Character Groups of Toral Lie Algebras

Takefumi SHUDO (Received March 30, 1973)

Introduction

It is well known that the duality and categorical equivalence hold between algebraic tori and character groups (e.g., [1], ch. III). In this paper we develop an analogy for Lie algebras. General properties of toral Lie algebras are stated in [3] and [5]. Their characters are introduced by Seligman in [3] and applied to algebraic Lie algebras in [3] and [4].

Let T be a toral Lie algebra and let X(T) be the character group of T. Then it is proved that the (contravariant) functor $X: T \mapsto X(T)$ is actually an equivalence of categories (Theorem 1) and in this relation every subalgebra (resp. quotient algebra) of T corresponds to a quotient group (resp. subgroup) of X(T) (Proposition 3).

As an application we generalize some of the results in [3]. Namely, if T satisfies a certain condition which generalizes that the base field is finite then the properties (a) and (b) of Theorem 7 in [3] are equivalent (Theorem 2) and the direct sum decomposition of T as in Theorem 8 in [3] holds (Theorem 3).

The main tools of the paper are the rationality property for vector spaces in terms of Galois groups which is described in [1] and the direct sum decomposition, stated in [2], of a vector space on which a nilpotent Lie algebra acts.

The author wishes to express his thanks to Professor S. Togo for helping to complete this paper by giving several important observations.

1. Preliminaries and notations

Let \bar{k} be the algebraic closure of k and k_s be the separable closure of k in \bar{k} . Then \bar{k} and k_s are regarded as Lie p-algebras over k with natural p-th power.

A homomorphism of a torus T into \overline{k} is called a character of T. If ξ is a character of T and $x \in T$ then $\xi(x)$ is a separable algebraic element over k, so that the image $\xi(T)$ is contained in k_s . The set of all characters is denoted by X(T). X(T) is an elementary p-group which is regarded as a vector space over P, the prime field of k.

Let $\Gamma = \operatorname{Gal}(k_s/k)$ be the Galois group of k_s over k. Γ has a usual topology with which it turns out a topological group (see e.g. N. Jacobson, Lectures in Abstract Algebra, vol. II, p. 149). When Γ acts on a set S as a group of transformations, the action is said to be continuous if the stability group of each $s \in S$ is an open subgroup in Γ . In this sense Γ acts on k_s continuously.

Let g be a nilpotent Lie algebra of linear transformations in a finite-dimensional vector space V. Then V has a decomposition $V = V_0(g) \oplus V_1(g)$ which is called the Fitting decomposition of V relative to g([2], Th. 2.4, p. 39). The subspaces $V_0(g)$ and $V_1(g)$ are g-stable, and $V_0(g)$ is the maximal g-stable subspace of V on which the elements of g are all nilpotent. In particular, $V_0(g)$ has a composition series with g-trivial factors.

When V and W are vector spaces over k we denote by $\mathfrak{L}_k(V,W)$ the set of all k-linear maps of V into W.

2. The duality of tori and character groups

Let T be an n-dimensional torus over k. Then $\mathfrak{L}_k(T,\bar{k})$ forms a vector space over \bar{k} of dimension n, and it contains X(T).

LEMMA 1. Let $\xi_1,...,\xi_m$ be (P-)linearly independent characters of T. Then they are linearly independent over \bar{k} .

PROOF. Assume not. Let ξ_1, \ldots, ξ_r be linearly independent over \overline{k} and let $\xi_{r+1} = \sum_{i=1}^r a_i \xi_i$, $a_i \in \overline{k}$, be a non-trivial linear relation. Then $\xi_{r+1}(z^p) = \sum a_i \xi_i(z^p)$. On the other hand $\xi_{r+1}(z^p) = (\xi_{r+1}(z))^p = \sum a_i^p \xi_i(z)^p = \sum a_i^p \xi_i(z^p)$. Since $\{z^p | z \in T\}$ spans T we have $\sum a_i \xi_i = \sum a_i^p \xi_i$. Therefore $a_i^p = a_i$, $i = 1, \ldots, r$, which implies $a_i \in P$ for all i. This contradicts the fact that ξ_1, \ldots, ξ_{r+1} are linearly independent over P.

