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Introduction

Let p be a prime integer ^5, q—2(p— 1), and Mf = 51 U te
2 be a Moore

space of type (Z,, 1). Denote by £/k(Mt) the stable track group {SkMt, Mt] =

Dirlim{[S"+fcMί, S
MMJ, 5}, S being the suspension functor. Then the direct

sum sέ*(Mpr)=Σkjtfk(Mpr) is an algebra over Zpr with the multiplication

induced by the composition of maps. The structure of the ring ^^.(Mpr) is

studied by several authors [4] [6] [13] [14].

N. Yamamoto [14] has calculated the ring structure of J3^*(MP) for degree

<p2q — 49q=2(p—l), from the results [8] on the stable homotopy ring G* =
ΣkGk, Gk = Diΐ\imπn+k(Sn), of spheres. P. Hoffman [4] has introduced a dif-

ferential in cS/^M,) and studied the commutativity of the ring jtf*(Mt) using this
differential. H. Toda [13] has generalized Hoffman's results and obtained

several useful relations involving the elements β(t)ej^(tp+t_i)q_1(Mp).

The purpose of this paper is to determine the ring structure of jtf*(Mpr)
for any r^ 1, within the limits of degree less than (p2 + 3p + ϊ)q — 6.

Let ί ( = fr): Sl->Mpr and π ( = πr): Mpr-^S2 denote the natural maps and
set δ (=δr) = in e j2/_ 1(Mpr). We have in Proposition 2.3 a direct sum decomposi-
tion for odd t :

fc+1

Let HttZps be a summand of Gk generated by an element y. Then H gives

summands Zpm, Zpm + Zpm and Zpm, ra=min{r, s}, of jtfk+ί(Mpr), jtfk(Mpr) and
j/fc.^Mpr), via the above decomposition. In §3, we construct elements [y]

( = [y]r)ej3^fe+1(Mpr) and <y> ( = <y> r)e j^fc(Mpr) for 7 above, and we see in
Lemma 3.3 that we can take the elements [y], [y]<5, <y> and <y><5 for the generators

of four cyclic summands of j/*(Mpr) given by H. Thus the additive structure
of j2/*(Mpr) is described by using such elements (Theorem 3.5).

In Propositions 3.8-3.9, we discuss the relations of the products <α>[/Γ]

and [α] [/?] in jtf*(Mpr) with the composition aβ and the Toda bracket <α,
ps, /?> in G*. By these results and by employing the differential D (see (1.6)

for the definition) in ja/*(Mpr), we can calculate the ring structure of
from the results [5] [6] on G*.
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We define some elements of jtf*(Mp) as follows :

α =[α1]1ej/ί(Mp),

β(s) = [/Ul 6 •*(.„ + .- ife-iίM,) (1 £ 5 ̂

έ = [ε/

ε =

where #=2(>-l), and α l 9 βs, ε', εi and φ are the generators of the p-primary

part of G*[6]. The elements α and β(s) are the same ones studied in [13] and

[14]. For new indecomposable elements, the following Toda bracket formulae

are satisfied (Propositions 5.2 and 6.3):

φ e <εαp~ 3δ + (5εα^~ 3 , α(5 — <5α, αδ — <5α> ,

and the elements ε, ε and φ are uniquely determined by these formulae and the

relations D(ε)=D(έ) = D(φ)=Q and εα^"1 =0. Then, our results on jtf*(Mp)

are summarized as follows:

THEOREM 0.1. Let p be a prime integer ^5. The ring ^^(Mp) is mul-

tiplicatively generated, within the limits of degree less than (p2 + 3p+l)q — 6,

q=2(p— 1), by the elements

+s-i)q-ι (1 ̂  s ̂  p+1, s ̂  p)

! and (pE^(p2+p}qT.3

of order p, with the following relations:

(i) δ2 =0, <5α2 = -α2δ + 2αδα;

(ii) ^(5)<5α = α(5β(s), αj8(s) = j8(β)α = 0;

(iii) β(s}δβ(t} = (stl(s + t-\))βwδβ^+t_v for s + t * p, p+1 ,

β(s}δβ(p.s) = s2^α)^(p_

=0 /or
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( v ) α(<5/?(1))' = 0, (β(l)δ)'β(2) = 0;

( vi ) α<5ε = ε(5α-h<5εα — εαd, αε = εα, εαp-1 =0;

(vii) έ<5α = έaδ, uδϊ = (5έα, έα = αέ = εaδ — εc)α;

(viii) β ( i ) β ( p - i ) = 2εap~4δoι — 3εctp~3δ — δεcί,p~3 up to non zero coefficient',

(ix ) (s+l)ε<5/?(5) =

for s = 1, 2;

for s = 1, 2;

(xi) φ(5 = -(5^, φα = αφ = 0, )5(1)φ =-φβ(ί),

β(i)Φ = &δβ(2)δβ(p-i) UP t° non zero coefficient.

An additive basis (over Zp) for jtfk(Mp), k<(p2 + 3p+l)q — 6, is given by
the following elements:

δ, 1, asδa, oc

δβ(p.^ (r = 0, 1), δ *(δβwγδ* (1 ̂  r < jp),

δ°x(δβ(1)γδβ(5)δ» ((r, 5) e J), δ*x(δβ(lyδβ(2)δβ(p. ^δb (r = 0, 1) ,

δa(β(l)δ)rέδb ( O g r ^ 3 ) , (5βεα^b ( O g i ^ p - 2 ) ,

δa8ai-iδ<xδb (1 ̂  ί ̂  p-3), εα^-2<5α^β, φ5α,

where α, fo=0 or 1, and ί/zβ index sets I and J are given by

I = {(r, s)|0 ^ /- < /?, 2 ^ s ^ p + l , s ^ p,

Now let A : Mp-»Mp2 and p: Mp2-^Mp denote the natural maps. Then we
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define the following elements of $4 \ =«^JK(Mp2):

<52 = / 2 π 2 e j^_ l 5 ξs = λκsp e jtfs(l ( i ^ s < p ) ,

1, s 96 p),

(1 ^ / ^ p- 1),

where αp and φ are the generators of the p-parts of (7M-ι and G ( p2+ p )q_ 3, which

are isomorphic to Zp2.

THEOREM 0.2. Let p be a prime Ξ>5. T/?e r/ngr j^ϊN(Mp2) ί5 an algebra

over Zp2 and it is multiplicatively generated, for degree <(p2 + 3p+l)q — 6,

fcy r/ze elements 52, a
r, φr of order p2 and the elements ξs (l^s<p), β'(s) (1^

1, s^p), έ and ε'(i} (ί^i^p—l) of order p, with the following relations:

(<52)
2 = 0, 52a'2 = -a'2

/or ?/ e {β'w,

0 far ι/ 6 {?.,/

= 0 /or (ι/, 0 =

L for i + s ^ p —3,

ξs = ί\spφ' for i + s=p— 1,

for i + s = p — 2 and for i + s ^ p,

)52#s+i-i) /or s + ί ^p+1,

i) /or s + ί = p+1,

β(i)δ2φ' = φ'^2β(i) = ^ι^2^(2)^2^(p-i) MP ίo non z^ro coefficient,
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Also the group j^fc(Mp2), /c<(p2-f 3p + l)g — 6, is the direct sum of cyclic
groups generated by the following elements (a, b=Q or 1):

(i) δ29 1, a'sδ°2, α'-'^α'Sj (1 £ s £

(ϋ) <5$α%<5§ (0 ̂  s g p + 2, 1 £ f < p),

2)Ί8ί2)52/ίk-l)^ (Γ = 0, 1),

'(1))'δ2β'ωδl ((r, J )6/) ,

ίl))ΓMί2)ί2/*<p-l)^ (' = 0, 1),

<55 (0 ^ ' ̂  3)> ^β(i^5

ί/zβ elements in (i) and (ii) are o/ order p2 and p respectively, and I and
J in (ii) are given in Theorem 0.1.

There exists an element α£2 of Gp2q-l of order p3 [5] and it is the only ele-
ment of order ^p3 in Gk for k<(p2 + 3p+\)q-5 [6]. So we only introduce
an element

α" = K'L e ^p2,(Mp3) o/ order p3

to describe the structure of 3έ*(Mpr) for r ̂  3. Let B^^ be the set of the elements
α/s (l^s^p + 3, s^p) and φ' of (i) in Theorem 0.2, and B2 be the set of the
elements of (ii) for α = b = 0 in Theorem 0.2. Then the group jtfk(Mpr), k<
(p2 + 3p-l-l)g — 6, r^3, is the direct sum of cyclic groups generated by the fol-
lowing elements:

δr = irπr ejtf.^Mpr), 1 e ^0(Mpr) of order pr

^A-3αV"3^e^p2,_fl_fe(Mpr) of order p3;

<5?/lr~2J7pr~2(5ί: /or ηeBί of order p2;

δ λr~2ηpr-2δϊ for ηeB2 of order p;

where α, fc=0 or 1, and A f : MpS-+MpS+t and p f: MpS+t-+MpS denote the natural
maps (A°=p°=l). Also the multiplicative structure of <s/*(Mpr), r^3, can be
determined similarly as Theorem 0.2 using Theorem 4.4, and the detailed results
are stated in Theorem 7.5.

This paper is organized as follows: In §1, we introduce a differential D
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in the ring jtf*(Mt) due to P. Hoffman [4] and H. Toda [13]. In §2, we discuss
the relations among the differentials in sέ*(Mt) and j^*(Mf>) for ί' = 0 modi
(Proposition 2.2), and the direct sum decomposition for the group jtfk(Mt) stated
above is proved (Proposition 2.3). In § 3, we construct and study the above
elements [y]r and <y>r of jtf#(Mpr). The results in § 3 are useful to determine
the ring ^^(Mpr). In §4, we consider the subring of jtf*(Mpr\ l^r^3, related
with the family {αr} of G* due to J. F. Adams [1] and H. Toda [9]. For r = l,
this is the subring generated by two elements δ and α, and its structure was deter-
mined by N. Yamamoto [14]. Our results for r=2, 3 (Theorems 4.3-4.4) are
more complicated than the case r = l. In §5, we introduce the known relations
among the elements β(s) from [13], and give the elements έ and ε of jtf#(Mp).
In § 6, the ring structure of jtf *(MP) is calculated and Theorem 0.1 is proved. In
§7, we treat the ring jtf*(Mpr\ r^2. In the first half of §7 Theorem 0.2 is
proved, and in the second half the results for jtf*(Mpr), r^3, are stated and
proved. In the final section, § 8, several relations on the stable Toda brackets
in G* are proved. For example, we obtain in Proposition 8.1 the following
formulae from Theorem 0.1 :

<(βιΫ, αr, αs> = ±rsεr+s_2α1 for r ^ 1, s ^ 2,

<(&)', α l j α p = ± β,-!^.

§ 1. A differential in the ring j*+(Mt).

For any based finite CW -complexes X and 7, the smash product of X and
7 is denoted by X Λ 7, and the n-fold suspension SnX of X is defined by the smash
product Sn Λ X of the π-sphere Sn and X. For X and 7, one can form the stable
track group

{X, Y}k = Dirlim {[S"+kX, S"7], S} ,

where [X, 7] denotes the set of based homotopy classes of maps of X to 7.
For a map/: Sn+kX^>SnY, we denote usually by the same letter /its homotopy
class in [Sn+kX, S"Y~] and its stable class in {X, Y}k. Especially, 1 = lx: S"X->
SnX denotes the identity map of S"X and its classes in [SΠX, SnX~] and in [X,

X}0. For α e {X, Y}k and β e {W9 X}l9 we denote by αβ e {W, Y}k+l the element
represented by a composition f g , where/e [SW+*X, SW7] and g e [Sn+k+ 1W, Sn+kX]

represent α and β respectively, α*: {W, X}^{W9 Y}k+l and β*: {X, Y}k-+
{W9Y}k+l denote the homomorphisms defined by αs!c(^)=αjβ and /?*(<*)= α/?.

We also denote by
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Then the direct sum ^^(X)—Σk^k(X) forms a graded ring with the multipli-

cation as above; \x e £?0(X) being the unit. When X = S°9

Gk = ^k(S°) (resp. G* = j/,(S°))

is the stable homotopy group (resp. ring) of spheres.
In the following of this section and the next section, t denotes a fixed odd

integer. Let

M,( = Λf) = S1 U te
2

be a Moore space of type (Zf, 1). Then, there is a cofibering

(1.1) Sl -U Mt _s-> S2 ,

and we have the following short exact sequences for finite C ̂ -complexes X and

7(cf. [2; (1.7), (1.7)']):

0 - >{X, Y}k., ® ZtW±ϋ *{X,Mt Λ Y}k<**iΣi >{X, Y}k-2*Zt - »0,
(1.2)

o— +{x, γ}k+2 ® ztίΞϊλχ^{Mt Λ x, y}»ϋΛi^(x, y^'z,— *o.

