Harmonic Functions and the Borel-Weil Theorem

Atsutaka Kowata and Kiyosato Окамото

(Received September 14, 1973)

§ 1. Introduction

In the previous paper [3], we proved that, for non-zero eigenvalues, arbitrary eigenfunctions of the laplacian can be given by the "Poisson integral" of elements of a certain space $\widetilde{\mathscr{B}}\left(S^{n-1}\right)$ which contains the space of hyperfunctions on the $(n-1)$ dimensional unit sphere as a proper subspace.

In case the eigenvalue is zero, however, the Poisson integral gives only constant functions.

In this paper, we shall give the modification of the Poisson integral so that, using the Borel-Weil theorem, the modified "Poisson integral" gives the canonical isomorphism between the space of all homogeneous harmonic polynomials on $\boldsymbol{R}^{\boldsymbol{n}}$ of degree m and the space of all holomorphic sections of a certain $\operatorname{SO}(n, \boldsymbol{C})$ -homogeneous holomorphic line bundle L_{m} over the Grassmann manifold $S O(n) /$ $S O(2) \times S O(n-2)$. In the last section, we shall consider a certain space $\oplus \sum_{m \geq 0} \Gamma$ (L_{m}) and show that every harmonic function on \boldsymbol{R}^{n} can be represented by an analogue of the "Poisson integral" of the unique element of $\oplus \sum_{m \geqq 0} \Gamma\left(L_{m}\right)$.

§ 2. Homogeneous harmonic polynomials

In this section we shall refer to general properties about harmonic polynomials which we need in the following sections. In this paper, we denote by G the rotation group of degree n, where n is a positive integer. For each non-negative integer m, let $\mathscr{H}^{n, m}$ denote the space of all homogeneous harmonic polynomials on \boldsymbol{R}^{n} of degree m. By left translations, one obtains an irreducible (unitary) representation τ_{m} of G on $\mathscr{H}^{n, m}$. The representation τ_{m} is of class one with respect to the subgroup H^{\prime} of G consisting of all elements of the form

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & h
\end{array}\right): \quad h \in S O(n-1, \boldsymbol{R})
$$

and every irreducible representation of G of class one with respect to H^{\prime} is equivalent to τ_{m} for some non-negative integer m.

Let P^{n} be the ring of polynomial function on \boldsymbol{R}^{n} with coefficients in the complex field \boldsymbol{C}, and $P^{n, m}$ be the subspace of P^{n} consisting of all m-homogeneous
elements. We define the harmonic projection H_{p} of $P^{n, m}$ into $\mathscr{H}^{n, m}$ by

$$
H_{p} f(x)=\sum_{k=0}^{[m / 2]} \frac{(-1)^{k} r^{2 k}\left(\Delta^{k} f\right)(x)}{2^{k} k!(n+2 m-4) \cdots(n+2 m-2 k-2)}
$$

for $x=\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n}$ where r is the norm of x with respect to the usual Euclidean metric and Δ is the Laplace-Beltrami operator. Then the following sequence is exact (see Vilenkin [8]):

$$
\begin{equation*}
0 \longrightarrow r^{2} p^{n, m-2} \longrightarrow p^{n, m} \xrightarrow{H_{p}} \mathscr{H}^{n, m} \longrightarrow 0 . \tag{1}
\end{equation*}
$$

The group G acts on P^{n} by left-translations, and this projection H_{p} is a G-homomorphism of $P^{n, m}$ onto $\mathscr{H}^{n, m}$ for each m. In this paper, we write [f] instead of $H_{p}(f)$ for every $f \in p^{n, m}$.

