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Let G be a connected real semisimple Lie group of real rank one with finite
center, K a maximal compact subgroup, G=KAN an Iwasawa decomposition
and M the centralizer of A in K. We put X = G/K and B=K/M. Let A denote
the laplacian on X corresponding to the G-invariant riemannian metric on X
induced by the Killing form of the Lie algebra of G. In [2, Chap. IV, Th. 1.8],
S. Helgason proved that when G = SU(1, 1), any eigenfunction of A can be given
as the Poisson transform of a (Sato's) hyperfunction on B, and suggested the
possibility of generalizing the theorem to the case of a (non-compact) symmetric
space of rank one, which we shall call Helgason's conjecture.

The purpose of this paper is to prove that when X is a hermitian hyperbolic
space SU(n, l)/S(Un x Ut)9 Helgason's conjecture is valid in a weak sense. That
is, any eigenfunction of A with real eigenvalue μg: — <p, p> can be given as the

Poisson transform of a hyperfunction on B (Corollary 4.5). For a real hyperbolic
space SO0(n, 1)/ SO(n), the author proved in [7] that Helgason's conjecture is
valid for any complex eigenvalue.

The construction of this paper is as follows. In § 1, we define the Poisson
transform of a continuous function and state some results on this transform.
In §2, we review the structure of the Lie algebra su(n, 1) and investigate the
eigenvalues of some differential operators. In § 3, the Poisson transform of a
K-finite function on B are determined explicitly. In the final section, by using
the results in § 3 we prove that for s^O, Poisson transform &>s is an isomorphism
of @(B) onto Jfs(X) (Theorem 4.4), where &(B) is the space of hyperfunctions
on B and Jfs(X) is the space of eigenfunctions of A with eigenvalue (s2 — l)<p,
p > . From this theorem Corollary 4.5 follows immediately.

We shall use the standard notation iV, JR, C for the set of natural numbers,
the field of real numbers and the field of complex numbers respectively; ΛΓ0

is the set of non-negative integers. If £ is a differentiable manifold, C(E) (resp.
C°°(£)) denotes the space of all continuous (resp. smooth) functions on E.

§ 1. Poisson transform and its fundamental properties

In this section, we define the Posison transform and gather some results on
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this transform without proof. For details, see [7, § l-§3].

Throughout this paper we assume that G is a connected real semisimple Lie

group of real rank one with finite center. Let g0 be the Lie algebra of G and

g its complexification. Let K be a maximal compact subgroup of G, ! 0 its Lie

algebra and p 0 the orthogonal complement of f0 in g0 with respect to the Killing

form < , > of 9o Then go = ϊ o + Po *s a Cartan decomposition of g0.

Let θ denote the corresponding Cartan involution and α + be a maximal abelian

subspace in p 0 . Let α0 be a maximal abelian subalgebra of g0 containing α+

and put α _ = α o n ϊ o . We denote the complexifications of ! 0 , p 0 , αo> α + a n d

α_ in g by f, p, a, <xp and αr respectively. Then Lie algebra a is a Cartan subal-

gebra of g. For λ e α*, let 1 denote the restriction of λ to ap and let Hλ denote

the element in α determined by <Hλ9 H> —λ{H) for He a. For λ, μea*9

put <λ9 μ> = <Hλ9 Hμ>. We introduce and fix compatible orders in (α+ +

•>/—1 α_)* and αj. Let P denote the set of positive roots of (g, α) under this

ordering, P+ the set of oceP with α^O and Σ+ the set of α with α e P + . Since

dimα + = 1 , we can select μ0 eΣ+ such that 2μ0 is the only other possible element

in Σ+. Put PμQ (τesp.P2μo) be the set of α e P + with ά = μ 0 (resp. δί=2μ0) and

p (resp. q) be the number of roots in Pμ o(resρ. P2A*0) ^ e P u t

P = -?τ Σ ά, n = Σ 9α, n o = n n g o ,
£ aeP+ aeP+

where gα is the root subspace of α. Let K, A, N denote the analytic subgroups

of G with Lie algebras ϊ 0, α+, n 0 respectively. Then G=KAN is an Iwasawa

decomposition. For xeG, we define a unique element H(x)ea+ by xeK

(expiί(x)) N. Put X = G/K and B=K/M9 where M is the centralizer of A in

X. Let db denote the normalized K-invariant measure on B. We introduce

a parameter seC in αj by A = ~ λ / — l sp. For s e C , we define a real-analytic

function Ps(z9 b) on X x β, called Poisson kernel, by

, fcM) =exp {-(1 + s)p(H(x~*fc))}.