Since ί^2 mod4, lM6j^0(Mr) is of order t (cf. e.g. [2; Th. 1.1]), and so
{X, M f Λ Γ}fc and {MtλX, Y}k are modules over Zt for any finite C ̂ -complexes
X and 7(cf. e.g. [2; (1.8)]), and in particular ̂ ^(MJ is an algebra over Zt. Equi-
valently the smash product Mt/\Mt is stably homotopy equivalent to the wedge
SMtvS2Mt (cf. e.g. [2; (4.5)-(4.6)]), and hence there are splittings

μ e {M, Λ Mf, Mf}i and φ e {M,, Mf Λ MJ_2

such that

μ(i Λ IM) = IM» (π Λ lM)φ = 1M, μΦ = 0,
(1.3)

(/ Λ lM)μ + φ(π Λ IM) = IMΛM (M = Mt) ,

(cf. [3; (7.6)-(7.8)]). Since ί is odd, j/1(Mf)=0 and so μ and 0 are unique.
Also μ and φ are commutative by [3; Th. 7.10] :

(1.4) μT=-μ and Tφ = φ ,

where Tejtf0(Mt Λ Mr) denotes the element represented by a map switching
factors. Referring to [12; Th. 6] (cf. [13; Prop. 2.1]), if tφ3 mod 9, μ and φ
satisfy a sort of associativity :

(1.5) 7/ί^3mod9, then
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) =0 in {M,ΛM r Λ M,,MJ2,

)φ=Q in {M,,M, Λ Mt Λ M,}_4.

We define a linear map

(1.6) D: J*k(Mt)—+sfk+l(Mt) by D(ξ) = μ(ξ Λ \M)φ .

Then, —Dσ = σD coincides with D of P. Hoffman [4] for the map σ defined by
σ(ξ)=(-l)άt**ξ. Also our D coincides with λM = -θ of H. Toda [13] if t is
a prime integer. According to [4; Th. A] (cf. [13; Th. 2.2]), D is a derivation
and the associativity (1.5) implies that D is a differential:

(1.7) D(ξη) =

(1.8) I f t φ 3 mod 9, D2(ξ) = Q.

For i and π of (1.1), we put

δ = iπEjtf-^Mt).

Then, 5 generates ja^_1(Mf)«Zf and we have immediately

(1.9) <5 2 =0, />(«) = IM. and D(1M)=0.

The following formula is Proposition 2.1 (a) of [4] (cf. [13; Th. 2.4 (iii)]).

(1.10)

for ξ E jtfk(Mt) and

This formula is useful in connection with the commutativity of the ring
that is, we have the following two corollaries of (1.10).

(1.11) ([4; Th. A (b)]) The subrίng KerD of^^(Mt) is commutative, i.e.,

ξη=(-l)»ηζ

for ξεA?k(Mt) and η€jf£Mt) with D(ξ)=Q and

(1.12) ([4; Prop. 2.1 (d)])

for any ξ e j^k(Mt) n Ker D and η e

REMARK TO THE CASE t = 3 mod 9. Let oίίeG3 be an element of
order 3, and put a(t) = i<x1πejtf2(Mt). The elements αx and a(t) (t = Q mod 3)
generate the 3-primary components of G3 and j&2(Mt) respectively, and a(t)=Q
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for tφQ mod3. By [12; Th. 6] and [13; Prop. 2.1], for the case t = 3 mod 9,
the element a(ί) is the obstruction to the associativity of μ and φ, that is, the left
sides of the equalities (1.5) are equal to ±a(t)(πΛπΛ IM) and ± 0 ' Λ / Λ l M M O
respectively. Also, by [13;Th. 6.1 (i)], we have the following formula cor-
responding to (1.8):

(1.8)' //1 = 3 mod 9, then D2(ξ) = ± (a(t)ξ - ξa(t)\

§ 2. Relation of J/*(M,) and ι**(MfO, *' = 0 mod ί.

In this section, let t and t' be odd integers such that

t' = 0 mod t,

and we denote by

f, π',// and 0'

the elements for Mt in (1.1) and (1.3). Since ί' = 0 modi, there are elements

(2.1) λe{Mf,M,}0 ίmd peίM^MJo

such that

λi = (t'lt)V9 i = p Γ ,

(2.2) π =π% π p = ( t ' / t ) π ' ,

pλ=(t'lt)Ί9 λp=(t'li) l',

where 1 and Γ denote the identity maps of Mt and M^.

We notice that λ and p generate {M,,M t >} 0 &Z t and {M f»,M f}0«Z f res-
pectively and so these are unique.

LEMMA 2.1. The following equalities hold.

(i) (i' Λ l)μ(p Λ 1) + (A Λ l)ψ(π' Λ 1) = 1' Λ 1.

(ii) Ai'ίl' Λ A) = Aμ(P Λ 1), (!' Λ p)0' = (A Λ l)φp.

(iii) μ'(A Λ I7) = λμ(l Λ p), (p Λ 1')̂  = (1 Λ

(iv) μ(p Λ p) = pμ', μ'(A Λ A) = (ί'/

(λ Λ A)φ = ^% (p Λ p)0'

Here 1 and 1' denote the identity maps of Mt and Mt>.
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PROOF. Put μ"=μ(pM) and φ"=(λM)φ. Then μ"(i' f\\)=μ(pΐ /\\) =

μ(i Λ 1) = 1, (π' Λ ί)φ" =(n'λ Λ l)φ =(n Λ !)<£ = 1 and μ"φ" =μ(pλ Λ \)φ=(t'lt)μφ =0
by (2.2) and (1.3). Hence for the element ξ=(ϊ M)μ" + φ"(π' λ 1)-1'Λ 1, we
have (π'Λl)*ξ=0 and (/'Λl)*ξ=0. Since A?0(Mt)=Zt, generated by 1, and
s/ι(M,)=0, it follows from (1.2) for Mt. that ξ=0. This proves (i).

Since {M,, M(-}t =0 and {M,, M,}t =0, we have μ'(λAλ)φ=μ'(ί'/\λ)φ"=0

and μ(pΛp)φ'=μ"(\'Λp)φ'=Q. Then, μ'(1 ' Λ A) =μ'(l' Λ W Λ l)μ" + <£"(*' Λ
l))=μ'(i'Λl)Aμ"=Aμ" by (1.3) for M,.. Similarly (Γ /\p)φ'=φ"p, and (ii) is
proved.

Let Γej/0(M»ΛM,), T'ej/oίΛfr ΛΛf,.) and T"e {MtΛM,-,Mr- ΛM,}0

be the elements represented by switching maps. Then, by (1.4) for M,., (ii) and
(1.4) for Mt, we have μ'(λ/\ \') = -μ'T'(λ/\ 1')= - μ'(l' λ λ)T" = - λμ(p Λ 1)Γ" =
-AμΓ(lΛp)=AMlΛp) and similarly (pΛ l')<^'=(ρΛ l')T'φ' = T"(ί' Λp)φ' =
T"(λ Λ l)<^>p =(1 Λ λ)Tφρ =(1 Λ A)ψp. Thus, (iii) is obtained.

For (iv), we have

μ(p Λ p) =μ(p Λ p)((f" Λ l')/ι' + φ'(π' Λ 1'))

= μ(p Λ p)(ί" Λ Γ)μ' = μ(' Λ p)μ' = pμ' ,

μ'(λ Λ λ) =μ'(λ Λ A)((i Λ \}μ + φ(π Λ 1))

(λ Λ !)<£ = ((/' Λ ϊ')μ' + φ'(π' Λ l'))U Λ λ)φ = φ'(π'λ Λ A)φ = φ'λ,

and (p Λ p)φ' = ((i Λ l)/ί + φ(π Λ l))(p Λ p)φ' = φ(πp Λ p)</>' = (ί'/O^P

q.e.d.

PROPOSITION 2.2. The following equalities hold.

(i) D(ξ')λ = λD(pξ'λ), pD(ξ') = D(pξ'λ)p for ξ'e*?*(Mt,).

(ii) D(ξ"p) = λD(pξ")p for ξ'ΈiMvM,,}*,

D(λξ") = λD(ξ"λ)p for ξ"e{M,,M,}*.

(iii) D(λξp) = (t'/t)λD(ξ)p for ξe^(Mt).

(iv) pD(ξ')λ=(t'/t)D(pξ'λ) for ξ'erf*(M,,).

PROOF, (i) D(ξ')λ = μ'(ξ' Λ l')Ψ'A

= μ'(ξ' Λ 1'Xλ Λ λ)φ by Lemma 2.1 (iv)

= μ'(ί' Λ AXξ'A Λ l)φ
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= λμ(ρ Λ \)(ξ'λ Λ l)φ by Lemma 2.1 (ii)

= λμ(pξ'λΛί)φ=λD(pξ'λ),

and similarly

pD(ξ') = μ(p Λ p)(ξ' Λ !')</>' = μ(pξ' Λ 1)(A Λ l>μ = D(pξ'λ)p.

(ii) D({» = μ'(ξ"p Λ I'W ' = μ'(<Γ Λ l')(p Λ l')Ψ'

= μ'(ξ" Λ !')(! Λ λ)<£p by Lemma 2.1 (iii)

= /*'(!' Λ λ)(Γ Λ 1M>

= λμ(p Λ 1)(Γ Λ \)φp by Lemma 2.1 (ii)

= λμ(pξ" M)φp=λD(pξ")p,

and similarly

Λ l)(r Λ p)0' = λμ(ξ" Λ iχλ Λ \)φp = λD(ξ"λ)p.

(iii) and (iv) follows immediately from (ii) and (i) by using (t'/t)\'=λρ and
(t'/t)l =pλ, respectively. q.e.d.

By (1.2), we have the following short exact sequences:

(2.3) 0 - > Gk+2 ®Zt-^ {Mt9 S°}k -̂  G f c + 1*Z f - > 0 ,

(2.3)* 0 - > (?,_! ® Z, -ίί-> {^°, M,}, -̂  Gfe.2*Zf - > 0 ,

(2.4) 0 - > {̂ °, Mjfc+2 -*1+ ^fc(Mr) -̂  { °̂, Mf},+ 1 - > 0,

(2.4)* 0 — > [Mt, S*},^ -±+ *h(Mt) -^ [Mt, S°}k-2 —+ 0 .

PROPOSITION 2.3. The above sequences are split, and hence jtfk(Mt) is
additiυely isomorphic to the direct sum

PROOF. Let γ be any element of Gjc+1*Z ίczGk+1 (resp. {S^
The order s of γ is a divisor of t. There is an element γ e {Ms, S°}k (resp. {Ms,
MJk) such that γis=γ for the inclusion is( = i): Sl-+Ms. For p: Mr->Ms of (1.13),
the element yp e {Mf, S°}fe (resp. jtfk(MtJ) satisfies syp=0 and i*(yp)=y by (2.2).
This means that (2.3) (resp. (2.4)) is split.

Next let γ be any element of GJk_2*Zί (resp. [Mt, S°}fe_2) of order s dividing
t. There is an element γ e {5°, Ms}fc (resp. {M,, M5}k) such that πsγ=y for πs( = π) :
Ms->52. Then, for A: Ms-»Mί? the element λy e{S°, MJΛ (resp.
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satisfies sλγ=Q and π#(λγ)=y. Hence (2.3)* (resp. (2.4)*) is split. q.e.d.

PROPOSITION 2.4. Let r and s be relatively prime odd integers. Then
jtf*(Mrs) is isomorphic, as a ring, to the direct sum ja/*(Mr) + ja^MJ. //
ξ + η e jtfk(Mr) + <B/k(Ms) corresponds to ζ e j t f k ( M r s ) via this isomorphism, then
sD(ξ) + rD(η) corresponds to D(ζ).

PROOF. Let a and b be integers such that as + br = \. Let λ1 e {Mr, M,J0,

λ2e{Ms9 Mrs}0, pί e{Mrs, Mr}0 and p2

 e {^rs* MS)O be the elements of (2.1).
Set λ\ =aλl and λ'2 = bλ2. Since {Mr, MJ* = {Ms, M,.}* =0 by (r, s) = 1, we have

p2^Ί=0 and pιλ'2=Q. Also p^l =1, ρ2λ'2 = 1 and /l/

1p1+^/2p2 = l by (2.2).
Define f: ^k(Mrs)-+^k(Mr) + ̂ k(Ms) and 0: j/fc(MΓ) + j/k(MJ^j/k(MJ by

/(0=PιCΛ< 1+02^2 and g(ξ + η)=λ'ίξρί+λ'2ηp2. Then, we see easily that
/is a desired ring isomorphism and g is its inverse. q.e.d.

§3. Some elements defined from G*.