Now we have $\mathfrak{Q}_k(T,k) \simeq \mathfrak{Q}_{\overline{k}}(\overline{k} \otimes_k T, \overline{k})$ and $\overline{k} \otimes T$ is a torus over \overline{k} ([5], Cor. 2.6). On the other hand it is obvious that the *p*-map of a torus is 1: 1. Thus the torus $\overline{k} \otimes T$ is isomorphic to the direct sum of *n* copies of \overline{k} ([2], Th. 5.13, p. 192), whose canonical projections are also characters. And then their restrictions to T are characters of T. Consequently we have seen that T has at least n characters which are linearly independent over T. Therefore we have

COROLLARY 1. $\bar{k} \otimes_P X(T) \simeq \Omega_k(T, \bar{k})$.

Taking the dual of the diagram in Corollary 1 we obtain the following

COROLLARY 2. $\mathfrak{L}_{\bar{k}}(\bar{k} \otimes_P X(T), \bar{k}) \simeq \bar{k} \otimes_k T$.

REMARK. In Corollaries above we may replace \bar{k} by k_s since every character is k_s -valued.

Next we define the action of Γ on X(T) by the rule:

$$\xi^{\sigma}(x) = (\xi(x))^{\sigma}, \quad \xi \in X(T), \quad \sigma \in \Gamma, \quad x \in T.$$

Since T is of finite dimension this action of Γ on X(T) is continuous, i.e., for every $\xi \in X(T)$ $\Gamma_{\varepsilon} = \{ \sigma \in \Gamma | \xi^{\sigma} = \xi \}$ is an open subgroup (see § 1).

Let $f\colon T\to T'$ be a homomorphism of tori. Then f induces a Γ -homomorphism X(f) of X(T') into $X(T)\colon X(f)(\xi')=\xi'\circ f$ for $\xi'\in X(T')$. Then as easily seen X is a (contravariant) functor from a category of tori over k and homomorphisms to a category of elementary p-groups of finite rank on which Γ acts continuously and Γ -homomorphisms. If dim T=n then clearly the order of the group X(T) is p^n . From this fact we have

Proposition 1. X is an exact functor.

To prove that the functor X is fully faithful we need some general notions of Galois criteria for rationality on vector spaces described in [1](§ 14.1, p. 52). Let V be a vector space over k. Then Γ acts on $k_s \bigotimes_k V$ in the following manner:

$$(a \otimes v)^{\sigma} = a^{\sigma} \otimes v, \quad a \in k_s, \quad v \in V, \quad \sigma \in \Gamma.$$

Then $1 \otimes V$ is the set of Γ -fixed elements. If W is a vector space over k_s on which Γ acts semi-linearly, i.e.,

$$(aw)^{\sigma} = a^{\sigma}w^{\sigma}, \quad a \in k_s, \quad w \in W, \quad \sigma \in \Gamma,$$

then the dual space $\mathfrak{L}_{k_s}(W,k_s)$ of W permits the action of Γ by the rule:

$$u^{\sigma}(w) = (u(w^{\sigma^{-1}}))^{\sigma}, \quad u \in \mathfrak{Q}_{k}(W,k_s), \quad w \in W, \quad \sigma \in \Gamma.$$

Now we have by the Remark to Corollary 2 $\mathfrak{Q}_{k_s}(k_s \otimes_P X(T)) \simeq k_s \otimes_k T$. Since Γ acts semi-linearly on $k_s \otimes X(T)$ we have from the above discussion two actions of Γ on $k_s \otimes T$. However we have

Lemma 2. The two actions of Γ on $k_s \otimes T$ coincide.

PROOF. Note that the above isomorphism is as follows:

$$(a \otimes x)(b \otimes \xi) = ab\xi(x),$$
 $a, b \in k_s, x \in T, \xi \in X(T).$

Let $\sigma \in \Gamma$. We start to calculate $(a \otimes x)^{\sigma} (b \otimes \xi)$ along the action on the dual space.

$$(a \otimes x)^{\sigma}(b \otimes \xi) = ((a \otimes x)((b \otimes \xi)^{\sigma^{-1}}))^{\sigma}$$
$$= ((a \otimes x)(b^{\sigma^{-1}} \otimes \xi^{\sigma^{-1}}))^{\sigma}$$

$$= (ab^{\sigma^{-1}}\xi^{\sigma^{-1}}(x))^{\sigma}$$
$$= a^{\sigma}b^{\xi}(x)$$
$$= (a^{\sigma}\otimes x)(b\otimes \xi).$$

This shows that the action equals that on the tensor product.