For φ e C(B), the Poisson transform ^s(φ) of </> is defined by

= [ Ps(z9 b)φ(b)db9 zeX.
JB

Let R denote the set of equivalence classes of irreducible unitary representa-

tions of K and R° denote the subset of those which are of class one with respect

to M. For each γeR, we take and fix a representative (τy, Wy) e γ and choose

an orthonormal base {wl5..., wd(y)} of Wy with respect to the unitary inner

product ( , ) of Wy so that wί is an M-fixed vector if yeR°9 where d(y) is the

dimension of Wγ. Let π be the left regular representation of K on C(X),

and C°°(X), and put

Ky = {ψeC o o(K)|0 transforms according to γ under π},



Eigenfunctions of the Laplacian on a Hermitian Hyperbolic Space 443

for γeR, l^i^d(y). Then

is an orthonormal base of V?(γeR°) and

{φl\γeR°9 iύiύ

is a complete orthonormal base of L2(B).
Let A be the laplacian corresponding to the G-invariant riemannian metric

on X induced by the Killing form of g0. Put

transforms according to y under π}

and put

where Γ denotes the gamma function.

PROPOSITION 1.1 (Helgason).

(1) 0>s maps C(B) into JίTs(X) and V? into Jf J(Λf).

(2) 0>s is injective on C(B) if and only if e(s)Φ0.

(3) Ifjrl(X)Φ{ΰ)9 thenyeR0.

(4) // 0>s is injective on C(B% 0>s maps Vy onto

PROPOSITION 1.2. Suppose that e(s)φOandfe

(1) There exist unique compelx numbers aJ(yeR°, l^i<zd(γ)) such that

d(v)

= Σ Σ
γeR° i=l

which is absolutely convergent for zeX.

(2) Put φ2

f(k)=f(kz). Then
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γeR° j

which is absolutely and uniformly convergent on K.

(3) Let || || denote the norm of L2(B). Then

\\Φz

f\\2= Σ
yeR°

)» where 1B denotes the constant function identically equal

to 1 on B. We remark that/ s coincides with Harish-Chandra's spherical function

THEOREM 1.3. Assume that Re(s)>0. Then fs(aK)(aeA) is not equal

to zero when ρ(H(a)) is sufficiently large, and for φ e C(B)

lim * &s(φ)(kaK) = φ(kM)
H()) jyaK)

uniformly on B.

We denote by 93 the univesal enveloping algebra of g, whose elements are

regarded as the left G-invariant differential operators on G. For α e P + , take

and fix a root vector Xaeqa such that <Xa9 X-Λ> = 1 . Putting Z α =2" 1 (^« +

ΘXa), we define ωμo and ω2μo in 93 by

ωμo= Σ (ZaZ
«eP«o

ω2μo= Σ (ZΛZ

Let Ho be the element of α+ such that μ o (ϋ o ) = l. For teR, we put at =exp

tH0. Then t can be regarded as a coordinate function on the one-dimensional

Lie group A. Let L be the differential of the left regular representation of G on

PROPOSITION 1.4. Letfejes(X). Then f satisfies

lL coth t + 2q coth 2t)-^-f{atK)~ g + ** {L(ωμo)f}(atK)

PROPOSITION 1.5. Suppose that fn(n e N°) are eigenfunctions of A with

eigenvalue μeC and that Σ fn *5 absolutely and uniformly convergent on every
neN°

compact subset in X. Then Σ fn is also an eigenfunction of A with the same
neN°
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eigenvalue μ.

§ 2. Hermitian hyperbolic spaces

From now on we deal with the Lie group G = SU(n, l)

symmetric space X = G/K is called a hermitian hyperbolic space.

The Lie algebra go = su(n, 1) is given by

The associated

Put

z
'η

Z

0

0

•η

J
ov

J
o

Zeu(n), zeu(l), >?eCn

Tr(Z) + z=0

Zeu(n), zeu(l)l

Tr(Z) + z=0 ( '

J
ηe j .