In this section, we treat the case that t and t' in the previous sections are
powers of a fixed odd prime p. Henceforward we set λ and p the generators

of {Mpr, Mpr+ι}0 and {Mpr+ι,Mpr}0 in (2.1). So the s-fold iterations λs =
λ. . .λ and ps =p.. .p are the elements of (2.1) for t =pr and t' =pr+s. The elements
ί, π and δ of (1.1) and (1.9) for t =pr are sometimes denoted by ir, πr and (5r if it
is necessary, and so, for t =pr and t' =pr+s (2.2) is paraphrased as

λsir = psir+s , ιr = ps/,+s ,

(3.1) πr = πr+sλ
s , πrp

s = /?sπr+s ,

p*λ* = p* lM (M=Mpr) , λ*p* = p lM, (M' = Mpr+s) .

We put

It is well known (cf. [2; p. 80]) that there exists a sequence of cofiberings:

Mpr > Mpr+s > MpS -̂ > SMpr ,

and so we have, for any finite CFF-complex X, the following exact sequences:

/<3 ^\ f \T \f \ A* ( T^ Λjf "\ P+ ( -Wf -ΛΛ Y δr,S* ( T/" Άjf Ί(3.2) >{X, Mpr}k >{X9 Mpr+s}k >{X9 MpS}k »{A, Mprϊk-^ >•••;
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Now let γ be any element of GA. Then we define

(3.3) <y>r (=<y» = γMMej*k(Λfpr), M = Mpr.

The following lemma is easily proved from definitions.

LEMMA 3.1. The following equalities hold.

(i) £<y> = 0.

(ii) <yX = (-l)d e 9 y/y, π<y> = yπ.

(iii) <y>ξ = (- l)ieoyd.flc ί < y > /or e/y, ξ E tf^(Mpr).

(iv) λs<y>r = <y W*, <7>rPs = PS<1> W

Next let y be an element of Gk of order ps and suppose that y generates a

direct summand of Gk. Then there is an extension γ e{MpS,S°}k-ί of γ such

that y/ s=y. This element y is determined modulo the subgroup Gk+1πs.

We define an element [y]r ( = [y]) of j^k+i(Mpr) by

f £(/,y/ls-r) /or r ^ s,
(3.4) [y]Γ =

(D(irypr-s) for r>s.

For any y 'eG f c + 1 , we have D(ίry
/πs/ls-0=/)(ϊr/πr)=JD(5Xy/>r) = <y /> r for

rgs and D(irγ'πsρ
r-s)=pr-sD(ίrγ'πr)=pr-s(γ'yr for r>s, by (3.1), Lemma 3.1

(ii), (i), (1.7) and (1.9). So, the element [y]r of (3.4) is determined modulo the

subgroup pr-min^'s]Gk+ ί Λ 1M

LEMMA 3.2. The element [y]r above is of order pm, m=min{r, 5}, and

the following equalities hold.

(i) D[y]=0, // (p,r)*(3,l).

ίps~ry for r < s ,
(ii) π[y]/ =

[y for r ^ s .

(iii)

(iv) A[y]r = [y]Γ+1λ, [y]rp = p[y]r+1 /or r < s,

Mr+i =^MrP /or r ̂  s.

PROOF, (i) follows from (1.8), and (ii) follows from (1.3), (1.6), Lemma
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2.1 and (3.1). By (ii), pm~lπ\_y~\i =ps~l y^O, and hence [7] is of order pm. (iii)
follows from (i) and (1.11), and (iv) follows from Proposition 2.2. q.e.d.

LEMMA 3.3. Assume that Gk has a direct summand ZpS generated by an
element y and that r^2 if p = 3, and let m=min{r, s}. Then, jtfk+ί(Mpr) has
a direct summand Zpm generated by the element [7] of (3.4), jtfk(Mpr) has
a summand Zpm + Zpm generated by [y]<5 and <y> of (3.3), and ^k-ι(Mpr)
has a summand Zpm generated by <7>(5. These summands are the ones obtained
from the summand ZpS, generated by 7, via the direct sum decomposition in
Proposition 2.3.

The following relations hold in j/k(Mpr) and stfk_±(Mpϊ)\

\Ps~r<y> for r^s,
(3.5)

for r>s,

\Ps~rδ<yy = (- 1) VW for r^s,
(3.6) 5[y]5 =

for r > 5 ,

and in particular

(3.6)' (5[y](5 =0 if 2r£s.

To prove the lemma, we prepare the following elementary lemma.

LEMMA 3.4. Let G be a finitely generated abelian group and x be an ele-
ment of order pr, r^l, where p is a prime. Then, x generates a direct sum-
mand of G if and only if pr~lx is not divisible by pr.

PROOF OF LEMMA 3.3. By lemma 3.2, [7] generates a cyclic subgroup of
order pm. For srgr, pm~iπ[y']i =ps~lγ is not divisible by ps=pm, and so [7]

generates a direct summand, by Lemma 3.4. For s>r, jtf*(Mpr) is a Zpr-
module and [7] has the highest order. Hence [7] generates a summand. We

have £([7]<5)=(-l)fc+1[7] by (1.7), (1.9) and Lemma 3.2 (i), and hence we see
that |j](5 is of order pm and generates a summand Zpm. By definition, pm<7> =
0. By Lemma 3.1 (ii), pm~1π(yy = pm~ίyπ^Q since pm~ίy is not pr-divisible.
Hence <7> is of order pm. For s>r, (7) has the highest order and generates
a summand Zpm. For s^r, we have ps~ίπr(yyrλ

r~s=ps~1γπrλ
r~s=ps~iyπs^Q

by Lemma 3.1 (ii) and (3.1). So, jp
s"1<7> is not ps-divisible by psλr~s=Q.

Hence (7) generates a summand ZpW, by Lemma 3.4. Since D«7>5)=(— l)fc<7>
by (1.7), (1.9) and Lemma 3.1 (i), <7>d generates a summand Zpm of sf
Let x<7> + y [j](5=0 in &fk(Mpr). Then, x<7><5=0 and x = 0 modpm, so

=0 and ^ = 0 rnodp"1. This means that <7> and [7]̂  generates a summand
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zpm+zpt>,
Using Lemma 3.1 (ii) and Lemma 3.2 (ii), we see immediately by the split

exact sequences (2.3)-(2.4)* that these four summands Zpm of jtf*(Mpr) are
regarded as the ones obtained from the summand ZpS generated by γ via the
direct sum decomposition of Proposition 2.3.

We have δ[y~]δ = iπ[y~]iπ=ps~miyπ=ps~mδ(yy by Lemma 3.1 (ii) and Lemma
3.2 (ii), and (3.6) is proved by Lemma 3.1 (iii). Applying D to (3.6), we obtain
(3.5). q.e.d.

Combining Proposition 2.3 with Lemma 3.3, we obtain the following theorem,
which determine the additive structure

THEOREM 3.5. Let the p-primary parts of G f c _ l 9 Gk and Gk+ί be isomor-
phic to direct sums of cyclic subgroups generated by α l v.., α/eG^. j , j5 l5...,
βmεGk and y 1 ?..., y w e G f c + 1 ; the orders of the elements α f, βt and yt being pai,
pbi and p€i, respectively. Then if pr^3, we have the direct sum decomposition

where Hh Kt, K\ and Lt are the cyclic subgroups generated by the elements
[α;]r, [βJA <&>,. and <y;>r<5 of order p m i n k i . ), p m i n { b i f r } ? pmin{bi>r} ancι

pmin{ci,r}^ respectively. Further if b^r (resp. cf^r), we can replace the

element <ft>Γ (resp. <yί>Γδ) by δ[_β^r (resp. δ[y^rδ).

COROLLARY 3.6. Let ξ^^/k(Mpr), pr^3. Then, there exists an element
yeGk such that ξ = <y>r if and only if ξ satisfies D(£) = 0 and πξi=Q.

PROOF. The only if part is obvious by Lemma 3.1. Put ζ=Σai[<xi~] +
I'feί[)?ί]δ4 Γfc5<j8 ί>H-I'c ί<y ί>δ for the decomposition of Theorem 3.5. Then,
D(ξ)=0 implies bt = q=0 and πξ/=0 implies ^=0. Hence, for y=Σfcίj5 f, we have

ξ=<y>. q.e.d.

COROLLARY 3.7. The properties (i) and (ii) of Lemma 3.2 characterize
the elements [y~\r for rrgs, that is, if γ is a generator of a summand ZpS of Gk,
r^5, and an element ξ e j t f k + 1 ( M p r ) , //^3, satisfies D(ξ)=Q and πξi=ps~ry,
then ζ = [y^rfor a suitable choice of ' γ of (3.4).

PROOF. Let γ be an extension of y. By Corollary 3.6, we have ξ — D(irγλs~r)
= <y'> for some y 'eG f c + 1 . Then, the element y = y + y'πs is also an extension
of y and we have ξ =D(iryλs~r) =[y]r for this extension y. q.e.d.

REMARK FOR ^^(M3). For the case (p, r)=(3, 1), by virtue of (1.8)' the
formula (i) in Lemma 3,2 is replaces by D[y] = ±3s"1iyα1π. By using this



644 Shichirό OKA

corrected formula, we can see that the above results (Lemma 3.3, Theorem 3.5
and Corollaries 3.6-3.7) hold without the assumption pr^3. Also the last
formula in (3.8) and Proposition 3.9 below hold for the case pr = 3 by adding a
minor suitable assumption on the elements α and β.

Next we consider the products <α><jS>, <α>[0] and [α][j3]. From (3.3),
it follows immediately that

(3.7)

By Lemma 3.1 (iii), and Lemma 3.2 (iii),

(3.8) <j8><α>=(-l)*'<α></?>, [jS]<α>

(£ =degα, / = degj3).

PROPOSITION 3.8. Let α and β be elements of Gk and Gt such that β
generates a summand ZpS, s^ 1. Assume that the product ctβ e Gk+l is of order
ps and there is an element γeGk+l satisfying otβ=puγ, wΞ>0, and generating a

summand ZpS+u of Gk+l. Then, for suitable choices of y, β and γ defining [j8]Γ

and [y]r, we have

Wr for r g s ,

Γ~5[y]r for s<

"[y]r for r>

In particular, <α>r[β]r = [αj5]r if aβ generates a summand.

PROOF. Let βε {MpS, S
0}^! be an extension with βis=β. Since <5*u(α/5)

=(xβisnu=ocβπu=γ(puπu)=Q, it follows from (3.2)* for X = SΌ that aβ=λu*ξ

for some ξe{MpS+u, S°}fc+ί_1. We have puif+uξ = ί*A"*ξ=α)S, and so we
can take /*+ Mξ=y replacing y modulo the subgroup Gk+l*ZpU of Gk+l. For this

7> Mr=^(^s+tt"r) for r^s + M, =D(/rξpr-s-«) for r>s + w, by (3.4). We have,
for rgs,

by (1.7) and Lemma 3.1 (i)

= D(irocβλs'r) by Lemma 3.1 (ii)

= Dααs+"-o = [?],>
and for r > s,

'-5) = DVpβp'-') by (1.7) and Lemma 3.1 (i)-(ii)
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pr~sD(ίrξλu+s-r) = pr~s\_y~}r for r-s^u,

p«D(irξp'-s-») = />«[y]Γ for r-s > u.

q.e.d.

Now before considering the product [α][/Γ| we are concerned with the stable
Toda bracket (secondary composition). Let W, X, Y and Z be either Mt or
S°, and let αe{X, W}k, βε{Y,X}l and ye{Z, Y}m be elements such that αj8=0
in {7, JF}fc + / and βγ=0 in {Z, X}/+m. Take representatives fe[_Sn+kX,SnW],
ge[Sn+k+lY,Sn+kX'] and fte lSn+k+l+mZ, Sn+k+lY] of α, j8 and 7 such that
fg =0 and 0ft =0. Then, the usual Toda bracket {/, g, h}(c[_Sn+k+l+m+1Z, SnWJ)
is defined as a coset of f^Sn+k+l+m+1Z9 Sn+kX] + (Sh)*[_Sn+k+l+ίY, SnW] as

in [10; pp. 9-10]. Put ε(»F)=0 if W = S°, =1 if ^=M,. Then, the stable
Toda bracket

is defined to be the limit of (- l)B-1+β(ffr){/, 0, ft} (cf. [10; p. 32] for the
case W=X = Y=Z = SQ and [14; p. 52] for the case W=X = Y=Z=Mp). It
is a coset of the subgroup a*{Z9 X}l+m+ί+γ*{Y, W}k+l+ί. If this subgroup is
zero, the bracket consists of a single element, say σ, and we denote simply by
σ = <α,jβ,7>. In [10; p. 33] the case W=X = Y=Z = S° is treated and several
properties of the bracket are proved. The linearity [10; (3.8)] and the formula
[10; (3.5), 0)-iii)] are also valid for our bracket. The formulae (3.5)iv) and
(3.6) of [10] are translated to the following

where αe{ΛT, W}k and ε=ε(W) + ε(X). Also, Propositions 1.7-1.9 of [10]
can be translated to our situation.

