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Let G be a connected real semisimple Lie group of real rank one with finite
center, K a maximal compact subgroup, G=KAN an Iwasawa decomposition
and M the centralizer of A in K. We put X=G/K and B=K/M. Let 4 denote
the laplacian on X corresponding to the G-invariant riemannian metric on X
induced by the Killing form of the Lie algebra of G. ‘In [2, Chap. IV, Th. 1.8],
S. Helgason proved that when G=SU(1, 1), any eigenfunction of 4 can be given
as the Poisson transform of a (Sato’s) hyperfunction on B, and suggested the
possibility of generalizing the theorem to the case of a (non-compact) symmetric
space of rank one, which we shall call Helgason’s conjecture.

The purpose of this paper is to prove that when X is a hermitian hyperbolic
space SU(n, 1)/S(U, x U,), Helgason’s conjecture is valid in a weak sense. That
is, any eigenfunction of 4 with real eigenvalue = — <p, p> can be given as the
Poisson transform of a hyperfunction on B (Corollary 4.5). For a real hyperbolic
space SOy(n, 1)/ SO(n), the author proved in [7] that Helgason’s conjecture is
valid for any complex eigenvalue.

The construction of this paper is as follows. In §1, we define the Poisson
transform of a continuous function and state some results on this transform.
In §2, we review the structure of the Lie algebra su(n, 1) and investigate the
eigenvalues of some differential operators. In §3, the Poisson transform of a
K-finite function on B are determined explicitly. In the final section, by using
the results in § 3 we prove that for s=0, Poisson transform £, is an isomorphism
of #(B) onto s#(X) (Theorem 4.4), where #Z(B) is the space of hyperfunctions
on B and s (X) is the space of eigenfunctions of 4 with eigenvalue (s2—1)<p,
p>. From this theorem Corollary 4.5 follows immediately.

We shall use the standard notation N, R, C for the set of natural numbers,
the field of real numbers and the field of complex numbers respectively; N
is the set of non-negative integers. If E is a differentiable manifold, C(E) (resp.
C*(E)) denotes the space of all continuous (resp. smooth) functions on E.

§1. Poisson transform and its fundamental properties

In this section, we define the Posison transform and gather some results on
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this transform without proof. For details, see [7, § 1-§ 3].

Throughout this paper we assume that G is a connected real semisimple Lie
group of real rank one with finite center. Let g, be the Lie algebra of G and
g its complexification. Let K be a maximal compact subgroup of G, §, its Lie
algebra and p, the orthogonal complement of f, in g, with respect to the Killing
form < , > of go. Then go=f,+p, is a Cartan decomposition of g,.
Let 6 denote the corresponding Cartan involution and a, be a maximal abelian
subspace in p,. Let a, be a maximal abelian subalgebra of g, containing a.
and put a_=aynf,. We denote the complexifications of ¥,, p,, ag, a, and
a_in g byt p, a, a, and q, respectively. Then Lie algebra a is a Cartan subal-
gebra of g. For Aea*, let 1 denote the restriction of A to a, and let H, denote
the element in a determined by <H,;, H> =A(H) for Hea. For A, uea*,
put <A, u>=<H,, H,>. We introduce and fix compatible orders in (a, +
J—1a_)* and a¥. Let P denote the set of positive roots of (g, a) under this
ordering, P, the set of x€ P with a0 and X, the set of & with «a € P,. Since
dima, =1, we can select u, € X', such that 2y, is the only other possible element
inX,. Put P,, (resp.P,,,) be the set of o € P, with &=p, (resp. & =2u,) and
p (resp. g) be the number of roots in P, (resp. P,,,). We put

1 v, ;
I7==_§_ Z: a, n= z: g ,110==Tlﬂ 90 »

a€P 4 a€eP

where g* is the root subspace of «. Let K, 4, N denote the analytic subgroups
of G with Lie algebras f,, a,, n, respectively. Then G=KAN is an Iwasawa
decomposition. For xe G, we define a unique element H(x)ea, by xeK
(expH(x)) N. Put X=G/K and B=K/M, where M is the centralizer of A in
K. Let db denote the normalized K-invariant measure on B. We introduce
a parameter s€C in a}¥ by A=—./—1sp. For seC, we define a real-analytic
function Pz, b) on X x B, called Poisson kernel, by

P,(xK, kM)=exp {—(1+s)p(H(x"1K))} .
For ¢ € C(B), the Poisson transform £ (¢) of ¢ is defined by

2 ($)(2) =SBPs(z, b)p(b)db, zeX.

