Some Remarks on the Cauchy Problem for p-Parabolic Equations

Mitsuyuki Itano
(Received September 17, 1973)

In his paper [11] S. Mizohata gave a semi-group theoretic treatment of the Cauchy problem for a regularly p-parabolic equation. This was successfully done with the aid of an operator matrix $H_{q}(t)=H_{q}\left(x, t, D_{x}\right)$ introduced therein. Recently D. Ellis [2] developed a Hilbert space approach to the Cauchy problem for a uniformly p-parabolic equation, following in rough outline the method explored by S. Kaplan [9] in his treatment of the Cauchy problem for a parabolic operator $\frac{\partial}{\partial t}-L(t)$, where $L(t)$ is uniformly strongly elliptic. Generally, in such an approach, special attention has been paid to find out energy estimates appropriate to the problem. As for the Cauchy problem for a specified parabolic system (§ 6 in [7]), the present author, in collaboration with K. Yoshida, has tried a generalization of Kaplan's treatment indicated above by introducing a certain type of energy estimates.

The main purpose of this paper is to investigate the uniqueness and existence theorems of a solution to the Cauchy problem for a regularly p-parabolic equation from a Hilbert space approach as done by D. Ellis [2], relying upon another type of energy estimates which will be established with the aid of a prescribed operator matrix $H_{q}(t)$, and following the same arguments as in our treatment (§ 6 in [7]) of a parabolic system.

By the Cauchy problem we shall always mean a fine Cauchy problem as described in paper [7]. With this in mind, in Section 1, some notations and functional spaces are introduced with a precise formulation of such a Cauchy problem for a regularly p-parabolic equation, where the notions of the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value and the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension of a distribution are discussed in some detail. In Section 2 the energy inequalities (cf. Theorems 1 and 2 below) for a regularly p-parabolic operator and for its dual operator are derived by making use of the operator matrix $H_{q}(t)$, which was introduced by S. Mizohata [11]. The former estimate will be of a type very similar to the one obtained in [7, Theorem 8]. These estimates enable us to apply a Hilbert space approach to our problem. Finally in Section 3 the uniqueness and existence theorems for our problem are discussed along this line of thought. We improve some of the results obtained by D. Ellis [2]. Combining Corollary 4 with Proposition 5 below, we have a
refinement of Theorem 9 in his paper [2]. This, in a sense, is a generalization of a result of S. Mizohata [11, Proposition 5]. We add here that the improvement itself has been announced in his paper [2] without proof.

1. Preliminaries

We denote by $R_{n+1}=R_{n} \times R$ an ($n+1$)-dimensional Euclidean space with a generic point $(x, t)=\left(x_{1}, \ldots, x_{n}, t\right)$ and write $D_{x}=\left(D_{1}, \ldots, D_{n}\right), D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}, D_{t}=$ $\frac{1}{i} \frac{\partial}{\partial t}$ and $D_{x}^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}$ with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. For a point $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ of the dual Euclidean space Ξ_{n} we write $|\xi|=\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{1 / 2}$ and $\xi^{\alpha}=\zeta_{1}^{\alpha_{1}} \ldots \xi_{n}^{\alpha_{n}}$.

Let p be a positive integer and let $a_{\alpha, j} \in \mathscr{B}(H)$ for α, j with $|\alpha| \leqq j p, j=1,2, \ldots$, m, where by $\mathscr{B}(H)$ we mean the space of C^{∞} functions a on $H=R_{n} \times[0, T]$ such that a is bounded with its derivatives of every order. In the present paper we shall consider the differential operator

$$
P=D_{t}^{m}+\sum_{j=1}^{m} \sum_{|\alpha| \leq j p} a_{\alpha, j}(x, t) D_{x}^{\alpha} D_{t}^{m-j}, \quad(m \geqq 1)
$$

satisfying the following condition: for every root $\tau=\tau(x, t, \xi), \xi \in \Xi_{n}$, of the polynomial

$$
P_{0}(x, t, \xi, \tau)=\tau^{m}+\sum_{j=1}^{m} \sum_{|\alpha|=j p} a_{\alpha, j}(x, t) \xi^{a} \tau^{m-j}
$$

in τ there exists a positive constant δ, independent of x, t and ξ but depending on T, such that $\operatorname{Im} \tau \geqq \delta$ for $(x, t) \in H$ and $\xi \in \Xi_{n}$ with $|\xi|=1$. Then P is called a regularly p-parabolic in $0 \leqq t \leqq T$ [11, p. 269]. Let $P=D_{t}^{m}+\sum_{j=1}^{m} \sum_{|\alpha| \leq j p} a_{\alpha, j}(x, t) D_{x}^{\alpha} D_{t}^{m-j}$, where $a_{\alpha, j} \in C^{\infty}\left(\bar{R}_{n+1}^{+}\right), R_{n+1}^{+}=R_{n} \times(0, \infty)$, and their restrictions $a_{\alpha, j} \mid H_{T}=R_{n} \times[0, T]$, belong to the space $\mathscr{B}\left(H_{T}\right)$ for any $T>0$. If for any $T>0$ there exists a positive constant δ_{T} such that $\operatorname{Im} \tau \geqq \delta_{T}$ for $(x, t) \in H_{T}$ and $\xi \in \Xi_{n}$ with $|\xi|=1$, then P is called a regularly p-parabolic operator in $0 \leqq T<\infty$. It is known that p must be a positive even integer. In what follows, we write $p=2 p^{\prime}$.

By $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ we mean the ε-product $\mathscr{D}_{t}^{\prime} \varepsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and by $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ the space of distributions $\in \mathscr{D}^{\prime}(\dot{H})$ which can be extended to distributions \in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. The quotient topology is introduced in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$. Similarly the space $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(R_{n} \times(-\infty, T]\right)$ will be defined.

Let $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ and suppose $u(x, \varepsilon t)$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ to a distribution v as $\varepsilon \downarrow 0$. Then we see that v is independent of t and it can be written in the form $\alpha_{0} \otimes Y_{t}$, where $\alpha_{0} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and Y_{t} is a Heaviside function [6, p. 375]. α_{0} is called the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value of u and denoted by $\mathscr{D}_{L^{2}}^{\prime-\lim _{t \downarrow 0} u}$ [6, p. 375].

Let $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$be such that $\phi \geqq 0$ and $\int_{0}^{\infty} \phi d t=1$, and put $\rho=Y * \phi$. Consider a $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$. Then $\rho(t / \varepsilon) u$ may be regarded as an element of $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(R_{n} \times(-\infty, T]\right)$ for any $\varepsilon>0$. If $\rho(t / \varepsilon) u$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(R_{n} \times(-\infty, T]\right)$ to v_{ϕ} as $\varepsilon \downarrow 0$, then v_{ϕ} does not depend on the choice of ϕ. The limit element is called the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension of u over $t=0$. The $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension u_{\sim} exists whenever $\mathscr{D}_{L^{2}}^{\prime}-\lim _{t \downarrow 0} u$ exists.

In the present paper we shall consider the fine Cauchy problem

$$
\left\{\begin{array}{l}
P u=f \quad \text { in } \stackrel{\circ}{H} \tag{1}\\
u_{0} \equiv \mathscr{D}_{L^{2}-\lim _{t \downharpoonright 0}^{\prime}}\left(u, D_{t} u, \ldots, D_{t}^{m-1} u\right)=\alpha
\end{array}\right.
$$

for preassigned $f \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ and $\alpha=\left(\alpha_{0}, \ldots, \alpha_{m-1}\right), \alpha_{j} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$. Suppose there exists a solution $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ of (1). Then f and u must have the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extensions f_{\sim} and u_{\sim} over $t=0$ [5, p. 82; 7, p. 404].

If we put $F=(0, \ldots, 0, f)^{\prime}$ and $U=\left(u_{1}, \ldots, u_{m}\right)^{\prime}$ with $u_{j}=D_{i}^{j-1} u$, where V^{\prime} means the transposed vector of V, we can rewrite (1) in vector form

$$
\left\{\begin{array}{l}
L U \equiv D_{t} U-A(t) U=F \quad \text { in } \stackrel{\circ}{H}, \tag{2}\\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime} U=\alpha} U
\end{array}\right.
$$

with

$$
A\left(x, t, D_{x}\right)=\left(\begin{array}{cccccc}
0 & 1 & & & & \\
\cdot & \cdot & \cdot & & & \\
\cdot & & \cdot & \cdot & & \\
& & & \cdot & \cdot & \cdot \\
-a_{m} & \cdot & \cdot & \cdot & 1 \\
-a_{1}
\end{array}\right), a_{j}=\sum_{|\alpha| \leq j p} a_{\alpha, j}(x, t) D_{x}^{\alpha}
$$

We shall write by $M(x, t, \xi)$ the matrix $A(x, t, \xi)$ with $a_{j}(x, t, \xi)$ replaced by $a_{j}^{0}(x, t, \xi)=\sum_{|\alpha|=j p} a_{\alpha, j}(x, t) \xi^{\alpha}$.