For each non-negative integer m, there exists a set J_{m} of multi-indices (i_{1}, \ldots, i_{n}) of non-negative integers such that 1) $i_{1}+\ldots+i_{n}=m$ and 2) $\left\{\left[f_{i_{1} \ldots i_{n}}\right]:\left(i_{1}, \ldots\right.\right.$, $\left.\left.i_{n}\right) \in J_{m}\right\}$ is a basis of $\mathscr{H}^{n, m}$, where $f_{i_{1} \ldots i_{n}}$ is a polynomial function on \boldsymbol{R}^{n} defined by $f_{i_{1} \ldots i_{n}}(x)=x_{1}^{i_{1} \cdots x_{n}^{i_{n}}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{R}^{n}$.

§ 3. The Borel-Weil theorem for $\operatorname{SO}(n, R)$

In this section we shall construct a G-irreducible subspace of $C^{\infty}(S O(n, \boldsymbol{R}) /$ $S O(n-2, \boldsymbol{R})$) equivalent to τ_{m}.

Define subgroups H and K of G by

$$
\begin{aligned}
& H=\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & \\
0 & h
\end{array}\right): h \in S O(n-2, \boldsymbol{R})\right\}, \\
& K=\left\{\left(\begin{array}{ll}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right): K_{1} \in \operatorname{SO}(2, \boldsymbol{R}), k_{2} \in \operatorname{SO}(n-2, \boldsymbol{R})\right\} .
\end{aligned}
$$

The group $S O(2, \boldsymbol{R})$ acts on the Stiefel manifold G / H as right-translations:

$$
(g H) \cdot u_{\theta}=g\left(\begin{array}{cccc}
u_{\theta} & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) H
$$

where $g \in G$ and $u_{\theta}=\binom{\cos \theta \sin \theta}{-\sin \theta \cos \theta} \in S O(2, \boldsymbol{R})$.
The space G / H is a fibre bundle over G / K with fibre $S O(2, \boldsymbol{R})$. For each nonnegative integer m, let ξ_{m} be the unitary character of $\operatorname{SO}(2, \boldsymbol{R})$ defined by

$$
\xi_{m}\left(u_{\theta}\right)=e^{i m \theta} \quad \text { for } \quad u_{\theta} \in S O(2, \boldsymbol{R})
$$

then we have an associated line bundle \tilde{L}_{m} on G / K. The space $C^{\infty}\left(\tilde{L}_{m}\right)$ of all C^{∞}-sections on \tilde{L}_{m} becomes a G-module by left-translations and it is isomorphic to the G-module;

$$
\left\{f \in C^{\infty}(G / H) ; f\left(p u_{\theta}\right)=\xi_{m}\left(u_{\theta}\right)^{-1} f(p) ; p \in G / H, u_{\theta} \in \operatorname{SO}(2, \boldsymbol{R})\right\}
$$

Thus, we regard $C^{\infty}\left(\tilde{L}_{m}\right)$ as a subspace of $C^{\infty}(G / H)$.
Now the space G / K has a G-invariant complex structure holomorphically isomorphic to $G^{\boldsymbol{c}} / K^{\boldsymbol{c}} \boldsymbol{P}_{+}$, where $G^{\boldsymbol{c}}$ and $K^{\boldsymbol{c}}$ are complexifications of G and K respectively and P_{+}is the subgroup of $G^{\boldsymbol{c}}$, consisting of all elements of the form;

$$
\left(\begin{array}{cccc}
1-\frac{1}{2}\left(z_{3}^{2}+\cdots+z_{n}^{2}\right), & \frac{i}{2}\left(z_{3}^{2}+\cdots+z_{n}^{2}\right), & -z_{3}, \ldots,-z_{n} \\
\frac{i}{2}\left(z_{3}^{2}+\cdots+z_{n}^{2}\right), 1+\frac{1}{2}\left(z_{3}^{2}+\cdots+z_{n}^{2}\right), & i z_{3}, \ldots, i z_{n} \\
z_{3}, & -i z_{3}, & 1 & \\
\vdots, & \vdots & 0 \\
z_{n}, & -i z_{n}, & 0 & \ddots \\
1
\end{array}\right): z_{3}, \ldots, z_{n} \in \boldsymbol{C}
$$

