A Note on Hilbert's Nullstellensatz

Kazunori FUJITA (Received January 16, 1974)

In his paper [3], S. Lang generalized the famous Hilbert's Nullstellensatz to the polynomial ring in an arbitrary number of variables over an algebraically closed field; however it seems to the author that his method is based on a usual technique known for the polynomial ring in a finite number of variables. Also, a number of proofs of Hilbert's Nullstellensatz have been given by O. Zariski and others ([1], [4], [5]). The main purpose of this note is to introduce the notion of the property $J(\Lambda)$ for a ring, which leads to a new approach to the theorem, applicable to the generalized case. We discuss, in 2, the relationship between Hilbert's Nullstellensatz and a Hilbert ring.

Throughout this note, a ring means a commutative ring with identity element. The author wishes to express his thanks to Professor M. Nishi for helping to complete this paper by giving several important observations.

1. Let R be a ring. We denote by $Ht_1(R)$ the set of prime ideals of height 1 in R and for any given subset D of R, we denote by $H_R(D)$ the set of prime ideals of height 1 in R which contain at least one element of D. Let A be an R-algebra and A be a set. A is said to be A-generated over R if there is an R-algebra homomorphism from a polynomial ring $R[..., X_{\lambda},...]$, $\lambda \in A$, onto A. In what follows the set A will always be assumed to be infinite.

If a subset D of R satisfies the following conditions: (1) card $(D) \le \text{card}(A)$ and (2) any element of D is not a zero divisor, then we say that D is a J-subset of R.

DEFINITION. When $H_R(D)$ is properly contained in $Ht_1(R)$ for any J-subset D, we say that the ring R has the property $J(\Lambda)$.

Lemma 1. Let R be a unique factrization domain such that the cardinality of the set of prime elements of R is greater than that of the set Λ . Then R has the property $J(\Lambda)$. In particular if k is a field such that card $(k) > card(\Lambda)$. then any polynomial ring over k has the property $J(\Lambda)$.

The proof is almost clear and is omitted.

LEMMA 2. Let $R \subseteq A$ be integral domains such that A is integral over R. Then if R has the property $J(\Lambda)$, then so does A.

PROOF. Let $D = \{b_{\mu}; \mu \in M\}$ be any J-subset of A; let $f(X) = X^{n_{\mu}} + \cdots + X^{n_{\mu}}$

 $d_{\mu}=0$ be an equation of integral dependence for b_{μ} of smallest degree. Then it is clear that $d_{\mu} \neq 0$ and the set $D' = \{d_{\mu}; \mu \in M\}$ is a *J*-subset of *R*. Since *R* has the property $J(\Lambda)$, $H_R(D')$ is properly contained in $Ht_1(R)$. Let \mathfrak{p} be a prime ideal in $Ht_1(R)$ but not in $H_R(D)$; since *A* is integral over *R*, there is a prime ideal \mathfrak{P} of height 1 in *A* lying over \mathfrak{p} . We can readily see that $\mathfrak{P} \subseteq H_A(D)$.

PROPOSITION 1. Let A be an integral domain and let $f: R \to A$ be a ring homomorphism. If A has the property $J(\Lambda)$, then the quotient field Q(A) of A is not Λ -generated over R.

PROOF. Suppose that Q(A) is Λ -generated, namely $Q(A) = f(R)[..., a_{\lambda}/b_{\lambda},...]$, a_{λ} , $b_{\lambda} \in A$, $\lambda \in \Lambda$. Since A has the property $J(\Lambda)$, we can take a prime \mathfrak{p} in $Ht_1(A)$ but not in $H_A(\{b_{\lambda}; \lambda \in \Lambda\})$. Let b a non-zero element of \mathfrak{p} . Since 1/b is an element of Q(A), there is an element a of A such that ab is a product of b_{λ} 's; this implies that \mathfrak{p} must contain b_{λ} for some λ and therefore $\mathfrak{p} \in H_A(\{b_{\lambda}; \lambda \in \Lambda\})$. This is a contradiction.

COROLLARY 1. Let k be a field such that card (k)-card (Λ) . Then, for any maximal ideal $\mathfrak M$ in $k[..., X_{\lambda},...]$, $\lambda \in \Lambda$, the residue field $L = k[..., X_{\lambda},...]/\mathfrak M$ is algebraic over k. In particular, if k is algebraically closed, then every maximal ideal $\mathfrak M$ is of the form $\mathfrak M = (..., X_{\lambda} - a_{\lambda},...)$, $a_{\lambda} \in k$.

PROOF. Suppose that L is not algebrake over k; we let $\{t_{\mu}; \mu \in M\}$ be a transcendental basis for L over k. Let R be the integral closure of the ring $k[..., t_{\mu},...]$ in L. Then the quotient field of R is L. Since $k[..., t_{\mu},...]$ has the property $J(\Lambda)$ by Lemma 1, R also has the property $J(\Lambda)$ by Lemma 2. It follows from Proposition 1 that the quotient field L of R is not Λ -generated over k; this leads to a contradiction.