PROPOSITION 3.9. Let α and β be generators of direct summands of Gk

and Gt of order ps and p*9 s ^ f Ξ > l , respectively. Suppose that the following

are satisfied:

(i) the subgroup I=ctGl+ί+βGk + 1 ofGk+l+ί is trivial

( ii ) the element y = <α, ps, β> 1 } is of order pt

1) We identify Gΰ with Z and the element of G0 represented by a map of degree n is denoted

by the integer n.
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(iii) there is an element εeG f c + / + 1 such that ptlε = y for some w^O and
that ε generates a summand.

Then, for suitable choices ofε, α, β and ε, the product [α]r[/Γ|r
, is equal to

pr~s+uls]r if r > max {s, t + u} ,

p"[ε]r // s > t + u and

pir-s-t[&\r if s ^ ί-hw and s < r g

pr~ί[ε]r ϊ/ ί < r g min{s, ί + w},

[ε]r if r g ί .

particular, i/γ=<α, p5, J?> generates a summand, then

PROOF. Consider the element

Then {ι>π[α]^ -ί[j9]fp -ίι;=(πI[α]J(|̂ ]βiI) by (3.1) and Lemma 3.2 (iv).
Since (τrs[α]s)ί5=α and πs([j5]sίs)=)5 by Lemma 3.2 (ii), it follows from definition

that ξit belongs to <α, ps, j^>. Thus ^^=7 by (i). Since δf)U(ξ)=yπu = puεπu=Q
by (iii), there is an element ηε {Mpt + M, 5°}fc + / satisfying Λ,M*(f/) = <!; by (3.2)*.
Replacing ε modulo the subgroup Gfe + ί+1*ZpU, we have ηit + u = ε. For r ^ ί
we have

MrDΏr = £OXM,[£lr) by (1.7), (1.9) and Lemma 3.2 (i)

= D(i>s[a]sA
s-'[jS](A'-r) by (3.1) and Lemma 3.2 (iv)

Next consider the case r>ί. We put

ζ = l'-'[α]([j5](p'

By Proposition 2.2 and Lemma 3.2 (i), £>(Q=0. So we have

ζ = D(irπ,ζ) = DO>,[a]([/r](/>'-9
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"'[ε], for ί <

_ '[ε]Γ for r l_

On the other hand,

r[αμr' for r ^ s ,

~s[α]5A
s~ί for r > s,

and hence

MrC/Or = λr~s[α]sp
r~sλr~5λs~f[/?]ίp

r~"ί = pr~sζ for r ^ s,

MrC/Πr = Cα]rA>'~ί[^]ίPl'~ί = C fθΓ Γ > S .

Thus we have the proposition. q.e.d.

§ 4. Some subrings parallel to a subring due to Yamamoto.

Let p denote a fixed odd prime integer, and set q =2(p— 1).
According to J. F. Adams [1] and H. Toda [8][9], there exists a family

{aikGGkq-il fc = l,2,...}, called the a-series, of elements of the /^-primary com-
ponent of G#, for any p, satisfying the following

(4.1) αfc ί's of order p, not divisible by p if kφQ modp, and defined inductively

fcy α f c ε < α Λ _ l 9 p, α x>.

Following N. Yamamoto [14], we set

This is uniquely determined, since Gq has no p-torsion. Let A(cc9 δ) be the subring
of jtf#(Mp) generated by α and δ=δl9 Then, N. Yamamoto has shown [14;
Th. II, Cor. 5.1-5.2] (cf. [13; Prop. 2.3]) that the following results.

THEOREM 4.1. The subring ,4(α, δ), δ=δl9 has the following fundamental
relations

(4.2) δ2 = 0

(4.3) (5α2 = -α2(5 + 2α(5α

and is freely generated (over Zp) by the elements

δ, 1, α*-1^, αfe-Mα, <xkδ, ock, k = 1, 2,... .

Also, (4.2) and (4.3) imply the following relations:
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(4.4) (i)
= /αk+ l+m~ l δaδ

(iii) any monomial involving three or more δ's is zero.

PROOF. Since j*β+1(Λfp)=0, D(α)=0. So, by (1.11) and (1.12), we have

(4.5) α£ = ξα for any ξes/*(Mp) with D(ξ)=09

<5α) /or any

In particular, (4.3) follows. (4.4) (i) follows from (4.2) and (4.3) by the induc-
tion on /, and (4.4) (ii)-(iii) follows from (4.4) (i).

The elements αfc of (4.1) can be taken such that

[1; Prop. 12.7], and so

(4.6) [αJi = αk if.kφO mod p.

We have also

(4.7) <αk> = αfc<5 - £αfe = k(κkδ - αfe~ ! δα) .

For (4.7), δ(<zkyl=iakπ=δakδ and <afc>A

Thus, by Theorem 3.5, when /c^Omidp, the four summands of
obtained from the element αfc are spanned by the elements αk, αfcδ, αk~Mα ( =

-(l/fe)<αk> modαk5) and αk-1<5αδ ( = -(l/fe)<αfc>δ).
When Λ; = 0 mod/?, the elements αk, αkδ, αk-1(5α and αk~15αδ are also

linearly independent since so are the elements αk+1, αk+1<5, αk<5α and αk<5α<5.
q.e.d.

Now, by [8] the element αp is divisible by p and not by p2, and the element
a'p satisfying pu'p=ap generates the p-component of Gpq_ίt We define

This is uniquely determined for a fixed αp. We have

«p = Kli

by Corollary 3.7, and so

(4.8) λockp = α'M and akpp = pa'k

by Lemma 3.2 (iv). We put
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Then, potf

kp = aιkp by (4.8) and α^e<αj f c_1 ) p, p2, αp by definition. J. F. Adams
[1] defined an invariant e: G*-*QIZ such that e(ak) = ±llp. The values of e
on Gfcpjg-i, kφΰ modp, are integer multiples of a rational l/pj+ίb9

mod p. Thus, akp is not divisible by p2 and α£p generates a summand, if

mod p. We see therefore

[αjjj = α*
p and [αίp]2 = α'k if fe φ 0 mod/?,

(4.7)' <α£P>2 = a'kδ2-δ2oι'k = fcCα'^-α'*'1^').

For the last equality, we use the relation

(4.3)' <52α'2 = -α'2(

which is obtained in the same way as (4.3). Furthermore, the following is proved
in the same way as Theorem 4.1.

PROPOSITION 4.2. The subrίng A(a', δ2), generated by a' and δ2,
has the fundamental relations (<52)

2=0 and (4.3)7, and is additίvely generated
by the following elements of order p2 :

δ29 W-'^α'^, α'"-1^', α'k<52, α'k, /c = l,2 v...

Also the relations (4.4) with the replacement of VL and δ by a' and <52 hold.

According to H. Toda [8;Th. 4.14], the element a'p belongs to — <αp_1 ?

α l 5p>, so wehaveπ1<αp1=α^π1 = -<α/,_1, α1,p>π1 = -αp_1π1α = -π1<αp_1>1α
= π1(α*<51-αP-1<51α) by Lemma 3.1 and (4.7), and <αp>t =D(δΐ^pyί)=^δί-
α'-^α. Hence, by Lemma 3.1 and (4.7)r, λ(af

kpyί=kλ(akpδi-akP-lδίu).

Since KerD n KerA*=0, we obtain

We have immediately from Lemma 3.2 and (3.5) that

[αfc]2 = Aαk and <αfc>2 = λakρδ2 — δ2λoίkp if k φ 0 mod p.

From the above discussions, considering the submodule (dierct summand)
of ιG^*(Mp2) obtained from the elements αk and α£p, we get the following result.

THEOREM 4.3. Let A(&, α', δ2) be the subring of j^^(Mp2) generated by
the submodule λ*p*A(a.>δl) and the subrίng A(u.',δ2\ and set ξk=λukρeA(aί9

α', <52). Then, v4(α, α7, δ2) is the direct sum of cyclic groups generated by the
elements

<52, 1, α/k, α'k<52, α^'^X, α^'^X^, fe = 1, 2,... .
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of order p2 and the elements

α"Έ,, δ2a'kξl9 «"% (52α'%<52, k = 1, 2,..., ! £ / < / > ,

of order p. The elements δ29 OL', ξί....9 ξp-ι generate the ring Λ(α, α', (52),
ίfte relations among these elements are given by

= o, (52a'2 = -a'2<52 + 2a'<52a', a'ξfc = &a', ξ^ = 0,

* = 0 /or

For the homomorphisms A^p*: j^^(Mp)^,s/^(Mp2) and
Mp) the following equalities hold:

O = 0,

*-lδ&) =0 for k^O modp, A^p^a^'M^

'k-^X~a'^2), ^p^-M^^) = 0;

'") = 0, pφλ*(a'k«2) = P^ίa'*-1^')

= pHίA*(a'kξ^2) = 0,

PROOF. It suffices to show the all equalities except the first two.

By (4.8), α/ξJk=Aα"+*=ίkα
/. By (3.1)-(3.2), we have

(A) pA = 0, Ap = p, pδ2λ = δl9 δίp=Q and A^!

By (4.4) (i), (/c-f/)α^1α
/ = fcα/c+^1 + /51α

fc+ί and so, ξkδ2ξl=Q for k+l^p, by (A).
By (4.4) (ii), 51α

kδ1=ίkαk-151α51, and p*λ*(δ2<x'kξlδ2)=pδ2a'kλ(xlpδ2λ=δίa
kp+lδί

= lakp+l-1δίaδ1 by (4.8) and (A). We have

(B) (α*p-151α)p=-αί*-1^(α^1-α'-1δ1α)p by (A)

= ^α(fc-υp<αp lp= -α(fc-i)pp<αp2 by Lemma 3.1 (iv)

= -pa'k-1(a'δ2-δ2v
t) by (4.7)' and (4.8)

= p(α/k"152α
/-α/k^2)

and similarly

(C) A^-^α) = (α^'^X-α'^A.
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Hence, α'̂ α'̂ .̂  iα^+S^^
-α"+m+l(52) by (A), (4.8), (4.4) (i) and (B), and this determines ξkδ2ξp_k and

The other equalities follow from (4.4), (A)-(C) and (4.8). q.e.d.

By [5], the p-primary part of Gp2q.l is Zp3, so the element αp2 is divisible
by p, not by p2. Let α^ be an element such that pα^2 =αp2, and define

α" = Eα

P

2]3 e «β/π2Λ(Λ/n 3),

0£βp2
 :=: 7Γ3OC /3

Then, pαj[p2 =α^p2 and α2P2 generates a summand Zp3 if /c^O mod p. The follow-
ing relations are proved similarly as the previous discussions (/c^Omodjp, / :
arbitrary):

= λ*'kpδ3-δ3λxtkp,

Here, to describe the elements <a/

k

/

p2>1 and <α2P2>2 above, we use the formula
α^2e — <αp2_1, α l s /?> for a suitable choice of α^2, which is proved by a similar
way as [8; Th. 4.14].

Let A(u", (53) be the subring of j^^(Mp3) generated by α" and <53, and let
y4(α, αr, α", <53) by the subring generated by thd submodule l*p*yl(α, α', <52) and the
subring X(α", <53). Then, from the above discussions we obtain the following
result corresponding to the previous theorems.

THEOREM 4.4. A(<x, α', α", (53) is the direct sum of cyclic groups generated
by the elements

δ3, 1, α"k, α"k(53, α"*-1^", α'/k"1δ3α
/^3 (fc ^ 1) o/ order p3;

αwk{ιr 0^3, ί3«wfc{,F, 53α//kξίpδ3

( fe^O, 1 ̂  / <p) of order p2;

«"kξlp+m, «"kξlp+mδ3, δ,«"kξlp+m, δ3x"kξlp+mδ3

(k ^ 0, 0 ̂  / < p, 1 ̂  m < p) of order p;
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where ξlp=λu'lp and ξlp+m=λa'lλamp2 =λ2ulP+mp2 (l^m<p). The ring A(oc,

α', α", <53) is generated multίplicatίvely by <53, α" and ξs(l^s<p2) with the

following relations (/, /', m, m'<p, l^s, t<p2):

053)
2 = 0, <53α"2 = - α"2(53 + 2α"<53α" , α"ξs = £sα" ,

£s£r = 0 f°r s ^ O m o d p or ί^

ί/pίί'p = P£</ + Ϊ')P /<"* / + / ' < P,

= p2α" /or / + ./ '= p,

= mp2(α"δ3~δ3α") /or

= 0 otherwise,

= Ipaί'δ3 + l'pδ&" for I + /' = p ,

<53α"£, /or ί έ̂ 0 mod p ,

0/(/ + p)Xpαw5,Λ + /δ3α^,P) 'far

α"ξfδ3 /or ί 7* 0 mod/7,

§ 5. Some elements of ^^(Mp).