We shall next introduce some spaces. Let σ, s be any real numbers. By $\mathscr{H}_{s}=\mathscr{H}_{s}\left(R_{n}\right)$ [8, p. 45] we mean the set of all distributions $u \in \mathscr{S}^{\prime}\left(R_{n}\right)$ such that \hat{u} is a function and

$$
\|u\|_{s}^{2}=\frac{1}{(2 \pi)^{n}} \int|\hat{u}(\xi)|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi<\infty
$$

and by $\mathscr{K}_{\sigma, s}=\mathscr{K}_{\sigma, s}\left(R_{n+1}\right)\left[9\right.$, p. 172] the space of all distributions $u \in \mathscr{S}^{\prime}\left(R_{n+1}\right)$ such that \hat{u} is a function and

$$
\|u\|_{\sigma, s}^{2}=\frac{1}{(2 \pi)^{n+1}} \iint|\hat{u}(\xi, \tau)|^{2}\left(\tau^{2}+\left(1+|\xi|^{2}\right)^{p}\right)^{\sigma / p}\left(1+|\xi|^{2}\right)^{s} d \xi d \tau<\infty
$$

In what follows, we shall use the notations

$$
\begin{aligned}
& D_{s}\left(R_{n}\right)=\mathscr{H}_{s}\left(R_{n}\right) \times \mathscr{H}_{s-p}\left(R_{n}\right) \times \cdots \times \mathscr{H}_{s-(m-1) p}\left(R_{n}\right), \\
& D_{\sigma, s}\left(R_{n+1}\right)=\mathscr{K}_{\sigma, s}\left(R_{n+1}\right) \times \mathscr{K}_{\sigma, s-p}\left(R_{n+1}\right) \times \cdots \times \mathscr{K}_{\sigma, s-(m-1) p}\left(R_{n+1}\right),
\end{aligned}
$$

where the norms $\|\cdot\|_{D_{s}}$ and $\|\cdot\|_{D_{0, s}}$ are defined by $\left\{\|\cdot\|_{s}^{2}+\cdots+\|\cdot\|_{s-(m-1) p}^{2}\right\}^{1 / 2}$ and $\left\{\|\cdot\|_{\sigma, s}^{2}+\cdots+\|\cdot\|_{\sigma, s-(m-1) p}^{2}\right\}^{1 / 2}$ respectively. We shall denote by $D_{-s}^{\#}\left(R_{n}\right)$ and $D_{-\sigma,-s}^{\sharp}\left(R_{n+1}\right)$ the dual spaces of $D_{s}\left(R_{n}\right)$ and $D_{\sigma, s}\left(R_{n+1}\right)$ respectively. By $\mathscr{K}_{\sigma, s}(H)$ we mean the set of all $u \in \mathscr{D}^{\prime}(\dot{H})$ such that there exists a distribution $v \in \mathscr{K}_{\sigma, s}\left(R_{n+1}\right)$ with $u=v$ in $\stackrel{\circ}{H}$. The norm of u is defined by $\|u\|_{\sigma, s}=\inf \|v\|_{\sigma, s}$, the infimum being taken over all such v. Especially, the space $\mathscr{K}_{k p, s}(H), k$ being a non-negative integer, has the equivalent norm

$$
\left(\sum_{j=0}^{k} \int_{0}^{T}\left\|D_{t}^{j} u(\cdot, t)\right\|_{s^{+}(k-j) p}^{2} d t\right)^{1 / 2},
$$

which will also be denoted by the symbol $\|u\|_{k p, s}$. We shall consider the space $\dot{\mathscr{K}}_{\sigma, s}(H)$, the space of all $u \in \dot{\mathscr{K}}_{\sigma, s}\left(R_{n+1}\right)$ with supp $u \subset H$. Then $\mathscr{K}_{\sigma, s}(H)$ and $\dot{\mathscr{K}}_{-\sigma,-s}(H)$ are anti-dual Hilbert spaces with respect to an extension of the sesquilinear form $\int_{R_{n}} \int_{0}^{T} u \bar{v} d x d t, u \in C_{0}^{\infty}(H), v \in C_{0}^{\infty}(\stackrel{\circ}{H})$ [7, p. 51]. The spaces $D_{\sigma, s}(H), \dot{D}_{\sigma, s}(H)$ and the like are similarly defined.

Consider the space $\mathscr{K}_{\sigma, s}(H)$. The $\mathscr{D}_{L^{2}}^{\prime}$-boundary value $\mathscr{D}_{L^{2}-\lim }^{\prime} u$ exists for every $u \in \mathscr{K}_{\sigma, s}(H)$ if and only if $\sigma>p^{\prime}$. If this is the case, $\mathscr{D}_{L^{L}}{ }^{2}-\lim _{t \downarrow 0} u$ must belong to the space $\mathscr{H}_{\sigma+s-p^{\prime}}\left(R_{n}\right)$. The $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension u_{\sim} exists for every $u \in \mathscr{K}_{\sigma, s}(H)$ if and only if $\sigma>-p^{\prime}$. It is also noticed that $\mathscr{K}_{\sigma, s}(H)$ and $\mathscr{\mathscr { K }}_{\sigma, s}(H)$ may be identified for $|\sigma|<p^{\prime}$ [4, p. 416]. Let k be a positive integer such that $|\sigma-k|<p^{\prime}$. Then $u_{\sim} \in \mathscr{K}_{\sigma, s}\left(R_{n} \times(-\infty, T]\right)$ for every $u \in \mathscr{K}_{\sigma, s}(H)$ if and only if $\mathscr{D}_{L^{2}}^{\prime-} \lim _{t \downarrow 0} u=\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}} D_{t} u=\cdots=\mathscr{D}_{L^{2}}^{\prime-} \lim _{t \downarrow 0} D_{t}^{k-1} u=0 \quad$ [4, p. 419], where the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value coincides with the distributional boundary value [3, p. 12].

2. Energy inequalities

Let P be a regularly p-parabolic operator in $0 \leqq t \leqq T$. We shall derive energy inequalities for P and for its dual operator P^{*} by making use of the operator matrix $H_{q}(t)$, which was constructed by S. Mizohata [11]. He starts for the construction of $H_{q}(t)$ with the following consideration.

Let $P_{0}(\tau)=\tau^{m}+\sum_{j=1}^{m} a_{j}^{0}(x, t, \xi) \tau^{m-j}$ and consider the symmetric polynomial in τ and τ^{\prime} :

$$
K\left(P_{0} ; \tau, \tau^{\prime}\right)=\frac{P_{0}(\tau) P_{0}^{*}\left(\tau^{\prime}\right)-P_{0}\left(\tau^{\prime}\right) P_{0}^{*}(\tau)}{\tau-\tau^{\prime}}=\sum_{h, k=1}^{m} A_{h k} \tau^{h-1} \tau^{\prime k-1}
$$

where $P_{0}^{*}(\tau)$ stands for $\overline{P_{0}(\bar{\tau})}$. Then $-i A_{h k}$ is real and coincides with $-i A_{k h}$. Since all roots of the polynomial $P_{0}(\tau)$ lie in the half-plane $\operatorname{Im} \tau \geqq \delta_{T}>0$ for (x, t). $\in H=R_{n} \times[0, T]$ and $\xi \in \Xi_{n}$ with $|\xi|=1$, the Hermitian form

$$
H\left(P_{0} ; u_{1}, \ldots, u_{m}\right)=-i \sum_{h, k=1}^{m} A_{h k} u_{h} \bar{u}_{k}
$$

is positive definite [1, p.64]. Let B be the real symmetric matrix $\left(b_{h k}\right)$ with $b_{h k}=-i A_{h k}$. Then it follows that $-i\left(B M-(B M)^{*}\right) \geqq 0$ for $M=M(x, t, \xi)$ stated in Section 1, where $(x, t) \in H$ and $\xi \in \Xi_{n}$ with $|\xi|=1$. On the basis of these facts and applying the method of J. Leray [10, pp. 121-127] in connection with hyperbolic operators to the parabolic case, S. Mizohata has obtained the proposition below.

Let us denote by $E_{s}=E_{s}\left(D_{x}\right)$ the operator matrix $\left(e_{h k}\right), e_{h h}=S^{2 s-2(h-1) p}$, $h=1, \ldots, m$ and $e_{h k}=0$ otherwise, where S is a pseudo-differential operator with symbol $\lambda(\xi)=\left(1+|\xi|^{2}\right)^{1 / 2}$. For two Hermitian matrices $C_{1}\left(x, t, D_{x}\right)$ and $C_{2}\left(x, t, D_{x}\right)$ whose components are differential operators with coefficients \in $\mathscr{B}(H)$, the inequality $C_{1}\left(x, t, D_{x}\right) \leqq C_{2}\left(x, t, D_{x}\right)$ means that $\left(C_{1}\left(x, t, D_{x}\right) \phi, \phi\right) \leqq$ $\left(C_{2}\left(x, t, D_{x}\right) \phi, \phi\right)$ for any $\phi \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and $t \in[0, T]$, where (,) means the inner product in L_{x}^{2}. For the system of operators $L=D_{t}-A(t)$ stated in Section 1 we have

Proposition 1 (S. Mizohata). Let q be any integer. Then there exists an Hermitian matrix $H_{q}(t)=H_{q}\left(x, t, D_{x}\right)$ such that

$$
\begin{gathered}
\alpha E_{q} \leqq H_{q}(t) \leqq \alpha_{q} E_{q}, \\
-i\left(H_{q}(t) A(t)-\left(H_{q}(t) A(t)\right)^{*}\right) \geqq \frac{\varepsilon}{2} E_{q+p^{\prime}}-\gamma_{q} E_{q}
\end{gathered}
$$

with positive constants $\varepsilon, \alpha, \alpha_{q}$ and γ_{q}, which are independent of $(x, t) \in H$, and $H_{q}(t)$ is an $\mathscr{L}\left(D_{s}, D_{s-2 q}\right)$-valued C^{∞} function of $t \in[0, T]$ for any real s.

We shall give an energy inequality for L. We need the following lemma (cf. Lemma 3 in [7, p. 405]).