Then Go=^o + Po *s a Cartan decomposition and negative conjugate transpose

is the corresponding Cartan involution θ. The complexifications f=fδ and p =

p S i n g = gS = sl(n + 1 , C) are given by

f =
Z n x n complex matrix, z G C

Tr(Z) + z = 0

Z 0

0 z

0

^ o

Let ί) be the set of diagonal elements of ! and put ϊ)o=ϊoΓlί). Then I)

is a Cartan subalgebra both for ! and g. Let et (1 ̂  i ̂  n +1) be the linear form on

ϊ) whose value on a diagonal matrix is the ϊ-th entry. Then roots of (g, ί)) are

the differences e^βj ( l ^ i , 7 ^ n + l). Choose an order in (>/—lί)0)* s o ^ a t

the positive roots are ei — ei (i^i<j^n + l). Let Q, Qk and β π be the sets of

positive, compact positive and non-compact positive roots respectively. Putting

βij = ei — ep we have
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The root subspace QβiJ is equal to C£ l 7, where Eif ( l g ί , j^n + 1) is the matrix

unit. We have

9',

Σ β',
βe±Qk

P= Σ 9^.
βe±Qn

The Killing form < , > of g is given by

l)Tr(XY)

for X, Yeg. For βeψ, let Hβ denote the element in ί) determined by <Hβ,

H>=β(H) for Heί). For β, β'eί)*, we put <β, β'> =<Hβ, Hβ.>.
For simplicity we write β0 for /?1>rt+1 and put ί)+ =yJ^jRHβo, l)_ ={/f e I)o |

<HβQ,H>=0}. Then ί ) o = I ) + + ϊ ) _ (direct sum). Put £ ^ = £ 1 ^ and £ ^ 0

= £ n + l i l . Then <E'β0,EL.β0>=2<β09β0>-1, E'βo-ELβoey/=ϊp0 and £^ 0

+ £-/j o ep o Put α + = Λ ( ^ 0 + ^ 0 ) , α_ = ί)_, α o = α+ + α_, α = αg and M =

exp l^2id(E'βo-E'-βo)l Then we Aut (g) is the identity on α_, ua+ = > / " = l ή + ,

wα=ί) and α0 is a ^-stable Cartan subalgebra of g0 ([11]). Thus we can take

these α + , o_ and α0 as those defined in §1. We introduce an order in α* from

(yj~--ϊϊ)o)* by ιu, which is, as is easily seen, compatible. Put ocij =
 tuβij (αo =

tuβo). Then μo=-yΰo iλ denotes the restriction of Λ,eα* to ap) and

P+ = { α o = α l f I I + 1 , α l f , α Λ n + 1 ( l < / , 7 < n + 1 ) } ,

Put Eβij=(2n + 2)-^2EiJ and Z ^ ^ M " 1 ^ ( l ^ i , j^n + ί). Since
g^« and <Eβij9 E_βij>=l9 we obtain that Xa.. egαί-/ and

1. By a direct calculation on the ϊ-component Zα = -y (Jf α + θZα) of Xα, we have

LEMMA 2.1.
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Let m be the Lie algebra of M=ZK{A), where X(resρ. A) denotes the analytic

subgroup in G with Lie algebra ϊ 0 (resp.o+). Then, putting P_ =P — P+, we have

m= Σ 9* = Σ 9"",
«e±P- 2§i,jSn

since u is the identity on α_. Put

_ 2

Then Zc lies in the center of f, Zm lies in m and

as Hβo=(2n + 2)~i(Eίί— En+lttι+ί). Hence we have

(2.1) Hβo = (n + iy-1Zc modmS.

By Lemma 2.1 and (2.1) we have

(2.2) 2 μ° aePiuo α " α -« «

= 2 ( - ^ ^ ) # | 0 = («+l)-1Z2 mod m»

and

= Σ (EβE_β + E_βEβ) mod

Let ωκ denote the Casimir operator on K corresponding to the restriction
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of the Killing form of g on ϊ. Since <Eβ, E_β> =1 for βeQk, <ί) + , t)_ > =0,

ί)_ c=m and < ^ n + l Hβo, yjn+'l Hβo> = 1 , we have

(2.4) ωκ= Σ (EβE_β + E_βEβ)) + (n + l)H>0 mod m S .
βeQk

From (2.2), (2.3) and (2.4), it follows that

ωκ = ωμo-\-ω2μo mod

LEMMA 2.2. For g=su(n, 1), we have

μ o 2 / i o = ω κ mod m93 .

