )Y =f(x"1y)

for x, yeG and fe X**. The representation 7** determines the infinitesimal
representation 73* of g, on X*4 which can be extended to the representation
of the universal enveloping algebra U =(g) of g. Let X** be the subspace of
X2 consisting of all 7#¥4(K)-finite vectors in X**. The space X**is stable under
7¥4(K) and #3*QU). Let ©¥* (resp. my*) denote the representation of K (resp. )
on X4,

Let Ey be the set of all equivalence classes of irreducible unitary represen-
1

Z, we set
2 b

tations of K. For ve
Ex={reEy; [1M: 0,]21},

where [t|M: o,] denotes the multiplicity of ¢, in the representation 7| M which is
the restriction of 7 to the subgroup M. Let K’ (resp. Z) be the semisimple part
(resp. the center) of K. Then K’ and Z are isomorphic to SU(2) and U(1), and
are the analytic subgroups of K generated by f{, and 3, respectively. A unitary
representation of K is determined by a representation of K’ and a character of Z.
A representation of K’ is characterized by its highest weight, while unitary cha-
racters of Z are parametrized by integers. So the set Ey is characterized by
{aet+bek; ac Ny, beZ}, where N, is the set of all non-negative integers. The
irreducible representation of K corresponding to aef+ be¥ is denoted by 7(,4).

ProPOSITION 2.4. For a half integer ve—é— Z,

Ex={t@up:aEN,, beZ, b=a—-3k—2v
for some integer k such that 0<k<a

ProoF, Since a; =2e%¥—e¥ et and e <3, we decompose ae}+be% to the
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sum of f’-part and 3'-part:
act + bef =a(et —e%/2)+(b+a/2)ek.
Since ¥’ is isomorphic to su(2) and a, =2} —e}, the weights of 7, ,, are given by
{(a—2k)(et—¢%/2)+(b+a/2)e%; ke Z, 0<k<a}.
By the condition that 7, € E}, there exists an integer k(0<k<=<a) such that

(a—2k) (et —e%/2)+(b+a/2)ek is equal to v(ef—e%) when restricted to a_
=,/—1R(a}—a%) So we have

a—b—3k=2v

for some integer k(0 <k <a). Q.E.D.

CoROLLARY 2.5. [1|M:0,]=1 for every 1€ E}.
From Proposition 2.4, we can see that 7, _,,, belongs to E}, in other words,
there exists a (unique) one-dimensional unitary representation in E}%. Hence-

Lz and, for the sake of simplicity, we write t,

forward we fix a half integer ve 3

instead of 7, _5,).

For 1€ Ey, let X?* denote the isotypic component of X"* of type 7, that is,
X?* is the sum of all K-submodules of X¥* which is isomorphic to z. Then, by
the Frobenius’ reciprocity theorem, X'* is the direct sum of K-submodules
{X*; 1€ Ex}:

Xri=@ XA

v
teEg

And, by Corollary 2.5, X4 is the irreducible K-submodule of X'# isomorphic to
T.

There exists a K-invariant non-singular pairing ( , ) between X** and
X ~* which is given by

(f, 9)= FgR)ak
for f€ X * and g€ X* %, where dk is the Haar measure on K normalized by
S dk=1. This pairing ( , ) is U-invariant in the sense that the following
K
equality holds:
(m*w)f, 9)=(f, ny ~™u%)g)

for every u€ll, f € X** and g X* ~*, where u—u* is the R-linear automorphism
of the linear space U such that i) Xs=—X for Xeg,, ii) (au)*=au* for acC
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and u€l, and iii) (uv)*=vsus for every u, vel. Since the K-module X¥~*
is isomorphic to X*#, it decomposes into the direct sum of irreducible K-sub-
modules:
Xrr=@, Xy~
teEg
Choose f,= X %4 and f§€ X ;™ such that (fy, f§)=1.

The space p admits the canonical K-module structure. Let p’ be the
K-module dual to p, and S’ =S(p’) (resp. S=S(p)) the symmetric algebra over
p’ (resp. p). The algebra S’ may be regarded as the polynomial ring on p,
while S as the ring of differential operators on S’ with constant coefficients, and
each algebra carries the canonical K-module structure extended from that on p
or p’. We set

J={xeS;kx=x  forevery ke K}
and

J, ={xeJ; the constant part of x is zero}

where S! is the subspace of S consisting of all homogeneous elements of the
degree i. And we define the space H’ of all harmonic polynomials on p by

H ={feS;xf=0 forevery xeJ,}.