For each non-negative integer m, we define the holomorphic character ξ_{m} of $K^{c} P_{+}$by

$$
\xi_{m}(u z)=e^{i m \theta} \text { for every } u=\left(\begin{array}{ll}
u_{\theta} & 0 \\
0 & u^{\prime}
\end{array}\right) \in K^{c} \quad \text { and } \quad z \in P_{+}
$$

Where

$$
u_{\theta}=\binom{\cos \theta, \sin \theta}{-\sin \theta, \cos \theta} \in S O(2, \boldsymbol{C}) \text { and } u^{\prime} \in S O(n-2, \boldsymbol{C})
$$

Then we obtain a $G^{\boldsymbol{c}}$-homogeneous holomorphic line bundle L_{m} over $\boldsymbol{G}^{\boldsymbol{c}} / \boldsymbol{K}^{\boldsymbol{c}} \boldsymbol{P}_{+}$, which is C^{∞}-isomorphic to \tilde{L}_{m}. The space $\Gamma\left(L_{m}\right)$ of all holomorphic sections of L_{m}, may be identified with the space.

$$
\left\{f \in \operatorname{Hol}\left(S O(n, \boldsymbol{C}): f(\omega \gamma)=\xi_{m}^{-1}(\gamma) f(\omega), \omega \in S O(n, \boldsymbol{C}), \gamma \in K^{c} P_{+}\right\},\right.
$$

and the group G acts on them by left-translations. Thus, we obtain the following relations:

$$
\Gamma\left(L_{m}\right) \hookrightarrow C^{\infty}\left(L_{m}\right) \cong C^{\infty}\left(L_{m}\right) \hookrightarrow C^{\infty}(G / H)
$$

where \hookrightarrow or \cong implies a G-module inclusion or a G-module isomorphism respectively. By the well-known Borel-Weil theorem, the representation π_{m} of G on $\Gamma\left(L_{m}\right)$ is irreducible and equivalent to τ_{m}.

For a multi-index $\left(i_{1} \ldots i_{n}\right)$ of non-negative integers, we define a holomorphic function $\varphi_{i_{1} \ldots i_{n}}$ on $S O(n, \boldsymbol{C})$ by

$$
\varphi_{i_{1} \ldots i_{n}}(g)=\left(x_{1}-i y_{1}\right)^{i_{1} \ldots\left(x_{n}-i y_{n}\right)^{i_{n}} \quad \text { for each } g=\left(\begin{array}{ccc}
x_{1} & y_{1} \\
\vdots & \vdots & * \\
x_{n} & y_{n}
\end{array}\right) \in S O(n, \boldsymbol{C}), ~(1)}
$$

It is easily seen that $\varphi_{i_{1} \ldots i_{n}}$ satisfies $\varphi_{i_{1} \ldots i_{n}}(\omega \gamma)=\xi_{m}(\gamma)^{-1} \varphi_{i_{1} \ldots i_{n}}(\omega)$ for every ω in $\boldsymbol{S O}(n, \boldsymbol{C})$ and γ in $K^{\boldsymbol{c}} P_{+}$and so $\varphi_{i_{1} \ldots i_{n}}$ is included in $\Gamma\left(L_{m}\right)$.

Moreover $\left\{\varphi_{i_{1} \ldots i_{n}}:\left(i_{1} \ldots i_{n}\right) \in J_{m}\right\}$ forms a basis of $\Gamma\left(L_{m}\right)$ since the space $\Gamma\left(L_{m}\right)$ can be identified with the space $\boldsymbol{C}\left[z_{1} \ldots z_{n}\right] /\left(z_{1}^{2}+\cdots+z_{n}^{2}\right)$; where \boldsymbol{C} $\left[z_{1}, \ldots, z_{n}\right]$ denotes the polynomial ring of n-variables z_{1}, \ldots, z_{n} and $\left(z_{1}^{2}+\cdots+z_{n}^{2}\right)$ is the ideal in $\boldsymbol{C}\left[z_{1}, \ldots, z_{n}\right]$ generated by $z_{1}^{2}+\cdots+z_{n}^{2}$. This identification is given by the assignment of $z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}$ to $\varphi_{i_{1} \ldots i_{n}}$.