Let L° be the set of highest weights of y e R°. Then by the theory of Kostant-

Rallis ([4]), L° is given as the set

ί + rnΛn_ί+(l-3m)Λn\l9 meN°, l^

for G = SU(n, l ) ( n ^ 2 ) , where ^iί = ̂ 1 + + ^ .

§ 3. K-finite eigenfunctions on a hermitian hyperbolic space

In this section we determine the Poisson transform of a X-finite function on

B for a hermitian hyperbolic space X =SU(n, l)/5(ί/w x U^.

From now on, for γeR° with the highest weight AUm, we write τι'm, VUm,

d(l, m), Jfι

s>
m

9 φl>m and f[\m instead of T*. V\ d(y), Jf?y

s, φ\ and / ; , res-

pectively. We identify L° with the set of the pairs (/, m) such that /, meN°

and l^m. Put

Pκ=2~ι Σ β
βeQk

LEMMA 3.1. Letfejίfι

s

 m. Then, for ae A,

{L(ωβ0)f} (aK)=ίί-J±γ (Im-m2)+ ^ " ^ /} f(aK),

PROOF . Since / transforms according to τ' m under π,

L{ωκ)f=<Λl<m + 2pκ, Λι<m>f
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On the other hand, since M normalizes A,

f((cxptY)aK) =/(α(exp tY)K) =f(aK)

ΐoτ feC^iX), aeA, Yem and tsR. Therefore we have

(L(u)/)(αK)=0

for wem93 and /eC°°(X). Hence from Lemma 2.2 it follows that

(3.1)

K)=Ίl-[ {L{Z2)}(aK).

By a simple computation, we have

(3.2) <Λι<m L

From (3.1) and (3.2) we obtain this Lemma.

LEMMA 3.2. Let seC and put fl

s'
m=fs\

m. Then

(3.3)

-γ(l-s), l + n; (tanh/)2V

fl,m(a,K) = 0

PROOF. From Proposition 1.4 and Lemma 3.1, / = / s ' | m satisfies the dif-
ferential equation

_ 4(1 -2m)2

 f (l-s2)n2f=0
(sinh202 J { ' J

By a new parameter z=(tanhί)2, the above differential equation turns into



450 Katsuhiro MINEMURA

d2f , n-z df 1
-j+—n v-j ~~—2Π r

dz z(l—z) dz z2(l—z)
(/-2m) 2

 f (l-s2)n2

 f_

By a routine argument (cf. [7]), / can be written as

(3.4) fι

si

m{a,K) = c\ m(tΆΏh. ί)'(cosh /)»(*-i>

y ( l - s ) , / n + | ( l - i ) , l + n; (tanh ί)2)

with a constant c\'m. We notice that /° ° is equal to fs=0>

s(lB) defined in
§ 1. Since f.ejT!-0 and fs(eK) = 1,

(3.5) fs(a,K) = (cosh ty^-^F^ (I-s), -y(l-J), »;

Now we assume that Re(s)>0. Then from Theorem 1.3,

lim flfia£> ^(Φp(aK)

On the other hand, from (3.4) and (3.5) it follows that

Γ(ns) , Γ(n)Γ(ns)

since

-5-(l-j)f/ff + ̂ -(l-j), l + n;

Γ(l + n)Γ(ns)

rl"* ' 2

for R e ( s ) > 0 . Therefore we obtain (3.3) for R e ( s ) > 0 . But both sides of (3.3)
are entire functions in s for any fixed t. Hence (3.3) is valid for any seC from
the uniqueness of analytic continuation, which finishes the proof.

§ 4. Poisson transform of a hyperfunction

In this section we define the Poisson transform <^%(Ό,which is a function on
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a hermitian hyperbolic space X = SU(n9 1)/K, of a hyperfunction Ton B = K/M,
and prove that for s^O, 0>s is an isomorphism of &(B) onto άf S(X)9 where &(B)
denotes the space of Sato's hyperfunctions on B and JPS(X) is the space of eigen-
functions of Δ on X with eigenvalue (s2 — l)<p, ρ>.

Let s/(B) denote the space of real-analytic functions on B with the natural
topology ([6]) and sf'(B) the space of continuous linear functions of s/(B) into
C. Since B=KjM is real-analytically isomorphic to the (In — l)-dimensional
sphere S2""1, s#'(B) is canonically isomorphic to &(B), the space of Sato's
hyperfunctions on β([10]). Henceforth we write &(B) for s/'(B) and call the
elements of s/'(B) hyperfunctions on B. We denote the value of Te @t(B) at
φes/(B) by

" φ(b)dT(b) .