PROPOSITION 2. The functor X is fully faithful, that is, X: $\operatorname{Hom}(T,T') \to \operatorname{Hom}_{\Gamma}(X(T'),X(T))$ is bijective. In particular, if $X(T') \simeq X(T)$ then $T \simeq T'$.

PROOF. Injectivity. Assume X(f) = X(g). This implies that $\xi'(f(x) - g(x)) = 0$ for all $\xi' \in X(T')$ and all $x \in T$. By Corollary 1 we have f(x) = g(x) so that f = g.

Surjectivity. Let $\psi\colon X(T')\to X(T)$ be a Γ -homomorphism. Then $1\otimes\psi\colon k_s\otimes_p X(T')\to k_s\otimes_p X(T)$ is a Γ -homomorphism, where Γ acts on these vector spaces semi-linearly. Taking the dual of this diagram we have ${}^t(1\otimes\psi)\colon \mathfrak{L}_{k_s}(k_s\otimes X(T),\,k_s)\to \mathfrak{L}_{k_s}(k_s\otimes X(T'),\,k_s)$ and this is a k_s -linear map. By the Remark to corollary we have $\mathfrak{L}_{k_s}(k_s\otimes X(T),\,k_s)\simeq k_s\otimes_k T$ and a similar isomorphism for T'. These are provided with the action of Γ and ${}^t(1\otimes\psi)$ is a Γ -homomorphism. Moreover it is a homomorphism of k_s -tori since $1\otimes\psi(\xi')(a^p\otimes x^p)=a^p\otimes\psi(\xi')(x^p)=a^p\otimes\psi(\xi')(x^p)=a^p\otimes\psi(\xi')(x))^p=(1\otimes\psi(\xi')(a\otimes x))^p$ for $a\in k_s$ and $x\in T$. By Lemma 2 and the previous discussion the set of Γ -fixed elements of $k_s\otimes T$ (resp. $k_s\otimes T'$) is $1\otimes T$ (resp. $1\otimes T'$) and ${}^t(1\otimes\psi)$ maps $1\otimes T$ into $1\otimes T'$. Let f be the restriction of ${}^t(1\otimes\psi)$ to $1\otimes T$. Identify $1\otimes T$ (resp. $1\otimes T'$) with T (resp. T'). Since ${}^t(1\otimes\psi)$ is a homomorphism of k_s -tori, we see that f is a homomorphism of k-tori, and we have $\psi=X(f)$ as directly checked.

THEOREM 1. The functor X is an equivalence of categories.

PROOF. Since the functor X is fully faithful by Proposition 2, it remains to prove that for an elementary p-group X of finite rank on which Γ acts continuously there exists a torus T over k such that $X \simeq X(T)$. Let n be the rank (the dimension over P) of X. And let $V = \operatorname{Hom}(X, k_s)$. This is an n-dimensional vector space over k_s . Moreover it is a torus over k_s with the following p-map:

$$z^{p}(\xi) = z(\xi)^{p}, \quad z \in \operatorname{Hom}(X, k_{s}), \quad \xi \in X.$$

In fact, let $x_1, ..., x_n$ be a basis of V. Then it suffices to see that $x_1^p, ..., x_n^p$ are linearly independent ([4], Prop. 2.5, (2)). Let $\xi_1, ..., \xi_n$ be a basis of X (as a vector space over P). Then we have $\det(x_i(\xi_j)) \neq 0$. It follows that $\det(x_i(\xi_j))^p = \det(x_i(\xi_j)^p) = \det(x_i(\xi_j)) \neq 0$, which shows linear independence of x_i^p 's. On the other hand we have $V \simeq \Omega_{k_s}(k_s \otimes_P X, k_s)$ on which Γ acts continuously. In fact, let $x \in V$ and let Γ_x be the stability group of x. By the definition of the action we have

$$\Gamma_{\mathbf{x}} = \{ \sigma \in \Gamma | x(\xi)^{\sigma} = x(\xi^{\sigma}) \quad \text{for all } \xi \in X \}.$$