Let R denote the set of equivalence classes of irreducible unitary representa-
tions of K and R° denote the subset of those which are of class one with respect
to M. For each ye R, we take and fix a representative (t¥, W?)ey and choose
an orthonormal base {wj,..., wy,} of W? with respect to the unitary inner
product ( , ) of W7 so that w] is an M-fixed vector if y € R°, where d(y) is the
dimension of W?. Let n be the left regular representation of K on C(K), C®(B)
and C*(X), and put

Vr={¢ e C*(K)|¢p transforms according to y under =},
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)= (@ (kwl, w)
o=d()' 13,
oY=l
for yeR, 1<i<d(y). Then
{ptl1=i=<d(y)}
is an orthonormal base of V*(yeR®) and

{pllyeR®, 15i=d(y)}

is a complete orthonormal base of L2(B).
Let 4 be the laplacian corresponding to the G-invariant riemannian metric
on X induced by the Killing form of g,. Put

H(X)={fe C(XN)Af=(s*—1)<p, p>f},
HUX)={fe #(X)|f transforms according to y under n}

and put
«@=1(3 (5 +1+(5+0)s)) 15 (5 +a+(5+0)s)) "

where I" denotes the gamma function.

ProrosiTiON 1.1 (Helgason).
(1) 2, maps C(B) into # (X) and V? into #(X).
(2) 2, is injective on C(B) if and only if e(s)#0.
() If #7(X)# {0}, then y e RO.
4) If 2, is injective on C(B), #; maps V? onto s#!(X).

We put 3, =2 ().

PROPOSITION 1.2.  Suppose that e(s)#0 and fe # (X).

(1) There exist unique compelx numbers al(yeR°, 1<i<d(y)) such that
a)
f2)= 2 2. al fi(2),
7eRO i=1
which is absolutely convergent for ze X.

) Put ¢5(k)=f(kz). Then
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(7)
$5= % d12 Y alfiel,
y€RO i,j=1

which is absolutely and uniformly convergent on K.

(3) Let| | denote the norm of L%(B). Then
a) a(y)
z2— -1 712 ) 2
16717= 2 a ' (Z 1a112)(5 172)12).

Put f,=241g), where 15 denotes the constant function identically equal
to 1 on B. We remark that f coincides with Harish-Chandra’s spherical function

$1(d=—+/—1sp).

THEOREM 1.3. Assume that Re(s)>0. Then f(aK)ae A) is not equal
to zero when p(H(a)) is sufficiently large, and for ¢ € C(B)

gy P 8) kaK) = $eM)

uniformly on B.

We denote by B the univesal enveloping algebra of g, whose elements are
regarded as the left G-invariant differential operators on G. For o€ P, take
and fix a root vector X, € g* such that <X,, X_,> =1. Putting Z,=2"1(X,+

0X,), we define w,, and w,,, in B by
ouo= 2 (Z,Z_,+Z_,2),

0
a€Py,

w2M0= Z (ZaZ—a+Z—aZa)'

a€P2y,

Let H, be the element of a, such that y,(Hy)=1. For teR, we put a,=exp
tH,. Then t can be regarded as a coordinate function on the one-dimensional
Lie group A. Let L be the differential of the left regular representation of G on

C*(X).
ProOPOSITION 1.4. Let fe #(X). Then f satisfies

2
% f(a,K) +(p coth £ +2g coth 2:)7;’7 fla,K)— éf’nt f)qz {L(wu)) £} (a,K)

2 (L (@20) 1@ K) + (1= 52)(B+q) flaK) =0

ProposITION 1.5. Suppose that f,(n € N°) are eigenfunctions of A with
eigenvalue pe C and that }, of,, is absolutely and uniformly convergent on every
neN

compact subsetin X. Then Zof,, is also an eigenfunction of A with the same
neN
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eigenvalue .

