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§1. Introduction

The purpose of this note is to study what kind of finite groups can act freely
on closed surfaces.

Let X be a given closed surface. Suppose that a finite group G acts freely on
X. Then, it is well known that the orbit space Y=X/G is also a closed surface
and there is a normal covering

(1.1 p: X — Y= X|G,

that is, the image p,7,(X) of the induced monomorphism p,: 7,(X)—>7,(Y) of
the fundamental groups is a normal subgroup of n,(Y) and n,(Y)/p47,(X)=G.
Therefore,

(1.2) X)=xY)yg (@=1),

where y means the Euler characteristic and g=# G is the order of G. Also, we
see easily the following.

(1.3) In the case that X is orientable, Yis orientable if and only if the action
of G preserves the orientation of X.

Conversely, suppose that

(1.4.1) Yis a closed surface satisfying (1.2) for some integer g=>1, and N
is a normal subgroup of 7,(Y) of index g, and

(1.4.2) N is isomorphic to 7,(X).
Then, we have a normal covering p’: X'—Y with the covering group

(1.5) G =mn(Y)IN,

and the closed surface X' satisfies y(X')=x(X), n,(X)=n,(X) by (1.4.1-2).
Therefore, we see that X’ is homeomorphic to X by the classification theorem of
closed surfaces, and so G acts freely on X.

Thus, we have the following

THEOREM 1.6. Let X be a closed surface. Then, a finite group G acts
freely on X if and only if G is given by (1.5) under the assumptions (1.4.1-2).
Furthermore, in the case that X is orientable, G acts on X preserving or
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reversing the orientation according as Y in (1.4.1-2) is orientable or non-orienta-
ble.

Here, we say that G acts on X reversing the orientation, if some element of G

reverses the orientation of X.
Since two orientable closed surfaces are homeomorphic if their Euler charac-
teristics coincide, we have the following

COROLLARY 1.7. Let X be a closed orientable surface. Then a finite group
G acts freely on X preserving the orientation if and only if G is given by (1.5),
under the assumption (1.4.1) with the additional assumption that Y is orientable.

Using these results and the elementary group theory, we obtain the following
results, some of which may be known.

THEOREM 1.8. The finite group which acts freely on the Klein bottle U,
is the cyclic group

Z,of order n = 22s+1) or 2s+1 (s=0),
-and then the orbit surface is always homeomorphic to U,.

THEOREM 1.9. The finite group which acts freely on the torus T, reversing
the orientation is one of the following groups:

{x, y;xyx = y,x* =y}, {x,y;xyx = p,x* = y** =1}, (s,t 2 1),
and then the orbit surface is always U,.
Here, the notation
{X15-.s Xp3 Ry5e.e5 Ry}

means the group with generators x,,..., x, and defining relations R,,..., R,.
The groups in this theorem for t=1, s>1 are the generalized quaternion
groups and the dihedral groups.

THEOREM 1.10. The finite abelian group, which acts freely on the orientable
closed surface T,, (in=0) of genus m preserving the orientation, is the direct sum

Z,®--®Z,, n=0, m—1=(n—1)s...55,,

of the cyclic groups Zg, of order s;21, and then the orbit surface is T,. Also,
any finite group which acts freely on T,, (0<m < 6) preserving the orientation is
an abelian group.

Concerning this theorem, P. A. Smith [2, Ch. 15] calculated the number of
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certain classes of free abelian actions on 2-manifolds. Also, we notice in §3 the
results for m=7.

The author wishes to express his gratitude to Professor M. Sugawara for his
valuable suggestions and reading this manuscript carefully.

§2. Proofs of Theorems 1.8 and 1.9.

In this section, we consider the Klein bottle U, or the torus T;.

LemMA 2.1. If a finite group G acts freely on U, or on T, reversing the
orientation, then the orbit surface is homeomorphic to U,.

Proor. Since y(U,)=y(T;)=0, the result follows immediately from (1.2)
and (1.3). q.e.d.

As is well known, the fundamental group of U, is given by
2.2) 7 (Uy) = H = {x, y; xyx = y}.
We see easily the following

LemMA 2.3. In the group H, the relation x"y™=ymx(—=1"r holds for any
integers m and n. Moreover, any element of H can be represented uniquely
by the form x"y™ for some integers m and n.