In the rest of this paper, we shall calculate the ring jtf*(Mpr) up to some

range of degree from the results on the p-primary component of G* in [5] and
[6], where p will be always greater than 3.

L. Smith [7] has discovered an another family {βk\ k = l, 2,...}, called
the β series, of the ^-component of G#, the first p—1 elements of which had been

obtained by H. Toda [8], and H. Toda [13] has studied multiplicative properties

of this family and a related family {/?(fe); fc = l, 2,...} of jtf^Mp).
Let/: Sn+qMp-+SnMp be a map representing the element α e j/β(Mp), where

g =2(^—1). Let Cf be the mapping cone of/, and ι\ : SnMp-*Cf and πx : Cf->

Sn+4+ίMp be the natural maps. For the suitable generator β of j2/(p+1)g(Cy) =
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Zp, the elements

(5.1) β(k)€^(kp+k-i)q-ι(Mp), k = 1, 2,...,

are defined by β(k)=^ιβkh Then, it follows immediately from definition that

(5.2) ([13; Th. 5.1 (i) and (vi)], cf. [14; Prop. 5.3])

(i) «£<*) =£<*)« = 0,

(ii) 0( fc)e<£ ( fc_1)5a,0 (1)>.

H. Toda has also obtained the following relations [13; (3.7)', Th. 5.1 and

(5.4)] (cf. [14; Prop. 6.1 and 7.4]);

(5.3)

(5.4)

(5.5) β(k)β(i) = fcβ(iAfc+/-i)» w/πc/t is zero ifk+l φ 0 modp;

(5.6) β(kββ(n =

which is equal to

(W/(fc+/-l))fti)$j9(lt+,-i) if

(kl/(k+l-2))βmδβ(k+l_2) if k+lφO,2modp.

By (5.3) and (1.11)-(1.12), we have

(5.7) (i) j8 (4 )€=(-l)d «{ftt) /or any ξej*,(MJ Π KerZ).

(ii) (β(kJ + iβlltyί = ξ(β{lcιS+δβώ for any

Repeating (4.4), (5.2) (i) and (5.4)-(5.7), we obtain the following
(5.8) Every monomial on δ, α and )?(i)'s involving two or more <x's and one or
more β(k)S is zero. Furthermore every monomial involving at least one βw

is equal to some multiple of one of the following monomials:

δ β(kί)δ...δβ(kr)δ», δ°β(lp)δ»,

δ°xδβ(kί)δ...δβ(kr)δ\

where a, be{0, 1}, r ^ 1, fe^^l, k7 ̂ 0modp and ί^l, and in particular we
have a relation
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β(kl)δ...δβ(kr) = - (βwδy-iβ(k.r+ί)

if A; ^ / +/?-3, A; = &!

Now the elements

are defined by

βk = π/W»

and L. Smith [7] has proved j8fc^0 (hence β^^O) for arbitrary fc.
The following equalities follow immediately from Lemma 3.1, Corollary 3.7

and (5.3).

(5.9) [AJi =/?(fc) */ Λ generates a summand.

(5.10) <βk>ι=β

Applying Proposition 3.8 and using the relations (5.2) (i), (5.4)-(5.5) and (5.8),
we have also

(5.11) [CWJi = (/?(i)<5)%), / ^ -

WiWJ,- ill = 05(1)^(2^

Here each equality holds when the left side is defined^ i.e., the element y in the
left side [y]t generates a summand.

(5.12) (OW,)! =(βwδ)*βwδ+δ(βwδYβw,

The following relations are Corollary 5.6 of [13].

(5.13) «(<5J3(1))* = 03(1)<5)'α = 0.

(5.14) (ftoWu) = βw(δβw)
p = 0.

Now, we recall the results of the p-component pGjj of the group G*, from
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[5](cf. [8]). We denote by

Z,,tf „...,«

the Zpr-module generated freely by the elements ξ1,...,ξf.

(5.15) (i) pGk = Zp{αJ for k = sq-ί, s φ Omodp, 1 g s < p2,

= Zp2{α;p} for k = spq - 1, 1 ̂  s < p- 1,

= Zp2{αίP_1)p}+Zp{α10?1)
p-1} /or *=(p-l)M-l,

= Zp3{αp2} /or k = P

2q-l,

= ZP{(/WJ for k=((r + s)p + s-l)q-2r-2,

, 1 £s<p, r + s<pand(r,s) = (p-1, 1), (p-2,2),

,} for k=

= 0 otherwise for k < (p2 + l)q — 3.

(ii) pG,=Zp{ε'} for k

= Zp{ε,} for k=

= Zp{αp2 + 1,α1OS1)'-2j32} for k=

= Zp^)»-^3} for k =

= Zp{ειαι} for k =

= Zp{ε2} for k = (p

= Zp{αp2+2} for k=

= 0 otherwise for (p2 + ί)q-3 g fe ̂  (
Applying Theorem 3.5 to the results (5.15) (i) and using Theorem 4.1 and

relations (5.2) (i) and (5.4X5.13), we can easily see the ring structure of ĵ ^(Mp)
for degree < (p2 + !)</— 4.

THEOREM 5.1 (cf. [14; Th. I and II], [13; Th. 5.1 and 5.2]). Within the
limits of degree less than (p2 + !)<?— 4, the ring jtf^Mp) is generated by the
elements δest -ι, αejtf, and /?(S)e a^(Sp+s-i),,-ι, l^s<p, with the relations:

δ2 = 0, δa2 = -«2δ+2xδa, jβ(s)«5α = «δβw, «βw = β(s)oί = 0,
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and it is the direct sum of cyclic groups of order p generated by the following
elements:

δ, 1, oT Mαδ, α'-^α, αs<5, αs (1 ̂  s ^ p2),

<5b (α, b = 0 or 1, 0 ̂  r < p, 1 ̂  s < p, r + s < p

δaaδ(β(ί)δ)rβ(s}δ
b (α, b = 0 or 1, 0 g r < p, 1 ̂  s < p, r + s < p).

Next we introduce the following new generators έ and ε.

PROPOSITION 5.2. There exist elements βe j ^ 2 + 1 _ 2 ( M ) and εe

(5.16) (i) D(ε)=0,π s kί*(ε)=ε /;

(ii) βe<GJ ( 1 )ay-1/ί ( 1 ) >αa-

and that

(5.17) (i) D(ε)=0,π*!*(ε)=ε ι ;

(ii) εe<a,£ ( 1

ί _ 2 =Z p are ί/?έ? generators (see
(5.15) (ii)). T/ie element ε is uniquely determined and the element ε is determined
modulo the subgroup Zp, generated by ap2+1(5 — ap2<5a, 0/ j2/(p2 + 1)q_1(Mp). For

elements, we have

-4(Mp) = Zp{δεδ}9

_3(Mp) = Zp{εδ, <5έ, δεί} ,

-aίAίp) = Zp{έ, εδ9 δε,

PROOF. We put n=(p2 + ϊ)q and γ=aδ(β(1)δ)P-2β(2). By Corollary 3.7,
any elements έ and ε satisfying (5.16) (i) and (5.17) (i) are obtained by setting

ε = [ε']x and β. = [«ι]ι For these ε and ε, the assertions on the additive structure
of j/k(Mp), n — 4g/c^n, are proved by applying (5.15) (ii) to Theorem 3.5 and

by using (4.6) and (5.11)-(5.12).
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By (5.2) (i), (5.4), (5.13) and (4.3), the stable Toda brackets A = ((βwδ)p-1

β(i)> xδ — δcc, α<5 —<5α> and 5 = <α, β(1), δu(δβ(^
p~ly are well defined. We

see from Theorem 5.1 that A is a coset of the subgroup Q generated by δyδ and
up2δaδ and that B is a coset of the subgroup R generated by yδ, αp2+1<5 and αp2<5α.

Now we recall the definition [6; (12.3)-(12.4)] of the element εx of (5.15)
(ii), that is, we defined ε1=π*/*<α, β(1)δ, (j5(1)5)p~1α>. Hence ε1=π^.ι*B. Let
ξ be any element of B. Then D(ξ) e stfn and D(ξ) =xy + yap2+ i for some x, y e Zp.
Then ξ'=ξ-xyδ-yap2+ίδ = ξmodR satisfies £(£')= 0 and ξΈB. Hence, £
contains an element satisfying (5.17) (i), and the element ε is obtained. This is
determined modulo R n Kerπ^i* n KerD, which is spanned by αp2+1c> —αp2<5α.

Next, in [5; (6.2)], the element ε' of (5.15) (ii) was defined by ε'=<(j51)
p,

α1 ? oq). We have π*i*A = — <(/?ι)p, α1 ? 0^) = — ε' by n(β(ί)δ)p~ίβ(ί)i=(βί)
p

and (α<5 — <5α)/= — ίoq. Here the sign — occurs from the first formula in p. 645
of the stable bracket. So we change the sign of ε' so that π*i*A=ε'. Let ξ be
any element of A. Put D(ξ)=xε + yγδ-\-zδγ + uap2+ίδ + vap2δθί. Then 0 =

£2(£) =(z + JO? + (w + u)αp2+ λ and /)(<!;) =xε + yD(δyδ) + uD(a,p2δaίδ) = xεmodD(Q),
and hence there exists uniquely ξ' eA such that π*i*ξf=ε' and D(^)=xε, where
the uniqueness follows from Q n Kerπ*/* n KerD=0.

To prove x=0, we calculate the group j^Π+q_1(Mp). First we have from
(1.11) that

εξ=(-l)d e^ξε for any ξ e J*%<(Mp) n Ker D,

and in particular

(5.16) εα = αε.

The generator ε2 of pGw + 9_2 in (5.15) (ii) is defined by ε2=<ε1,p, α A > [5; (6.3)],
where the bracket consists of a single element. By Proposition 3.9, we can take
[ε2]ι =εα and we see that

Since <α, (/?(1)<5)1>~1/?(1), α> has full indeterminacy and <α, (/?(1)<$)ί?~1α(1), α<5> has
# as its indeterminacy, it follows that

Here the last bracket — B' is a coset of the subgroup #' generated by R and δy.
Now we prove x =0 in D(ξr) =xε. We have

ε(α(5-(5α)e -β'(α<5-<5α) =

and hence
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ε(α<5-<5α) ΞE α<T mod K'(α<5 -- <5α) =

Put ε(aδ — δoΐ)=oιξ' + yoιp2+ίδ(xδ. Applying D to this, we have Q=
-α*2+1<5α), and so x=y=Q by (*) and (5.16). q.e.d.

From the above discussion on χ=y=0, we have a relation

(5.17) αε = εα<5 — ε<5α.

The following are consequences of (1.1 !)-(!. 12):

(εδ + δε)ξ = ξ(εδ + <5ε) /or any ξ e e^*(Mp)

εξ = ξε for any ξe ^^(Mp) Π Ker D

(έδ-δS)ξ = (-I)de9^(έ(5-<5έ) for any ξe^^(Mp).

In particular we have

(5.18) α<5ε = ε<5α + (5εα — εα<5,

(5.19) εα = αε.

Also we have

(5.20) έ<5α = έαδ = — ε<5α<5, α5ε = ^εα = δεaδ — δεδa.

For this, we have έ(α<5 — <5α)=0 since έ(αδ-~5α)e(jS(1)<5)p~1j?(1)<α5 — δα, α5 — <5α,

αί-«α>c=(/J(1)^-ι/?α)X3g.2(Mp)=ZF{(/ϊ(1)5^ So the first
follows from (5.17) and (5.19). By (4.5), (α<5 — <5α)έ =0 and the second also follows.

§ 6. The ring structure of ^^(Mp).

We first introduce the results on PG# from [5] and [6].

(6.1)

pGfc = Z>J fork = sq-l, p2 + 3 ̂  s ̂

s τ^

Zp*{<x'sp} for k=spq-l, p + l ^ s ^ p + 3 βxcepί (s, jp)=Gp + 3, 5),

Zp{αp2+sp+s+1,α1(j8ιχ-2jSs+2} /or k = (p2 + sp + s + l)q-l,

s = 1 or 2,

-l, p = 5,
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ιVβ.} fork=(p2+s-2)q + 2s-4, 4 ̂  s < p,

&} for k = (p2+p+s-2)q + 2s-6, I £ s £ p+l, s * p,

&} for k = (pi+2j,+s-2)ί + 2s-8, 1 g s g p + 1,

s / 2, p ,

-5, 3 g s < p,

/or k = (p2 + p + s - ί)q + 2s - 7,

2 ^ s ^ p + l , s 5̂  3, p,

for k = (

P-ι} /or fc = (P

2+2p)q-5,

β,-!} fork=(p2 + 3p)q-Ί,

Zp{Ei} for k = (p2 + i)« - 2, 3 g i < p,

-3, 2 ̂  i ̂  p-2,

Zpl{ψ} fork=(p* + p)q-3,

Zp((βι)rε'} fork=(p2 + rp+l)q-2r-3, l ^ r ^ 3

except (r, p) = (3, 5),

0 otherwise for (p2 + 2)q < k < (p2 + 3p + \)q - 5.