Since the action of Γ on X is continuous the stability group Γ_{ξ} of ξ is an open subgroup for each $\xi \in X$. Similarly the stability group $\Gamma_{x(\xi)}$ of $x(\xi) \in k_s$ is an open subgroup. Therefore the intersection $\Gamma_{\xi} \cap \Gamma_{x(\xi)}$ is an open subgroup of Γ . Since X is finite the intersection $\cap_{\xi \in X} \Gamma_{\xi} \cap \Gamma_{x(\xi)}$ is also an open subgroup of Γ and it is contained in Γ_x . Consequently Γ_x is also an open subgroup of Γ since Γ is a topological group. Thus Γ has a Γ -structure Γ is easy to see that Γ is an Γ -dimensional torus over Γ and the map Γ is a Γ -homomorphism of Γ onto Γ onto Γ .

Let S be a subtorus of T. Then

$$S^{\circ} = \{ \xi \in X(T) | \xi(x) = 0 \quad \text{for all } x \in S \}$$

is a Γ -stable subgroup of X(T). Conversely if Y is a subgroup of X(T) then the set

$$Y^{\circ} = \{x \in T | \xi(x) = 0 \text{ for all } \xi \in Y\}$$

is a subtorus of T. Then we have

PROPOSITION 3. The maps $S \mapsto S^{\circ}$ and $Y \mapsto Y^{\circ}$ define reciprocal bijections between the collection of subtori of T and the collection of Γ -stable subgroups of X(T). Moreover we have canonical isomorphisms $S^{\circ} \simeq X(T/S)$ for every subtorus S of T and $Y \simeq X(T/Y^{\circ})$ for every Γ -stable subgroup Y of X(T).

PROOF. Let S be a subtorus of T. The canonical isomorphism $S^{\circ} \simeq X(T/S)$ follows from the fact that the functor X is exact and S° is the kernel of the restriction map $X(T) \to X(S)$. It is clear that $S \subset S^{\circ \circ}$ and $S^{\circ \circ \circ} = S^{\circ}$. From the exact sequence $0 \to S \to T \to T/S \to 0$ we obtain an exact sequence

(1)
$$0 \leftarrow X(S) \leftarrow X(T) \leftarrow X(T/S) \leftarrow 0$$
,

where $X(T/S) \simeq S^{\circ}$. In the same way we have

(2)
$$0 \rightarrow S^{\circ \circ} \rightarrow T \rightarrow T/S^{\circ \circ} \rightarrow 0$$

and

(3)
$$0 \leftarrow X(S^{\circ \circ}) \leftarrow X(T) \leftarrow S^{\circ \circ \circ} \leftarrow 0.$$

Calculating the dimension of $S^{\circ \circ}$, we have

$$\dim S^{\circ \circ} = \log |X(S^{\circ \circ})|/\log p$$

$$= \log(|X(T)|/|S^{\circ}|)/\log p \qquad \text{(by (3))}$$

$$= \log |X(T)|/\log p$$
 (by (1))
= dim S.

Therefore $S^{\circ \circ} = S$.

Conversely let Y be any Γ -stable subgroup of X(T). Then Y is represented as a character group X(U) for some torus U over k by Theorem 1. Then the bijectivity of $X: \operatorname{Hom}(T,U) \to \operatorname{Hom}_{\Gamma}(Y,X(T))$ gives a unique homomorphism $f: T \to U$ such that X(f) is the inclusion map of Y into X(T). It is easy to see that f is surjective. Let $S = \operatorname{Ker} f$. Then we have $Y = S^{\circ}$. Furthermore this implies $Y^{\circ} = S$ so that $Y = S^{\circ} = X(T/S) = X(T/Y)^{\circ}$. This completes the proof.

3. Some structure theorems of tori

Let K be a subfield of k_s containing k. K is called a splitting field of T if every character of T is K-valued ([3], Th. 6).