The K-modules p and p’ are isomorphic via the Killing form B of g, and this
isomorphism can be extended to the K-isomorphism of S’ onto S. The image of
H’ under this isomorphism is denoted by H.

It is well known that there exists a linear isomorphism f of the symmetric algebra
S(g) over g onto the universal enveloping algebra U such that (i) f(X*) =(B(X))*
for every Xeg and kN, and (ii) (with the obvious identification) # is the
identity map on g. This mapping is called the symmetrization and has the
following property:

ﬂ(Xl...Xk)=(k!)_ld§6kXﬂ(l)...X¢(k)

for X,,..., X;€g, where S, denotes the permutation group of k-numbers

{1,..., k}.
We set H*=p(H). Note that the restriction f|H of f on H is a K-isomor-
phism of H onto H*.

LemMmA 2.6. ([5], Proposition 10)
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1A fo =X H*) fo.

Let ¢, (resp. ¢_5) be a linear mapping of H* to X"* (resp. X" ~*) defined by
@) =m3Hw) fo,
and
p-x(u) =my Mu)fS.

LeMMA 2.7. f, is U-cyclic in X** if and only if Ker ¢, is zero.

Proor. By Kostant-Rallis [4] and Corollary 2.5, the K-module H* decom-
poses into the direct sum of irreducible K-submodules {H*; nE2};
H*=@® H*
teEg
Since 1, is one-dimensional, the mapping of E to E} defined by 1-1®1, is

bijective. This proves the lemma.
Q.E.D.

ProPosITION 2.8. XV*is U-irreducible if and only if Kerg,={0} and
Ker ¢_5={0}. ‘

Proor. By the existence of a U-invariant non-singular pairing of X'*
and X% X**is U-irreducible if and only if X*~* is U-irreducible. If Xv*
is U-irreducible, f{ and f, are U-cyclic, and so by Lemma 2.7, we have Ker ¢,
={0} and Ker¢_;={0}. Conversely, assume that Ker¢p,={0} and Kerop_s
={0}. Let V be a U-invariant subspace of X% Since each element in X4
is K-finite, V' is a K-invariant subspace of X*4. Let V! be the orthogonal com-
plement of ¥ in X¥~* with respect to ( , ). Then it occurs that i) X}2cV
or ii) X:"*c V't. Since, by our assumption, f, and f§ are U-cyclic in X4 and
X" ~* respectively, i) implies V=X"4, while ii) implies V1 =X""* or equivalently
V={0}. Therefore X** is U-irreducible.

Q.E.D.

§3. K-highest weight vectors in X4

The space H decomposes into the direct sum of irreducible K-submodules:

H=@ H,

teEg

and Eg is given by
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Eg:{‘£(a,u—3k); a, kENO and kéa}.

In this section, we shall describe highest weight vectors in H, and ¢,;(H,).
Weset X, =X, ,,,and X_=X_,,. The vector X, (resp. X_) is a highest
weight vector of the K-module p , (resp. p..), where p,. =2 8 and p_=), I

aeAp aedp

As one can see easily, p, (resp. p_) is the irreducible K-module characterized
by 7(1,1)(TeSP. T(1,-2))-

Lemma 3.1. For n, keN, (0k<n), X* X%* is a highest weight vector
inH

T(n,n-3k)"*

Proor. It is enough to prove that X* X7 * is in H. By Kostant-Rallis
[4], H is the linear subspace of S(p) generated by {X™; X is a nilpotent element
in p, mneN,}. And aX_+bX, is a nilpotent element in p for any a, beC.
So we have

(aX_+bX )'eH

for every a, b C. Thus we have X kX" ke H,
Q.E.D.