Here we denote by

zP4ί}

the cyclic group of order pr generated by the element ξ9 and by

the direct sum Z^J + — +Zpr{ξs}.

The elements εί5 2^ί<p, in (5.15) (ii) and (6.1) are defined inductively by
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β, = <ε ί_1,Jp, α^,

where the bracket consists of a single element [5; (6.3), (7.3)]. Hence by Proposi-
tion 3.9 and (5.17), we can take

(6.2) [εJt = εα'-1 = α^ε for 1 g i g p-1.

Also by (3.5),

(6.2)' <^>i = βα'-M + δeα'-1,

and by Proposition 3.8, we have

(6.3) IA-OCJ] = {ε^jα = εαί~1<5αmod<5[ε/+1]1,

The following relation will be proved in § 8.

LEMMA 6.1. The bracket ^εp_ί9p,oίίy consists of a single element 0.

The following proposition determines uniquely the element ε.

PROPOSITION 6.2. We can take the element ε o/(5.17) such that

(6.4) εα^"1 =a^~^ = 0,

and ε is uniquely determined by this and (5.17).

PROOF. The element SOLP~I belongs to ^(p2+p)g_1(Mp), and we have
by Theorem 3.5, (6.1),

Theorem 4.1 and (5.11). Since ^^-^=0, D((^(1)^-1j8(2))=0 and
=D(aP2+P-lδu)=aP2+P, we can put εα^1 =x(j5(1)δ)P-1j8(2) + Xαί>2+^
Since π#i*εoίp~ί 6<ε p _ l 9 p, α!>=0 by Lemma 6.1, and since π4ei*(j?(1)δ)p~1j?(2) =

(0ι)p~%^0 and ^i*(a^2+^-a^2+^-Ma)=0, it follows that x=0 and εα^1

=Xα^2+1<5~α^2<5α)α^-1 by (4.4). Replacing ε with ε + Xα^+^-α^α) and
using (5.17), we have the proposition. q.e.d.

Next we consider the element φ e pG(p2 +p)q-3 =Zp2 of (6.1). This is the only
element of order ̂ p2 in pGk for 0<fc<(p2 + 3p + 1)# — 5, except the elements α£p

and α^2. By [5; Th. 7.9], φ is defined by

(6.5) (i) φe<ε p_ 2,α 1,α 1>

and there is a relation

(6.5) (ii) pφ =ε p_ 1α 1.

By Proposition 3.8, (6.5) (ii), (6.2)' and (6.4),
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(6.6) [φ]i = (εα

and by (3.5) δ[_φ]^ ^ίφ^δ, i.e.,

(6.7) (5εα

We define

(6.8) (i) φ = <φ>! e j/(J,2+J,)€.3(Mp) .

This satisfies

(6.8) (ii) Dφ = Q, i*φ = -i*φ, π*φ = π*φ;

(iii) φξ = (-l)*'*tξφ for any ξerf*(Mp);

by Lemma 3.1. In particular,

(6.9) φδ = -δφ.

PROPOSITION 6.3. The element φ belongs to the bracket

<εα*- 3 δ + δε%P- 3 , α<5 - (5α, ocδ - <5α> ,

conversely this and Dφ=Q determine uniquely the element φ.

PROOF. Since <εp_2>=εap~3δ + δεap~3 and <α1>=α<5 — 5α, it follows from

(6.5) (i) that φe«εp_2>, (oq), <α1»=<εα^3^ + δεα^-3, αδ-5α, αδ-δα> . We

have the following results :

from Theorem 5.1, Theorem 3.5, (6.1), Theorem 4.1, (5.11), (6.2), (6.6) and

(6.8) (i). Hence by using (4.4), (6.4) and (6.7) the above bracket is a ocset of

Zp{εαp~2<5α(5}, whose D-image is Zp{εαp~2<5α}. Thus, we see that <εαp~3<5 +

<5εαp~3, α<5 — <5α, α<5 — δα> n Ker Z) consists of a single element. This shows the

uniqueness of φ. q.e.d.

PROPOSITION 6.4. The assertions on the additive structure of j^^(Mp) in

TheoremQΛ hold, namely, for k<(p2 + 3p+l)q — 6 a Zp-basis for j^k(Mp) is

given by the following elements
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<5, 1, αs<5fl, a'-iδaδa (1 ̂  s ̂

δβ(f-»δ* (r = 0, 1), δ *(δβ^δ* (1 £ r < p),

δ*κ(δβ(iyδβ(s)δ
b ((r,s)e J), δ*«(δβ(ί)γδβ(2)δβ(p-ί}δ» (r = 0, 1),

<5βGS(1)<5)rέ<5* (0 ̂  r ^ 3), 5βeα4<Jfc (0 ̂  i ^ p-2),

δ eot-lδ<xδb (1 ̂  i ̂  p-3), βα^25αδΛ, φδfl,

where a, b=0 or 1, and ί/ie index sets I and J are given by

I = {(r, s)|0 ^ r < p, 2 ^ s ^ p + l , s / p,

J = /-{(!, p+1)}.

PROOF. For k^(p2 + \)q the proposition is already proved in Theorem 5.1
and Proposition 5.2. So we consider the case k>(p2 + l)q. To apply Theorem
3.5 we determine [y] and <y> for any generator 7 in (5.15) (ii) and (6.1). For
7=αs and α£p, this is done in §4, and the subring A(ct9 δ) of Theorem 4.1 is ob-
tained. For 7=ε f and φ this is done in (6.2), (6.2)', (6.6) and (6.8) (i). For
other 7, we have <y> =[y](5-f (— l)k<5[y] by (3.5) because 7 is of order p. Hence

we only determine [7]. For 7 =(β,)rβs (s^p-1), UW20P-ι, *ι(βιYβ, and
<*ι(βιyβ2βp-ι, this is done in (5.11) and (6.3).

Using Proposition 3.8, we have the following values of [7] for other 7:

Cεiαι] = εαί~1<5αmod<5[εί+1] by (6.3),

Thus, the proposition with the replacement of (β(i)δ)rβ^-D and (/?(1)ό)rέ by

(()?(i)5)r + (^(i))r))8(p-i) and ((βwδy+(δβ(1y)*, r^l, is established by Theorem
3.5. In particular we have

We have therefore
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^(iAp-i) e Zp{δε*P-*δa, δεaP-*δ} = Zp{d^p.^~]9 (5[εp_2]<5} ,
(*)

δβ(1)έeZp{δa(δβ(1)γ-iδβ(2)δ} = Z^Cα^r %]<5},
and hence we can replace (βwδ + δβ^β{P-v and UW + ̂ d))^ by β(i)δβ(P-i)
and /?(1)<5έ respectively. Since /?(1)(5εαe^(p2+p+1)g_3(Mp)α=0 by (5.2) (i), (5.4)
and (5.6), we see from (*) (δj8(1))

rj5(p_1)=0 for r^2. Also, (<50(1))
rέ=0 for

r^2by(5.4), (5.13) and (*).

Thus, the proposition is established entirely. q.e.d.

In the rest of this section, we study the multiplicative structure of

PROPOSITION 6.5. There is a relation

(6.10) εα*-3<5α = 2εtf-2δ + δεQiP-2 .

PROOF. First we have from Proposition 6.4

Put εaP-3δa=xεaP-2δ + yδε<χP-2 + zaP2+P-2δaδ. Then, -εα^2

and j=x-l, z=0. Hence εα"-3<5α =
^2. By (4.4) and (6.4), 2εα^2δα=2δα^-25α-εα^-1^ =

δα, and so x=2. q.e.d.

COROLLARY 6.6. The following relations hold.

( i ) α'εα 7' = εαr /or r ^ p — 2.

( ii ) α^α^'εα* = /εαr~ 1 <5α — /εαr<5 -f <5εαr for r ^ p — 3 9

= iε<*P-2δ + (i+l)δε<χP-2 for r^p-2,

= iεoίp~2δθί for r = p— 1 .

(iii) alW<5afe = λ εa1" J δa + ( 1 - A:)εarδ /or r ^ /? - 3 ,

= (£+l)εaP-2<5 + £<5εa*-2 for r = p-2,

= kε<χP~2δoc for r = p—l .

(iv) a'έa ^ '= ε<xrδ — ε<xr~ίδa for r^p — 3,

for r = p—l.



664 Shichirό OKA

(v) α/(5α /δα fcεα£ = jδεccr~1δoί — jδεxrδ for r^p — 3,

= jδεap~2δ for r = p — 29

= jεttp~2δttδ for r = p— 1 .

(vi) aiδaJεakδal = iεar-ίδaδ + lδεaίr-ίδ(x + (l-l)δε(xrδ for r^p-3,

for r = p-2,

for r = p-l.

(vii) αίεα /<δαk<5α/ = kε%r~iδθίδ for r ^ p — 3 and for r = /?— 1 ,

= kδεap~2δ for r = p — 2 .

(viii) α'δα fέα* = δεαrδ — δεα1""1^ /or r ^ p — 3 ,

= -δεap-2δ for r = p-2,

= εαp"25αδ /br r = p—l .

(ix) αίέα /5αk = —βαr"1δαδ /or r ^ p — 3 and for r = p—l ,

= —δεap~2δ for r = p — 2.

(x) αίδα /δαfcεα/δαm = jδεar~ίδ(xδ for r ^ /? — 3 .

(xi) α^α /'εαWόα''1 = /5εαr-15α<5 /or r <i /?-3 .

(xii) α*5α /έαfc^αί = — 5εαr~1^α(5 /or r ^ p — 3.

(xiii) Oί/iβr monomials on <5, α αnrf ε involving just one ε are zero, and
other monomials on δ, α and ε involving just one ε are zero.

Here, in every equality r indicates the sum of exponents of a in the left side.

PROOF. These are easy consequences of (4.4), (5.16)-(5.20), (6.4), (6.7) and
(6.10). q.e.d.

By Proposition 6.4, Corollary 6.6 and (4.4), the kernel of α*: ja/ (p2+p_2)€-2
(Mp)-»j2/(p2+p_1)ί_2(Mp) is spanned by the element 2εαp~4<5α — 3εαp~3<5 — <5εαp~3,
which is equal to (έ — εδ — δε)(xp~3 =αp~3(ε — εδ — δε). The element j5(1)j5(p_1) =
-β(P-i)β(ί) belongs to this kernel by (5.2) (i), and H. Toda [13; Remark 5.4]
showed that /?(1)/?(p_1) 7*0. So, we have a relation

(6.11) j8(i)j9(P-i) = -£(p-ιAi) = 2εα

= (έ-εδ-δε)<xp-3 =
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where the second equality holds up to non zero coefficient.
By (5.5) and this relation, we can know the elements β(s)/?(t) in our calculations,

and by (5.6) we know the elements β(S)δβ(t) for s + t + p. We have also

(6.12) β(s)δβ(p-s) = s2β(l)δβ(p^)+(s(s-l)l2)(β(1)β(p_^δ + δβ(l)β(p_^.

For this, put Bs=j8(s)<5jS(p_s). By (5.5), j9(I)/ϊ(p_f)=s/?(l)j5(,_1). According to
[13; (5.4)], (2/s)Bs=-2(s+2)Bp_1 + (s + l)Bp_2 = -2(5-2)^ + (s-l)B2. So,
by (5.7), B^.-B.+sOίd^-^ + ̂ Dft,.!)), and (6.12) follows.

LEMMA 6.7. The bracket <<p, α t, p> contains zero.

The proof of this lemma will be given in § 8.

From Proposition 6.4 we have the following results :

(6.13)

PROPOSITION 6.8. The following holds.

(6.14) φa — <xφ = 0.

PROOF. By (6.8) (iii), α<p = φα. By (6.13), we can put φx=xξδ + yδξ,
ξ=xδ(β(i)δγ-lβί2). Then, Q=D(φoi)=(x + y)ξ and φa=x(ξδ-δξ). By (6.8)
(ii) and (5.11), <jffπα=xα1(/J1)

p~1/?2π. On the other hand, φπa. = (φ, ul, p>π.
Hence x=0 by Lemma 6.7. q.e.d.

PROPOSITION 6.9. The following relations hold.

(6.15) jβ(s)ε = -εj8(s) = α<505(1)«5)*-%+1) /or

(6.16) sδβw = ̂ (δβ(1))"-1δβ(2)δ, β(l)δε =

PROOF. By (5.17) (ii), (5.2) (ii), (5.4) and (5.6), we have
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and (6.15) follows from β(s^(p+ί^4(Mp)δaί(δβ(ι}γ-l=0 and (5.7).
Next we have

and hence β<5/?(ι)=xα(<5/?(1))
p~1<5/?(2)<5 by (6.13)-(6.14). Applying D and using

(6.15), we obtain x = l. By (5.7), the second formula of (6.16) is obtained, q.e.d.