PROPOSITION 4. Thus a unique minimal splitting field K, which is a finite Galois extension field of k. And there exists a canonical isomorphism of the Galois group Gal(K/k) onto a subgroup of the group of all automorphisms of X(T).

PROOF. Let N be the kernel of the representation of Γ on X(T): $N={\rm Ker}$ $(\Gamma\to{\rm Aut}(X(T)))$. Since the action of Γ on X(T) is continuous N is an open normal subgroup with finite index. Then the subfield of N-invariants is a finite Galois extension of k and we have an isomorphism ${\rm Gal}(K/k)\simeq \Gamma/N$. It is easy to see that K is a splitting field of T. K is the minimal one. In fact, let $K'\subset k_s$ be any splitting field of T. Let N' be the subgroup of Γ of elements σ such that $a^\sigma=a$ for all $a\in K'$. Then N' is a closed subgroup. Since K' is a splitting field of T every element of N' acts identically on X(T). It follows that $N'\subset N$. Consequently we have $K\subset K'$ which asserts the minimality of K.

Now let U be a subtorus of T and let L be the minimal splitting field of U. Then L is a subfield of K, the minimal splitting field of T. And let H be the Galois group of L/k. Then H is the quotient group of G, the Galois group of K/k, by the normal subgroup $\{\sigma \in G | a^{\sigma} = a \text{ for all } a \in L\}$. Let $\pi \colon G \to H$ be the natural projection and let $\phi \colon X(T) \to X(U)$ be the homomorphism corresponding to the inclusion map $U \to T$.

Since G and H are quotient groups of Γ and since ϕ is a Γ -homomorphism we have the following lemma concerning the action of G and H on X(T) and X(U) respectively.

LEMMA 3. For
$$\xi \in X(T)$$
 and $\sigma \in G$

$$\phi(\xi^{\sigma}) = (\phi(\xi))^{\pi(\sigma)}$$
.

Now by Proposition 4 we may consider G (resp. H) as a subgroup of the general linear group GL(X(T)) (resp. GL(X(U))). Let g (resp. h) be a Lie algebra generated by the set $\{\sigma-1|\sigma\in G\}$ (resp. $\{\sigma-1|\sigma\in H\}$). An easy calculation shows that g(resp. h) is given in fact as a linear span of the set in gl(X(T)) (resp. gl(X(U))). Then we have

Lemma 4. There exists a surjective Lie algebra homomorphism $\bar{\pi}: g \rightarrow \mathfrak{h}$ such that

$$\bar{\pi}(\sigma-1) = \pi(\sigma)-1, \quad \sigma \in G.$$

PROOF. It suffices to prove that the map π' of the set $\{\sigma-1|\sigma\in G\}$ onto the set $\{\sigma-1|\sigma\in H\}$ defined by $\pi'(\sigma-1)=\pi(\sigma)-1$ can be extended to a linear map $\overline{\pi}: g\to \mathfrak{h}$. In this case the map $\overline{\pi}$ is in fact a Lie algebra homomorphism as directly checked. Now let $\sigma_1,...,\sigma_r\in G$. Then we have only to prove the following fact:

If
$$\sum_{i=1}^{r} a_i(\sigma_i - 1) = 0$$
 $(a_i \in P)$ then $\sum_{i=1}^{r} a_i(\pi(\sigma_i) - 1) = 0$.

Let ξ' be any element of X(U). Then there is a $\xi \in X(T)$ such that $\xi' = \phi(\xi)$. Then

$$\xi' \Sigma a_i(\pi(\sigma_i) - 1) = \Sigma a_i(\phi(\xi)^{\pi(\sigma_i)} - \phi(\xi))$$

$$= \Sigma a_i(\phi(\xi^{\sigma_i}) - \phi(\xi)) \quad \text{(by Lemma 3)}$$

$$= \Sigma a_i \phi(\xi(\sigma_i - 1))$$

$$= \phi(\xi \Sigma a_i(\sigma_i - 1))$$

$$= 0.$$

Therefore $\sum a_i(\pi(\sigma_i) - 1) = 0$.

By Lemma 3 and 4 we immediately have

LEMMA 5. For $A \in \mathfrak{g}$ and $\xi \in X(T)$

$$\phi(\xi A) = \phi(\xi)\overline{\pi}(A)$$
.

