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§ 1. Introduction

In the previous paper [3], we proved that, for non-zero eigenvalues, arbit-

rary eigenfunctions of the laplacian can be given by the "Poisson integral" of

elements of a certain space &(Sn~ι) which contains the space of hyperfunctions

on the (ft — 1) dimensional unit sphere as a proper subspace.

In case the eigenvalue is zero, however, the Poisson integral gives only con-

stant functions.

In this paper, we shall give the modification of the Poisson integral so that,

using the Borel-Weil theorem, the modified "Poisson integral" gives the canonical

isomorphism between the space of all homogeneous harmonic polynomials on

Rn of degree m and the space of all holomorphic sections of a certain SO(n, C)

-homogeneous holomorphic line bundle Lm over the Grassmann manifold SO{ή)j

SO(2)xSO(n — 2). In the last section, we shall consider a certain space 0 Σ Γ

(Lm) and show that every harmonic function on Rn can be represented by an

analogue of the "Poisson integral" of the unique element of 0 Σ Γ ( L J .

§ 2. Homogeneous harmonic polynomials

In this section we shall refer to general properties about harmonic polynomials

which we need in the following sections. In this paper, we denote by G the rota-

tion group of degree n, where ft is a positive integer. For each non-negative

integer m, let jfn>m denote the space of all homogeneous harmonic polynomials

on Rn of degree m. By left translations, one obtains an irreducible (unitary)

representation τm of G on Jί?n>m. The representation τm is of class one with

respect to the subgroup H' of G consisting of all elements of the form

(J °) : fteSO(ft-l,fl),

and every irreducible representation of G of class one with respect to H' is equiva-

lent to τm for some non-negative integer m.

Let Pn be the ring of polynomial function on Rn with coefficients in the

complex field C, and Pn>m be the subspace of P" consisting of all m-homogeneous
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elements. We define the harmonic projection Hp of Pnm into tfn m by

rr f(χΛ-lψΊ (-l)kr2k(Akf)(x)
pjy } fc^o 2fcA:!(/i + 2/w-4)...(/i + 2/ιι-2Λ-2)

for x—{xu ..., xM)eJR" where r is the norm of x with respect to the usual Eucli-
dean metric and A is the Laplace-Beltrami operator. Then the following sequence
is exact (see Vilenkin [8]):

0- >r2pn,m-2. (1)

The group G acts on Pn by left-translations, and this projection Hp is a G-homomor-
phism of Pn'm onto Jί?n>m for each m. In this paper, we write [/] instead
of Hp(f) for every /e/7 w ' m .

For each non-negative integer m, there exists a set Jm of multi-indices (iί9 ...,
in) of non-negative integers such that 1) iί+ ... -\-in = m and 2) {[Λ 1...iJ : 0Ί> •••»
ί n )Gj m } is a basis of Jί?n>m, where /^...^ is a polynomial function on Rn

defined by/ ί l..,.n(x)=x^. x;t" for x = ( x 1 ? ..", x

§ 3. The Borel-Weil theorem for SO(n, Λ)

In this section we shall construct a G-irreducible subspace of C°°(SO(n, R)l
SO(n-2,R)) equivalent to τm.

Define subgroups H and K of G by

H=

K=

0
A e S0(/ι-2, K)>,

1 0

0 1

0

ki 0 N

l\o k2/ >

The group S0(2, R) acts on the Stiefel manifold G/H as right-translations :

(uθ0-0)

)9 k2tESO(n-2,R)\.

(gH) uθ = 0 1 ... 0

1 0 O 1 J

H

where and «.=

The space G/ϋ/ is a fibre bundle over G/K with fibre SO(2, R). For each non-
negative integer m, let | w be the unitary character of 50(2, R) defined by
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= eimθ for uβ

then we have an associated line bundle Lm on G/K. The space C^iL^ of all

C°°-sections on Lm becomes a G-module by left-translations and it is isomorphic

to the G-module;

{f<ΞC°(GIH); f(pue)=}m(ue)-if(p); p^GjH, UΘ(ES0(2, R)}

Thus, we regard C^iL^ as a subspace of C°°(G///).

Now the space GjK has a G-invariant complex structure holomorphically

isomorphic to GC/KCP+, where Gc and Kc are complexiίications of G and K

respectively and P+ is the subgroup of G c , consisting of all elements of the form;

z 3 ,

zH9
-izn,

- z 3 , ..., - z π

i z 3 >

0

: z 3 ,

For each non-negative integer m, we define the holomorphic character ξm of

KCP+ by

ξm(uz) = eιmθ for every M =
0

and

cosθ, sin0\
, C) and u 'e5O(n-2, C).

Then we obtain a Gc-homogeneous holomorphic line bundle Lm over Gc/KcP+f

which is C°°-isomorphic to Lm. The space Γ(Lm) of all holomorphic sections

of Lm, may be identified with the space.