LEmMMA 3.2. For n,meN,,
TAHBX 2XT)) fo=mHX2XT) fo.
Proor. It suffices to show that
oA ([X s, X_DmA(XEXY) fo=0

for every k, leN,. And this equality holds, since [X,, X _]is a scalar multiple
of X,, and n}*(X* X]}) f, is a highest weight vector in X A

T(k+1,1-2k)"

Q.E.D.
Summing up Lemma 2.7, Lemma 3.1 and Lemma 3.2, we have the following:
Lemma 3.3, f, is U-cyclic in X** if and only if
X XT) fo=0
for every n, meN,.
We set
Som=m3* (X2 X'D) fo,
Sam=m%MX2XY) f$,
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and
Apm =(f;nm’ f;nm)

for n, meN,. Then we have

ProrosITION 3.4. X% is U-irreducible if and only if a,,=0 for every
n, meN,.

Proor. This is an easy consequence of Proposition 2.8, Lemma 3.3 and the

fact that ( , )is a K-invariant non-singular pairing of X** and X ~*,
Q.E.D.

§4. The calculation of a,,

Let Q2 be the Casimir element in U, and we set

o=, X_,X,

+
azeAp

Then, by a simple calculation, we have

0=2""{Q—(H}+H})-2H,}- % X_.X,,

nzeAt

where {H,, H,} is an orthonormal basis of /—1}, with respect to the Killing
form B, and p’ is a linear form on } defined by

pr=2"13 a=a;+a,.

aed*

LemMA 4.1. 73A(Q) is a scalar operator given by
v2[9+(A%2—1)/3.
Proor. Let H) (resp. H,) be an element in \/TI a_ (resp. a,) normalized
by B(H;, H))=1 (i=1, 2). Then
Q=H{+H3+% (X,X_p+X_,Xp)
=H}+H}—-2p+2 ) X,X_,
BeAt
where X g€ gf (B A) is chosen so that B(X 4, X _g)=1. Itis known that n3*(Q)

is a scalar operator. In order to obtain this scalar, we calculate [n3*(Q)f,]1(e).
Since each element in X*# is invariant under the right translation by N, we have



On the Irreducibility of Induced Representations of SU (2, 1) 403

[m3*(2)fo1 () =[m*(H?) fol(e) + [m3*(H3 —2H,) f,1(e)
={v2[let el + (A + D2[lpll> = 2(A+ Dllpl[*} fole)
={v2|lef—e3ll>+ (A= DlIplI*} fo(e),

where || || denotes the norm on a defined by the Killing form B. For g, =su
(2, 1), the norm of each root is 1//3. So we have

lloll> =118y +B.11>=1/3
and
llet — 3112 = ll(ry —22)/3][2 =1/9.
Thus we have

Q) =v2/9+ (A2 —1)/3.
Q.E.D.

In the following, for the sake of simplicity, we write uf,, or uf,, instead of
T4AU) fum OF 7 7> (U)f e We set

Upm =(n+m)e¥ +(—2v+m—2n)e%.
Then, by a simple calculation, we have
< U 01 > =(n+m)/6
< Upms 02> =(—2v+m—2n)/6
< Upms P’ > =(—2v+2m—n)/6
< s > =97 1{4v2 —6v(m —n)+3(m2 —mn+n?)}.
LemMA 4.2. For n, meN,,
Ofum=(1/6){A2 = (v+n—m—1)2—n(m+1)}fom
Proor. Since f,, is a highest weight vector in T(, 4, -2y+m-2s W€ have
Ofym=2"'Qf o — 2" (H} + H3)fym—H , fom
={271(29+ (A2 = 1)[3) =27 |tmll® = < tums H >} frm
={(18)"*(v2+3(A42—-1))—(18)~1[4v2 —6v(m —n)+ 3(m? — mn+n?)]

—6_1(‘_2V+2m—n)}fnm=6—l{)'2_(v+n_"m'— l)z_n(m+ 1)}fnm
Q.E.D.
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ProposITION 4.3. For n, meN,,

an,m+1 +an+ l,m=(_ 1/6)anm[’12 —(v+n—m)2—(n+ 1) (m+ 1)]'

Proor. By the definition of a,,, we have
w1t = (X Sums XS om) = (XX frams [ om)
= —(X_ (o, +a2)Xar+az Som S om)s
@i 1,m= (X Sfoms X_f om) = (X2 X_Froms [ um)
== (Xo, X o, S um> S o)
= —{(X_o.Xar Som [ vm) + (Ho foms [ om) }
== (X_ o, Xo, fums [ m) = <25 Pipm™> Am
=~ (XeasXas S S o) = (1/6)(—2V +m—20) 0,
where we have used Lemma 2.1. So we have
Apm+11 At 1,m
= —(Ofpms [om) = (1/6) (= 2v+m—20) (fus [ 1)
=—(1/6)a,,[A?—(v+n—m)2—(n+1)(m+1)].