Lemma 1. Let $r(t)$ and $\rho(t)$ be two real-valued functions defined in the interval $0 \leqq t \leqq T$ and assume that r is continuous and ρ is non-decreasing. Then the inequality

$$
r(t) \leqq C\left(\rho(t)+\int_{0}^{t} r\left(t^{\prime}\right) d t^{\prime}\right) \quad(C>0 \text { is a constant })
$$

implies $r(t) \leqq C e^{C t} \rho(t)$.
Theorem 1. Let s be any real number. Then there exists a constant C_{T}, independent of U and t_{0}, t_{1} but depending on s, such that

$$
\left(E_{s}\right)\left\|U\left(t_{1}\right)\right\|_{D_{s+p^{\prime}}}^{2}+\int_{t_{0}}^{t_{1}}\|U(t)\|_{D_{s+p}}^{2} d t \leqq C_{T}\left(\left\|U\left(t_{0}\right)\right\|_{D_{s+p^{\prime}}}^{2}+\int_{t_{0}}^{t_{1}}\|L U(t)\|_{D_{s}}^{2} d t\right)
$$

for any t_{0}, t_{1} with $0 \leqq t_{0}<t_{1} \leqq T$ and any $U=\left(u_{1}, \ldots, u_{m}\right)^{\prime}, u_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$.
Proof . Let $U=\left(u_{1}, \ldots, u_{m}\right)^{\prime}$ with $u_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$ and put $F=L U$ and $h^{2}(t)=$ $\left(H_{0}(t) U(t), U(t)\right)$. Then we have

$$
\begin{aligned}
\frac{d}{d t} h^{2}(t)= & i\left(H_{0}(t) D_{t} U(t), U(t)\right)-i\left(H_{0}(t) U(t), D_{t} U(t)\right)+\left(\frac{d}{d t} H_{0}(t) \cdot U(t), U(t)\right) \\
= & i\left(H_{0}(t) A(t) U(t), U(t)\right)-i\left(H_{0}(t) U(t), A(t) U(t)\right)+ \\
& +i\left(H_{0}(t) F(t), U(t)\right)-i\left(H_{0}(t) U(t), F(t)\right)+\left(\frac{d}{d t} H_{0}(t) \cdot U(t), U(t)\right) \\
\leqq & -\frac{\varepsilon}{2}\left(E_{p^{\prime}} U(t), U(t)\right)+\gamma_{0}\left(E_{0} U(t), U(t)\right)+ \\
& +2\left|\operatorname{Im}\left(H_{0}(t) F(t), U(t)\right)\right|+\left|\left(\frac{d}{d t} H_{0}(t) \cdot U(t), U(t)\right)\right|
\end{aligned}
$$

and therefore

$$
\begin{aligned}
h^{2}\left(t_{1}\right)-h^{2}\left(t_{0}\right) \leqq & -\frac{\varepsilon}{2} \int_{t_{0}}^{t_{1}}\|U(t)\|_{D_{p}}^{2}, d t+\left(\gamma_{0}+\gamma_{0}^{\prime}\right) \int_{t_{0}}^{t_{1}}\|U(t)\|_{D_{0}}^{2} d t+ \\
& +2 \int_{t_{0}}^{t_{1}}\left|\left(H_{0}(t) F(t), U(t)\right)\right| d t
\end{aligned}
$$

with a constant γ_{0}^{\prime} such that $\frac{d}{d t} H_{0}(t) \leqq \gamma_{0}^{\prime} E_{0}, 0 \leqq t \leqq T$. Put $V=S^{-s-p^{\prime}} U$. Then each component v_{j} of V is a $\left(\mathscr{D}_{L^{2}}\right)_{x}$-valued C^{∞} function of $t \in[0, T]$ and

$$
\begin{aligned}
& \alpha\left\|V\left(t_{1}\right)\right\|_{D_{s+p^{\prime}}}^{2}-\alpha_{0}\left\|V\left(t_{0}\right)\right\|_{D_{s+p^{\prime}}}^{2} \leqq-\frac{\varepsilon}{2} \int_{t_{0}}^{t_{1}}\|V(t)\|_{D_{s+p}}^{2} d t+ \\
& \quad+\left(\gamma_{0}+\gamma_{0}^{\prime}\right) \int_{t_{0}}^{t_{1}}\|V(t)\|_{D_{s+p}}^{2}, d t+2 \int_{t_{0}}^{t_{1}}\left|\left(H_{0} L S^{s+p^{\prime}} V(t), S^{s+p^{\prime}} V(t)\right)\right| d t \\
& \quad\left|\left(H_{0} L S^{s+p^{\prime}} V(t), S^{s+p^{\prime}} V(t)\right)\right| \\
& \left.\leqq\left|\left(H_{0} S^{s+p^{\prime}} L V, S^{s+p^{\prime}} V\right)\right|+\mid H_{0}\left(A S^{s+p^{\prime}}-S^{s+p^{\prime}} A\right) V, S^{s+p^{\prime}} V\right) \mid .
\end{aligned}
$$

Since $H_{0}(t)$ is a continuous operator from D_{s} into $D_{s}^{\#}$ for each $t \in[0, T]$ and
$D_{-p^{\prime}}^{\#}$ is the dual space of $D_{p^{\prime}}$, we have the following estimates:

$$
\begin{aligned}
& \left|\left(H_{0} S^{s+p^{\prime}} L V, S^{s+p^{\prime}} V\right)\right|=\left|\left(H_{0} S^{s+p^{\prime}} L V, S^{s+p^{\prime} V}\right)_{D^{\sharp} p_{p}, D_{p}},\right| \\
& \leqq\left\|H_{0} S^{s+p^{\prime}} L V\right\|_{D^{\sharp}}{ }_{p}\left\|S^{s+p^{\prime}} V\right\|_{D_{p^{\prime}}}, \\
& \leqq C_{1}\left\|S^{s+p^{\prime}} L V\right\|_{D_{-p},}\|V\|_{D_{s+p}} \\
& =C_{1}\|L V\|_{D_{s}}\|V\|_{D_{s}+p}, \\
& \left|\left(H_{0}\left(A S^{s+p^{\prime}}-S^{s+p^{\prime}} A\right) V, S^{s+p^{\prime}} V\right)\right| \\
& =\left|\left(H_{0}\left(A S^{s+p^{\prime}}-S^{s+p^{\prime}} A\right) V, S^{s+p^{\prime}} V\right)_{D^{\sharp} p_{p}, D_{p}}\right| \\
& \leqq\left\|H_{0}\left(A S^{s+p^{\prime}}-S^{s+p^{\prime}} A\right) V\right\|_{D^{\sharp} p^{p}}\|V\|_{D_{s+p}} \\
& \leqq C_{2}\left\|\left(A S^{s+p^{\prime}}-S^{s+p^{\prime}} A\right) V\right\|_{D_{-p}}\|V\|_{D_{s+p}}
\end{aligned}
$$

with constants C_{1} and C_{2}. Here the operator matrix $A S^{s+p^{\prime}}-S^{s+p^{\prime}} A$ has the form ($\alpha_{h k}(t)$) with $\alpha_{h k}(t)=0$ for $h \neq m$. In virtue of Proposition 15 in [6, p. 387] we see that $\alpha_{m k}(t)$ is the operator of order $\leqq(m-k+1) p+s+p^{\prime}-1$. Thus there exists a constant C_{3} such that

$$
\left\|\left(A S^{s+p^{\prime}}-S^{s+p^{\prime}} A\right) V\right\|_{D_{-p^{\prime}}} \leqq C_{3}\|V\|_{D_{s+p-1}}
$$

and therefore we have

$$
\begin{aligned}
& \left|\left(H_{0} L S^{s+p^{\prime}} V(t), S^{s+p^{\prime}} V(t)\right)\right| \\
\leqq & C_{1}\|L V(t)\|_{D_{s}}\|V(t)\|_{D_{s+p}}+C_{2} C_{3}\|V(t)\|_{D_{s+p-1}}\|V(t)\|_{D_{s+p}}
\end{aligned}
$$

Let ε^{\prime} be any positive number. Then there exists a constant $C_{4}\left(\varepsilon^{\prime}\right)$ such that

$$
\|V\|_{D_{s+p-1}} \leqq \varepsilon^{\prime}\|V\|_{D_{s+p}}+C_{4}\left(\varepsilon^{\prime}\right)\|V\|_{D_{s}}
$$

and we have the inequalities

$$
\begin{aligned}
\|V\|_{D_{s+p-1}}\|V\|_{D_{s+p}+} & \leqq\left(\varepsilon^{\prime}\|V\|_{D_{s+p}}+C_{4}\left(\varepsilon^{\prime}\right)\|V\|_{D_{s}}\right)\|V\|_{D_{s+p}} \\
& \leqq 2 \varepsilon^{\prime}\|V\|_{D_{s+p}}^{2}+C_{5}\left(\varepsilon^{\prime}\right)\|V\|_{D_{s}}^{2}
\end{aligned}
$$

with a constant $C_{5}\left(\varepsilon^{\prime}\right)$ and consequently

$$
\begin{array}{r}
\int_{t_{0}}^{t_{1}}\left|\left(H_{0} L S^{s+p^{\prime}} V(t), S^{s+p^{\prime}} V(t)\right)\right| d t \leqq \varepsilon^{\prime}\left(1+2 C_{2} C_{3}\right) \int_{t_{0}}^{t_{1}}\|V(t)\|_{D_{s+p}}^{2} d t+ \\
+C_{6}\left(\varepsilon^{\prime}\right) \int_{t_{0}}^{t_{1}}\|L V(t)\|_{D_{s}}^{2} d t+C_{7}\left(\varepsilon^{\prime}\right) \int_{t_{0}}^{t_{1}}\|V(t)\|_{D_{s}}^{2} d t
\end{array}
$$

Lemma 1 we obtain $\left(E_{s}\right)$ for V. Thus the proof is complete.
For the regularly p-parabolic operator P we have the following energy inequality.

