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Oscillations of Differential Equations with Retardations

Yiannis G. Sricas and Vasilios A. STAIKOS
(Received May 31, 1973)

This paper is concerned with the oscillatory and asymptotic behavior of
the n-th order (n>1) differential equation with retarded arguments

(*) x(@O)+1(t, x[9:(D], x[92(D], ..., x[9.(H]) =0

where the functions g;, i=1, 2, ..., m are differentiable on the half line [#,, o)
and such that

@D g=t for every t=t,
(I guH=0 for every t=1t,
(III) limgyf)=co
t— 0

Our results extend previous ones concerning retarded differential equations
of the form

xM(O)+f(t, x[9()]) =0

(Cf.[8] and [2]). Moreover, the results given here can be used in order to obtain
other ones concerning retarded differential equations of a more general form
than (%), i.e., when f depends on the derivatives too. This can be done by the
comparison principle introduced by the authors in [9] and [10]. Thus, recent
related results given by Onose [5] and Kusano and Onose [2] could be improved.

In what follows we consider only solutions of (x) which are defined for
all large t. The oscillatory character is considered in the usual sense, i.e., a
solution of (%) is called oscillatory if it has no last zero, otherwise it is called
nonoscillatory.

To obtain our results we need the following three lemmas, the first of which
is an adaptation of a lemma due to Kiguradze [1] and the others of lemmas in
[7] and [9].

LemMA 1. If u is an n-times differentiable function on [a, o) with u¥),
k=0, 1, ..., n—1, absolutely continuous on [a, ) and if

u(t)#0 and u(Hu™(t)<0 for every te[a, o)
then there exists an integer 1 with 0<!/<n, n+1! odd and such that

u(yu®(£)=0 for every t[a, o) (k=0,1,...,1])
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(=D E=1y(Hu®()=0  for every te[a, ) (k=1+1,1+42,...,n)

and

(t_a)n-—lIu(n—l)(Zn—l—lt)l , (t_a)n—Zlu(n-—l)(Zn—l—lt)l
O iy T () P ey ) B L Q2L i) T ) ot ey

for every te[a, ).
LEMMA 2. Ifu is as in Lemma 1 and for some k=0, 1, ..., n—2 lim «#*)(t)

t—0

=c, cER, then lim u*+1)()=0.

t—o0

LemMMA 3. If u is as in Lemma 1 and limu(t)+#0, then there exists a con-
t—o0

stant 0 such that for any i=1,2,...,m

u" 1 (2) 0
|“[gi(t)] | gg?—l ® Jfor all large t

THEOREM. Consider the functions p,, p,, ¢, p subject to the following

conditions:
(i) p., p, are nonnegative and locally integrable on [t,, o)

(ii) ¢ is defined at least on R™"—{(0, 0, ..., 0)} and such that for any
Yis V25 o5 Vm
(vi=12,...,my;>0>0(¥1, V25 s Ym)>0
(Vi=1,2, ..., m)y;<0>0(¥1, Va5 -ovs Ym) <0
(iii) p is defined at least on R—{0} and such that for any y+0
yp(»)>0

(iv) the function yp(y) is nondecreasing for y>0, nonincreasing for y<0
and such that

¢ dy S dy
< d <
Syp(y) o an () =%

— 00

v) . the function 0V 1, Y2202 Ym) is nonincreasing on the set ,
(V) the f V1Y ImP (V1Y 2 Ym) creasing (&

V25 s Ym) ER™: (V i)y;>0} and nondecreasing on the set {(y1, ¥3, ---»
Ym) E R™: (V¥ i)y; <0} with respect to each y;
(vi) for every u sufficiently large

{pi 29D olugr (1), ngh @), ngi O 4,
Lgi™'() p(uLLgt™ (1)
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and
© 3 n—1
sz(t) HITD ol pgr @), —pgr' @), —#n (D] 4 - o
igg?“(t) (—l)m“p((—u)'"il__llg?“(t))
If for any t=t,,
pl(t)go(yla Va5 ooy Ym)gf(t: Vi Yas - ym) for y1>03 sees ym>0
and

f(t’ Vis Y25 -+ ym)§p2(t)¢(y1: Yas ey ym) for y1<0’ s ym<0

then for n even all solutions of (x) are ocsillatory, while for n odd all solutions
of (x) are either oscillatory or tending monotonically to zero as t— oo together
with their first n—1 derivatives.