We define a subspace &b{B) in CN= Π C^' 1") by

U,m)eL°

d(l.m)

&b(B) = {(«{•«)eC| Σ Σ I«ί>mIexp(-i/A//«2)<oo for any η>0} ,
(/,m)εL° ί=lwhere A/>m=(n + l) 1 ( / 2 — 3/m + 3m2) + (2n-}-2) ί(n —1)1 (the eigenvalue of ωκ

on Fz>m) and define a mapping ϊ* of ^(B) into CN by

!P(Γ) = («{•*), flί » = ί φl-»(b)dT(b) ,

for Te ^(JB). Then by Theorem 1.8 and the remark in [1, § 1], Ψ is an isomor-
phism of @l(B) onto ^b(B), andJ 5"^) is also given by

d(/. m)

Σ Σ \ai
(l,m)eL° ί=l

On the other hand, it is easy to see that

7 2 =λι>m =v«+i 2

for all (/, m)eL°. Therefore ^h(β) can be characterized as

(4.1) ffir

b(B) = {(al m)\ Σ d (Σm > k ί ' w | exp(-^/)<oo for any η>0}

(l,m)eLθ i= ί

d(l,m)

= {(<*ιϊm) I Σ Σ I aιϊn 12exp ( - ηl) < 00 for any 1/> 0}

LEMMA 4.1. Lei (αί'w) = y ( Γ ) (Te 0(B)). Then
diUrn)

= Σ Σ αί m/i'imU)>
(I,m)eL° (=1
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PROOF. For any fixed zeX, Ps(z, b) can be expanded in an absolutely
and uniformly convergent series

d(l,m) C

P.{z,b)= Σ Σ Φ'ϊm(b)\ Ps{z,b)φ\ m{b)db,
(l,m)eL° i=l JB

which converges also in s/(B) ([1, Corollary 1 to Proposition 1.7]). From the
continuity of T on s/(B), we have

Since

= Σ Σ \ Φl m(b)dT(b)\ Ps{z,b)φ\'m{b)db.
(l,m)eL° i=l JB JB

flj.«=C φ>>-(b)dT(b) ,
JB

=\ PM(z, b)φl'»(b)db,
JB

we obtain this lemma.

PROPOSITION 4.2. (1) For any seC and any (a\*m)G&h{B)τ the series

2-Λ
 ai Jsi

(l,m)eL° i=l

is absolutely and uniformly convergent on every compact subset of X.
(2) Suppose that s^O and expand fejfs(X) as

d(l,m)

/ = Σ Σ «! m/iίm

( / , w ) e L ° i = l

by Proposition 1.2, which is possible as e(s)φθ for s^O. Then (α/

i

For the proof, we need the following

LEMMA 4.3. For (/, m)eL° and ueC, put

aι.m(r\-μ Γ(n) Γ(l-m + u) Γ(m + u)
U {Π ' Γ(u) ' Γ(u)

, l + n r2) (\r\ <1) .

(1) For any fixed h with 0</z<l, there exists an lo such that for any (/, m)eL°
with

=

(2) Assume that u^-^-and t>0. Then for any (I, m)eL°,
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PROOF. First we notice that

(4.2)

for /^m^O and u>0. From the definition of the hypergeometric function, it

follows that

(4.3)

Gfr-W-rTO,) Σ Γ ^ - ? + «±*λ Γ ^ + κ +*)
Γ(U) Γ{U) Γ(l+n + k) k\ '

Therefore using (4.2) we have

k\

Γ(\u\) \,\u\,l+n,

On the other hand if we put Z0=(/i|u|-n)/(l — h), it can be shown ([7, Lemma

5.3]) that for any l^l0,

which proves the first assertion of the lemma.

Next, putting r=tanhί, we have from (4.2) and (4.3) that

.*(rΛ>r*Γ'^ « Γ(H2 + U+k)2 1

>rV(n)

) k\

1
Γ(u)2 Γ(l + 2u + ll2 + k) k\ '

since Γ(l + 2M +1/2 + fc) ̂  Γ(l + n + fc). Therefore we obtain

xFd/2 + u, 1/2 + u, l + 2u+l/2; r2)

By using the equality
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-L; z)

in [5, p. 251] and considering that

2

J_

2 M - 1/2

we get

which completes the proof.