§2. Hermitian hyperbolic spaces

From now on we deal with the Lie group G=SU(n, 1) (n=2). The associated
symmetric space X =G/K is called a hermitian hyperbolic space.
The Lie algebra g, =su(n, 1) is given by

;)

Zeu(n), zeu(l), neC" }

Tr(Z)+2z=0
Put
. {Z 0\ | Zeu(n), zeu(l)
o <0 z> TH(Z)+2=0 }
0 n
p0={<_ > neC"}.
ti 0

Then go=%,+ p, is a Cartan decomposition and negative conjugate transpose
is the corresponding Cartan involution 8. The complexifications f=f§ and p=
p§ in g=g§=sl(n+1, C) are given by

£
o9 e

Let b be the set of diagonal elements of T and put ho=f,nh. Then b
is a Cartan subalgebra both for fand g. Let e; (1<i<n+1) be the linear form on
b whose value on a diagonal matrix is the i-th entry. Then roots of (g, ) are
the differences ¢;—e; (1=<i, jSn+1). Choose an order in (\/—1ho)* so that
the positive roots are ¢;—e; (1Si<j=n+1). Let Q, Q, and Q, be the sets of
positive, compact positive and non-compact positive roots respectively. Putting
Bij=e;—e;, we have

Z: nx n complex matrix, ze C

Tr(Z)+z=0

O={Bllsi<js=n+1},
O={Bijll=i<j=n},

Qu={Bin+1l1Si=nj.
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The root subspace g#i/ is equal to CE;
unit. We have

j» where E;; (154, jSn+1) is the matrix

g=b+ 2 d*,
BetQ
t=h+ 2 o,
BetQk
p= 2 ¢
BetQn

The Killing form < , > of g is given by
<X, Y>=2(n+1)Tr(XY)

for X, Yeg. For Beb*, let H, denote the element in ) determined by <Hj,,
H> =p(H) for Heh. For B, p'eb*, we put <p, p'>=<Hy Hp >.

For simplicity we write §, for B ,+, and put b, =./—=1RH,,, bh_={H € b|
<Hg,, H>=0}. Then bo=b,+bh_ (direct sum). Put E; =E,,,, and E.,,
=E,,,,. Then <Ej, EL; >=2<fo, fo>"1, Ep,—E.p,€/—1p, and Ej,
+E  ,€po. Put a,=R(E; +E.z), a_=bh_, ap=a,+a_, a=a§ and u=

exp {% ad (Eﬁo_E'—po)}. Then ue Aut (g) is the identity on a_, ua, =/ —=1h,,

ua=Dh and a, is a f-stable Cartan subalgebra of g, ([11]). Thus we can take
these a,, a_ and a, as those defined in §1. We introduce an order in a¥ from
(/= 1ho)* by ‘u, which is, as is easily seen, compatible. Put o;;="uf;; (¢o=

'uf,). Then p, =%&0 (4 denotes the restriction of 1€ a* to a,) and

P, ={ag=0 41> %pis % ue1(1<i, j<n+1)},
Py, ={oy;, o) ,41(1<i, j<n+1)},

Py, ={xo} .

Put E; =(2n+2)"'/2E, and X, =u"'Es, (1=i, jSn+1). Since Ej;,
egfii and <Eg, , E_j > =1, we obtain that X, eg*¥ and <X, , X_,,>

@ij —aij

=1. By a direct calculation on the f-component Z, = —é—(X «+0X,)of X,, wehave

LEmMMA 2.1.

Zyy=Z_oy=—{(n+1)/2}'/2H,,,

/]

z, =V 2E, (1<i<n+l),

ayi b)
“
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z_a“=\/T2 E,,, (1<i<n+1),

z —l/.z-z-E_,,”(1<j<n+l),

Xj,n+1

z ——‘_/.2£Eﬂ11(1<j<n+1).