§ 4. Poisson integral

In view of $\S 2$ and $\S 3$, the representation of G on $\Gamma\left(L_{m}\right)$ is equivalent to (τ_{m}, $\left.\mathscr{H}^{n, m}\right)$. In this section, we shall show that the Poisson integral gives an intertwining operater between them. We fix $\omega_{0}={ }^{t}(1, i, 0, \ldots, 0)$, once for all.

Proposition 4.1. For each holomorphic section φ in $\Gamma\left(L_{m}\right)$, we define a function f on \boldsymbol{R}^{n} by the following integral:

$$
f(x)=\int_{G / H} e^{i<x, \omega>} \varphi(\omega) d \omega \quad \text { for each } \quad x \in \boldsymbol{R}^{n}
$$

where $d \omega$ is the G-invariant measure on G / H normalized by $\int_{G / H} d \omega=1$ and $<x, \omega\rangle$ denotes the complex-bilinear inner product $\left\langle x, g \omega_{0}\right\rangle$ for $\omega=g H$. Then f is in $\mathscr{H}^{n, m}$.

Proof. For each x in \boldsymbol{R}^{n} we can regard $e^{i<x, \omega>} \varphi(\omega)$ as a function on G,

$$
f(x)=\int_{G} e^{i<x, g \omega_{0}>} \varphi(g) d g
$$

where $d g$ is the Haar measure on G normalized by $\int_{G} d g=1$. Since $d g$ is a Haar measure on G, we have

$$
\begin{aligned}
f(x) & =\int_{G}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i<x, g \omega_{0}>e^{i \theta}} e^{-i m \theta} d \theta\right] \varphi(g) d g \\
& =\frac{i^{m}}{m!} \int_{G}\left(<x, g \omega_{0}>\right)^{m} \varphi(g) d g \\
& =\frac{i^{m}}{m!} \int_{G / H}(<x, \omega>)^{m} \varphi(\omega) d \omega,
\end{aligned}
$$

and so f is a homogeneous polynomial of the degree m on \boldsymbol{R}^{n}. The fact that f is in $\mathscr{H}^{n, m}$ is an immediate consequence from $\Delta(\langle x, \omega\rangle)^{m}=0$ where Δ is the Laplacian with respect to the variable x.

By Proposition 4.1, the correspondence $\varphi \rightarrow f$ defines a linear transformation \mathscr{P} of $\Gamma\left(L_{m}\right)$ to $\mathscr{H}^{n, m}$.

Theorem 1. The map \mathscr{Z} is a G-isomorphism of $\Gamma\left(L_{m}\right)$ onto $\mathscr{H}^{n, m}$.
Proof. Both $\Gamma\left(L_{m}\right)$ and $\mathscr{H}^{n, m}$ are irreducible G-module and, as one can see easily from its definition, \mathscr{P} commutes with the action of G, and so it is sufficient for the proof of this theorem to show that there exists φ in $\Gamma\left(L_{m}\right)$ such that \mathscr{P} $(\varphi) \neq 0$. Indeed, for $\varphi=\varphi_{m, 0 . .0}$, we have

$$
\mathscr{P}(\varphi) x_{0}=\frac{i^{m}}{m!} \int_{G}\left(x_{1}^{2}+y_{1}^{2}\right)^{m} d g \neq 0
$$

where $x_{0}=t(1,0 \ldots 0) \in \boldsymbol{R}^{n}$ and $g=\left(\begin{array}{ccc}x_{1} & y_{1} \\ \vdots & \vdots & * \\ x_{n} & y_{n}\end{array}\right) \in G$.
This completes the proof of the theorem.
We set