LEMMA 6. Let g and therefore h be nilpotent. Let

$$X(T) = X(T)_0 \oplus X(T)_1$$
 (resp. $X(U) = X(U)_0 \oplus X(U)_1$)

be the Fitting decomposition of X(T) (resp. X(U)) relative to \mathfrak{g} (resp. \mathfrak{h}). Then $\phi(X(T)_0) \subset X(U)_0$ and $\phi(X(T)_1) \subset X(U)_1$.

PROOF. Let $\xi \in X(T)_0$. For any $B \in \mathfrak{h}$, we have $B = \overline{\pi}(A)$ for some $A \in \mathfrak{g}$ by Lemma 4. It follows from Lemma 5 that $\phi(\xi)B^m = \phi(\xi A^m) = 0$ for a large m.

This implies that $\phi(\xi) \in X(U)_0$.

Next let $\xi \in X(T)_1$ and let $l \ge 0$ be any integer. Then ξ is of the form $\xi = \Sigma$ $\eta A_1 \dots A_l (A_i \in \mathfrak{g}, \ \eta \in X(T))$. Therefore by Lemma 5 $\phi(\xi) = \Sigma \phi(\eta) \overline{\pi}(A_1) \dots \overline{\pi}(A_l)$ $\in X(U)(\mathfrak{h}^*)^l$. Hence $\phi(\xi) \in \cap_{l \ge 0} X(U)(\mathfrak{h}^*)^l = X(U)_1$.

We now have a generalization of Theorem 7 in [3].

THEOREM 2. Let T, K, G and g be as above. If g is a nilpotent Lie algebra then the following two conditions on T are equivalent.

- a) The only k-valued character of T is zero,
- b) T contains no subtorus isomorphic to k.

PROOF. a) \Longrightarrow b). Let $U \simeq k$ be a subtorus of T. Then $\mathfrak{h} = 0$ in the previous notation. Consequently $X(U)_1 = 0$ so that by Lemma 6 $\phi(X(T)_1) = 0$, that is, $\phi(X(T)_0) = X(U)_0 = X(U)$. This implies that $X(T)_0 \neq 0$. On the other hand every element of \mathfrak{g} acts on $X(T)_0$ as a nilpotent linear transformation. Therefore there exists a $\xi \neq 0$ in $X(T)_0$ such that $\xi A = 0$ for all $A \in \mathfrak{g}$. Hence $\xi^{\sigma} = \xi$ for all $\sigma \in G$. It follows that $\xi^{\sigma} = \xi$ for all $\sigma \in G$ which implies that ξ is k-valued.

b) \Rightarrow a). Let $\xi \neq 0$ be a k-valued character of T. Then ξ is a Γ -fixed and so G-fixed element in X(T). Thus ξ is in $X(T)_0$, that is, $X(T)_0 \neq 0$. But $X(T)_0$ has a composition series with g-trivial and so G-trivial factors. Hence there exists a G-stable subgroup Y of $X(T)_0$ such that $X(T)_0/Y \cong P \cong X(k)$. Now let $\phi: X(T) \to X(k)$ be the natural map with the kernel $Y + X(T)_1$. Since ϕ is surjective the corresponding homomorphism $k \to T$ is injective. This implies that T has a subtorus isomorphic to k.

COROLLARY. If G is abelian then conditions a) and b) in Theorem 2 are equivalent. In particular, it is the case if k is finite.

PROOF. If G is abelian then the corresponding Lie algebra is also abelian. In particular, when k is finite then G is a cyclic group.

As in [3] a torus T is said to be anisotropic if T satisfies condition a) of Theorem 2, and semisplit if T has a composition series with factors isomorphic to k. We have the first part of Theorem 8 in [2].

PROPOSITION 5. Let T be a torus over k. Then T has a unique maximal anisotropic subtorus and a unique maximal semisplit subtorus.

PROOF. Since if T_1 and T_2 are subtori of T then $T_1 + T_2$ is also a subtorus it suffices to see that if they are anisotropic (resp. semisplit) so is $T_1 + T_2$. But these are immediate consequences of definitions.

