A Note on Finite Groups which Act Freely on Closed Surfaces

Kensô Fujii

(Received January 20, 1975)

§1. Introduction

The purpose of this note is to study what kind of finite groups can act freely on closed surfaces.

Let X be a given closed surface. Suppose that a finite group G acts freely on X. Then, it is well known that the orbit space Y=X/G is also a closed surface and there is a normal covering

$$(1.1) p: X \longrightarrow Y = X/G,$$

that is, the image $p_*\pi_1(X)$ of the induced monomorphism $p_*: \pi_1(X) \to \pi_1(Y)$ of the fundamental groups is a normal subgroup of $\pi_1(Y)$ and $\pi_1(Y)/p_*\pi_1(X) \cong G$. Therefore,

(1.2)
$$\chi(X) = \chi(Y)g \qquad (g \ge 1),$$

where χ means the Euler characteristic and g = # G is the order of G. Also, we see easily the following.

(1.3) In the case that X is orientable, Y is orientable if and only if the action of G preserves the orientation of X.

Conversely, suppose that

(1.4.1) Y is a closed surface satisfying (1.2) for some integer $g \ge 1$, and N is a normal subgroup of $\pi_1(Y)$ of index g, and

(1.4.2) N is isomorphic to $\pi_1(X)$. Then, we have a normal covering $p': X' \to Y$ with the covering group

$$(1.5) G = \pi_1(Y)/N,$$

and the closed surface X' satisfies $\chi(X') = \chi(X)$, $\pi_1(X') \cong \pi_1(X)$ by (1.4.1-2). Therefore, we see that X' is homeomorphic to X by the classification theorem of closed surfaces, and so G acts freely on X.

Thus, we have the following

THEOREM 1.6. Let X be a closed surface. Then, a finite group G acts freely on X if and only if G is given by (1.5) under the assumptions (1.4.1-2).

Furthermore, in the case that X is orientable, G acts on X preserving or

Kensô Fujii

reversing the orientation according as Y in (1.4.1-2) is orientable or non-orientable.

Here, we say that G acts on X reversing the orientation, if some element of G reverses the orientation of X.

Since two orientable closed surfaces are homeomorphic if their Euler characteristics coincide, we have the following

COROLLARY 1.7. Let X be a closed orientable surface. Then a finite group G acts freely on X preserving the orientation if and only if G is given by (1.5), under the assumption (1.4.1) with the additional assumption that Y is orientable.

Using these results and the elementary group theory, we obtain the following results, some of which may be known.

THEOREM 1.8. The finite group which acts freely on the Klein bottle U_2 is the cyclic group

$$Z_n \text{ of order } n = 2(2s+1) \text{ or } 2s+1 \quad (s \ge 0),$$

and then the orbit surface is always homeomorphic to U_2 .

THEOREM 1.9. The finite group which acts freely on the torus T_1 reversing the orientation is one of the following groups:

 $\{x, y; xyx = y, x^s = y^{2t}\}, \{x, y; xyx = y, x^s = y^{2t} = 1\}, (s, t \ge 1),$

and then the orbit surface is always U_2 .

Here, the notation

$$\{x_1, ..., x_n; R_1, ..., R_k\}$$

means the group with generators $x_1, ..., x_n$ and defining relations $R_1, ..., R_k$.

The groups in this theorem for t=1, s>1 are the generalized quaternion groups and the dihedral groups.

THEOREM 1.10. The finite abelian group, which acts freely on the orientable closed surface T_m ($m \ge 0$) of genus m preserving the orientation, is the direct sum

$$Z_{s_1} \oplus \cdots \oplus Z_{s_{2n}}, \quad n \ge 0, \qquad m-1 = (n-1)s_1 \dots s_{2n}$$

of the cyclic groups Z_{s_i} of order $s_i \ge 1$, and then the orbit surface is T_n . Also, any finite group which acts freely on T_m $(0 \le m \le 6)$ preserving the orientation is an abelian group.

Concerning this theorem, P. A. Smith [2, Ch. 15] calculated the number of

certain classes of free abelian actions on 2-manifolds. Also, we notice in §3 the results for $m \ge 7$.

The author wishes to express his gratitude to Professor M. Sugawara for his valuable suggestions and reading this manuscript carefully.

§2. Proofs of Theorems 1.8 and 1.9.

In this section, we consider the Klein bottle U_2 or the torus T_1 .

LEMMA 2.1. If a finite group G acts freely on U_2 or on T_1 reversing the orientation, then the orbit surface is homeomorphic to U_2 .

PROOF. Since $\chi(U_2) = \chi(T_1) = 0$, the result follows immediately from (1.2) and (1.3). q.e.d.

As is well known, the fundamental group of U_2 is given by

(2.2)
$$\pi_1(U_2) = H = \{x, y; xyx = y\}.$$

We see easily the following

LEMMA 2.3. In the group H, the relation $x^n y^m = y^m x^{(-1)m_n}$ holds for any integers m and n. Moreover, any element of H can be represented uniquely by the form $x^n y^m$ for some integers m and n.