Note. g3~1(t) stands in place of (g,(£))* 1.

PrOOF. Let x be a nonoscillatory solution of (x) with limx(f)#0. This
t—o0

solution can be supposed with domain [¢,, o) and positive, since the substitution
u = — x transforms () into an equation of the same form satisfying the assumptions
of the theorem. Moreover, by (III), we can choose t,, t; =t,, so that for any
i=1,2,...,m '

g:()>max {t,, 0} for every t=t,
Since
xM()=—f(t, x[g:(0], x[9.(D], ..., x[gn(D]
it is easy to verify that
xM<0 on [t,, o)
and hence, by Lemma 1,
x>0 on [t;, )
More precisely,
x>0 on [t,, )
since, otherwise, for some T>t,, |
x(=1) =0 on [T, =)
and consequently
x(M=0 on [T, o)

Thus, by (i) and (ii), for any ¢t> T,



4 Yiannis G. Sricas and Vasilios A. StAIkos

0=p (De(x[g1(D], ..., x[gu(DD = f(t, x[91(O], ., X[gm(D]) = —x"(t) =0
and hence
p1=0  on[T, )

which contradicts (vi).
Now, by Taylor’s formula, we obtain that for any t=¢, and i=1, 2, ..., m

*[g:(0]Sx(t0) + 4 [g,0) = 101+ -+ 2200 [g,(0) 117

and consequently that there exist a sufficiently large constant u and t,=t, such
that for any i=1,2,...,m

1) x[g(D]1=pgi'(f)  for every t2t,

As in [8] we consider the following two cases.
Casel. x' =0 on [t,;, ).
Let

VN SR 17 sl QY7 0)
) 2(1) == x¢ ”(‘)S( Txlgi)D) pUl gD *

ty

Then, for any t=t,, we have

2 () =1(t, x[g:(D,-w, x[gn®D)| T g’)];g?g fj[)g S

t

— x(n- 2,97 2(1)gi(2)
x ”(t)(”ix[gi(t)])p(IY,-x[gi(t)])

L1 (O, x[gn®OD) (5 oz,
2 PO O Tt ) 9T aids

1

oo 297 2(1)gi(2)
x(=1(z) (Iix[g:()DpUlx[g;(2)])

_ 1 (<191 (0], XL00OD) 15 rms(r)— 5 1
= =17 O Wixlg O Dp (T, Fot O~ 2 ()]

. 297" 2(1)gi(1)
X T X T Dp (T x gD

Since, by (III), there exist a constant ¢, >0 and #;>¢, such that

297 () =29t M (t) 2, 2,97 (2) forevery 121,
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by (1) and (v), we shall have

3) 2 (Wzexpy(0) I elhal (e (D]

e T:g1"2(1)gi(t)
X0 g (0D Ul x[g: @)

Ciq

Where Cz = “(T_‘—l‘jﬁ—.

Let us now consider the term

o 391 2(1)gi(1)
F(t)=x™"1(z) (T x[g:.(ODp U x[g:(D)])

In the case limx'(t) #0, by Lemma 3, we have that for some t,=1t; and any t=>1,,

t—©

_ﬂ{)_ qn—2 ’ (Hzx[gi(t)])'
Txlgn) F 90 OGO G D p (1 1xLg: (DT

1

ZIHOL 21001+ Lgn(g1 () +++ 319, (0] [gn-1 (O]

F(t)=

X g

=2 , (U;x[g:(1)])
(GG OGO G (O D) p (T ix g (O]

0 ah—2 . (Hix[gi(t)]),
S s g g 9 OO0 ) G D x [9: O

0 (ix[gi(D)])

et (x[g:(6)Dp (I x[g:()])

where ¢; =x(t,). Hence (3) gives

gt () olug? 1(0),..., pgnt ()]

FO2anO TGy T g T (0)
__ 9 (Ix[g:(0)])
T Walg O Dp Ul xTgD ]

for every t=t,. Integrating the last inequality from ¢, to ¢ and taking into
account (iv) and (vi), we derive that z is eventually positive, which contradicts
(2). It remains to derive a contradiction in the case limx'(f)=0. To do this,

t—o0

we observe that, by Lemma 1, x* is nonincreasing on [t;, o) and there exist
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¢,>0 and t5=t; such that for any i=1, 2, ..., m
Agd)=t; and x'[Ag ()] = c 42" 2x (1) for every t=ts
where A=27"*1*1je, 0<A<1. Thus, by (I) and (iv), for any t=ts,