LEMMA 6.10. Suppose that s=£ — Imodp. Then, the bracket

contains (l/(s + l))(5α<5/?(s+1) + (s/(s+l))oιδβ(s+ί}δ with the indeterminacy

β*i) sf(Sp+s+i)q-2(Mp). Further if s<p—l, the bracket consists of a single
element.

PROOF. To prove the lemma, we introduce some notations and results from
H. Toda [13]. Let 7(1) be the mapping cone of α, and i1e{M9V(l)}0 and
π± e (F(l), M}_q-.ι be the natural maps [13; pp. 216-217]. There is an element
β e J*(P+ 1)9(F(1)) which defines β(s) by β(s) =π1β

siί [13 pp. 217-218]. Also there

exists an element α"e ̂ -2(7(1)) such that a,"iί = — ilδatδ and π1α"=— δcnδn^
[13; Lemma 3.1 and (5.6)]. These elements satisfy βra"βs=sβr+s-la"β+(l-
s)0'+*α"[13;Prop. 4.7 (ii)].

Now, this relation implies (s + l)jSsα/^=sj5s+1α// + α//j5s+1. Since (-π
=β(s)δuδ=ctδβ(S)δ and nί(βi1)=β(ί)9 the bracket contains an element ( —
(βii) which is equal to

s+ rfaδ + (l/(s + l))δaδβ(5+1 }

The rest of the assertions is proved by an easy calculation. q.e.d.

PROPOSITION 6.11. The following relations hold.

(6.17) β(2)δε = -

(6.18)
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(6.19) /f ( 2 ) ε = sβ(2} = -

PROOF. We first prove (6.18). Set ξ =α<5(jft(1)<5)*-1β(2) andt=(p2

3. As is seen in the proof of Proposition 6.8, jtft(Mp) n KerD is generated by
ξδ-δξ. So we can put 'βwέ=x(ξδ-δξ). By using (5.16) (ii), (5.5), (5.2) (i)
and (5.4), we have

where >4 = </?(1), /?(1), <5α(<5/?( !))*>" *>, which is a coset of the subgroup Zp{ηδ}
of rft-q+ί(Mp)=Zp{ηδ,δη9εaP-2δx,χP2+P-iδ«δ}, η=(βwδγ-*βm. Since atη =
0, αA consists of a single element, and we have

According to N. Yamamoto [14; Prop. 7.3], <α, j8(1), /?(1)> contains — (l/2)j?(2),
and so

Considering the kernel of α*: J2/ί-β+ι(M/,)-*j/ί+1(Mp), we see

Hence j8(1)έs -X(α5-δα)s(l/2)5ξmodZp{{5}, and we obtain x = -l/2. This
shows the first equality of (6.18). The second follows immediately from (5.7).

Next we prove (6.17). We have

βίjJ(2)€<βί/ί(1),α,/l(1)> by (5.2) (ii)

by (6.16)

B (2/3)(β(l)δ)P-^δβ(3}δ = (2/3)ξ'5 by Lemma 6.10,

where ζ=^δ(β(ί)δ)p~iβ(2) and ξ' =aδ(β(l)δ)p~lβ(3r As the indeterminacy of
<£<5, α, j?(1)> is generated by δξ', we can put

Applying D to this and using (6.15), we obtain x = l/3, and the second of (6.17)
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is proved. The first follows immediately from (5.7).
Finally we prove (6.19). Similarly as above, we have

by(5.2)(ii)

c - (l/2)<ίa, α, ]J(1)> + (l/2)<ί{,α,/?(1)> by (6.18)

B -(l/3)<T(5 + (l/2)<5<r by Lemma 6.10 and (5.2) (ii),

and so sβ(2} = -(l!3)ξ'δmodZp{δξ'}. Since D(έjft(2))=0 and D(ξ')=0, we obtain
βwε = eβm = -(l/3)(ξ'δ-δξ'). By (6-13), we can put εδβw=xδξ'δ and j8(2)<5έ =

jtfξ'δ. Then έjS(2)=D(eδJί(2)) = x(ξ'δ-δξ') and x = -(l/3). Similarly, y = l/3,
and (6.19) is proved. q.e.d.

PROPOSITION 6.12. There exists a relation

(6.20) βwφ = -φβw = *δβwδβ(p.ιy,

where the second equality holds up to non zero coefficient.

PROOF. By (6.8) (iii), β(ι}φ = -φβ(i). By (6.13), we can put
x%δβ(2)δβ(p-i)> Then — /^φ=πs |c/*β(1)<p=xα1/?2βp_1. Hence we have
by the relation (14.2) of [6]. q.e.d.

Now, we prove Theorem 0.1 in the introduction.

PROOF OF THEOREM 0.1. The additive structure is determined in Proposi-
tion 6.4. All relations (i)-(xi) in Theorem 0.1 are already obtained in previous
discussions, that is, (i) is (4.2)-(4.3), (ii) is (5.4) and (5.2)(i), (iii) is (5.6) and
(6.12), (iv) is (5.5), (v) is (5.13)-(5.14), (vi) is (5.16), (5.18) and (6.4), (vii) is (5.17)
and (5.19)-(5.20), (viii) is (6.11), (ix) is (6.15)-(6.17), (x) is (6.18)-(6.19), and (xi)
is (6.9), (6.14) and (6.20).

Multiplying α to (viii) from the right, and using (i) and (ii), we obtain the
relation (6.10). Multiplying δa to (6.10) from the right and using (i) we have
(6.7). Hence (i), (ii), (iv), (vii) and (viii) imply all relations in Corollary 6.6.
Similarly, we can see by tedious and easy calculations that any relation is implied

from (i)-(xi). q.e.d.

REMARK. The element β(p} e ^(P2+P_1)9_1(MP) of (5.1) does not appear in
Theorem 0.1, since our results (6.1) give no information about the element βp.

But we see easily that

where the first equality holds up to non zero coefficient. This is a slight generaliza-
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tion of the statement [13; (5.4) (ii)] for t = l.

§ 7. The ring structure of j/* (Mp,), r^2.

We start from the discussion on the ring ^^(Mp^). We recall the elements

δ2 = /2π2 e st _ ι(Mp2\ λ e {Mp9 Mp2}0, p e {Mp2, M p}0

in (1.9) and (3.1).

The element 51 = ϊ'1π1 ej^.^M^) is simply denoted by δ. The element <52

is of order p2, and A, p and δ are of order p. These satisfy

(7.1) λδ = 0, δp = 0, pλ = 0,

(7.2) pδ2λ=δ, λp=p lM (M = Mp2).

We define some elements of ja/*(Mp2) as follows:

(7.3) ( i ) ξk=λakpej*kq(Mp2)9

(ii) β(s

(iii) I9 =

(iv) β(0

Then, Lemma 3.2 (iv) implies [αfc]2=ξk for fc^Omodp by (4.6),
for l.^s^p+1, s^p by (5.9), [ε']2 = έ/ by (5.16) (i), and [εί]2=ε(ί) by (6.2).

By (7.1)-(7.2), for ξ, ηej**(Mp), λξp=Q if ξ=*ξ'δ or δξ'9 and λ(ξδη)p =
(λξp)δ2(ληp). Then, we have

(7.3) ( v ) (β(ιyδ2yβfa

( vi ) (β(ί)δ2γβ(2)δ2β(p.ί) = λ(β(ΐ}δγβ(2)δβ(p.ί)P =

(vii) ξl(δ2β(^Yδ2

(viii) ξ,(δ2β'wrδ2

( x ) β'd^a^i

Consider the submodule ^*=Λ*p*j^*(Mp) of ja/*(Mp2). Then the follow-
ing lemma is proved immediately from Theorem 0.1, (7.1)-(7.3), Proposition 2.2
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and (1.12).

LEMMA 7.1. 38* is a Zp~vector space, and its basis is given by the elements
(7.3) (i)-(x) for degree <(p2 + 3p+l)q-6. The following relations hold:

ξη=Q for any ξ, ηe3§*\

D(ξ)=Q foranyξε&*;

ζδ2η = (— I)(de9<s+1)(de9|ί+1)^52ξ for any ξ, ηe&#.

For the last elements ξδ2η, we have the following

LEMMA 7.2. The following equalities hold.

ζsδ2β'(t) = β(t)δ2ξs = 0 for s ^ 2.

_p//(j+/-l))#i)Mί.+r-i) far s + ίφO, lmod/7,

((st/(s + ί-2))βf

(2)δ2β'(s+J-2) for s+t φ 0, 2 mod p.

ξsδ2ε' = E'δ2ξs = 0.

{
sε(i+S)<52^ι for i + s ^ p-3 and for i + s = p-1,

0 otherwise.

— I _____ —/β! Of ___ f\ Of 5 _/ _._ „/ 51 O/ ___ f\ f~ „ „_ 1 ^

PROOF. For any ξej3/#(Mp), denote by ξ' the element λξp. Then, by

(7.1H7.2),

ξ'δ2η' = (ί^iίi)' if {ίiy s ξ^^mod^^M^ + ̂ ίM .̂

Then the lemma is an easy consequence of the relations (4.4), (5.2) (i), (5.6),
(6.12), Corollary 6.6, (6.16), (6.17) and (6.19). q.e.d.

Next we recall the element

in §4. This is of order p2 and satisfies D(α') = 0. Also, α's = [α;p]2

for s^Omodp. The following relations are proved in Proposition 4.2 and
Theorem 4.3.

(7.4) (<52)2=0, <52α
/2 = -α/ 2<
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(7.5) ξsξt = 0, £X' = α"€. = ξtp+s.

(7.6) ξsδ2ξt = 0 for s + ί^Omodp, ίsp_,<52£r = fXα' ^-α' -

£A«" = ξsα"<52 = ξtp+sδ29 a'*δ2ξs = <52α"£s = δ2ξtp+s.

LEMMA 7.3. The following relations hold.

a'β'ω = #.)«' = 0, α'<52J8'(ί) = J8(0δ2α' = 0 .

α'ε' = εV = 0, α^2έ' = ε^2α' = 0 .

α'ε'(0 =e{J)α
/ = 0 , α'δaεj,) = ε'(i)δ2cί' = 0 .

PROOF. Let ξ=j8(s), ε or εα^1, and set ξ'=λξp. By (4.8) and (BHQ in
the proof of Theorem 4.3, the element α' satisfies

= p(52α'-α'ί2).

By (5.2) (i) and Corollary 6.6, we have ξα^=α^=0 and £α*-1(5α=α
Hence, α^=Aα^p=0, {'α'=λ^ρ=0, α'δ2ξ'=(α^2-δ2α

/)Γ = -Aα^
and ξ^2α' = ξ/(52α

/-α^2)=A^-1(5αp=0. q.e.d.

To describe the ring structure of J2/*(MP2), we finally introduce an element
φ'by

(7.7) φ' = [φ]2

This is of order p2 and satisfies

(7.7)' D(φ') = 0, π2φ'i2 = φ.

We have also (φ}2=φ'δ2 — δ2φ' by (3.5), and hence

(7.8) ψ'λ = λεαP-2<5α, p<p' = εα*-2<5αp,

(φ;(52 - 52 '̂μ = λφ, p(φ'δ2 - <52φ') = φp,

by Lemmas 3.1-3.2, (6.6) and (6.8) (i).

LEMMA 7.4. The following relations are satisfied.
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β{s)ψ' = <P%)=0, *'φ' = φ'x'9

β'(l)δ2<P' = φ'δ2β'(l) = ζlδ2β(2)δ2β(P-l) ,

where the last equality holds up to non zero coefficient.

PROOF. By Corollary 6.6, (7.8) and (7.2), ξsδ2ε(p.ί.s)=ε{p.l.s}δ2ξs =
sλεctp~2δap=spφ' and λφp=(φ'δ2 — δ2φ')λp=p(φ'δ2 — δ2φ'). Since £εαp~2<5α =
εup~2δaξ =0 for £ =αs and β(s), s^ 1, by Corollary 6.6 and (5.2) (i), it follows from
(7.8) that ξ φ'=φ'ξM=Q and βwφ' =φ'β(s}=0. By (1.11), α>'=φ'α'. By (7.8)
and (6.14), we have ζsδ2φ' = — ζs(φ'δ2 — δ2φ') = — λa,sφp=Q and also φ'δ2ξs=Q
Similarly, the other equalities follow from (6.20). q.e.d.

Now we prove Theorem 0.2 in the introduction.

PROOF OF THEOREM 0.2. By using (6.1) and (7.3), the assertion on the
additive structure is an easy consequence of Theorem 3.5. By Lemmas 7.1-7.4
and (7.4)-(7.6) the relations are proved except the following

ίι(ί2/»{i))p = 0, (βίM'β(2)=09 α>'=0.