—aj,n+t

Let m be the Lie algebra of M =Z(A), where K(resp. A) denotes the analytic
subgroup in G with Lie algebra f, (resp.a,). Then, putting P_=P— P, we have

m= > g*'=_ 2} gfy,
aet P 2s5i,jSn

since u is the identity on a_. Put
Zc=(n+1)_1( i§1 Eii—nEn+l,n+1)9

Zy=(n+ 1) {(n=DE;; +(n=DEps 1001 =2 3 Ei}

Then Z_ lies in the center of f, Z,, lies in m and

Hgo=Q2n+2)y"1Q2Z.+2,),
as Hyy=(2n+2)"'(E{; —E,,n+1).- Hence we have
2.1 Hpo=(n+1)"'Z, mod m3B.
By Lemma 2.1 and (2.1) we have

w2ﬂo= Z (ZaZ—a+Z—aZa)

(2.2) e
=2(n42-1)Hﬂo'='(n+1)"Z§ mod m®B

and

(2.3) Ouo= X (ZZ-o+Z-,Z,)

#o
— 2y (—I—E E, +LE, E )
2 BBy —2‘ =B11™B 11

1<i<n+1

= ) (EgE_z+E_gE;) mod mB
BeQx

Let wy denote the Casimir operator on K corresponding to the restriction
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of the Killing form of g on . Since <E;, E_g> =1 for feQ,, <b,, h_> =0,
h_cm and <\/n+1 Hp, \/n+1 Hy,> =1, we have

(2.9) wg= 3 (EgE_z+E_jzEp)+(n+1)Hj, mod m3B .
BeQi :

From (2.2), (2.3) and (2.4), it follows that

D= Wy + 0o, mod m3B .

LeEmMMA 2.2. For g=su(n, 1), we have
W, =(n+1)"122 mod mYB,
Wy +Wop, =Wk mod m3B .
Let L° be the set of highest weights of y e R°. Then by the theory of Kostant-
Rallis ([4]), L° is given as the set
{A=4,,,=(-m)A;+ mA,_+(=3m)A,|l, ne N°, 1=2m}

for G=SU(n, 1) (n=2), where A;=e, +---+e;.

§3. K-finite eigenfunctions on a hermitian hyperbolic space

In this section we determine the Poisson transform of a K-finite function on

B for a hermitian hyperbolic space X =SU(n, 1)/S(U,x U,).

From now on, for y e R® with the highest weight 4, ,, we write thm, Vim,
d(l, m), s#bm, ¢i»m and fLm instead of 7. V7, d(y), #2, ¢} and [}, res-
pectively. We identify L® with the set of the pairs (I, m) such that I, me N°

and I=m. Put

px=2"1 2. B.

BeQx

LeMMA 3.1. Let fes#l™. Then, for a€ A,

(L@w) 1} @)=ty m=m?)+ 5} fa),

{L(@320,) f}@K) =~ (1= 2m)*f(aK)

ProoOF . Since f transforms according to '™ under =,
L(w)f=<Aim+2pks Aym>f

L(ZY)=A,.(Z)*f.
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On the other hand, since M normalizes A,
f((exptY)aK)=f(a(exptY)K)=f(aK)
for feC>(X), aeA, Yem and teR. Therefore we have
(L(w) f)(aK)=0

for uem®B and feC®(X). Hence from Lemma 2.2 it follows that

(3.0) (L@u))@K) = { L0k =11 22)1 }ak),
(L(@20)/)(@K) =~ {L(Z2)} (@K) .

By a simple computation, we have

_ 1 2 _ 2y, =1
(3.2) <A m+2pg, Ay > =1 (12 —=3Im+3m?)+ ICES)) l,

A (Z)=1-2m.
From (3.1) and (3.2) we obtain this Lemma.

LeEMMA 3.2. Let seC and put flm=fim. Then

(3.3)
r(l-m+2 (1+s)) I(m+2 (1+9)

fim(a,K)y=d(l, m)'/2 r(rz(f.)n) : < 2 ) ( 2 )
r(7 (l+s)> r(% (l+s)>

x (tanh ¢)!(cosh t)"(s‘l)F<l—m+%(l —5), m+%(l —s), I +n; (tanh t)2>,

fi™a,K)=0 (22i=d(l, m)).

Proor. From Proposition 1.4 and Lemma 3.1, f=f!m™ satisfies the dif-
ferential equation

d*f _ df _ 4 2, n—1
— 2
—“(g—gnhzg:))—‘z f+ (I=sH)n?f=0.

By a new parameter z=(tanhf)?, the above differential equation turns into
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d*f n—z df _ 1 _ n—1
z(1—2z) dz zz(l—z)< ’ 2 )f

(1 —s%)n?