Corollary 1. Let s be any real number. Then there exists a constant C_{T}, independent of u and t_{0}, t_{1} but depending on s, such that

$$
\begin{aligned}
& \sum_{j=0}^{m-1}\left\|D_{t}^{j} u\left(\cdot, t_{1}\right)\right\|_{s+p^{\prime}-j p}^{2}+\sum_{j=0}^{m-1} \int_{t_{0}}^{t_{1}}\left\|D_{t}^{j} u(\cdot, t)\right\|_{s-(j-1) p}^{2} d t \\
& \quad \leqq C_{T}\left(\sum_{j=0}^{m-1}\left\|D_{t}^{j} u\left(\cdot, t_{0}\right)\right\|_{s^{+} p^{\prime}-j p}^{2}+\int_{t_{0}}^{t_{1}}\|P u(\cdot, t)\|_{s-(m-1) p}^{2} d t\right)
\end{aligned}
$$

for any t_{0}, t_{1} with $0 \leqq t_{0}<t_{1} \leqq T$ and any $u \in C_{0}^{\infty}\left(R_{n+1}\right)$.
Let us consider the formal adjoint operator of P :

$$
P^{*}=D_{t}^{m}+\sum_{j=1}^{m} D_{t}^{m-j} a_{j}^{*}\left(x, t, D_{x}\right)=D_{t}^{m}+\sum_{j=1}^{m} c_{j}\left(x, t, D_{x}\right) D_{t}^{m-j}
$$

where

$$
a_{j}^{*}\left(x, t, D_{x}\right)=\sum_{|\alpha| \leq j p} D_{x}^{\alpha} \bar{a}_{\alpha, j}, \quad c_{j}\left(x, t, D_{x}\right)=\sum_{|\alpha|=j p} \bar{a}_{\alpha, j} D_{x}^{\alpha}+\sum_{|\alpha|<j p} c_{\alpha, j} D_{x}^{\alpha} .
$$

Let $v \in C_{o}^{\infty}\left(R_{n+1}\right)$ and put $g=P^{*} v$. If we write $V=\left(v_{1}, \ldots, v_{m}\right)^{\prime}$ with $v_{j}=D_{t}^{j-1} v$, $j=1,2, \ldots, m$ and $G=(0, \ldots, 0, g)^{\prime}$, then $P^{*} v=g$ can be rewritten in the vector form

$$
\tilde{L} V \equiv D_{t} V-C(t) V=G,
$$

where $C(t)=C\left(x, t, D_{x}\right)$ is the operator matrix $A\left(x, t, D_{x}\right)$ with $a_{j}\left(x, t, D_{x}\right)$ replaced by $c_{j}\left(x, t, D_{x}\right)$. Following the method of construction of $H_{q}(t)=$ $H_{q}\left(x, t, D_{x}\right)$ obtained by S . Mizohata with the matrix $M(x, t, \xi)$ replaced by $\bar{M}(x, t, \xi)$, we can find an operator matrix $\tilde{H}_{q}(t), q$ being any integer, such that

$$
\begin{gathered}
\beta E_{q} \leqq \widetilde{H}_{q}(t) \leqq \beta_{q} E_{q}, \\
-i\left(\widetilde{H}_{q}(t) C(t)-\left(\widetilde{H}_{q}(t) C(t)\right)^{*}\right) \leqq-\varepsilon E_{q+p^{\prime}}+\gamma_{q} E_{q}
\end{gathered}
$$

with positive constants $\varepsilon, \beta, \beta_{q}$ and γ_{q}, which are independent of $(x, t) \in H . \quad \tilde{H}_{q}(t)$ is an $\mathscr{L}\left(D_{s}, D_{s-2 q}^{\#}\right)$-valued C^{∞} function of $t \in[0, T]$ for any real s.

We shall derive the following energy inequality for \tilde{L} by making use of $\tilde{H}_{q}(t)$.
Theorem 2. Let q be any integer. Then there exists a constant C_{T}, independent of u and t_{0}, t_{2} but depending on q, such that

$$
\left\|V\left(t_{0}\right)\right\|_{D_{q}} \leqq C_{T}\left(\left\|V\left(t_{1}\right)\right\|_{D_{q}}+\int_{t_{0}}^{t_{1}}\|\tilde{L} V(t)\|_{D_{q}} d t\right)
$$

for any t_{0}, t_{1} with $0 \leqq t_{0}<t_{1} \leqq T$ and any $V=\left(v_{1}, \ldots, v_{m}\right)^{\prime}, v_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$.
Proof. Let $V=\left(v_{1}, \ldots, v_{m}\right)^{\prime}$ with any $v_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$ and put $G=\tilde{L} V$ and $h^{2}(t)=\left(\tilde{H}_{q}(t) V(t), V(t)\right)$. There exists a positive constant β_{q}^{\prime}, independent of $(x, t) \in H$, such that $\frac{d}{d t} \tilde{H}_{q}(t) \leqq \beta_{q}^{\prime} E_{q}, 0 \leqq t \leqq T$. In the same way as in the proof of Theorem 1 we have

$$
\begin{aligned}
\frac{d}{d t} h^{2}(t) & \geqq \varepsilon\left(E_{q+p^{\prime}} V, V\right)-\left(\gamma_{q}+\beta_{q}^{\prime}\right)\left(E_{q} V, V\right)-2\|G\|_{D_{q}}\left\|\widetilde{H}_{q} V\right\|_{D_{-q}^{\sharp}} \\
& \geqq-2 C_{1} h^{2}(t)-2 C_{2}\|G\|_{D_{q}} h(t)
\end{aligned}
$$

with $C_{1}=\left(\gamma_{q}+\beta_{q}^{\prime}\right) /(2 \beta)$ and a positive constant C_{2}, which implies

$$
\frac{d}{d t}\left(e^{c_{1} t} h(t)\right) \geqq-C_{2} e^{c_{1} t}\|G(t)\|_{D_{q}} .
$$

Thus we obtain

$$
h\left(t_{0}\right) \leqq e^{C_{1}\left(t_{1}-t_{0}\right)} h\left(t_{1}\right)+C_{2} \int_{t_{0}}^{t_{1}} e^{C_{1}\left(t-t_{0}\right)}\|G(t)\|_{D_{q}} d t
$$

Since we have the inequalities $\beta\|V(t)\|_{D_{q}}^{2} \leqq h^{2}(t) \leqq \beta_{q}\|V(t)\|_{D_{q}}^{2}$, our proof is complete.

For the formal adjoint operator P^{*} we have the following
Corollary 2. Let q be any integer. Then there exists a constant C_{T}, independent of v and t_{0}, t_{1} but depending on q, such that

$$
\sum_{j=0}^{m-1}\left\|D_{t}^{j} v\left(\cdot, t_{0}\right)\right\|_{q-j p} \leqq C_{T}\left(\sum_{j=0}^{m-1}\left\|D_{t}^{j} v\left(\cdot, t_{1}\right)\right\|_{q-j p}+\int_{t_{0}}^{t_{1}}\left\|P^{*} v(\cdot, t)\right\|_{q-(m-1) p} d t\right)
$$

for any t_{0}, t_{1} with $0 \leqq t_{0}<t_{1} \leqq T$ and any $v \in C_{0}^{\infty}\left(R_{n+1}\right)$.

3. Cauchy problem

Let us consider the fine Cauchy problem (1):

$$
\left\{\begin{array}{l}
P u \equiv D_{t}^{m} u+\sum_{j=1}^{m} a_{j}\left(x, t, D_{x}\right) D_{t}^{m-j} u=f \quad \text { in } \stackrel{\circ}{H}, \\
u_{0} \equiv \mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}}\left(u, D_{t} u, \ldots, D_{t}^{m-1} u\right)=\alpha
\end{array}\right.
$$

for preassigned $f \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ and $\alpha=\left(\alpha_{0}, \ldots, \alpha_{m-1}\right), a_{j} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$, where $a_{j}\left(x, t, D_{x}\right)=\sum_{|\alpha| \leq j p} a_{\alpha, j} D_{x}^{\alpha}$ with $a_{\alpha, j} \in \mathscr{B}(H)$. As noted in [5, p. 78], $a_{\alpha, j}$ can be extended to a function $\in \mathscr{B}\left(R_{n+1}\right)$. We assume that $a_{\alpha, j} \in \mathscr{B}\left(R_{n+1}\right)$.

Suppose there exists a solution $u \in \mathscr{D}_{i}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ of (1). Then f, u have
the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extensions u_{\sim}, f_{\sim} as noted in Section 1. In addition, u_{\sim} and f_{\sim} satisfy the equation

$$
P\left(u_{\sim}\right)=f_{\sim}+\sum_{k=0}^{m-1} D_{t}^{k} \delta \otimes \gamma_{k}(0) \quad \text { in } R_{n} \times(-\infty, T]
$$

where

$$
\gamma_{k}(t)=-i \sum_{j=k+1}^{m} \sum_{l=1}^{j-k}(-1)^{j-l-k}\binom{j-l}{k} D_{t}^{j-l-k} a_{m-j}\left(x, t, D_{x}\right) \alpha_{l-1} .
$$

For example, $\gamma_{m-1}=-i \alpha_{0}, \gamma_{m-2}=-i a_{1} \alpha_{0}-i a_{1}, \gamma_{m-3}=-i\left(a_{2}-(m-2) D_{t} a_{1}\right) \alpha_{0}-$ $-i a_{1} \alpha_{1}-i a_{2}, \ldots[5, \mathrm{p} .82]$. In what follows, we shall use the notation $\Gamma_{t}(\alpha)=$ $\left(\gamma_{0}(t), \ldots, \gamma_{m-1}(t)\right)$. Then Γ_{t} is an isomorphism of D_{s} onto $D_{s-(m-1) p}^{\#}$ for any real s.

Conversely, if $v \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(R_{n} \times(-\infty, T]\right)$ with support in $R_{n} \times[0, T]$ is a solution of the equation

$$
P v=f_{\sim}+\sum_{k=0}^{m-1} D_{t}^{k} \delta \otimes \gamma_{k}(0)
$$

that is,

$$
\begin{equation*}
\left(\left(v, P^{*} w\right)\right)=\left(\left(f_{\sim}, w\right)\right)+\left(\Gamma_{0}(\alpha), w_{0}\right), \quad w \in C_{0}^{\infty}\left(R_{n} \times(-\infty, T)\right), \tag{3}
\end{equation*}
$$

where by $(()$,$) we mean the scalar product between \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(R_{n} \times(-\infty, T]\right)$ and $\mathscr{D}((-\infty, T)) \widehat{\otimes}_{\iota}\left(\mathscr{D}_{L^{2}}\right)_{x}$, then the restriction $u=v \mid \dot{H}$ is a solution of the Cauchy problem (1) and $v=u_{\sim}$. The equation (3) implies Green's formula:

$$
\left(\left((P u)_{\sim}, w\right)\right)-\left(\left(u_{\sim}, P^{*} w\right)\right)=-\left(\Gamma_{0}\left(u_{0}\right), w_{0}\right) .
$$

Similarly we have the equation

$$
(((P u) \approx, w))-\left(\left(u_{\sim}^{\sim}, P^{*} w\right)\right)=\left(\Gamma_{T}\left(u_{T}\right), w_{T}\right)-\left(\Gamma_{0}\left(u_{0}\right), w_{0}\right),
$$

where $w_{T}=\mathscr{D}_{L^{2}}^{\prime} \lim _{t \uparrow T}\left(w, D_{t} w, \ldots, D_{t}^{m-1} w\right), u^{\sim}$ is the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension of u over $t=T$ and $(()$,$) means the scalar product between \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\mathscr{D}_{t} \widehat{\otimes}_{\iota}\left(\mathscr{D}_{L^{2}}\right)_{x}$.