If ξ is a character of T then ξ is k-valued if and only if it is a Γ -fixed element in X(T), that is, $\xi^{\sigma} = \xi$ for every $\sigma \in \Gamma$. Therefore we have proved the first part of the follosing

LEMMA 7. T is anisotropic if and only if the only Γ -fixed element in X(T) is zero and T is semisplit if and only if X(T) has a composition series with Γ -trivial factors.

PROOF. It remains to prove the last part. Now let T be semisplit. Then by definition there exists a chain of subtori $0 = T_0 \subset T_1 \subset \cdots \subset T_n = T$ such that $T_i/T_{i-1} \simeq k$ for $i=1,\ldots,n$. Therefore we have a chain of Γ -stable subgroups $X(T) = T_0^\circ \supset T_1^\circ \supset \cdots \supset T_n^\circ = 0$. Consider an exact sequence of tori $0 \to T_i/T_{i-1} \to T/T_{i-1} \to T/T_i \to 0$. From this we have an exact sequence of Γ -modules and Γ -homomorphisms $0 \to X(T_i/T_{i-1}) \to X(T/T_{i-1}) \to X(T/T_i) \to 0$, where by Proposition $3 X(T/T_{i-1}) \simeq T_{i-1}^\circ$ and $X(T/T_i) \simeq T_i^\circ$. Therefore we have $T_{i-1}^\circ / T_i^\circ \simeq X(T_i/T_{i-1}) \simeq X(k)$ on which Γ acts trivially. The converse is proved in a similar way.

THEOREM 3. Let T, G and g be as in Theorem 2. If g is nilpotent then $T=A \oplus S$ where A is the maximal anisotropic subtorus and S the maximal semisplit subtorus.

PROOF. Let $X(T) = X(T)_0 \oplus X(T)_1$ be the Fitting decomposition of X(T) relative to g. Note that $X(T)_i$ (i=0,1) is a Γ -stable sugbroup of X(T). Thus by Theorem 1 and Proposition 3 we have a decomposition of T into a derect sum of two subtori, say $T = A \oplus S$, where $A = X(T)_0^\circ$ and $S = X(T)_1^\circ$. In this case $X(A) \simeq X(T)_1$ and $X(S) \simeq X(T)_0$, so we identify these respectively.

To prove that A is anisotropic let $\xi \in X(A)$ such that $\xi^{\sigma} = \xi$ for all $\sigma \in \Gamma$. Then $\xi^{\sigma} = \xi$ for all $\sigma \in G$ since the action of G on X(T) is induced by that of Γ . Therefore $\xi B = 0$ for all $B \in \mathfrak{g}$ which implies $\xi \in X(T)_0$ so that $\xi = 0$. By Lemma 7 A is in fact anisotropic. On the other hand since $X(T)_0$ has a composition series with g-trivial factors which are also G-trivial. Therefore these factors are also Γ -trivial. Hence S is semisplit by Lemma 7.

Finally we must prove the maximality of A and S. Now let A' be any anisotropic subtorus of containing A. We can apply Lemma 6 for U=A'. Then ϕ maps X(S) onto $X(A')_0$ and X(A) onto $X(A')_1$. But since A' is anisotropic by Lemma 7 and the construction of g we have $X(A')_0=0$ and then $X(A')_1=X(A')$. Therefore $\phi(X(A))=X(A')$. Consequently we have $|X(A)| \ge |X(A')|$ so that dim $A \ge \dim A'$. It follows that A=A'. By Proposition 5 this shows the maximality of A. The maximality of A can be proved similarly.

By the same reasoning as in the proof of the Corollary to Theorem 2 we obtain the following

COROLLARY. If G is abelian then the derect sum decomposition of T holds. In particular it is the case if k is finite.

References

- [1] A. Borel, Linear algebraic groups, Benjamin, New York, 1969.
- [2] N. Jacobson, Lie Algebras, Interscience, New York, 1962.
- [3] G. B. Seligman, Some results on Lie p-algebras, Bull. Amer. Math. Soc. 73 (1967), 528-530.
- [4] —, Algebraic Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 1051-1065.
- [5] D. J. Winter, On the toral structure of Lie p-algebras, Acta Math. 123 (1969), 69-81.

Department of Mathematics, Fuculty of Science, Hiroshima University