_ U= 2m)2 _
It 4a=n /=0

By a routine argument (cf. [7]), f can be written as

3.4)  fLm(a,K)=ckm™(tanh t)}(cosh )1
x F(l—m+%(l —5), m+ 2 (1=5), I+n; (tanh t)2>

with a constant c¢/™. We notice that f9:0 is equal to f,=2(1p) defined in
§1. Since f,e#2:° and f(eK)=1,

(3.5)  fi(a,K)=(cosh t)n(rl)F(_’z’—(l ~5), 2(1-5), n; (tanh t)2>.

Now we assume that Re(s)>0. Then from Theorem 1.3,

1 fst (a K) ‘?s(¢£'m)(atK) —hlm — 1/25.

im ek TIm ek fneM)=dl mite,.
On the other hand, from (3.4) and (3.5) it follows that

: fiim(a,K)

A @ k)

I'(l+n) I'(ns) I'(n)I (ns)
. 2

F<m+%(l+s)> r(z—m+—’2’— a +s)>/ F(%(l+s)> ;

=c£’m

since
F(l-—m+%(l —5), m+%(1 —3), l+n; 1)

I'(I+n)I (ns)
F<m+—(1+s)> (1 m+—(1+s)>

for Re(s)>0. Therefore we obtain (3.3) for Re(s)>0. But both sides of (3.3)
are entire functions in s for any fixed t. Hence (3.3) is valid for any se C from
the uniqueness of analytic continuation, which finishes the proof.

§4. Poisson transform of a hyperfunction

In this section we define the Poisson transform 2 (T ),which is a function on
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a hermitian hyperbolic space X =SU(n, 1)/K, of a hyperfunction T on B=K/M,
and prove that for s=0, 2, is an isomorphism of %(B) onto s (X), where %Z(B)
denotes the space of Sato’s hyperfunctions on B and 5#(X) is the space of eigen-
functions of 4 on X with eigenvalue (s2—1)<p, p>.

Let o7(B) denote the space of real-analytic functions on B with the natural
topology ([6]) and «7'(B) the space of continuous linear functions of 27(B) into
C. Since B=K/M is real-analytically isomorphic to the (2n—1)-dimensional
sphere S2"~! o/’(B) is canonically isomorphic to #(B), the space of Sato’s
hyperfunctions on B([10]). Henceforth we write #(B) for «/'(B) and call the
elements of «/’'(B) hyperfunctions on B. We denote the value of Te #(B) at
¢e(B) by

[ sware).
We define a subspace #,(B)in CN= [] C4"m by
(l,m)eL®

d(l,m

)
%(B)={(a£"”)eC"|( 2 2 labmlexp (—nifi2)<oo for any n>0},

1I,m)eL® i=1

where 4,,=(n+1)"1(1?-3Im+3m?)+(2n+2)"'(n—1)l (the eigenvalue of wy
on Vim) and define a mapping ¥ of #(B) into C¥ by

¥(T)=(atm), atm={ GLm®)aT®),
B
for Te #(B). Then by Theorem 1.8 and the remark in [1, §1], ¥ is an isomor-
phism of #(B) onto & ,(B), and# ,(B) is also given by
, d(lL,m)
Fy(B)={(ap™eC"| > 2, lapm|?exp(—ni}}?)<oco for any n>0} .
(l,m)eL% i=1

On the other hand, it is easy to see that

for all (I, m)eL®. Therefore & (B) can be characterized as

4.1) FyB)={(@™| X d“Z'IM) lal™|exp (—nl)<oo for any n>0}

(I,m)eL® i=1

d(l,m)
={atm| 2 2 la}™|?exp(—nl)<oo for any n>0} .
(I,m)eL® i=1

LEmMMA 4.1. Let (ab™)=Y(T) (Te #(B)). Then

P(T)(2)= z“ﬂ%wwvx zeX.