Let s be any real number and let L, \tilde{L} be the differential operator systems that correspond to the operators P, P^{*} respectively, which are defined in Section 1. Then we have

Proposition 2. If $U \in D_{0, s+p}(H), \quad L U=F \in D_{0, s}(H)$ and $\mathscr{D}_{L^{2}}^{\prime-\lim _{t \downarrow 0}} U=$ $\alpha \in D_{s+p^{\prime}}\left(R_{n}\right)$, then $U \in D_{p, s}(H)$ and U satisfies the inequality

$$
\|U(t)\|_{D_{s+p^{\prime}}}^{2}+\int_{0}^{t}\|U(t)\|_{D_{s+p}}^{2} d t \leqq C_{T}\left(\|\alpha\|_{D_{s+p^{\prime}}}^{2}+\int_{0}^{t}\|F(t)\|_{D_{s}}^{2} d t\right), \quad 0 \leqq t \leqq T
$$

In particular, if $F=0$ and $\alpha=0$, then $U=0$.
Proof. From the relation $D_{t} U=F+A(t) U \in D_{0, s}(H)$ we see that $U \in D_{p, s}(H)$. There exists a sequence $\left\{\Phi_{k}\right\}, \Phi_{k} \in C_{0}^{\infty}\left(R_{n+1}\right) \times \cdots \times C_{0}^{\infty}\left(R_{n+1}\right)$, such that $\left\{\Phi_{k}\right\}$ converges in $D_{p, s}(H)$ to U. The sequences $\left\{\Phi_{k}(\cdot, 0)\right\}$ and $\left\{L \Phi_{k}\right\}$ converge in $D_{s+p^{\prime}}$ and $D_{0, s}(H)$ to α and F respectively. Owing to the energy inequality $\left(E_{s}\right)$, we see that $\left\{\Phi_{k}\right\}$ is a Cauchy sequence in $D_{0, s+p}(H)$. Let V be the limit of $\left\{\Phi_{k}\right\}$. Clearly V coincides with U as a distribution and U satisfies the above inequality.

Theorem 3. If $U \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H) \times \cdots \times \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H), L U=0$ in $\stackrel{\circ}{H}$ and $\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}} U=0$, then $U=0$ in $\stackrel{\circ}{H}$.

Proof. There exist two integers k, l such that $U \in D_{k, l}(H)$. Suppose $k<p$. From the relation $D_{t} U=A(t) U \in D_{k, l-p}(H)$ it follows that $U \in D_{k+p, l-p}(H)$. Repeating the procedure, we see that $U \in D_{p, k+l-p}(H)$. Thus Proposition 2 implies $U=0$.

Let us denote by $\mathscr{E}_{t}^{0}\left(\mathscr{H}_{s}\right)\left(\right.$ resp. $\left.\mathscr{E}_{t}^{0}\left(D_{s}\right)\right), 0 \leqq t<T$, the space of $\mathscr{H}_{s}\left(R_{n}\right)$-valued (resp. $D_{s}\left(R_{n}\right)$-valued) continuous functions of $t \in[0, T)$. Along the same line as in the proof of the preceding theorem, we have

Proposition 3. If $V \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H) \times \cdots \times \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H), \tilde{L} V=0$ in $\stackrel{\circ}{H}$ and $\mathscr{D}_{L^{2}-}^{\prime}-\lim _{t \uparrow T} V=0$, then $V=0$ in \dot{H}.

Proof. We can find a real s such that $V \in D_{p, s}(H)$. There exists a sequence $\left\{\Phi_{k}\right\}, \Phi_{k} \in C_{0}^{\infty}\left(R_{n+1}\right) \times \cdots \times C_{0}^{\infty}\left(R_{n+1}\right)$, such that $\left\{\Phi_{k}\right\}$ converges in $D_{p, s}(H)$ to V. The sequence $\left\{\Phi_{k}(\cdot, T)\right\}$ converges in $D_{s+p^{\prime}}$ to 0 and therefore it converges in D_{s} to 0 . On the other hand the sequence $\left\{\tilde{L} \Phi_{k}\right\}$ converges in $D_{0, s}(H)$ to 0 . In virtue of Theorem 2 we have

$$
\left\|\Phi_{k}(\cdot, t)\right\|_{D_{s}} \leqq C_{T}\left(\left\|\Phi_{k}(\cdot, T)\right\|_{D_{s}}+\int_{t}^{T}\left\|\tilde{L} \Phi_{k}(t)\right\|_{D_{s}} d t\right)
$$

and therefore $\left\{\Phi_{k}\right\}$ converges in $\mathscr{E}_{t}^{0}\left(D_{s}\right), 0 \leqq t<T$, to 0 . Thus V vanishes in $\stackrel{\circ}{H}$.
Corollary 3. If $v \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H), P^{*} v=0$ in $\stackrel{\circ}{H}^{\text {and }} \mathscr{D}_{L^{2}}^{\prime}-\lim _{t \uparrow T}(v$, $\left.D_{t} v, \ldots, D_{t}^{m-1} v\right)=0$, then $v=0$ in $\stackrel{\circ}{H}$.

Theorem 4. For any $f \in \mathscr{K}_{0, s}(H)$ and $\alpha \in D_{s+(m-1) p+p^{\prime}}$ there exists a unique solution $u \in \mathscr{K}_{\text {mp,s }}(H)$ of the Cauchy problem (1) and u satisfies the inequality

$$
\begin{equation*}
\sum_{j=0}^{m-1}\left\|D_{t}^{j} u(\cdot, t)\right\|_{s+(m-j-1) p+p^{\prime}}^{2}+\sum_{j=0}^{m-1} \int_{0}^{t}\left\|D_{t}^{j} u(\cdot, t)\right\|_{s+(m-j) p}^{2} d t \tag{4}
\end{equation*}
$$

$$
\leqq C_{T}\left(\|\alpha\|_{D_{s+(m-1) p+p^{\prime}}}^{2}+\int_{0}^{t}\|f(\cdot, t)\|_{s}^{2} d t\right)
$$

with a constant C_{T}.
Proof. We shall first show that $A=\left\{\left(P \phi, \Gamma_{0}\left(\phi_{0}\right)\right): \phi \in C_{0}^{\infty}\left(R_{n+1}\right)\right\}$ is dense in $\mathscr{K}_{0, s}(H) \times D_{s+p^{\prime}}^{\#}\left(R_{n}\right)$. Let $w \in \mathscr{K}_{0,-s}(H)$ and $\beta \in D_{-s-p^{\prime}}\left(R_{n}\right)$ such that

$$
\int_{0}^{T}(P \phi(\cdot, t), w(\cdot, t)) d t+\left(\Gamma_{0}\left(\phi_{0}\right), \beta\right)=0
$$

for any $\phi \in C_{0}^{\infty}\left(R_{n+1}\right)$. If we take $\phi \in C_{0}^{\infty}(\stackrel{\circ}{H})$, then the relation is reduced to

$$
\int_{0}^{T}(P \phi(\cdot, t), w(\cdot, t)) d t=0
$$

which means $P^{*} w=0$ in $\stackrel{\circ}{H}$. If we take $\phi \in C_{0}^{\infty}(H)$ such that $\phi=0$ near $t=0$, then

$$
0=\int_{0}^{T}(P \phi(\cdot, t), w(\cdot, t)) d t=\left(\Gamma_{T}\left(\phi_{T}\right), w_{T}\right),
$$

where $\phi_{T}=\left(\phi(\cdot, T), D_{t} \phi(\cdot, T), \ldots, D_{t}^{m-1} \phi(\cdot, T)\right)$. Since $\Gamma_{T}\left(\phi_{T}\right)$ may be arbitrarily taken, it follows that $w_{T}=0$. By Corollary $3 w$ must vanish in $\stackrel{H}{ }$ and therefore $\left(\Gamma_{0}\left(\phi_{0}\right), \beta\right)=0$ for any $\phi \in C_{0}^{\infty}(H)$, which implies $\beta=0$.

For any given $f \in \mathscr{K}_{0, s}(H)$ and $\alpha \in D_{s+(m-1) p+p^{\prime}}$ there exists a sequence $\left\{\phi_{k}\right\}$, $\phi_{k} \in C_{o}^{\infty}(H)$, such that $\left(\phi_{k}(\cdot, 0), \ldots, D_{t}^{m-1} \phi_{k}(\cdot, 0)\right)$ converges in $D_{s+(m-1) p+p^{\prime}}$ to α and $\left\{P \phi_{k}\right\}$ converges in $\mathscr{K}_{0, s}(H)$ to f. In virtue of the energy inequality

$$
\begin{aligned}
& \sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi_{k}(\cdot, t)\right\|_{s+(m-j-1) p+p^{\prime}}^{2}+\sum_{j=0}^{m-1} \int_{0}^{t}\left\|D_{t}^{j} \phi_{k}(\cdot, t)\right\|_{s+(m-j) p}^{2} d t \\
& \quad \leqq C_{T}\left(\sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi_{k}(\cdot, 0)\right\|_{s+(m-j-1) p+p^{\prime}}^{2}+\int_{0}^{t}\left\|P \phi_{k}(\cdot, t)\right\|_{s}^{2} d t\right),
\end{aligned}
$$

we see that $\left(\phi_{k}, \ldots, D_{t}^{m-1} \phi_{k}\right)$ is a Cauchy sequence in $D_{0, s+m p}(H)$. Let $\left(v_{1}, \ldots, v_{m}\right)$ be the limit. From the fact that $D_{t}^{j} \phi_{k}$ converges in $\mathscr{K}_{-j p, s+m p}(H)$ to $D_{t}^{j} v_{1}$ and the space $\mathscr{K}_{0, s+(m-j) p}$ belongs to the space $\mathscr{K}_{-j p, s+m p}(H)$ it follows that $v_{j+1}=$ $D_{t}^{j} v_{1}, j=1, \ldots, m-1$, and $P v_{1}=f$ in ${ }_{H}^{\circ}$ with $\left(v_{1}\right)_{0}=\alpha$. Since $\left(v_{1}, D_{t} v_{1}, \ldots, D_{t}^{m-1} v_{1}\right)$ $\in D_{0, s+m p}(H)$ and $D_{t}^{m} v_{1}=f-\sum_{j=1}^{m} a_{j}\left(x, t, D_{x}\right) D_{t}^{m-j} v_{1} \in \mathscr{K}_{0, s}(H)$ we see that (v_{1}, $\left.D_{t} v_{1}, \ldots, D_{t}^{m-1} v_{1}\right) \in D_{p, s+(m-1) p}(H)$ and therefore $v_{1} \in \mathscr{K}_{m p, s}(H)$, which is a unique solution of the Cauchy problem (1) (Theorem 3) and satisfies the above inequality (4).

