A Remark on Certain Symmetric Stable Processes*

Mamoru Kanda
(Received January 17, 1974)

1. In a series of author's works [2], [3], etc., we try to clarify the relation between the fine topology and the order of divergence of Green functions corresponding to Markov processes. The main result is as follows. There are given Markov processes $X_{i}, i=1,2$ on the same "good" state space E which have Green functions $G_{i}(x, y), i=1,2$ respectively. If

$$
G_{1}(x, y) \approx G_{2}(x, y),{ }^{1)}
$$

then the fine topologies given by $X_{i}, i=1,2$ are equivalent under certain regularity conditions on $X_{i}, i=1,2$. Moreover it is shown that a certain order relation of the divergence at the diagonal of $G_{i}(x, y), i=1,2$, induces a relation on strength of the fine topologies given by $X_{i}, i=1,2,[2]$.

In this note we show by examples that

$$
G_{1}(x, y) \leqq \text { Const. } G_{2}(x, y)
$$

does not always imply that the fine topology induced by X_{2} is stronger than that induced by $X_{1}{ }^{2}$). In addition our examples show that the fine topologies are not equivalent and the orders of divergence of Green functions are different, even if polar sets (sets of capacity zero) corresponding to $X_{i}, i=1,2$ coincide 3).
2. Let X be a symmetric (not necessarily spherically symmetric) stable process on $R^{n}(n \geqq 3)$. Then it is known that there exists a potential kernel $G(x, y)$ $=g(x-y)$ (we call it Green function of X) such that

$$
\int_{0}^{\infty} T_{t} f(x) d t=\int_{R^{n}} G(x, y) f(y) d y, \quad G(x, y)>0,
$$

for each continuous function f of compact support, where $\left\{T_{t}\right\}$ is the semi-group of transition operators for X.
*) This research was supported in part by Matsunaga Science Foundation.

1) It means that for any $x \in E$ there exists a neighborhood U and exist positive constants $C_{i}, i=1,2$ such that $C_{1} G_{1}(X, y) \leqq G_{2}(x, y) \leqq C_{2} G_{1}(x, y),(x, y) \in U \times U$.
2) This means that each X_{1}-finely open set is a X_{2}-finely open set.
3) In one dimensional case, it is easily shown that this phenomenon occurs for unsymmetric stable processes of index $\alpha, 0<\alpha<1$. Our aim of this note is to give examples of symmetric infinitely divisible processes in higher dimensional spaces.

Proposition. There are given symmetric stable processes $X_{i}, i=1,2$ of index $\alpha, 0<\alpha<2$, on $R^{n}(n \geqq 3) . \quad X_{1}$ is spherically symmetric and X_{2} is the infinitely divisible Markov process obtained by assuming that the coordinate processes are independent symmetric stable processes of index α. We assume that $0<\alpha \leqq \frac{n-1}{2}$ and $n \geqq 3$. Then the following hold ${ }^{4}$.
i) Each compact set K which has nonzero capacity for $X_{1}\left(\operatorname{resp} . X_{2}\right)$ contains regular points ${ }^{5}$) for K with respect to $X_{1}\left(\right.$ resp. $\left.X_{2}\right)$.
ii) Each polar set for X_{1} is polar for X_{2} and the converse is also valid.
iii) $\quad G_{1}(x, y) \leqq C G_{2}(x, y)^{6)}$ for every x, y where $G_{i}(x, y), i=1,2$ are Green functions of $X_{i}, i=1,2$, respectively.
iv) Fine topologies given by $X_{i}, i=1,2$ are not equivalent ${ }^{7}$).