(I,m)eL® i=



452 Katsuhiro MINEMURA

Proofr. For any fixed ze X, P(z, b) can be expanded in an absolutely

and uniformly convergent series
d(l.m

Pab= 3 “E e P, )ptmb)as,

(I,m)elL® i=1

which converges also in «/(B) ([1, Corollary 1 to Proposition 1.7]). From the
continuity of T on «/(B), we have

d(1,m)
2.D)@= 5 | #r)ar®)| Pz botmbias.
(l,m)eL® i=1 JB B

Since

apm={ FEm)aT ),

fin(@)=| Pz, b)$bm(®)ab,

we obtain this lemma.

PROPOSITION 4.2. (1) For any seC and any (ab™)e Fy(B), the series
d(l.m)
ap"fs"
(l,m)elL® i=1
is absolutely and uniformly convergent on every compact subset of X.
(2) Suppose that s=0 and expand fe # (X) as

d(1.m) Lomel
ymgl,m
a; ./si

f_

(I,m)elL® i=1

by Proposition 1.2, which is possible as e(s)#0 for s=0. Then (al"™)eZ y(B).
For the proof, we need the following

LeEmMMA 4.3. For (I, m)e L® and ueC, put

I'n)  I'l—-m+u) TI(m+u)
I'(l+n) I'(u) I'(u)

GLm(r)=r!

xF(l—m+u, m+u, l+n;r?) (|r|<l).

(1) For any fixed h with 0<h<1, there exists an l, such that for any (I, m)eL°
with 1= 1,,

m L) LU+1ul) | g
IGEmI S 1rlt s o aly s (=m0 (irish).

n

(2) Assume that u= Tand t>0. Then for any (I, m)e L°,
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. t\' 2T(/2+uw)?  T(n)
GL (tanht)g(tanha— F(l+2u+1/2) I-v(u)z .

Proor. First we notice that
2
(4.2) F(+v)[(©)2I( —m+v)[(m+0)2 r<_é_ +,,)

for IZm=0 and v>0. From the definition of the hypergeometric function, it
follows that
4.3)

(e e & I'll-m+u+k) TI'(m+u+k) 1 rik
Gum(r)y=r'T'(n) 2, T T INETEY I I

Therefore using (4.2) we have

G4 S1r'Ten § LU=t lel 20 LomtJul +o)
. 1 r2k
TU+n+k) k!

I'(n)  T'(+]|ul) . .
élrlll"(l+n) T(ul) F(l+ |u]|, |ul, I+n;r?).

On the other hand if we put l,=(h|u|—n)/(1—h), it can be shown ([7, Lemma
5.3]) that for any I=>1,,

F(l+ul, lul, I+n; r)s(A=h)y1* (r|Sh),

which proves the first assertion of the lemma.
Next, putting r=tanht, we have from (4.2) and (4.3) that

. & I(l/2+u+k)? 1 LT
Gum(nzril(n) X —"F072 "TU+n+k) k!
2 I'(1]2+u+k)? 1 r2k
>l : '
2r'r'(n) k;() T (u)? IFr(l+2u+1/2+k) k!’

since I'(l+2u+1/2+k)=I'(l+n+k). Therefore we obtain

I'(u) CT(2+u)?
TU+2u+1/2) ~ I'(u)?

Gym(ryzr!
xF(l|2+u, I1[24+u, I+2u+1]/2;r2).

By using the equality
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F<o¢, B, a+ﬂ+—;—; z>

(LT Y 1 ! EISENES
in [5, p. 251] and considering that

11 1, 1-yT=r2
F<—2—,7,1+2u+—2‘,———2 )gl,

r t
l+\/—1—r2 =tanh 5

< 2 2u—1/2>1
1+\/ﬁf) =

we get

27 (1)24u)? . T'(n)
TU+2u+1/2) T@)?

1
Glm(tanh 7) = <tanh %) .

which completes the proof.
Proof of Proposition 4.2. We put u=%(1+s). First we recall (Lemma

3.2) that

I'(u) Ir(i—-m+u) TI'(m+u)

sl'm(azK)=d(ls 'n)l/2 r(l+m) : ]"(u) I'(u)

x (tanh t)*(cosh )"~ VF(l—m+n—u, m+n—u, l+n; (tanht)?),
#"aK)=0 (Q2=i=d(l, m).
Noticing (cf. [5, p. 248]) that
F(a, B, v; 2)=(1=2)""*FF(y—a,y=p, y: 2)
and using the function G.'™ defined in Lemma 4.3, we have

I'n) I'(l-m+u) TI'(m+u)
I'(l+n) I'(u) I'(u)

4.4)  fim™@,K)=d(l, m)'/?