Remark. Theorem 4 is in a sense a generalization of a result of S . Mizohata [11, Proposition 5].

Proposition 4. Let k be any non-negative integer. For any $f \in \mathscr{K}_{k p, s}(H)$
and $\alpha \in D_{s+(m+k) p-p^{\prime}}$ there exists a unique solution $u \in \mathscr{K}_{(m+k) p, s}(H)$ of the Cauchy problem (1) and u satisfies the inequality

$$
\begin{align*}
& \sum_{j=0}^{m+k-1}\left\|D_{t}^{j} u(\cdot, t)\right\|_{s+(m+k-j) p-p^{\prime}}^{2}+\sum_{j=0}^{m+k-1} \int_{0}^{t}\left\|D_{t}^{j} u(\cdot, t)\right\|_{s+(m+k-j) p}^{2} d t \tag{5}\\
& \leqq C_{T}\left(\|\alpha\|_{D_{s+(m+k) p-p^{\prime}}^{2}}^{2}+\sum_{j=0}^{k-1}\left\|D_{t}^{j} f(\cdot, 0)\right\|_{s+(k-j) p-p^{\prime}}^{2}+\right. \\
& \\
& \left.+\sum_{j=0}^{k} \int_{0}^{t}\left\|D_{t}^{j} f(\cdot, t)\right\|_{s+(k-j) p}^{2} d t\right), \quad 0 \leqq t \leqq T
\end{align*}
$$

with a constant C_{T}.
Proof. In the case where $k=0$, the statement coincides with Theorem 4. Let us consider the case $k \geqq 1$. Since $f \in \mathscr{K}_{k p, s}(H) \subset \mathscr{K}_{0, s+k p}(H)$ it follows from Theorem 4 that there exists a unique solution $u \in \mathscr{K}_{m p, s+k p}(H)$ of (1). u $\in \mathscr{K}_{m p, s+k p}(H)$ means $U=\left(u, D_{t} u, \ldots, D_{t}^{m-1} u\right)^{\prime} \in D_{p, s+(m+k-1) p}(H)$. Then $D_{t} U$ $=A(t) U+F \in D_{p, s+(m+k-2) p}(H) \quad$ with $\quad F=(0, \ldots, 0, f)^{\prime} \quad$ and \quad therefore $U \in$ $D_{2 p, s+(m+k-2) p}(H)$. Repeating this procedure, we see that $U \in D_{(k+1) p, s+(m-1) p}(H)$, that is, $u \in \mathscr{K}_{(m+k) p, s}(H)$.

Let $k=1$. For any $f \in \mathscr{K}_{p, s}(H)$ and $\alpha \in D_{s+m p+p^{\prime}}$ the unique solution u $\in \mathscr{K}_{(m+1) p, s}(H)$ satisfies
(6) $\|U(t)\|_{D_{s+m p+p^{\prime}}}^{2}+\int_{0}^{t}\|U(t)\|_{D_{s+(m+1) p}}^{2} d t \leqq C_{T}\left(\|\alpha\|_{D_{s+m p+p^{\prime}}}^{2}+\int_{0}^{t}\|f(t)\|_{s+p}^{2} d t\right)$
with a constant C_{T}. Put $V=D_{t} U$. Then $V \in D_{0, s+m p}(H), D_{t} V-A(t) V=D_{t} F+$ $D_{t} A(t) \cdot U \in D_{0, s+(m-1) p}(H), \mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}} V \in D_{s+(m-1) p+p^{\prime}}$ and therefore V satisfies
(7) $\|V(t)\|_{D_{s+(m-1) p+p^{\prime}}}^{2}+\int_{0}^{t}\|V(t)\|_{D_{s+m p}}^{2} d t$

$$
\leqq C_{T}^{\prime}\left(\|V(0)\|_{D_{s+(m-1) p+p^{\prime}}^{2}}^{2}+\int_{0}^{t}\left\|D_{t} f(t)\right\|_{s}^{2} d t+\int_{0}^{t}\|U(t)\|_{D_{s+m p}}^{2} d t\right)
$$

with constant C_{T}^{\prime}, where

$$
\|V(0)\|_{D_{s+(m-1) p+p^{\prime}}}^{2} \leqq C_{1}\|\alpha\|_{D_{s+m p+p^{\prime}}}^{2}+C_{2}\|f(\cdot, 0)\|_{s+p^{\prime}}^{2}
$$

with constants C_{1} and C_{2}. Summing (6) and (7) and applying Lemma 1 to the result, we have

$$
\begin{aligned}
& \sum_{j=0}^{m}\left\|D_{t}^{j} u(\cdot, t)\right\|_{s+(m-j) p+p^{\prime}}^{2}+\sum_{j=0}^{m} \int_{0}^{t}\left\|D_{t}^{j} u(\cdot, t)\right\|_{s+(m-j+1) p}^{2} d t \\
& \quad \leqq C_{T}^{\prime \prime}\left(\|\alpha\|_{D_{s+m p+p^{\prime}}}^{2}+\|f(\cdot, 0)\|_{s^{+p^{\prime}}}^{2}+\sum_{j=0}^{1} \int_{0}^{t}\left\|D_{t}^{j} f(\cdot, t)\right\|_{s^{+(1-j) p}}^{2} d t\right)
\end{aligned}
$$

with a constant $C_{T}^{\prime \prime}$. Repeating this procedure we obtain (5).
Let k be a positive integer and put $\mathfrak{y}_{0}=\mathscr{K}_{0, s}(H), \mathfrak{y}_{1}=\mathscr{K}_{k p, s}(H)$. Then \mathfrak{y}_{1} is dense in \mathfrak{y}_{0} and $\|u\|_{0, s} \leqq\|u\|_{k p, s}$ for any $u \in \mathfrak{y}_{1}$ and therefore there exists an unbounded self-adjoint operator J in \mathfrak{y}_{0} with domain \mathfrak{y}_{1}, which generates a Hilbert scale $\left\{\mathfrak{y}_{\lambda}\right\}_{-\infty<\lambda<\infty}$. In the same way as in the proof of Corollary 4 in [5, p. 97] we see that $\mathfrak{y}_{\lambda}=\mathscr{K}_{\lambda k p, s}(H)$ within the equivalent norms. From the preceding proposition the map $(f, \alpha) \rightarrow u$ which assignes a unique solution u to the data (f, α) is continuous from $\mathscr{K}_{0, s}(H) \times D_{s+m p-p^{\prime}}$ into $\mathscr{K}_{m p, s}(H)$ and from $\mathscr{K}_{k p, s}(H) \times D_{s+(m+k) p-p^{\prime}}$ into $\mathscr{K}_{(m+k) p, s}(H)$. By the interpolation theorem we obtain

Corollary 4. Let σ be any non-negative number. For any $f \in \mathscr{K}_{\sigma, s}(H)$ and $\alpha \in D_{\sigma+s+m p-p^{\prime}}$ there exists a unique solution $u \in \mathscr{K}_{\sigma+m p, s}(H)$ of the Cauchy problem (1) and $(f, \alpha) \rightarrow u$ is a continuous map from $\mathscr{K}_{\sigma, s}(H) \times D_{\sigma+s+m p-p^{\prime}}$ into $\mathscr{K}_{\sigma+m p, s}(H)$.

We shall denote by $\mathscr{\mathscr { K }}_{\sigma, s}\left(H_{-}\right)$the space which is a restriction of the space $\dot{\mathscr{K}}_{\sigma, s}\left(\bar{R}_{n+1}^{+}\right)$to $R_{n} \times(-\infty, T)$ and similarly $\mathscr{D}_{\sigma, s}\left(H_{-}\right)$is defined.

Proposition 5. Let σ be a real number with $-p^{\prime}<\sigma<0$. For any $f \in$ $\mathscr{K}_{\sigma, s}(H)$ and $\alpha \in D_{\sigma+s+m p-p^{\prime}}$ there exists a unique solution $u \in \mathscr{K}_{\sigma+m p, s}(H)$ of the Cauchy problem (1) and $(f, \alpha) \rightarrow u$ is a continuous map from $\mathscr{K}_{\sigma, s}(H) \times$ $D_{\sigma+s+m p-p^{\prime}}$ into $\mathscr{K}_{\sigma+m p, s}(H)$.

Proof. Let $f \in \mathscr{K}_{\sigma, s}(H)$ and $\alpha \in D_{\sigma+s+m p-p^{\prime}}$. Since $-p^{\prime}<\sigma<0$ the $\mathscr{D}_{L^{2}}^{\prime-c a n o n i c a l ~ e x t e n s i o n ~} f_{\sim}$ belongs to the space $\mathscr{\mathscr { K }}_{\sigma, s}\left(H_{-}\right)$. Let $g \in \mathscr{K}_{\sigma+m p, s}\left(H_{-}\right)$ be such that $\left(D_{t}-i \lambda^{p}\left(D_{x}\right)\right)^{m} g=f_{\sim}$, where $\lambda\left(D_{x}\right)$ is the operator with symbol $\lambda(\xi)=\left(1+|\xi|^{2}\right)^{1 / 2}$. Then it follows from Corollary 3 in [6, p. 393] that $\mathscr{D}_{L^{2-}}^{\prime-}$ $\lim _{t \downarrow 0}\left(g, D_{t} g, \ldots, D_{t}^{m-1} g\right)=0$. The Cauchy problem (1) is reduced to

$$
\left\{\begin{array}{l}
P(D)(u-g)=\sum_{j=1}^{m}\left((-i)^{j}\binom{m}{j} \lambda^{j p}\left(D_{x}\right)-a_{j}\left(x, t, D_{x}\right)\right) D_{t}^{m-j} g \quad \text { in } \stackrel{\circ}{H} \tag{8}\\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}}\left((u-g), D_{t}(u-g), \ldots, D_{t}^{m-1}(u-g)\right)=\alpha,
\end{array}\right.
$$

where $\sum_{j=1}^{m}\left((-i)^{j} \lambda^{j p}\left(D_{x}\right)-a_{j}\left(x, t, D_{x}\right)\right) D_{t}^{m-j} g \in \mathscr{H}_{\sigma+p, s-p}\left(H_{-}\right)$with $\sigma+p>p^{\prime}$. It follows from Corollary 4 that there exists a unique solution $v \in \mathscr{K}_{\sigma+(m+1) p, s-p}(H)$ of the Cauchy problem (8). Thus $u=v+g \in \mathscr{K}_{\sigma+m p, s}(H)$ is a unique solution of the Cauchy problem (1). In view of the closed graph theorem it follows that $(f, \alpha) \rightarrow u$ is a continuous map from $\mathscr{K}_{\sigma, s}(H) \times D_{\sigma+s+m p-p^{\prime}}$ into $\mathscr{K}_{\sigma+m p, s}(H)$.