The first two relations are obvious by (5.13)-(5.14).

The element α'φ'=φ'α' belongs to s/(p2+2p)q-2(Mp2) Π Ker D which is equal
to Zp{β'(p+ί)δ2 + δ2β(p+1}}. Set k=(p2 + 2p)q-2. We have u!φ'λ
=0, and hence α'φ' belongs to

Applying the result on j^k(Mp) to the exact sequence (3.2) for X=MP, r = s = l,
we see that λβ(p+l)δ^Q in {Mp,Mp2}k. So, we have λ*(β'(p+ί}δ2 + δ2β'(p+ί)) =
λβ(p+i)pδ2λ=λβ(p+ί)δϊQ. Hence ^k(Mp2) n KerD n Ker/l*=0 and α>'=0.

We can check by easy and tedious calculations that all relations are exhausted
by the previous ones. q.e.d.

In the rest of this section, we discuss the ring structure of jtf*(Mpr) for
We define

1 6 rfsq(Mpr) for sφO mod p ,

ξsp = ̂ -2α'>-2 e *fspq(Mpr) for sφ 0 mod p ,

ξp> = A'-3αV"3 e ^p2,(Mpr) (ξp2 = α" // r = 3) ,

β(,y = Jr'ftoP'-1 e J/(v+β-ι)β-ι(AI» ,
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«(„ = λ'-'εoc'- V1 6 jrf'(pϊ+/),_1(Afx) /or lgi£p-l,

φ" = A->y-26j/(p2+p)lί_2(Mp,),

where <x" = [<x'p2']3 e jtf pιq(M p3) is the element in Theorem 4.4.

THEOREM 7.5. Let p be a prime^S and r^3. Then, the group jfk(Mpr)
for k<(pz + 3p+l)q — 6 is the direct sum of cyclic groups generated by the fol-
lowing elements:

δr = irπr, \M of order pr;

ξp2, δrζp2, ξp2δr, δrζp2δr of order p3;

δfξspδ
b

r (s^O mod p, 1 ̂  s £ p + 3), δ°rφ"δb

r of order p2;

(0 g * < /», 2 g ί g />+ 1, f ?έ /», s+ί g p + 2) ,

0 ̂

, ( Λ Γ , / ) ^ (1, />+!)),

^p-D^ (j = o, i) ,

δ afaδiξj} (1 g i. ̂  ̂ -3) o/orrfβr p;

where α, b—0 or 1.

TTie π'π^ jtf.t(Mpr) is generated, within the limits of degree less than (p2 +
3p+l)q-6, by the elements δr,ξs(s<^p2 for r = 3, sgp2 + 3p for r^4), β(s)

ί, s^p), ε', ε( f )(l^/^p— 1) and φ", with the following relations:

(i) (<5,)2=0

(ii) ηζ = 0 for η,ζe {ξs, β'(s), I', ε'w, φ"} except the case (η, ζ) = (ξs, ξt) .

(iii) // r=3, then ξspξtp = pξ(s+t)p for s, t, s + f^Omodp,
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ξapξp2-sp = p2ξp2 for s?έOmodp, ξp2ξs = ξsξp2 = ξp2+s

for s^Omodp2, and ξsξt = 0 for other s, t.

7/r=4, then ξp2ξsp = ξspξp2 = pξp2+sp for s^έOmodp,

and ξsξt = 0 for other s, t.

(iv) ηδrζ=

= ζ ι δ r β ( 2 ) δ r β ( p - i ) up to non zero coefficient.

(v) If r = 3, then

ξsδ3ξp2-s = sp2(ξp2δ3-δ3ξp2) for s φ Omodp,

for s = tpφ Omodp2,

(.+op) f°r s > t , s + tφ Omodp,

ξp*δ3ξs = δ3ξp2+s for s φ Omodp,

= (Il(t + p))(pξp2+tpδ3 + tδ3ξp2+tp) for s = tpφ Omodp,

ξsδ3ξp2 = ξp2+sδ3 for s φ Omodp,

= (Il(t + p))(tξp2+tpδ3 + pδ3ξp2+tp) for s = tpφ Omodp2,

ξ£3ξt = 0 for other s, t.

I f r = 4, ί/ien ξsp<54ί^_sp = sp2(ξp2δ4-δ4ξp2)9

pi = (5p/(s + p))ξp2 +5P<54 forsφO mod p,

sp = (SP/(S + P))^P2 +sp /or s ^ 0 mod p,

4ξf = 0 /or oί/iβr s, t.

If r^ 5, then ξsδrξt=Q.

(vi)

f(^/( ty + /-l))^1)(5Γj?;s+ί.1) /or
β(.Ww =

(s(S-l)β(2)δrβ(p.ί) for
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tsε(i+it)δrξ1 for i + s^p-3,

ξsδrε'(i) = ε'(l)δrξ8 = spφ" for i + s = p- 1 ,

(O for i + s = p — 2 and for i + s έϊ p.

(vii) £!(«,#!))' = <), (β(i)δr)>β'w=0.

PROOF. Except the relations (iii) and (v), the results coincide with the case
r=2, and are proved in the same way as Theorem 0.2. The relations (iii) and
(v) are easy restatements of Theorem 4.4. q.e.d.

§ 8. Some bracket formulae in G*.

In this section we give some relations on the stable Toda bracket in G*, and
prove Lemmas 6.1 and 6.7. Here we assume p^5.

PROPOSITION 8.1. Let r^l, s^2 and r + s^p+l. Then,

{±rsε r + s_2α1 for r + s ^ p—i and for r + s = p+ 1,

0 for r + s = p.

(O^α^α;,) = +&P-&I.

Here the brackets have trivial indeterminacies.

PROOF. Set A=<(j8(1)δV |-1j8(1), αΓ3-δαr, α δ-δα*). Then by an easy
calculation we see that A has an indeterminacy Zp{sup2+r+s~2δaδ} and that πAi =

±((βι)p, αr, αs> mod zero. Since αr(5-<5αr = -rίαδ-δα)^"1 = - rαr" J (α5 - δα)
by (4.4), it follows that

A = rsBar+'-2 for B = <(P(^)P~^(^ ocδ-δa, <xδ-δocy .

As is seen in the proof of Proposition 5.2, B = έ + Zp{δγδ, <xp2δaδ}, y=α(δ/?(1))
l>~2

j8(2). By (5.2) (i) and (5.4), αδyδ=δyδα=0, and hence by (4.4) and (5.19) α com-
mutes with any element of B. Also, the element αδ — <5α commutes with any
element by (1.12). Therefore,

s- 3

As is seen in the proof of Proposition 5.2, the last bracket contains the element
— ε. So, we have π/U = rsα1εr+s_2 = ̂ sεr+s_2α1 up to sign. Thus we obtain the

first formula.
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Next consider A'=((β(1 )<5)p-ί β( i}, α<5 - <5α, tfδ - α*"J <5α>. Then,
αp~1δα)ί = <αpϊ = -fα^ and πA'i=±((β1)

p

9 <xl9 oιpy. Similarly as above, we
have ^/ = ±(α(5-(5α)α*'-2<α, (βwδy>~*βw, aδ-δκ) 3 ± α5α^2ε=± εα"-2<5α.
Thus the second formula follows. q.e.d.

Now to prove Lemma 6.1, we introduce some results on the unstable groups

πn+k(Sn) from [5; §8] and [11]. Set k=(p2+p-l)q-2, and let 5°°: πn+t(Sn)-»
Gt be the natural homomorphism. By Theorem 15.2 of [11],
(8.1) There exists an element ε=εp_1(2p + 3)eπ2p+3+k(S2p+3) of order p such
that S0 0ε=εp_1eG f c.

Following [11], we denote by Qln~^ the space Ω(Ω2S2n+ί

9S
2n~l) of paths

in the double loop space Ω2S2n+ί starting from the subspace 52""1 and ending to
the base point *. Denote by //(2): πί+2(52rt+1)->πί_1(Qin~1) the homomorphism
defined from the induced homomorphism from the inclusion (Ω2S2n+ί, *)-»

(Ω2S2n+ί, S2"-1). For yepG,.2llJ,+3, denote by Q*(γ) epπAQl*-*) the image
of γ by the homomorphism /': pGί_2/Jp+3«pπί+2(5'2^-1)^pπί(ρi»-1). (Cf.
[5,-pp. 331-332]).

LEMMA 6.1. {^p-^p,^^ =0 mod zero.

PROOF. As is well known, S°°: πn+q_1(Sn)-^Gq,ί is an isomorphism of p-
components for n^3. Let α6π2p+4(S7) be an element such that pα=0 and
S°°α=α1. Then we consider the Toda bracket {α, ̂ 2p+4, 5ε}cπk+2/,+5(S7),
whose S°°-image is equal to our bracket <εp_ l 5p, α t> up to sign, by [10; (3.9),
i)].

Next we calculate the groups pnk+4p-5(S2p~3) and pπfc+4ί,_3(S2p~1). By

[5; (8.4)],pπfc+4p_8(ρ^-5)=Zp{ρ^2(αp2 + 2)} and pπk+4p-6(QΪ'-*)=Z,{Q>-*

(<*p* + ι)9Qp~ΐ(<*ιβpΓ2β2)} βy the discussions in [5; pp. 332-333], we see that

pπk+4P-5(S2p-3)=Zp2{yp-2} and pπfc+4l,_3(S2^i)=Zp2{yp_1} + Zp{j8}, where
7p_2 and 7 p _ x are called the unstable elements of second type and satisfy f/ ( 2 )yp_ 2

= β^2(αp2 + 2),H(2)7p_1=β^1(αp2 + 1),S2yp_2= Jpyp_1 and S*yp_2=0, and the
element β satisfies H^β=QP~1(oiίβ

p

ί-
2β2). We have therefore S°°pπfc+4p_5(S2P-3)

=0. Since S2^-10{α,^2p+4, Sε}c:pπfe+4p_5(S2^-3), it follows that S°°{α,
^2p+4,5ε}=0. q.e.d.

REMARK. Set k=(p2 + p — l)q — 2 and l = k + q. The stable groups pGk

and PG1 are generated by εp>! and βpι~1β2 For the element βepπ/+2p_1(S2p~1),
we see further that Scoβ=βp

i~
1β29 i.e., the element βp

1~
1β2 belongs to S°°πί+2p_1

(S2^'1) and not to 5>00π/+2p_3(S2p-3). This is true for the case p = 3, but the above
proof is negative for p = 3 since (8.1) does not hold for p = 3.

Finally to prove Lemma 6.7, we employ some results of [5] and [6]. Let
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Kk(n) be the space obtained from S" by attaching cells of dimension greater than

n-hfc and killing the homotopy groups π'n+j(Sn) forj^/c. Here n is a sufficiently

large integer. Set k=(p2+p)q-3. By (1.3) of [5] and Theorem 13.1 of [6],

we have the following results on the cohomology group H*(Kk(n); Zp):

(8.2) H» = Z,{a0}9 H»+k+ι = Zp{f}9 H»+k+2 = Zp{f'9 b}9

Zp{a9Ab}9 H»+k+* = Zp{a'}9 H»+k+«-ι = Zp{c}9

= Zp{Ac}9 #»+*+'e+i = ZpjP1/}, Hn+k+«+2 = Zp{APlf9 P1/'},

Hn+k+q+3 = Zp{Pla9 APlf'9 PlAb}9 Hl = 0 otherwise for

where Hί = Hi(Kk(n); Zp)9 a = ap2+p9 a' = ap2+p9 b=b%~1 and c = c? in Theorem

13.1 of [6], and A and P1 denote the Bockstein operation and the reduced power

operation.

LEMMA 6.7. <φ, α l 5 /?>9θ.

PROOF. From (8.2) we see easily that the elements α0, /, P1/ and AP1/ form

a subcomplex of Kk(n) up to mod p homotopy equivalence. In more detail, there

exist a complex

L = Sn U en+k+ί U en+k+«+ί U en+k+t*+2

and a map F: L-+Kk(ri) such that //*(L; Zp) is spanned by F*(a0), F*(f), F*(PV)
and F*(JP1/). The (n + k + l>skeleton of L is the complex P?(/) of Definition

2.1 of [5], and so it is the mapping cone of φ by the fact φ(φ)=ffor the homo-

morphism φ of [5; (2.1)] and by Lemma 2.2 of [5]. Since F*(Pίf)=PίF*(f)

and αx is detected by P1, the (n-hfc + # + l)-skeleton of L/Sn is the mapping cone

of α l s and since F*(AP1f)=APiF*(f)9 L/(Sn U e

n+k+l) is the mapping cone of p e

G0. So the existence of such L leads us to the lemma. q.e.d.

REMARK. By an argument similar to Lemma 6.7, we can also prove Lemma

6.1 without the assumption p^5.
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