X (tanh ¢)!(cosh £)~24F(l —m+u, m+u, l +n; (tanh ¢)2?)
=d(l, m)'/?(cosh ¢)~24Gl™(tanh ?) .
For h with 0<h<1, we define a compact set U, of X by
U,={z=ka,K|[tanht|<h} .
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Let I, be as in Lemma 4.3 and consider the series

d(1,m)
S(z)= 2, 2 labm | fim(2)|

(l,m)eL0,121o i=1
in U, for (a}'™)eZ#(B). From Lemma 4.3, (4.4) and |t™(k)| <1, we have

d(1.m)

S(ka,K)= X 2 latm | fim(@K) | |im(k)|

(1,m)eLo,121oi,j=1

d(1,m)

2 laml | fy™(aK)|

(l,m)elL9,l21lp i=1

lIA

d(1.m)
<c X d{,m) 2" 3" |abm| |tanh ¢}
(l1,m)eL0,121o i=1

T T+u))
F(T+n)  I(u)

° (1 —h)‘l“' ’

where we put

c¢= sup (cosh z)=2Re(
atKGUh

Since

: I'(n) T4+ ul) \''_q; 11—
5‘32<r(1+n> () > =lim d(l, m)'/'=1,

it follows from (4.1) that S(z) converges uniformly in U,

(2) Letn>0and choose a t>0 such that tanh (¢/2) =exp(—#/2). From Proposi-
tion 1.2, we have

(Lm) (2.m)
19312=, 5, d@.m ("5 1am2) (5 ra12)

,m)eL

for ze X. Putting z=q,K, by Lemma 4.3 and (4.4) we obtain

195122 3 (“37 1abm12) (tanh £ )" cosh 1)+

(I,meLo\ =1

x 2ird/24+u)?  I'(n) }2
{F(l+2u+1/2) I'(w)?f °

Since

. 2Irf24+u)? | I'(n) (M _
llm{r(1+2u+1/2) r(u)z} =1

1= 00

it follows that
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d(1,m)
5 (" labm1?)exp (—nh) <o,
(I,m)eL®\ i=1
which implies by (4.1) that (a}'™)e #,(B). This completes the proof.
THEOREM 4.4. Let X be a hermitian hyperbolic space.

(1) The Poisson transform P, maps #(B) into # (X).
(2) For s=0, 2, is an isomorphism of #(B) onto ¢ (X).

CoROLLARY 4.5. For a hermitian hyperbolic space, any eigenfunction
f of A with eigenvalue u= — <p, p> can be represented as

1@ = Pz b)T)

with some s=0 and some Te %(B).

ProOF. Assume that Af=uf. We can select an s=0 such that p=(s2—1)
<p, p>. Then we have only to apply Theorem 4.4 to f.

ProoOF OF THEOREM 4.4. (1) Let Te #(B) and put ¥(T)=(a}™). By
Lemma 4.1 and Proposition 4.2,

d(l.m

2D@= 5 “Yamrime
(I,m)eL® i=1
is absolutely and uniformly convergent in every compact subset of X. Then
by Proposition 1.5, 2(T) belongs to s (X).
(2) The surjectivity of £, (s=0) is clear from Lemma 4.1 and Proposition 4.2,
(2). Assume that 2(T)=0. Then putting ¥(T)=(a}'™), we have

d(l,m

S atmpim(z) dlm(k) =0 .

(I,m)elL%i,j=1
Since ¢! are linearly independent and f!/ are not identically equal to zero

on X, we get ab™=0, which finishes the proof of the theorem.

RemARK. The set L defined in [1, § 3] should be replaced by the L° defined
in §3 in this paper. But Theorem 4.5 in [1] is valid and is a special case of
s=1 in Theorem 4.4 of this paper.

Added in proof.

Recently S. Helgasan has proved that the same result as in Corollary 4.5 in
this paper holds also for the quaternion hyperbolic spaces and the exceptional
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symmetric space of type FII in the preprint ‘‘Eigenspaces of the Laplacian;
integral representations and irreducibility”’.
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