LeEMMA 2.4, Let a map f: H—>H be given by
f(x) = xiyl,  f(y) = xky!.

Then, f is a monomorphism such that Imf is a normal subgroup of H of finite
index if and only if i=+1 or +2, j=0 and l is an odd integer.

Proor. If fis a homomorphism, the relation xyx=y implies 2j+1!=1 and
i+(—=1)k+(—1)/*i=k by the above lemma, which show that j=0 and ! is odd.
Then, we have

f(xayt) = xaitkybl (b: odd), = x4iybl (b:even).

Therefore, we have i %0, if f is monomorphic. Furthermore, if Imf is a normal
subgroup of H, then xf(y)x~!, yf(y)y ! elmf and so ai=2 and a'i=—2k for
some a, a’. These show that i=+1 or +2, and the necessity is proved.

The sufficiency is proved easily. qg.e.d.

ProOF oF THEOREM 1.8. By Theorem 1.6 and Lemma 2.1, the finite group
G which acts freely on U, is given as the quotient group H/Imf, where f: H—H
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is a monomorphism of the above lemma. Therefore,
G = H/Imf = {x, y; xyx = y, x} = xky2st!l =1},
where i=1or 2 and s=0. Then, we can easily verify that this group G is given by
Z,,.,, generated by y, ifi=1,
G = { Zy(35+1), generated by y, if i = 2 and k is odd,
Z)25s+1) generated by xy, if i = 2 and k is even.
Thus, the proof of Theorem 1.8 is completed. qg.e.d.

Now, we can verify the following lemma by the routine calculations by using
Lemma 2.3.

LemMMA 2.5. Let a map f: n(T))=Z®Z—->n,(U,)=H be given by
f(a) = xiyd, f(b) = xky!, for the generators a, b of ZOZ.

Then, f is a monomorphism such that Imf is a normal subgroup of H with finite
index if and only if j and | are even integers, d=il—jk=0 and d is a divisor of
il+jk, 2ij and 2kl.

Proor. If fis a homomorphism, the equality f(a)f(b)=f(b)f(a) implies
i(1=(=1DH = k(1—-(=1)9).

If j is odd and [ is even, then this equality implies k=0. Then, we see that f(b)=y*
and f(2a)=y?/. By the same way f(a)=y/ and f(2b)=y?!, if j is even and [ is
odd. Also f(2a)=y?/ and f(2b)=y?2!, if j and | are odd. Therefore, f is not
monomorphic for these cases.

For even j and I, we have f(amb")=ximtknyim+in  Therefore
d=il—jk x0,

if f is monomorphic. Furthermore, if Imfis a normal subgroup, then y(Imf)y~1!
cImf and so x7iyJ, x"*y'eImf. These show that d is a divisor of il+jk, 2ij
and 2kl as desired, and the necessity is proved.

The sufficiency is proved easily. g.e.d.

ProoF oF THEOREM 1.9. By Theorem 1.6, Lemmas 2.1 and 2.5, a finite
group G which acts freely on T, reversing the orientation is given by

(*) G = {x,y; xyx = y, y* = xi, y? = x4},
where d=il—jk=0 and d is a divisor of il+jk, 2ij and 2kl.
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Now, we prove that G of () is one of the groups of Theorem 1.9. We notice
the following fact, which is easily seen.

(2.6) The relations xyx=y and y2i=x! imply y*/=1=x2i,

(D) The case k=0. (The proof for i=0 is similar.) Then, il%0, and as-
sume j %0, since the desired result is trivial if j=0. The defining relations of ()
are

xyx =y, yH=xi, y?=1,
where ijlx0 and [ is a divisor of 2j. Therefore, these relations are reduced to
xyx =y, 2 =xt =1, if2j/lis even,
[ xyx =y, yt = xi, if 2j/l is odd,
and [ is even for the latter case, as desired.
(IT) The case ikx0. Assume the defining relations of (x) are
xyx =y, y¥=xi, y?=xk (i>0k>0).
Then, we have x*=y24 for some integer a, where s=g.c.m. {i, k}, and so
1, if i/s is even, 1, if k/s is even,
y2i = 21 —
xs, if i/s is odd, xs, if k/s is odd.