Let σ, s be any real numbers and write $\sigma=k p+\sigma^{\prime}$ with integer k and $-p^{\prime}<$ $\sigma^{\prime} \leqq p^{\prime}$. Then we have the following

Theorem 5. For any $\alpha \in D_{\sigma+s+m p-p^{\prime}}$ and $f \in \mathscr{K}_{\sigma, s}(H)$ with $f_{\sim} \in \dot{\mathscr{K}}_{\sigma, s}\left(H_{-}\right)$ there exists a unique solution $u \in \mathscr{K}_{\sigma+m p, s}(H)$ of the Cauchy problem (1). In particular, if $\alpha=0$ then $u_{\sim} \in \mathscr{\mathscr { K }}_{\sigma+m p, s}\left(H_{-}\right)$.

Proof. Consider the case where $k \geqq 0$. By Proposition 5 and Corollary 4 it suffices to show that $u_{\sim} \in \mathscr{K}_{\sigma+m p, s}\left(H_{-}\right)$for $\alpha=0$. Suppose $\alpha=0$, that is, $\mathscr{D}_{L^{2}}^{\prime}-\lim _{t 0}\left(u, \ldots, D_{t}^{m-1} u\right)=0$. If $k>0$ then $f_{\sim} \in \mathscr{\mathscr { K }}_{k p+\sigma^{\prime}, s}\left(H_{-}\right)$implies $\mathscr{D}_{L^{2-}}^{\prime}$ $\lim _{t \downarrow 0}\left(f, \ldots, D_{t}^{k-1} f\right)=0$. From the equation $P(D) u=f$ we obtain $\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}}(u, \ldots$, $\left.D_{t}^{m+k-1} u\right)=0$ for $k \geqq 0$. If $\sigma^{\prime}<p^{\prime}$ then $u_{\sim} \in \mathscr{K}_{\sigma+m p, s}\left(H_{-}\right)$. If $\sigma^{\prime}=p^{\prime}$ then $u_{\sim} \in$ $\dot{\mathscr{K}}_{\sigma+(m-1) p, s+p}\left(H_{-}\right)$. Since $\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}}\left(u, \ldots, D_{t}^{m-1} u\right)=0$, if we put $V=\left(u_{\sim}\right.$, $\left.D_{t}\left(u_{\sim}\right), \ldots, D_{t}^{m-1}\left(u_{\sim}\right)\right)^{\prime}, F=\left(0, \ldots, 0, f_{\sim}\right)^{\prime}$, then $V \in D_{\sigma, s+m p}\left(H_{-}\right)$and $D_{t} V=A(t) V+$ $F \in \grave{D}_{\sigma, s+(m-1) p}\left(H_{-}\right)$and therefore $V \in D_{\sigma+p, s+(m-1) p}\left(H_{-}\right)$, that is, $u_{\sim} \in$ $\dot{\mathscr{K}}_{\sigma+m p, s}\left(H_{-}\right)$.

Consider the case where $k<0$. Assume that the results hold true of any $k+1$. Let $f_{\sim} \in \dot{\mathscr{K}}_{\sigma, s}\left(H_{-}\right), \sigma=k p+\sigma^{\prime}$ and $\alpha \in D_{\sigma+s+m p-p^{\prime}}$. Let $g \in \dot{\mathscr{K}}_{\sigma+m p, s}\left(H_{-}\right)$ be such that $\left(D_{t}-i \lambda^{p}\left(D_{x}\right)\right)^{m} g=f_{\sim}$. Then $\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}}\left(g, \ldots, D_{t}^{m-1} g\right)=0$ and the Cauchy problem (1) is reduced to (8), where $\sum_{j=1}^{m}\left((-i)^{j}\binom{m}{j} \lambda^{j p}\left(D_{x}\right)-a_{j}\left(x, t, D_{x}\right)\right)$. $D_{t}^{m-j} g \in \mathscr{K}_{\sigma+p, s-p}\left(H_{-}\right)$and $\sigma+p=(k+1) p+\sigma^{\prime}$. Thus there exists a unique solution $v \in \mathscr{K}_{\sigma+(m+1) p, s-p}(H)$. Consequently, $u=v+g \in \mathscr{K}_{\sigma+m p, s}(H)$. Since v_{\sim} $\in \dot{\mathscr{K}}_{\sigma+(m+1) p, s-p}\left(H_{-}\right)$for $\alpha=0$ we can conclude that $\mathrm{u}_{\sim}=v_{\sim}+g \in \mathscr{\mathscr { K }}_{\sigma+m p, s}\left(H_{-}\right)$.

Proposition 6. For any $h \in \mathscr{\mathscr { K }}_{\sigma, s}\left(H_{-}\right)$there exists a unique solution v $\in \dot{\mathscr{K}}_{\sigma+m p, s}\left(H_{-}\right)$of $P v=h$.

Proof. In the case where $\sigma>-p^{\prime}$, the problem to find a solution v of $P v=h$ is equivalent to the problem to find a solution u of the Cauchy problem
 unique solution $u \in \mathscr{K}_{\sigma+m p, s}(H)$ and $u_{\sim} \in \mathscr{K}_{\sigma+m p, s}\left(H_{-}\right)$.

In the case where $\sigma \leqq-p^{\prime}$, our assertion will follow in the same way as in the proof of Theorem 5.

Let P be a regularly p-parabolic operator in $0 \leqq T<\infty$ and consider the Cauchy problem

$$
\left\{\begin{array}{l}
P u=f \quad \text { in } R_{n+1}^{+} \tag{9}\\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}}\left(u, D_{t} u, \ldots, D_{t}^{m-1} u\right)=\alpha
\end{array}\right.
$$

for given $\alpha \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} \times \cdots \times\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and $f \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)=\mathscr{D}^{\prime}\left(R_{t}^{+}\right) \varepsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ which has the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension f_{\sim}. From the fact that Theorem 3 holds true of any $H_{T}=R_{n} \times[0, T]$, the Cauchy problem (9) is unique in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(\bar{R}_{n+1}^{+}\right)$.

The spaces $\mathscr{K}_{\sigma, s}\left(\bar{R}_{n+1}^{+}\right)$and $\mathscr{\mathscr { K }}_{\sigma, s}\left(\bar{R}_{n+1}^{+}\right)$are defined in the same way as $\mathscr{K}_{\sigma, s}(H)$ and $\mathscr{K}_{\sigma, s}(H)$. By $\mathscr{K}_{\sigma, s}^{\sim}\left(\bar{R}_{n+1}^{+}\right)$we mean the space of $u \in \mathscr{D}^{\prime}\left(R_{n+1}^{+}\right)$ such that $\phi u \in \mathscr{K}_{\sigma, s}\left(\bar{R}_{n+1}^{+}\right)$for any $\phi \in \mathscr{D}\left(R_{t}\right)$ and the topology is defined by the semi-norms $u \rightarrow\|\phi u\|_{\sigma, s}$. Along the same way as in the proof of Theorem 5 and Proposition 6 we have the following

Theorem 5'. For any $\alpha \in D_{\sigma+s+m p-p^{\prime}}$ and $f \in \mathscr{K}_{\tilde{\sigma}, s}^{\sim}\left(\bar{R}_{n+1}^{+}\right)$with $f_{\sim} \in$ $\mathscr{K}_{\sigma, s}^{\sim}\left(\bar{R}_{n+1}^{+}\right)$there exists a unique solution $u \in \mathscr{K}_{\sigma+m p, s}^{\sim}\left(\bar{R}_{n+1}^{+}\right)$of the Cauchy problem (9). In particular, if $\alpha=0$ then $u_{\sim} \in \mathscr{\mathscr { K }} \tilde{\sigma} \tilde{\sigma}^{+m p, s}\left(\bar{R}_{n+1}^{+}\right)$.

Proposition 6^{\prime}. For any $h \in \mathscr{\mathscr { K }} \tilde{\sigma}_{\sigma, s}\left(\bar{R}_{n+1}^{+}\right)$there exists a unique solution $v \in \mathscr{\mathscr { K }}_{\sigma+m p, s}\left(\bar{R}_{n+1}^{+}\right)$of $P v=h$.

Let us denote by \mathscr{D}_{+}^{\prime} the subspace of \mathscr{D}_{t}^{\prime} which consists of all one-dimentional distributions with support contained in $[0, \infty)$ and by $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ the $\varepsilon-$ product $\mathscr{D}_{t}^{\prime} \varepsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$, which is a reflexive, ultrabornological Souslin space [6, p. 372]. In the same way as in the proof of Theorem 5 [7, p. 415] we have

Theorem 6. For any $h \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ there exists a unique solution $v \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ of $P v=h$ and $h \rightarrow v$ is a continuous map from $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ onto itself.