{/eHol(SO(n, C): f(ωy) = ξ-^y)f(ω%ω^SO(n9 C ) J E ^ P + } ,

and the group G acts on them by left-translations. Thus, we obtain the following

relations:

where ^ or ^ implies a G-module inclusion or a G-module isomorphism respec-

tively. By the well-known Borel-Weil theorem, the representation π m of G on

Γ(Lm) is irreducible and equivalent to τm.
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For a multi-index (ii ... /„) of non-negative integers, we define a holomor-

phic function φil..Λn on SO(n, C) by

9ii...tn(g) = (xi-iyiyi-(Xn-iyn)in for each <? = | ! JeSO(π, C)

It is easily seen that $i>il#..in satisfies ^ . . . ^ (ωy) = ̂ m(y)"1^ ί l #.. ί n(ω) for every ω in

SO(n, C) and y in KCP+ and so ^ . . . ^ is included in Γ(Lm).

Moreover {ψiίmm,inι OΊ ••• in)^Jm} forms a basis of Γ(Lm) since the space

Γ(Lm) can be identified with the space C\zγ ... zj/(zf + ••• + z ^ ) ; where C

[z l 5 ..., z j denotes the polynomial ring of n-variables z 1 ? ..., zn and (zf -I \-z*)

is the ideal in C[zu . . . , z j generated by zf-l hz^. This identification is

given by the assignment of zY- z^ to <piit..in.

§ 4. Poisson integral

In view of § 2 and § 3, the representation of G on Γ(Lm) is equivalent to (τm,

Jf n'm). In this section, we shall show that the Poisson integral gives an inter-

twining operater between them. We fix ω o = ' ( l , i, 0, ...,0), once for all.

PROPOSITION 4.1. For each holomorphic section φ in Γ(Lm), we define a

function f on Rn by the following integral:

f(x)={ ei<x>ω>φ(ω)dω for each
JG/H

where dω is the G-invariant measure on GIH normalized by \ dω = l and
JG/H

<x, ω> denotes the complex-bilinear inner product <x, g ωo> for ω=gH.
Then f is in JίTn>m.

PROOF. For each x in Rn we can regard ei<x'ω>φ(ω) as a function on G,

f(x)=[ ei<^^
JG

where dg is the Haar measure on G normalized by \ dg = 1. Since dg is a
JG

Haar measure on G, we have

= [ [±-[2π

eί<x>9<»<»e"e-
JGL^TΓJO

, gωo>)mφ(g)dg

G/H
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and so / is a homogeneous polynomial of the degree m on Rn. The fact that /

is in jf1'™ is an immediate consequence from A(<x9 ω>)m=0 where A is

the Laplacian with respect to the variable x.

By Proposition 4.1, the correspondence φ-*f defines a linear transformation

0> of Γ(LJ to jen'm.

THEOREM 1. The map £? is a G-isomorphism of Γ(Lm) onto Jί?n>m.

PROOF. Both Γ(Lm) and jfn>m are irreducible G-module and, as one can

see easily from its definition, & commutes with the action of G, and so it is sufficient

for the proof of this theorem to show that there exists φ in Γ(Lm) such that &

(φ)Φθ. Indeed, for φ=φmto...o> w e n a v e

where x0 =
 f ( l , 0 . . .

This completes the proof of the theorem.

We set

c =

(n and g=\ \ \ *JeG.

Γ(p-l)ml(2m <if»i* «n e v e n i n g

2m + 2p-l 4 2

(if n is an odd integer 2p+l)

Then we have

COROLLARY 4.2

..ιn) = CM[/,1...,J, for every ( i l f ..., i B ) G j r

PROOF. It is not difficult to see that {φ^.,.^: (Ϊ'I ... in)^Jm} and

(ix ... ϊΛ)G/m} are bases of Γ(Lm) and «^w m equivalent under the action of G.

And so there exists a non-zero constant C'm9 which depends only n, m, such

that ^(^i1...iJ = C^[/ l l... iJ for every (ι\ ... ί n ) e J m . In order to know this

constant, we shall calculate the value of «^(^m,o...o) a t the point (1, 0, ..., 0) in

Rn. It is shown in Vilenkin [8] that

[/».o...o](l, 0 ... 0)=
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On the other hand, we have

2»

Thus we have C'm = Cm.

§ 5. Harmonic functions and Poisson transform

Let us consider the differential equation

where A = — T.

We denote by C°°(Rn)Δ the space of all C°°-dirΓerentiable functions / which

satisfy Af=0, and by © Σ / " ' " 1 the space of the series Σfmifm^^n.m)

which converges absolutely and uniformly on every compact subset in Rn.

Then we have the following

PROPOSITION 5.1. C°°(Rn)A = © Σ ^ n ' m

PROOF. By definition it is easy to see that Cco{Rn)Δ contains © Σ jtf"1-™.