Foy= X VOTg 0 Wx[ign)])
Txlhg0))  (Hxlg D pUTxgin])

< 2igi”(1)gi(1)
1 ER 0] 129,01 xUign®1gi(0) ++ + xUg (01 xTAga-1 (0]

X 1(7)
AGm
xxEngl )((tt))]gm(t)] )

(T x[2g:(8)])
(T x[2g:(0)1)p(Tx[2g:(6)])

1 2" 2(t)gi(2) (1:x[2g:(1)])
TAcge?t Zurigi(t)  (Tix[Agi()Dp (I x[Agi(8)])
1 (IT;x[2g:()])

= Teact T Uxg,(ODpULx g (D]
where ¢ =x(¢;). Hence, (3) gives

gt (1) olrgi M (2),..,ugh t (2)]
g (1) p(uml ;g7 1(2))

1 (I x[2g:()])
T Zeactt (T x[Ag(ODp (T x[2g()])

() zc,ypy(t

for every t=ts. Integrating this inequality from ¢5 to ¢t and taking into account
(iv) and (vi), we derive again that z is eventually positive, which also contradicts

Q).

Case2. x50 on [t;, o).
We consider an odd integer &> 1 and the ordinary differential equation

(%) Y™ +p(H)y* =

where

)_f(t x[g1(D)], ..., x[gm()])

p(t e (t)

In this case x is nonincreasing on [¢,, o0) and ¢ =lim x(¢) exists and is positive.
=

Thus, by (1), for any t=t, we have
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n—1 — fh— f(t, x[g (t)]’ ceey x[gm(t)])
" ip() =11 ! 70

2 L P0p(xg1(O], s 3[ga(t)])

_ o(x[g(D)], -0, X[gu®DD 77 1. x[g;
i) P Ol D xLg 0] DUl DD

! olngi™ 1 (2), oo, ng "1 . (om
=52ty P Ot g 1 (e)yp Gt g 1 ()C P )

> cmple™)  _mt™ ! o[pgtT (@), ..., pgn 1(2)]
T x*(t)pmm 11,97 (2) p(umil;gt= (1))

and consequently, for some appropriate constant K>0 and any t>¢,

- 297 (1) olpgt™' (@), ..., pgm (D]
" lip(t)zKp(2)E4 1 s PYm
PR T gm0y~ plun gt (1))
which, by (vi), gives

0

St"_ Lp(t)dt = oo

It is well-known (Cf. [4], [6] and [8]) that under the last condition, all
solutions y of (x%) with lim y(f)#0 are oscillatory and this is a contradiction,
t— 0

since x is a such solution of the equation (sx).
To complete the proof, we observe that in the case of a nonoscillatory solu-
tion x of (*), Lemma 1 ensures that lim x(f)=0 occurs only when n is odd.
t—o0

Hence, the theorem is an immediate consequence of Lemma 2.

Note. After this paper was written the authors received a preprint [3]
which Professors Kusano and Onose had kindly sent. In [3] the case m=1 and
f=¢ is studied, where the function ¢ is supposed with nonnegative derivative
and in place of (vi) a closely related condition appears, which does not contain

the parameter yu (This is the case p(y)=g%q5(]y|‘/(."‘”) sgn y, where ¢ is a

positive function with nonnegative derivative).
Under the additional assumption that the function ¢ is nondecreasing on
the set {(yy, ..., ym)ER™: (Vi)y,y;>0} with respect to each y; (i=1, 2, ..., m),
condition (vi) can also be stated independently of p, as follows:
b (S elgt (), g5 (@), .. g (D]
V1 t J — E) — b 9 m dt= oo
V) S”‘( 1,977(0) pULgi (1))

and
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(A2 () ol=—gT (1), =g (D), ..., —gi ' (1)] -
P ) e e (O

The proof remains essentially the same by using in place of z the function w,

— t 297 2(s)gi(s)
w(t) = — x I)U),Slllix[gi(s)]p(g_ix—l:g—i(m)ds
um

where =1 and such that (1) is satisfied.
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