Hence, in the case where i/s and k/s are odd, the defining relations of () are
reduced to

xyx = y, y2J = xs, yz(j_l) = 1_

If j=0 or j=1, the desired result is trivial. If i=O0, /, then we have y2*=1 fo
t=g.c.m.{2|j|,|j—1I|}, and these relations are reduced to

xyx =y, y*=x*=1, if2|j|/tiseven,
xyx =y, y¥=x, if 2|j|/t is odd,

and ¢ is even for the latter case. Therefore, we have the desired result. We car
prove by the same way the result for i/s or k/s even.

Thus, we have proved that G of (x) is one of the groups of Theorem 1.9
The converse is seen in the above proof (I). g.e.d

§3. Proof of Theorem 1.10

In this section, we use the following notations.
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F,, = the free group generated by X,,..., Xp V1sees Vn»

Tp= [xU yl]"'[xn, yn]EFZn’

Wi,..., Wi} = the minimal normal subgroup of F,, containing the elements
1 g p 2n g
Wise.os W Of Fyp

where [x;, ;] is the commutator of x; and y;.
As is well known, the fundamental group and the Euler characteristic of the
orientable closed surface T, of genus m are given by

(3‘1) nl(Tm) = FZm/{rm}’ X(Tm) =2-2m.
By Corollary 1.7 and (3.1), we see immediately

ProrosITION 3.2. A finite group G acts freely on T,, (m=0) preserving the
orientation if and only if

G=F,/N', N'sr, m—1=@m-1)%G.

Proor oF THEOREM 1.10. The first half of Theorem 1.10 is an immediate
consequence of the above proposition. The last half is also so, since any group
of order <5 is abelian. g.e.d.

It is difficult to determine the groups which act freely on T, (m =7) preserving
the orientation. We notice finally the results for m <31, which is obtained by
using the following proposition and the known classification theorem of non-
abelian groups of lower order.

ProrosiTiON 3.3. Let G be a finite group and assume that the number of
generators of G is less than n+1. Then, G acts freely on T, preserving the
orientation, where m=1+(n-1)#G.

Proor. By the assumption, we see that G is isomorphic to a quotient group
F,,/K, where K contains x;y7!,..., x,y5!. Then, K contains r,=[x,, y,]...
[xn> ¥a], and so the desired result follows immediately from Proposition 3.2.

g.e.d.

THEOREM 3.4. A finite non-abelian group G acts freely on T, (m<31)
preserving the orientation if and only if # G is a divisor of m—1.

Proor. The necessity is an immediate consequence of (1.2), (1.3) and (3.1).
Conversely, assume # G is a divisor of m—1. If G is generated by 2 elements,
then G acts freely on T,, preserving the orientation by the above proposition.
Since # G <30, G is generated by 2 or 3 elements and only the following groups
are generated by 3 elements by [1, Table 1]:
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A={x,y,z;x? = y? =22 = (2x)? = (xy)* = (y2)*}, #4 = 16,
B={x,y,z;x2=y2=(xy)?,z2 =x"lzxz =y lzyz =1}, #B = 16,
C={x,y,z;x*=y*=22=1,xyz = yzx = zxy}, $C = 16,
D={x,y,z;x2=y2=2%2=(xyz)?2 =(xy)® =(xz)> =1}, #D = 18,
E={xy,2;x2=y2=z22=(z) =(zx)2 =(xy)2 =1}, $ E = 24.

Therefore, it remains to show that these groups G act on T,, for m=1+#%G.
Take the normal subgroup K of F, as follows:

K = {x}, y}, x3, x,03", (x2%1)%, (x191)?, (y1x2)*}, for G =4,

K = {x,y3", x3x7%, x}(x2%,)72, 1, X3 ' y1X2¥1, X7 'Yy %191}, for G =B,
K = {x}, x3, x,03", (x2'y )% (x1y)1x )7 (01X )x3 yexyx,)7 '}, for
G=2C,

K = {x},x3, y3, y1(x292)7", (x1y1)?, (x1%2)3, (x4,)*}, for G =D,

K = {x}, y1, x3, x203", (x2x1)%, (x1¥1)?, (y1%2)%}, for G =E.

Then, it is easy to see that Ksr, and F,/K=>~G. Therefore, we have the desired
result by Proposition 3.2. g.e.d.
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