So we have only to prove that ΦΣ^n'm contains C°°(Rn)j. Since the

laplacian A is an elliptic deίferential operator, each element in C™(Rn)Δ is a

real analytic function on Rn. It is well-known that a harmonic function / has

an expansion / = Σ fm ( / m e P Λ ' m ) which converges absolutely and uniformly

on every compact subsets in Rn. From Af=0, we have Afm=0 each m. There-

fore fm is in Jίf ">m, and a s / i s in 0 2 Jfn m. This completes the proof of the

lemma.

Let {<Pix...in- (h ••• U G ^ m } t>e t n e basis of Γ(Lm), which is defined in §3.

We denote by φ Σ Γ(Lm) the space of all formal series Σ Σ a\x in9it in

m^O m^O ( i i . . . i n ) e in

with complex coefficients satisfying Σ m! sm< + oo for all s > 0 where ||αTO|| =

max lύr. . 1 . We remark here that every element Σ Σ aix i <Pi, i
( i 1 . . . » n ) e j m

 1 " ' " m>0 (ύ . . . in )eJ m '•• n U" n
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in® Σ Γ(Lm) satisfies Σ \p(m"-pAsm < + oo for any polynomial P in m and

for alls >0.
The following proposition assures that the Poisson integral 0> may be ex-

tended to a linear transformation of © Σ Γ(Lm) into C™(Rn)Δ

PROPOSITION 5.2. For every Σ Σ «/, / ψu t e θ Σ Γ(Lm), the
m^O ( i i . . . i n ) e J w w^O

series

m^O (ii...in)eJm JG/H

converges absolutely and uniformly on compact subsets in Rn, and f is an ele-
ment of C™(Rn)Λ.

PROOF. For non-negative integers k and m and for a multi-index(iu ..., in)
in Jm, we have

where xf + x̂ H hx^=r 2 . It follows from the above inequality and the de-
finition of the harmonic projection that |[/ i l... i n](x)| ^n2em/2rm for every
(ij ... in)Gj ) n. We fix r o >0. For any x in Krt such that | |x | |<r0, we have

Σ Σ \atιΛ ei<x'ω><Pιι...tn(ω)dω\
iw^O (ii...in)eJm JG/H

= Σ

^ Σ Σ Cm|αίl.., J|[/ i l..,.J(x)|
m^O (ίi...in)eJw

^ h 2 J e r ) m (where rf(w) = dim Jf"

Σ̂ ml

where

_ n=Jί

b =

(if n=2p+l)
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which is convergent since d is a polynomial function is m, thus the series in the
proposition converges absolutely and uniformly on every compact subset in Rn.
Moreover, /belongs to Ccc(Rn)A, since each term in the expansion of / is a har-
monic function on Rn. This completes the proof of Proposition 5.2.

Now we can define the Poisson transform & of 0 Σ Γ(Lm) into Cco(Rn)Δ:

= Σ Σ atι
m^O (iί...ίn)eJm JG/H

for every ψ= Σ Σ «ί, uψu tn in 0 Σ Γ(Lm). Then the following
m^O (ii...in)eJm m^O

theorem says that every solution of the differential equation Af=0 can be given
by the "Poisson transform" of an element in 0

THEOREM 2. The map 0> is a linear isomorphism of 0 Σ Γ(Lm) onto

PROOF. From Corollary 4.2. and Proposition 5.2, 0> is injective, and so it
suffices to show that & is surjective.

Let/be an arbitrary element of Cco(Rn)Δ. By Proposition 5.1, / has an
absolutely convergent expansion:

/ = Σ Σ «,,..,„[/.,...„]
m^O (u...in)εJm

where Λ/ l.<>ίneC
Since each term e i l... in[/ i l...£n] ((i'i ... in)^Jm) is a polynomial of degree

m, the series Σ Σ ^ΰ inίfiι i ] converges absolutely not only on Rn

m^O (ίi...in)eJw

but also on Cn. Especially the above series converges absolutely at the point

(t, ωt, ..., ωϊl~1ί) in Cn, where ί is a positive real number and ω = cos- + /sin-.

Thus we have

Σ Σ \aiί..jMfn...tnl09

 ωt> — ω"-1/)!< + «,
m^O (ii...in)eJm

By the exactness of the sequence (1) in § 2, we have

so we have

I L f i t . . . i n ] ( Λ ω ^ j •••? ω I f " " 1 O I = l / i 1 . . . i n ( ί j » con~1ί)\ = ίπ

Therefore

Σ Σ k*i, in\tm<+ 00 (for any ί>0)
w^O (iι...in)eJm
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Hence Σ lkJI*m< +°° f o Γ anY *>° w h e r e ||flm||=max

From Cauchy-Hadamard's test, we have

and so,

This implies that

Σ i l l ^ Ψ m < + °° foranys>0.

Now we put φ= Σ ,. Σ r C?ailmmΛnφilm.Λn.
m£O (ύ... i π )e7 m

Then φ lies i n © 2 Γ(Lm) and satisfies 0><p=f.

This completes the proof of the theorem.
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