REMARK 1. When card (M) is finite, for any field k, a polynomial ring $k[X_1, X_2, ..., X_r]$, $r \ge 1$, has the property J(M). Therefore, a new proof of Hilbert's Nullstellensatz is obtained as in the proof of Corollary 1.

COROLLARY 2. Let R be a ring such that card $(R/m) > card (\Lambda)$ for every maximal ideal m of R. Then, \mathfrak{M} being any maximal ideal of $R[..., X_{\lambda},...]$, the residue field $R[..., X_{\lambda},...]/\mathfrak{M}$ is algebraic over R/\mathfrak{p} , where $\mathfrak{p} = R \cap \mathfrak{M}$.

PROOF. It is easy to see that $R[..., X_{\lambda},...]/\mathfrak{M} \simeq k(\mathfrak{p})[..., X_{\lambda},...]/\mathfrak{M}k(\mathfrak{p})[..., X_{\lambda},...]$, where $k(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$, and that card $(k(\mathfrak{p})) > \text{card}$ (Λ). We see, by Corollary 1, that $R[..., X_{\lambda},...]$ is algebraic over $k(\mathfrak{p})$.

REMARK 2. Let k be a field such that card $(k) \le \operatorname{card}(\Lambda)$. Then, for any cardinal number $\eta \le \operatorname{card}(\Lambda)$, we can find a maximal ideal \mathfrak{M} of $k[..., X_{\lambda},...]$ so that η is equal to the transcendental degree of $k[..., X_{\lambda},...]/\mathfrak{M}$ over k. In fact, let Λ_1 be a subset of Λ such that $\operatorname{card}(\Lambda_1) = \eta$ and $\operatorname{card}(\Lambda - \Lambda_1) = \operatorname{card}(\Lambda)$;

since the cardinality of the polynomial ring $k[..., X_{\mu},...]$, $\mu \in \Lambda_1$, does not exceed the cardinality of Λ , there is a subset Λ_2 of $\Lambda - \Lambda_1$ such that card (Λ_2) =card $(k[..., X_{\mu},...] - \{0\})$ and therefore there is a bijection $\varphi \colon \Lambda_2 \to k[..., X_{\mu},...] - \{0\}$; for every element $\tau \in \Lambda_2$, we put $f_{\tau} = \varphi(\tau)$ and for every element $\lambda \in \Lambda - \Lambda_1 \cup \Lambda_2$ we put $f_{\lambda} = 1$. Let \mathfrak{M} be the ideal in $k[..., X_{\lambda},...]$, $\lambda \in \Lambda$, generated by $f_{\lambda}X_{\lambda} - 1$, $\lambda \in \Lambda - \Lambda_1$; then $k[..., X_{\lambda},...]/\mathfrak{M} = k(..., X_{\mu},...)$, $\mu \in \Lambda_1$, and therefore \mathfrak{M} is a maximal ideal in $k[..., X_{\lambda},...]$ and η is equal to the transcendental degree of $k[..., X_{\lambda},...]/\mathfrak{M}$ over k.

- 2. The following Lemma 3 is due to O. Goldman (cf. [2]).
- LEMMA 3. A ring R is a Hilbert ring if and only if every maximal ideal in the polynomial ring R[X] in a variable X contracts in R to a maximal ideal.
- LEMMA 4. Let $R \subset A$ be rings such that A is integral over R. Then R is a Hilbert ring if and only if A is a Hilbert ring.

PROOF. Suppose first that R is a Hilbert ring. Let \mathfrak{M} be any maximal ideal in A[X]; then, since A[X] is integral over R[X], the contraction $\mathfrak{m} = R[X] \cap \mathfrak{M}$ is maximal in R[X]. The assumption and Lemma 3 imply that $\mathfrak{m} \cap R = (\mathfrak{M} \cap A) \cap R$ is maximal in R; therefore $\mathfrak{M} \cap A$ is maximal in A and again by Lemma 3, we see that A is a Hilbert ring.

Conversely suppose that A is a Hilbert ring. Let $\mathfrak N$ be any maximal ideal in R[X]; we take a maximal ideal $\mathfrak M$ in A[X] lying over $\mathfrak N$. The assumption implies that $\mathfrak M \cap A$ is maximal in A; therefore $(\mathfrak M \cap A) \cap R = \mathfrak N \cap R$ is maximal in R. Now our assertion follows from Lemma 3.

LEMMA 5. Let k be a field. Then the polynomial ring $k[..., X_{\lambda},...]$, $\lambda \in \Lambda$, is a Hilbert ring if and only if card $(k) > card(\Lambda)$.

PROOF. We put $R = k[..., X_{\lambda},...]$, $\lambda \in \Lambda$. Firstly we suppose that card $(k) > \operatorname{card}(\Lambda)$. We see that, \mathfrak{M} being any maximal ideal in R[X], the residue field $R[X]/\mathfrak{M}$ is algebraic over k by Corollary 1 of Proposition 1. As $k \subset R/\mathfrak{M} \cap R \subset R[X]/\mathfrak{M}$, $R/\mathfrak{M} \cap R$ is a field; namely $\mathfrak{M} \cap R$ is maximal in R. Now Lemma 3 tells us that R is a Hilbert ring.