Proof. The statement i) follows directly from the symmetry of the processes $X_{i}, i=1,2$ (see, for example, Blumenthal-Getoor [1]). The statement $i i$) is a consequence of S. Orey's result (Cor. 2.1 in [4]). The statement iii) is proved as follows. It is known that $G_{1}(x, y)=C|x-y|^{\alpha-n}$. Let $\psi(x)=\left|x_{1}\right|^{\alpha}+$ $\cdots+\left|x_{n}\right|^{\alpha}$ be the exponent of X_{2} and $g(x-y)=G_{2}(x, y)$. Then $g(x)=g(-x)$ and

$$
g(x)=\left(\rho_{\alpha}(x)\right)^{1-\alpha / n} F^{-1}\left(\frac{1}{\psi}\right)\left(x^{\prime}\right), \quad\left|x^{\prime}\right|=1
$$

where $\rho_{a}(x)$ is a positive C^{∞}-function of $R^{n}-\{0\}$ uniquely defined by

$$
\sum_{j=1}^{n} \frac{x_{j}^{2}}{\rho_{\alpha}(x)^{2 / \alpha}}=1
$$

and F^{-1} denotes the inverse Fourier transform in distribution sense. (Note that $g(x)=F^{-1}(1 / \psi)(x)$.) Since $C_{2}|x|^{\alpha} \leqq \rho_{\alpha}(x) \leqq C_{1}|x|^{\alpha}, C_{1} \geqq C_{2}>0$ and $g(x)>0$, the statement (iii) follows at once. It may be worthwhile to remark that $g(x)$ is infinite identically on each coordinate axis in case $n \geqq 5$ or $n \geqq 3$ and $0<\alpha \leqq$ $(n-1) / 2$ (For the proof see [5] or [2].) For the proof of $i v$) we need the following estimate obtained by S. J. Taylor and W. E. Pruit [5]. Let Q be the sphere of radius r centered at the point $(d+r, 0, \ldots, 0)$ and $d \geqq 2 r$. Then

$$
\begin{equation*}
P_{0}^{2}\left(\sigma_{Q}<+\infty\right)^{8)} \geqq C\left(\frac{r}{d}\right)^{1+\alpha} \quad \text { if } \alpha<\frac{n-1}{2} \tag{2.1}
\end{equation*}
$$

4) The statements i), ii) are direct consequences of the known results (see the proof).
5) A point x is called a regular point for K with respect to X, if $P_{x}\left(\sigma_{K}=0\right)=1$, where $\sigma_{K}=\inf$ $\left(t>0, x_{t} \in K\right)$.
6) In the following we denote various, absolute positive constants by C.
7) In the proof we construct an open set K and a point x such that x is a regular point for K with respect to X_{2} but not regular with respect to X_{1}.
8) $P_{x}^{i}, i=1,2$, denotes the probability concerning paths of $X_{i}, i=1,2$ starting from the point x respectively.
and

$$
\begin{equation*}
P_{0}^{2}\left(\sigma_{Q}<+\infty\right) \geqq C\left(\frac{r}{d}\right)^{1+\alpha} \log \left(\frac{d}{r}\right) \text { if } \alpha=\frac{n-1}{2} \tag{2.2}
\end{equation*}
$$

Let Q^{\prime} be a sphere of radius r and x is at a distance d from Q^{\prime} with $r \leqq d$. Then

$$
\begin{equation*}
P_{x}^{2}\left(\sigma_{Q^{\prime}}<\infty\right) \leqq C\left(\frac{r}{d}\right)^{1+\alpha}, \quad \text { if } \alpha<\frac{n-1}{2}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{x}^{2}\left(\sigma_{Q^{\prime}}<\infty\right) \leqq C\left(\frac{r}{d}\right)^{n-\alpha}\left(1+\log \frac{d}{r}\right), \quad \text { if } \alpha=\frac{n-1}{2} \tag{2.4}
\end{equation*}
$$

We prove $i v$) in case $n=3$ or 4 and $\alpha=(n-1) / 2$. Let us choose a sequence of open spheres Q_{k} of radius r_{k} centered at the point $\left(d_{k}, 0, \ldots, 0\right)$. Further we choose $\left\{r_{k}\right\}$ and $\left\{d_{k}\right\}$ such that

$$
\begin{equation*}
d_{k+1}=\frac{1}{8} d_{k}, \quad r_{k}=\left(\frac{1}{k(\log k)^{\gamma}}\right)^{1 /(1+\alpha)} d_{k}, \quad 2>\gamma>1 . \tag{2.5}
\end{equation*}
$$