$$
C_{m}=\left\{\begin{array}{r}
\left.\frac{2^{p-1} \Gamma(p) \Gamma(2 p-2) i^{m}(2 m)!2^{m} \Gamma(m+p-1)}{\Gamma(p-1) m!(2 m+2 p-2)!\Gamma(m+2 p-2)} \quad \text { (if } n \text { is an even integer } 2 p\right) \\
\frac{\sqrt{\pi} 2^{p-1} \Gamma\left(p+\frac{1}{2}\right) \Gamma(2 p-1) i^{m}(2 m)!2^{m} \Gamma\left(m+p-\frac{1}{2}\right)}{\Gamma\left(p-\frac{1}{2}\right) m!(2 m+2 p-2)!\Gamma(m+2 p-1)} \frac{2 m+2 p-2}{2 m+2 p-1} \cdots \frac{3}{4} \frac{1}{2} \\
\text { (if } n \text { is an odd integer } 2 p+1)
\end{array}\right.
$$

Then we have

Corollary 4.2

$$
\mathscr{P}\left(\varphi_{i_{1} \ldots i_{n}}\right)=C_{m}\left[f_{i_{1} \ldots i_{n}}\right], \text { for every }\left(i_{1}, \ldots, i_{n}\right) \in J_{m} .
$$

Proof. It is not difficult to see that $\left\{\varphi_{i_{1} \ldots i_{n}}:\left(i_{1} \ldots i_{n}\right) \in J_{m}\right\}$ and $\left\{\left[f_{i_{1} \ldots i_{n}}\right]\right.$: $\left.\left(i_{1} \ldots i_{n}\right) \in J_{m}\right\}$ are bases of $\Gamma\left(L_{m}\right)$ and $\mathscr{H}^{n, m}$ equivalent under the action of G. And so there exists a non-zero constant C_{m}^{\prime}, which depends only n, m, such that $\mathscr{P}\left(\varphi_{i_{1} \ldots i_{n}}\right)=C_{m}^{\prime}\left[f_{i_{1} \ldots i_{n}}\right]$ for every $\left(i_{1} \ldots i_{n}\right) \in J_{m}$. In order to know this constant, we shall calculate the value of $\mathscr{P}\left(\varphi_{m, 0}, .0\right)$ at the point $(1,0, \ldots, 0)$ in $\boldsymbol{R}^{\boldsymbol{n}}$. It is shown in Vilenkin [8] that

$$
\left[f_{m, 0 \ldots 0}\right](1,0 \ldots 0)=\frac{\Gamma\left(\frac{n-2}{2}\right) \Gamma(m+n-2)}{2^{m} \Gamma\left(m+\frac{n-2}{2}\right) \Gamma(n-2)}
$$

On the other hand, we have

$$
\begin{aligned}
& \mathscr{P}\left(\varphi_{m, 0 \ldots 0}\right)(1,0 \ldots 0)=\frac{i^{m}}{m!} \int_{S^{n-1}}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)^{m} d \omega \\
& \quad=\left\{\begin{array}{l}
\left.2^{p-1} \Gamma(p) \frac{i^{m}(2 m)!}{m!(2 m+2 p-2)!} \quad \text { (if } m=0(\bmod 2)\right) \\
\sqrt{\pi} 2^{p-1} \Gamma\left(p+\frac{1}{2}\right) \frac{i^{m}(2 m)!}{m!(2 m+2 p-2)!} \frac{2 m+2 p-2}{2 m+2 p-1} \cdots \frac{3}{4} \frac{1}{2} \quad(\text { if } m=1(\bmod 2)) .
\end{array}\right.
\end{aligned}
$$

Thus we have $C_{m}^{\prime}=C_{m}$.