Proof. Take a sequence $\left\{t_{j}\right\}$ of real numbers such that $t_{0}<0<t_{1}<t_{2}<\cdots$, $\lim _{j \rightarrow \infty} t_{j}=\infty$ and put $U_{j}=\left(t_{j}, t_{j+2}\right)$. Let $\left\{\phi_{j}\right\}$ be a partition of unity subordinate to the covering $\left\{U_{j}\right\}_{j=0,1, \ldots}$ of $\left(t_{0}, \infty\right)$ and consider the equations $P v_{j}=\phi_{j} f$, $j=0,1, \ldots$, where $\phi_{j} f \in \mathscr{K}_{\dot{\sigma}_{j}, s_{j}}\left(\bar{R}_{n+1}^{+}\right)$. In virtue of Proposition 6^{\prime} there exists a unique solution $v_{j} \in \mathscr{\mathscr { K }} \tilde{\sigma}_{j}+m p, s_{j}\left(R_{n+1}^{+}\right) \subset\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. By our energy inequality $\left(E_{s}\right)$ we see that $v_{j}=0$ for $t<t_{j}$. Thus $v=\sum v_{j}$ is well defined in $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and v is unique in $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.

Consider the map

$$
l: \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \ni v \rightarrow P v \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right),
$$

which is linear, continuous and onto. Since the space $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is ultrabornological and Souslin it follows from the open mapping theorem that l is an epimorphism. Thus the proof is complete.

As a consequence of Theorem 6 we can state the following
Theorem 7. For any $\alpha \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} \times \cdots \times\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and $f \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ with $f_{\sim} \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, the fine Cauchy problem (9) has a unique solution u $\in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\left(f_{\sim}, \alpha\right) \rightarrow u_{\sim}$ is a continuous map under the topology of $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \times\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} \times \cdots \times\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and the topology of $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.

We shall close this paper with some remarks on the Cauchy problem (2):

$$
\left\{\begin{array}{l}
L U \equiv D_{t} U-A(t) U=F \quad \text { in } \stackrel{\circ}{H} \\
\mathscr{D}_{L^{2}}^{\prime}-\lim _{t \downarrow 0} U=\alpha
\end{array}\right.
$$

for preassigned $F \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H) \times \cdots \times \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ with $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension F_{\sim} and $\alpha \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} \times \cdots \times\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$. As shown in Theorem 1 the energy inequality $\left(E_{s}\right)$ holds true for any $U=\left(u_{1}, \ldots, u_{m}\right)^{\prime}, u_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$.

Let s be any real number. If for any $F \in D_{0, s}(H)$ and $\alpha \in D_{s+p^{\prime}}\left(R_{n}\right)$ there exists a solution $U \in D_{0, s+p}(H)$ of the Cauchy problem (2) we shall say that (CP) ${ }_{s}$ holds for L. As shown in Theorem 3, U is uniquely defined if it exists. In the same way as in the proof of Proposition 7' in [7, p. 434] we have

Proposition 7. (CP) solds for L if and only if the conditions that $W \in$ $D_{0,-s}^{*}(H), L^{*} W=0$ in $\stackrel{\circ}{H}$ and $\mathscr{D}_{L^{2}-\lim _{t \uparrow T}^{\prime}} W=0$ imply $W=0$ in $\stackrel{\circ}{H}$.

Lemma 2. Suppose (CP) holds for some s. Then, for any $F \in C_{0}^{\infty}(H) \times$ $\cdots \times C_{0}^{\infty}(H)$ and $\alpha \in C_{0}^{\infty}\left(R_{n}\right) \times \cdots \times C_{0}^{\infty}\left(R_{n}\right)$ a unique solution U of the Cauchy problem (2) belongs to the space $D_{0, s^{\prime}}(H)$ for any s^{\prime}.

Proof. From our assumption it follows that $U \in D_{0, s+p}(H)$. If we put $V_{1}=\lambda\left(D_{x}\right) U$, then

$$
\left\{\begin{array}{l}
D_{t} V_{1}+A(t) V_{1}=\lambda\left(D_{x}\right) F+\left(A(t) \lambda\left(D_{x}\right)-\lambda\left(D_{x}\right) A(t)\right) U \quad \text { in } \dot{H}, \\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}} V_{1}=\lambda\left(D_{x}\right) \alpha,
\end{array}\right.
$$

where $\lambda\left(D_{x}\right) F \in \mathscr{S}(H), \quad \lambda\left(D_{x}\right) \alpha \in \mathscr{S}\left(R_{n}\right)$ and $\left(A(t) \lambda\left(D_{x}\right)-\lambda\left(D_{x}\right) A(t)\right) U \in D_{0, s}(H)$ [6, p. 387]. From our assumption it follows that $V_{1}=\lambda\left(D_{x}\right) U \in D_{0, s+p}(H)$ and therefore $U \in D_{0, s+p+1}(H)$.

If we put $V_{2}=\lambda^{2}\left(D_{x}\right) U$, then

$$
\left\{\begin{array}{l}
D_{t} V_{2}+A(t) V_{2}=\lambda^{2}\left(D_{x}\right) F+\left(A(t) \lambda^{2}\left(D_{x}\right)-\lambda^{2}\left(D_{x}\right) A(t)\right) U \in D_{0, s}(H), \\
\mathscr{D}_{L^{2}--\lim _{t \downarrow 0} V_{2}=\lambda^{2}\left(D_{x}\right) \alpha \in \mathscr{S}\left(R_{n}\right)} .
\end{array}\right.
$$

Thus $V_{2}=\lambda^{2}\left(D_{x}\right) U \in D_{0, s+p}(H)$ and therefore $U \in D_{0, s+p+2}(H)$. Repeating this procedure, we see that $U \in \bigcap_{s} D_{0, s}(H)$.

Proposition 8. If (CP) holds for some s, then it does also for any s'.
Proof. For any given $F \in D_{0, s^{\prime}}(H)$ and $\alpha \in D_{s^{\prime}+p^{\prime}}\left(R_{n}\right)$ there exist two sequences $\left\{F_{j}\right\}, F_{j} \in C_{0}^{\infty}(H) \times \cdots \times C_{0}^{\infty}(H)$ and $\left\{\alpha_{j}\right\}, \alpha_{j} \in C_{o}^{\infty}\left(R_{n}\right) \times \cdots \times C_{0}^{\infty}\left(R_{n}\right)$ such that $\left\{F_{j}\right\}$ and $\left\{\alpha_{j}\right\}$ converge in $D_{0, s}(H)$ and $D_{s+p^{\prime}}\left(R_{n}\right)$ respectively. Let U_{j} be a unique solution of the Cauchy problem (2) for L associated with F_{j} and α_{j}.

Then U_{j} belongs to the space $\cap_{s} D_{0, s}(H)$ and it satisfies the energy inequality

$$
\left\|U_{j}(t)\right\|_{D_{s^{\prime}+p^{\prime}}}^{2}+\int_{0}^{t}\left\|U_{j}(t)\right\|_{D_{s^{\prime}+p}}^{2} d t \leqq C_{T}\left(\left\|\alpha_{j}\right\|_{D_{s^{\prime}+p^{\prime}}}^{2}+\int_{0}^{t}\left\|F_{j}(t)\right\|_{D_{s^{\prime}}}^{2}, d t\right), 0 \leqq t \leqq T
$$

with a constant C_{T}, which implies that $\left\{U_{j}\right\}$ is a Cauchy sequence in $D_{0, s^{\prime}+p}(H)$. By the relation $D_{t} U_{j}=F_{j}-A(t) U_{j} \in D_{0, s^{\prime}}(H)$ we see that $\left\{U_{j}\right\}$ is also a Cauchy sequence in $D_{p, s^{\prime}}(H)$. Let U be the limit of U_{j} in $D_{p, s^{\prime}}(H)$. Then $U \in D_{p, s^{\prime}}(H)$ satisfies $L U=F$ in $\stackrel{\circ}{H}$ and $\mathscr{D}_{L^{2}}^{\prime-} \lim _{t \downarrow 0} U=\alpha$, which means that $(\mathrm{CP})_{s^{\prime}}$ holds true.

From the energy inequality $\left(\mathrm{E}_{s}\right)$ and Proposition 8 we can prove the following proposition in the same arguments as used in [7, Proposition 6].

Proposition 9. If for any $F \in D_{0, s}(H)$ and $\alpha \in D_{s+p^{\prime}}\left(R_{n}\right)$ the Cauchy problem (2) has a solution $U \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H) \times \cdots \times \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$, then $U \in D_{p, s}(H)$.

If we suppose $(\mathrm{CP})_{0}$ for L, then our discussions on the Cauchy problem for a specified parabolic system given in Section 6 of [7] can be applied also to the Cauchy problem for L.

References

[1] J. Dieudonné, Calcul infinitésimal, Hermann, 1968.
[2] D. Ellis, An energy inequality for higher order linear parabolic operators and its applications, Trans. Amer. Math. Soc. 165 (1972), 167-206.
[3] M. Itano, On the fine Cauchy problem for the system of linear partial differential equations, J. Sci. Hiroshima Univ. Ser. A-I 33 (1969), 11-27.
[4] M. Itano, Note on the canonical extensions and the boundary values for distributions in the space H^{μ}, Hiroshima Math. J. 1 (1971), 405-425.
[5] M. Itano and K. Yoshida, Energy inequalities and Cauchy problem for a system of linear partial differential equations, Hiroshima Math. J. 1 (1971), 75-108.
[6] M. Itano and K. Yoshida, A study of $\mathscr{D}_{L^{2}}^{\prime}$-valued distributions on a semi-axis in connection with the Cauchy problem for a pseudo-differential system, Hiroshima Math. J. 2 (1972), 369-396.
[7] M. Itano and K. Yoshida, Energy inequalities and the Cauchy problem for a pseudo-differential system, Hiroshima Math. J. 2 (1972), 397-444.
[8] L. Hörmander, Linear partial differential operators, Springer, 1969.
[9] S. Kaplan, An analogue of Gårding's inequality for parabolic operators and its applications, J. Math. Mech. 19 (1969), 171-187.
[10] J. Leray, Hyperbolic differential equations, The Institute for Advanced Study, Princeton, N. J., 1953. Reprinted November, 1955.
[11] S. Mizohata, Le problème de Cauchy pour les équations paraboliques, J. Math. Soc. Japan 8 (1956), 269-299.

> Department of Mathematics, Faculty of General Education, Hiroshima University