Then, using (2.4) and $n=2 \alpha+1$, we have for $m>l$ (l is sufficiently large),

$$
\sup _{x \in Q_{m}} P_{x}^{2}\left(\sigma_{Q_{l}}<+\infty\right) \leqq C\left(\frac{r_{l}}{d_{l}}\right)^{1+\alpha}\left(\frac{d_{l}}{d_{l}-d_{m}-\left(r_{m}+r_{l}\right)}\right)^{1+\alpha} \log \frac{d_{l}}{r_{l}} .
$$

Since it holds by (2.5) that

$$
\left(\frac{d_{l}}{d_{l}-d_{m}-\left(r_{m}+r_{l}\right)}\right)^{1+\alpha} \leqq\left(\frac{d_{l}}{7 / 8 d_{l}-2 r_{l}}\right)^{1+\alpha} \leqq C
$$

we have

$$
\begin{equation*}
\sup _{x \in Q_{m}} P_{x}^{2}\left(\sigma_{Q_{l}}<+\infty\right) \leqq C \cdot\left(\left(\frac{r_{l}}{d_{l}}\right)^{1+\alpha} \log \frac{d_{l}}{r_{l}}\right) . \tag{2.6}
\end{equation*}
$$

In the same way we have

$$
\sup _{x \in Q_{l}} P_{x}^{2}\left(\sigma_{Q_{m}}<+\infty\right) \leqq C \cdot\left(\frac{r_{m}}{d_{l}}\right)^{1+\alpha} \log \frac{d_{l}}{r_{m}} .
$$

Hence, using the strong Markov property, we get

$$
\begin{aligned}
P_{0}^{2}\left(\sigma_{Q_{l}}<+\infty, \sigma_{Q_{m}}<+\infty\right) & \leqq C \cdot\left(\frac{r_{l}}{d_{l}}\right)^{1+\alpha} \log \frac{d_{l}}{r_{l}} P_{0}^{2}\left(\sigma_{Q_{m}}<+\infty\right) \\
& +C \cdot\left(\frac{r_{m}}{d_{l}}\right)^{1+\alpha} \log \frac{d_{l}}{r_{m}} P_{0}^{2}\left(\sigma_{Q_{l}}<+\infty\right)=I_{1}+I_{2}
\end{aligned}
$$

It follows easily from (2.2) that

$$
I_{1} \leqq C \cdot P_{0}^{2}\left(\sigma_{Q_{l}}<+\infty\right) P_{0}^{2}\left(\sigma_{Q_{m}}<+\infty\right)
$$

and

$$
\begin{aligned}
& I_{2} \leqq C \cdot\left(\frac{r_{m}}{d_{m}}\right)^{1+\alpha}\left(\frac{d_{m}}{d_{l}}\right)^{1+\alpha}\left(\log \frac{d_{m}}{r_{m}}+\log \frac{d_{l}}{d_{m}}\right) P_{0}^{2}\left(\sigma_{Q_{l}}<+\infty\right) \\
& \leqq C \cdot P_{0}^{2}\left(\sigma_{Q_{l}}<+\infty\right)\left\{C \cdot P_{0}^{2}\left(\sigma_{Q_{m}}<+\infty\right)\right. \\
&\left.+\left(\frac{r_{m}}{d_{m}}\right)^{1+\alpha}\left(\log \frac{d_{m}}{r_{m}}\right)\left(\frac{d_{m}}{d_{l}}\right)^{1+\alpha} \cdot\left(\log \frac{d_{l}}{d_{m}}\right)\left(\log \frac{d_{m}}{r_{m}}\right)^{-1}\right\} .
\end{aligned}
$$

Since $m>l$ are sufficiently large, we have

$$
\left(\frac{d_{m}}{d_{l}}\right)^{1+\alpha} \log \frac{d_{l}}{d_{m}}=\left(\frac{1}{8}\right)^{m-l} \log 8^{m-l} \leqq C
$$

and $\log d_{m} / r_{m}>1$. Hence it follows from (2.2) that

$$
I_{2} \leqq C P_{0}^{2}\left(\sigma_{Q_{1}}<+\infty\right) P_{0}^{2}\left(\sigma_{Q m}<+\infty\right)
$$