ProOPOSITION 4.4. For meN,

6(m+1)aom=—m{A?—(v—m)?}ag pm-,.

Q.E.D.

Proor. We calculate (X_,, foms X -4,/ 6m). By Lemma 2.1, we have

(X —a, fom X —a, S om)= (X2 X_s, foms [ om)
=(Xa, X —a, foms [ om)
=((X -4, Xz, +Ha,) fom fom)
=(Ha, foms S om)
= <Uoms %1 >dom
=(m/6)aom.
Since

X—a1f0m=X—a|X"i"lf0=(X—alX'-:-l—XwX—ml)fO
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=I‘Z=1Xkll[X—als X+] XT_kfo

I
2

m
k—1 -k
—11,¢1+a2k2_1X+ Xazxm fo
3 k=1 y m—k
=N—a1,al+azl‘Z_1XazX+ Xil fO

=mN_,, a,+a:Xaz 0,m-15
we have
(X—g, foms X-o, [ om) =M |N_¢, o,40,|*(Xay fo,m-15 Xey S 0,m—1)
=m>*|N_y,, 01402l *(X 3, X0, f0,m-150,m-1)
=—m*|N_y, ay+as|*(X-0,Xa, fo,m—15 F 0,m1)-
Applying Lemma 2.2 to g, =su (2, 1), we have
IN_q,, ay+asl 2 =1/6.
So we have
Aom=—M(X _ 1, X, Fom=15F& me1)eeemveiniiiniiinnniinnin ).
On the other hand, we have
aom=fom fom) =(X +So,m-1> X +f§,m-1)
=(X3X +fom-15S6,m-1)
= —(X_(artanyXartasf0,m=1> L 0ma1)  covvvvnieeeennnnn. 2).
From (1), (2) and Lemma 4.2, we have
(1+m)agm=—m(&fom-1, fo,m-1)

=(—m[6) {12 —(v—m)*}aq 1.
Q.E.D.

COROLLARY 4.5. For meN,,
Gon=(=1/6)"(1/(m + 1) [T {22~ (v—1)?}.
THEOREM 4.6. For n, meN,,
Gu=(=1/6)*"B(m +1, n+ DI (A2~ (=02 LIT (42~ (v+)2)],

where B(x, y) is the betha function: B(m+1, n+1)=m!n!/((m+n+1)..



406 Minoru WakmmoTo

Proor. We shall prove the theorem by induction on n. For n=0, the above
formula coincides with Corollary 4.5. Now we assume that the theorem holds
for a fixed ne N, and for any meN,. Then, by Proposition 4.3, we have

At 1,m= " Anm+1 —(1/6)0","[12 —(v+n-—m)2 _(m+ 1)(n+ 1)]

= —(=1/6y"*"*1B(m+2, n+1) [:'1:1:{/12—@—1()2}] [k[;'ll (A2—(v+k)2}]

~(U6) (~1/6)*"Bm-+ 1, n+ D [ [T {47 =21 LI (12 -+ )]

X [A2—(v+n—m)?—(m+1)(n+1)]
= —(=1/eytmintj(m+n+ D) LI (22~ - RH LI (2= 0 +02)]

X [(m+ 1) {22 (= m— D} = (n+n+2) {12 = 0+ n=m)? = (m+ 1) (n-+ D}]
= (= 1O m 1 omlnt DY (metn+2)1) [T (22~ =0 H (1 (2

—(v+k)?*}],

and this completes the proof. Q.E.D.

From Theorem 4.6 and Proposition 3.4, we have

COROLLARY 4.7. 1) The U-module X°* is reducible if and only if A is
a non-zero integer, and
2) when vx0, the U-module X* is reducible if and only if A—v is an integer.

Added in Proof.

Recently the author is announced from Prof. K. Okamoto that Prof.
N.R. Wallach has proved the same results in a quite different way and that he
has also obtained the decomposition of the elementary series representations of
SU(2, 1).
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