§ 5. Harmonic functions and Poisson transform

Let us consider the differential equation
where

$$
\begin{aligned}
\Delta f & =0 \quad f \in C^{\infty}\left(\boldsymbol{R}^{n}\right) \\
\Delta & =-\sum_{i=1} \frac{\partial}{\partial x_{i}^{2}} .
\end{aligned}
$$

We denote by $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$ the space of all C^{∞}-differentiable functions f which satisfy $\Delta f=0$, and by $\oplus_{m \geqq 0} \sum_{\mathscr{H}} \mathscr{H}^{n, m}$ the space of the series $\sum_{m \geq 0} f_{m}\left(f_{m} \in \mathscr{H}_{n, m}\right)$ which converges absolutely and uniformly on every compact subset in \boldsymbol{R}^{n}. Then we have the following

Proposition 5.1. $\quad C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}=\oplus_{m \geq 0} \sum_{\mathscr{H}^{n}, m}$
Proof. By definition it is easy to see that $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$ contains $\oplus \sum_{m \geq 0} \mathscr{H}^{n, m}$. So we have only to prove that $\oplus_{m \geq 0} \mathscr{H}^{n, m}$ contains $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$. Since the laplacian Δ is an elliptic defferential operator, each element in $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$ is a real analytic function on \boldsymbol{R}^{n}. It is well-known that a harmonic function f has an expansion $f=\sum_{m \geqq 0} f_{m}\left(f_{m} \in P^{n, m}\right)$ which converges absolutely and uniformly on every compact subsets in \boldsymbol{R}^{n}. From $\Delta f=0$, we have $\Delta f_{m}=0$ each m. Therefore f_{m} is in $\mathscr{H}^{n, m}$, and as f is in $\oplus_{m \geqq 0} \mathscr{H}^{n, m}$. This completes the proof of the lemma.

Let $\left\{\varphi_{i_{1} \ldots i_{n}}:\left(i_{1} \ldots i_{n}\right) \in J_{m}\right\}$ be the basis of $\Gamma\left(L_{m}\right)$, which is defined in $\S 3$. We denote by $\oplus_{m \geqq 0} \Gamma\left(L_{m}\right)$ the space of all formal series $\sum_{m \geq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{n}} a_{i_{1} \ldots i_{n}} \varphi_{i_{1} \ldots i_{n}}$ with complex coefficients satisfying $\sum_{m \geq 0} \frac{\left\|a_{m}\right\|}{m!} s^{m}<+\infty$ for all $s>0$ where $\left\|a_{m}\right\|=$ $\max _{\left(i_{1} \ldots i_{n}\right) \in J_{m}}\left|a_{i_{1} \ldots i_{n}}\right|$. We remark here that every element $\sum_{m 30} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} a_{i_{1} \ldots i_{n}} \varphi_{i_{1} \ldots i_{n}}$
$\operatorname{in} \oplus_{m \geq 0} \sum_{m} \Gamma\left(L_{m}\right)$ satisfies $\sum_{m \geq 0} \frac{\mid p(m)\| \| a_{m} \|_{S^{m}}}{m!}<+\infty$ for any polynomial P in m and for all $s>0$.

The following proposition assures that the Poisson integral \mathscr{P} may be extended to a linear transformation of $\oplus_{m \geq 0} \sum_{m} \Gamma\left(L_{m}\right)$ into $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$

Proposition 5.2. For every $\sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} a_{i_{1} \ldots i_{n}} \varphi_{i_{1} \ldots i_{n}} \in \oplus \sum_{m \geqq 0} \Gamma\left(L_{m}\right)$, the series

$$
f(x)=\sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} a_{i_{1} \ldots i_{n}} \int_{G / H} e^{i<x, \omega>} \varphi_{i_{1} \ldots i_{n}}(\omega) d \omega
$$

converges absolutely and uniformly on compact subsets in \boldsymbol{R}^{n}, and f is an element of $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$.