Consequently we have

$$
\begin{equation*}
P_{0}\left(\sigma_{Q_{i}}<+\infty, \sigma_{Q_{m}}<+\infty\right) \leqq C P_{0}\left(\sigma_{Q_{i}}<+\infty\right) P_{0}\left(\sigma_{Q_{m}}<+\infty\right) . \tag{2.7}
\end{equation*}
$$

Now since

$$
\sum_{k} P_{0}^{2}\left(\sigma_{Q_{k}}<+\infty\right) \geqq C \sum_{k}\left(\frac{r_{k}}{d_{k}}\right)^{1+\alpha} \log \frac{d_{k}}{r_{k}} \geqq C \sum_{k} \frac{1}{k(\log k)^{\gamma-1}}
$$

by (2.2) and (2.5), we have

$$
\begin{equation*}
\sum_{k} P_{0}^{2}\left(\sigma_{Q_{k}}<+\infty\right)=+\infty \tag{2.8}
\end{equation*}
$$

for $2>\gamma>1$. Combining (2.8) with (2.6), we can conclude that

$$
P_{0}^{2}\left(\varlimsup \varlimsup_{k \rightarrow \infty}\left\{\sigma_{Q_{k}}<+\infty\right\}\right)>0
$$

by Lamperti's lemma. Hence the point 0 is a regular point for $K \equiv \cup_{k} Q_{k}$ with respect to X_{2}. On the other hand we can easily see that

$$
\sum_{k} P_{0}^{1}\left(\sigma_{Q_{k}}<+\infty\right) \leqq C \cdot \sum_{k}\left(\frac{r_{k}}{d_{k}}\right)^{1+\alpha}=C \cdot \sum_{k}\left(\frac{1}{k(\log k)^{\gamma}}\right) .
$$

Therefore

$$
\sum_{k} P_{0}^{1}\left(\sigma_{Q_{k}}<+\infty\right)<+\infty
$$

for $2>\gamma>1$, which implies that the point 0 is not a regular point for K with respect to X_{1} as is easily seen using Borel-Cantelli lemma. Consequently we have proved that there exist an open set K and a point x such that x is a regular point for K with respect to X_{2} but not a regular point for K with respect to X_{1}. Now the statement $i v$) is obvious in case $\alpha=(n-1) / 2$ and $n=3$ or 4 . When $n \geqq 5$ and $\alpha<(n-1) / 2$, we can prove that there exist an open set K and a point x of the above type in the same way and the proof is rather easy. Hence we omit the proof here.
3. If we could prove that $G_{1}(x, y) \approx G_{2}(x, y)$ follows from the equivalence of fine topologies of two given Markov processes with Green functions $G_{i}(x, y)$, $i=1,2$ respectively, then the statement $i v$) of the above proposition is trivial. This converse problem of the fine topology is still open except for a special case (see [3]).

References

[1] R. M. Blumenthal - R. K. Getoor, Markov processes and potential theory, Academic press, New York and London, 1968.
[2] M. Kanda, Comparison theorems on regular points for multi-dimensional Markov processes of transient type, Nagoya. Math. J. 44 (1971), 165-214.
[3] M. Kanda, Remarks on Markov processes having Green functions with isotropic singularity, Proc. Second Japan-USSR Symp. on Prob. Th., Lecture Notes in math., vol. 330, Springer, 1973.
[4] S. Orey, "Polar sets for processes with stationary independent increments" in Markov processes and potential theory, edited by J. Chover, Wiley, New York, 1967.
[5] S. J. Taylor - W. E. Pruit, The potential kernel and hitting probabilities for the general stable process in R^{N}, Trans. Amer. Math. Soc. 146 (1969), 299-321.

Department of Mathematics,
Faculty of Science, Hiroshima University