Proof of Proposition 4.2. We put w=-^-(l + s). First we recall (Lemma

3.2) that

fi m(aK)-d(l m)ί/2 Γ ^ Γ(l-m + u) Γ(m + u)

x(tSinht)ι(cosht)n^-^F(l-m + n-u, m + n-u, / + «; (tanhί)2),

Noticing (cf. [5, p. 248]) that

F(μ9 β, y; z)=(l-z)y-^F(y-oc, y-β, γ: z)

and using the function Gι

u>
m defined in Lemma 4.3, we have

fι m(aK)=d(l rnV12 Γ ( w ) Γ(!-m + u) Γ(m + u)

x (tanht)1 (cosh t)-2uF(l-m + u, m + u, l + n; (tanhί)2)

=d(l, w)1/2(cosh 0"2"Gi'M(tanh t) .

For h with 0</z<l, we define a compact set C/h of X by
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Let l0 be as in Lemma 4.3 and consider the series

s(z)= Σ d(zVp"i ι/irωι
(ί,m)eLθ,/^/0 j=l

in Uh for (aιcm)e^b{B\ From Lemma 4.3, (4.4) and \τι>m(k)\ ̂  1, we have

di\a\>™\ \fsf{atK)\ \τ\f{k)\

^ Σ d Σ m ) k ί ml \Λ m(a,κ)\
(l,m)el.o,|iio i = i

^c Σ d(l,my2 Σ Iβj -Mtanhίl1

(/,m)eL0,ϊ^z0 i= 1

Γ{n) i y ι τ \u\) m ,* _ij\-\u\

Γ(l + n) Γ ( \ u \ ) κ }

where we put

c= sup (cosh ί ) " 2 R e ( M ) .

Since

it follows from (4.1) that S(z) converges uniformly in Uh.

(2) Let η > 0 and choose a ί > 0 such that tanh (ί/2) =exp ( - ιy/2). From Proposi-
tion 1.2, we have

for z e X. Putting z=atK, by Lemma 4.3 and (4.4) we obtain

( dU>m) \ / * \2l

Σ kP12)(tanh4-) (coshί)"4"
2T(//2 + t/)2 Γ(n) I 2

' M) 2 )Γ(u)

Since

lim

it follows that
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Σ ( Σ \aιrm\2)cxp(-ηl)<co,
(l,m)eL°\ i=l /

which implies by (4.1) that (a\'m)e &h(B). This completes the proof.

THEOREM 4.4. Let X be a hermitian hyperbolic space.

(1) The Poisson transform &>s maps @{B) into

(2) For 5^0, 0>s is an isomorphism of @(B) onto

COROLLARY 4.5. For a hermitian hyperbolic space, any eigenfunction

f of A with eigenvalue μ ^ — < p , p> can be represented as

/(z) = ( Ps(z,b)dT(b)
J B

with some s^O and some Te 38{B).

PROOF. Assume that Λf=μf We can select a n s ^ O such that μ=(s2 — 1)

<ρ, p>. Then we have only to apply Theorem 4.4 t o / .

PROOF OF THEOREM 4.4. (1) Let Te@(B) and put Ψ(T) = (al'm). By

Lemma 4.1 and Proposition 4.2,

d(l.m)

(l,m)eL° ί=l

is absolutely and uniformly convergent in every compact subset of X. Then

by Proposition 1.5, 0>S(T) belongs to Jfs(X).

(2) The surjectivity of 0>s (s^O) is clear from Lemma 4.1 and Proposition 4.2,

(2). Assume that &>s(T)=0. Then putting ψ(T) = (a\>m), we have

(l,m)eL°itj=l J

Since φ[p are linearly independent and fι

s'J" are not identically equal to zero

on X, we get a j m =0, which finishes the proof of the theorem.

REMARK. The set L° defined in [1, § 3] should be replaced by the L° defined

in §3 in this paper. But Theorem 4.5 in [1] is valid and is a special case of

s = 1 in Theorem 4.4 of this paper.

Added in proof.

Recently S. Helgasan has proved that the same result as in Corollary 4.5 in

this paper holds also for the quaternion hyperbolic spaces and the exceptional
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symmetric space of type FII in the preprint 'Έigenspaces of the Laplacian;
integral representations and irreducibility".
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