Proof. For non-negative integers k and m and for a multi-index $\left(i_{1}, \ldots, i_{n}\right)$ in J_{m}, we have

$$
\left|\left(\Delta^{k} f_{i_{1} \ldots i_{n}}\right)(x)\right| \leqq n^{2} m^{2 k} r^{m-2 k}
$$

where $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=r^{2}$. It follows from the above inequality and the definition of the harmonic projection that $\left|\left[f_{i_{1} \ldots i_{n}}\right](x)\right| \leqq n^{2} e^{m / 2} r^{m}$ for every $\left(i_{1} \ldots i_{n}\right) \in J_{m}$. We fix $r_{0}>0$. For any x in \boldsymbol{R}^{n} such that $\|x\|<r_{0}$, we have

$$
\begin{aligned}
& \sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}}\left|a_{i_{1} \ldots i_{n}} \int_{G / H} e^{i<x, \omega>} \varphi_{i_{1} \ldots i_{n}}(\omega) d \omega\right| \\
= & \sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}}\left|C_{m} a_{i_{1} \ldots i_{n}}\left[f_{i_{1} \ldots i_{n}}\right](x)\right| \\
\leqq & \sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} C_{m}\left|a_{i_{1} \ldots i_{n}} \|\left[f_{i_{1} \ldots i_{n}}\right](x)\right| \\
\leqq & \sum_{m \geqq 0} b_{n} d(m) \frac{\left\|a_{m}\right\|}{m!}(2 \sqrt{e} r)^{m} \quad\left(\text { where } d(m)=\operatorname{dim} \mathscr{H}^{n, m}\right) \\
< & \sum_{m \geqq 0} b_{n} d(m) \frac{\left\|a_{m}\right\|}{m!}\left(2 \sqrt{e} r_{0}\right)^{m}
\end{aligned}
$$

where

$$
b_{n}= \begin{cases}\frac{a_{n}=2^{p+1} p^{2} \Gamma(p) \Gamma(2 p-2)}{\Gamma(p-1)} & \text { (if } n=2 p) \\ \frac{\sqrt{\pi} 2^{p-1}(2 p+1)^{2} \Gamma\left(p+\frac{1}{2}\right) \Gamma(2 p-1)}{\Gamma\left(p-\frac{1}{2}\right)} & \text { (if } n=2 p+1)\end{cases}
$$

which is convergent since d is a polynomial function is m, thus the series in the proposition converges absolutely and uniformly on every compact subset in \boldsymbol{R}^{n}. Moreover, f belongs to $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$, since each term in the expansion of f is a harmonic function on \boldsymbol{R}^{n}. This completes the proof of Proposition 5.2.

Now we can define the Poisson transform \mathscr{P} of $\oplus \sum_{m \geqq 0} \Gamma\left(L_{m}\right)$ into $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$:

$$
(\mathscr{P} \varphi)(x)=\sum_{m \geq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} a_{i_{1} \ldots i_{n}} \int_{G / H} e^{i<x, \omega>} \varphi_{i_{1} \ldots i_{n}}(\omega) d \omega
$$

for every $\varphi=\sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} a_{i_{1} \ldots i_{n}} \varphi_{i_{1} \ldots i_{n}}$ in $\oplus_{m \geq 0} \Gamma\left(L_{m}\right)$. Then the following theorem says that every solution of the differential equation $\Delta f=0$ can be given by the "Poisson transform" of an element in $\oplus \sum_{m \geqq 0} \Gamma\left(L_{m}\right)$.

Theorem 2. The map \mathscr{P} is a linear isomorphism of $\oplus_{m \geqq 0} \Gamma\left(L_{m}\right)$ onto $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{\Delta}$.

Proof. From Corollary 4.2. and Proposition 5.2, \mathscr{P} is injective, and so it suffices to show that \mathscr{P} is surjective.