Conversely, we suppose that $\operatorname{card}(k) \leq \operatorname{card}(\Lambda)$. In order to show that R is not a Hilbert ring, by Lemma 4, we may assume that k is algebraically closed and by Lemma 3, it suffices to show that we can find a maximal ideal \mathfrak{M} in R[Y], Y being a variable, such that \mathfrak{M} does not contract in R to a maximal ideal. Since $\operatorname{card}(k) \leq \operatorname{card}(\Lambda)$, there is a subset Λ_0 of Λ such that $\operatorname{card}(k) = \operatorname{card}(\Lambda_0)$ and hence a bijection $\varphi \colon \Lambda_0 \to k$. For any element $\lambda \in \Lambda_0$ we put $a_{\lambda} = \varphi(\lambda)$ and, for every element $\lambda \in \Lambda - \Lambda_0$, we put $a_{\lambda} = 1$; let \mathfrak{M} be the ideal in R[Y] generated by $X_{\lambda}(Y - a_{\lambda}) - 1$, $\lambda \in \Lambda$; then $R[Y]/\mathfrak{M} \simeq k(Y)$, which implies that \mathfrak{M} is maximal. Let λ_1 be the element of Λ_0 coresponding to 0 in k; we put $X = X_{\lambda_1}$. Let \mathfrak{p} be

the ideal in R generated by $X_{\lambda}(1-a_{\lambda}X)-X$, $\lambda \in \Lambda$; then $R/\mathfrak{p} \simeq k[X,...,X/1-a_{\lambda}X,...]$ and therefore \mathfrak{p} is prime but not maximal in R. It is easy to see that $\mathfrak{M} \cap R = \mathfrak{p}$, which implies that \mathfrak{M} is the desired ideal.

PROPOSITION 2. Let k be a field. Then the following there conditions are equivalent:

- (1) $card(k) > card(\Lambda)$.
- (2) For every maximal ideal \mathfrak{M} in $k[..., X_{\lambda},...]$, $k[..., X_{\lambda},...]/\mathfrak{M}$ is algebraic over k.
- (3) $k[..., X_{\lambda},...]$ is a Hilbert ring.

PROOF. (1) \Leftrightarrow (2) follows from Corollary 1 of Proposition 1 and Remark 2. (1) \Leftrightarrow (3) follows from Lemma 5.

COROLLARY. Let R be a ring.

- (1) If for any maximal ideal m in R, $card(R/m) > card(\Lambda)$ and every maximal ideal \mathfrak{M} in $A = R[..., X_{\lambda},...]$ contracts in R to a maximal ideal, then A is a Hilbert ring.
- (2) If $R[..., X_{\lambda},...]$ is a Hilbert ring, then for any maximal ideal m in R, we have $card(R/m) > card(\Lambda)$.

PROOF. (1) Let M be a set such that $\operatorname{card}(M) = \operatorname{card}(\Lambda)$. By assumption, any maximal ideal in $R[..., X_{\mu},...]$, $\mu \in M$, contracts in R to a maximal ideal. Therefore, \mathfrak{M} being any maximal ideal in A[X], $\mathfrak{m} = \mathfrak{M} \cap R$ is maximal in R. Since $R/\mathfrak{m}[..., X_{\lambda},...]$ is a Hilbert ring by Proposition 2, $A[X]/\mathfrak{M}$ is algebraic over R/\mathfrak{m} . As $R/\mathfrak{m} \subset A/\mathfrak{M} \cap A \subset A[X]/\mathfrak{M}$, $A/\mathfrak{M} \cap A$ is a field; namely $\mathfrak{M} \cap A$ is maximal in A. Hence, by Lemma 3, A is a Hilbert ring. (2) Since a homomorphic image of a Hilbert ring is also a Hilbert ring, $R/\mathfrak{m}[..., X_{\lambda},...]$ is a Hilbert ring. Therefore, by Proposition 2, we have $\operatorname{card}(R/\mathfrak{m}) > \operatorname{card}(A)$.

References

- R. Brauer, A Note on Hilbert's Nullstellensatz, Bull. Amer. Math. Soc. 54 (1948), 894–896.
- [2] O. Goldman, Hilbert Ring and the Hibert's Nullstellensatz, Math. Zeit. 54 (1951), 136-140.
- [3] S. Lang, Hilbert's Nullstellensatz in infinite-dimensional space, Proc. Amer. Math. Soc. 3 (1952), 407-410.
- [4] T. S. Motzkin, A proof of Hilbert's Nullstellensatz, Math. Zeit. 63 (1955), 341-344.
- [5] O. Zariski, A new proof of Hilbert's Nullstellensatz, Bull. Amer. Math. Soc. 53 (1947), 362–368.

Department of Mathmatics, Faculty of Science, Hiroshima University