Let f be an arbitrary element of $C^{\infty}\left(\boldsymbol{R}^{n}\right)_{4}$. By. Proposition 5.1, f has an absolutely convergent expansion:

$$
f=\sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} a_{i_{1} \ldots i_{n}}\left[f_{i_{1} \ldots i_{n}}\right]
$$

where $a_{i_{1} \ldots i_{n}} \in \boldsymbol{C}$.
Since each term $a_{i_{1} \ldots i_{n}}\left[f_{i_{1} \ldots i_{n}}\right]\left(\left(i_{1} \ldots i_{n}\right) \in J_{m}\right)$ is a polynomial of degree m, the series $\sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} a_{i_{1} \ldots i_{n}}\left[f_{i_{1} \ldots i_{n}}\right]$ converges absolutely not only on \boldsymbol{R}^{n} but also on \boldsymbol{C}^{n}. Especially the above series converges absolutely at the point $\left(t, \omega t, \ldots, \omega^{n-1} t\right)$ in \boldsymbol{C}^{n}, where t is a positive real number and $\omega=\cos \frac{\pi}{n}+i \sin \frac{\pi}{n}$. Thus we have

$$
\sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}}\left|a_{i_{1} \ldots i_{n}}\right|\left|\left[f_{i_{1} \ldots i_{n}}\right]\left(t, \omega t, \ldots, \omega^{n-1} t\right)\right|<+\infty
$$

By the exactness of the sequence (1) in $\S 2$, we have

$$
\left[f_{i_{1} \ldots i_{n}}\right]-f_{i_{1} \ldots i_{n}} \in r^{2} p^{n, m-2},
$$

so we have

$$
\left|\left[f_{i_{1} \ldots i_{n}}\right]\left(t, \omega t, \ldots, \omega^{n-1} t\right)\right|=\left|f_{i_{1} \ldots i_{n}}\left(t, \ldots, \omega^{n-1} t\right)\right|=t^{m}
$$

Therefore

$$
\sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}}\left|a_{i_{1} \ldots i_{n}}\right| t^{m}<+\infty \quad(\text { for any } t>0)
$$

Hence $\sum_{m \geq 0}\left\|a_{m}\right\| t^{m}<+\infty$ for any $t>0$ where $\left\|a_{m}\right\|=\max \left\{\left|a_{i_{1} \ldots i_{n}}\right|:\left(i_{1} \ldots i_{n}\right) \in J_{m}\right\}$ From Cauchy-Hadamard's test, we have

$$
\varlimsup_{m \rightarrow \infty}\left(\left\|a_{m}\right\|\right)^{1 / m}=0
$$

and so,

$$
\varlimsup_{m \rightarrow \infty}\left(\frac{\left\|a_{m}\right\|}{\left|C_{m}\right| m!}\right)^{1 / m}=0
$$

This implies that

$$
\sum_{m \geqq 0} \frac{1}{m!}\left\|\frac{a_{m}}{c_{m}}\right\| s^{m}<+\infty \quad \text { for any } s>0
$$

Now we put

$$
\varphi=\sum_{m \geqq 0} \sum_{\left(i_{1} \ldots i_{n}\right) \in J_{m}} C_{m}^{-1} a_{i_{1} \ldots i_{n}} \varphi_{i_{1} \ldots i_{n}}
$$

Then φ lies in $\oplus \sum_{m \geq 0} \Gamma\left(L_{m}\right)$ and satisfies $\mathscr{P} \varphi=f$.
This completes the proof of the theorem.

References

[1] R. Courant and D. Hilbert, Methods of Mathematical Physhics vol. 2, Interscience, New York (1962).
[2] L. Ehrenpreis, Fourier analysis in several complex variables, Interscience, New York (1970).
[3] M. Hashizume, A. Kowata, K. Minemura and K. Okamoto, An integral representation of an eigenfunction of the laplacian on the euclidean space, Hiroshima Math. J. 2 (1972), 535-545.
[4] M. Hashizume, K. Minemura and K. Okamoto, Harmonic functions on a symmetric space of rank one, Hiroshima Math. J. 3 (1973), 81-108.
[5] S. Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154.
[6] B. Kostant, Lie algebra cohomology and the generalized BorelWeil theorem, Ann. of Math. 74 (1961), 329-387.
[7] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
[8] N. YA. Vilenkin, Special functions and the theory of group representations, Translations of Math. Mono. vol. 22, Amer. Math. Soc., Providence, Rhode Island (1968).

Department of Mathematics,
 Faculty of Science, Hiroshima University