LEMMA 2.4. Let a map $f: H \rightarrow H$ be given by

$$f(x) = x^i y^j, \qquad f(y) = x^k y^l.$$

Then, f is a monomorphism such that Im f is a normal subgroup of H of finite index if and only if $i = \pm 1$ or ± 2 , i = 0 and l is an odd integer.

PROOF. If f is a homomorphism, the relation xyx = y implies 2j+l=l and $i+(-1)^{j}k+(-1)^{j+l}i=k$ by the above lemma, which show that j=0 and l is odd. Then, we have

$$f(x^{a}y^{b}) = x^{ai+k}y^{bl}$$
 (b: odd), $= x^{ai}y^{bl}$ (b: even).

Therefore, we have $i \neq 0$, if f is monomorphic. Furthermore, if Im f is a normal subgroup of H, then $xf(y)x^{-1}$, $yf(y)y^{-1} \in \text{Im}f$ and so ai=2 and a'i=-2k for some a, a'. These show that $i=\pm 1$ or ± 2 , and the necessity is proved.

The sufficiency is proved easily.

PROOF OF THEOREM 1.8. By Theorem 1.6 and Lemma 2.1, the finite group G which acts freely on U_2 is given as the quotient group H/Imf, where $f: H \rightarrow H$

q.e.d.

Kensô Fujii

is a monomorphism of the above lemma. Therefore,

$$G = H/\mathrm{Im} f = \{x, y; xyx = y, x^{i} = x^{k}y^{2s+1} = 1\},\$$

where i = 1 or 2 and $s \ge 0$. Then, we can easily verify that this group G is given by

$$G = \begin{cases} Z_{2s+1}, \text{ generated by } y, & \text{if } i = 1, \\ Z_{2(2s+1)}, \text{ generated by } y, & \text{if } i = 2 \text{ and } k \text{ is odd,} \\ Z_{2(2s+1)}, \text{ generated by } xy, & \text{if } i = 2 \text{ and } k \text{ is even.} \end{cases}$$

Thus, the proof of Theorem 1.8 is completed. q. e. d.

Now, we can verify the following lemma by the routine calculations by using Lemma 2.3.

LEMMA 2.5. Let a map $f: \pi_1(T_1) = Z \oplus Z \to \pi_1(U_2) = H$ be given by $f(a) = x^i y^j, \quad f(b) = x^k y^l, \text{ for the generators } a, b \text{ of } Z \oplus Z.$

Then, f is a monomorphism such that Im f is a normal subgroup of H with finite index if and only if j and l are even integers, $d=il-jk \neq 0$ and d is a divisor of il+jk, 2ij and 2kl.

PROOF. If f is a homomorphism, the equality f(a)f(b)=f(b)f(a) implies

$$i(1-(-1)^{l}) = k(1-(-1)^{j}).$$

If j is odd and l is even, then this equality implies k=0. Then, we see that $f(b)=y^{l}$ and $f(2a)=y^{2j}$. By the same way $f(a)=y^{j}$ and $f(2b)=y^{2l}$, if j is even and l is odd. Also $f(2a)=y^{2j}$ and $f(2b)=y^{2l}$, if j and l are odd. Therefore, f is not monomorphic for these cases.

For even j and l, we have $f(a^m b^n) = x^{im+kn} y^{jm+ln}$. Therefore

$$d = il - jk \neq 0,$$

if f is monomorphic. Furthermore, if Im f is a normal subgroup, then $y(\text{Im } f)y^{-1} \subset \text{Im } f$ and so $x^{-i}y^j$, $x^{-k}y^l \in \text{Im } f$. These show that d is a divisor of il+jk, 2ij and 2kl as desired, and the necessity is proved.

The sufficiency is proved easily.

q.e.d.

PROOF OF THEOREM 1.9. By Theorem 1.6, Lemmas 2.1 and 2.5, a finite group G which acts freely on T_1 reversing the orientation is given by

(*)
$$G = \{x, y; xyx = y, y^{2j} = x^i, y^{2l} = x^k\},$$

where $d = il - jk \neq 0$ and d is a divisor of il + jk, 2ij and 2kl.

Now, we prove that G of (*) is one of the groups of Theorem 1.9. We notice the following fact, which is easily seen.

(2.6) The relations xyx = y and $y^{2j} = x^i$ imply $y^{4j} = 1 = x^{2i}$.

(I) The case k=0. (The proof for i=0 is similar.) Then, $il \neq 0$, and assume $j \neq 0$, since the desired result is trivial if j=0. The defining relations of (*) are

$$xyx = y, y^{2j} = x^i, y^{2l} = 1$$

where $ijl \neq 0$ and l is a divisor of 2j. Therefore, these relations are reduced to

$$\begin{cases} xyx = y, \ y^{2l} = x^{i} = 1, & \text{if } 2j/l \text{ is even}, \\ xyx = y, \ y^{l} = x^{i}, & \text{if } 2j/l \text{ is odd}, \end{cases}$$

and l is even for the latter case, as desired.

(II) The case $ik \neq 0$. Assume the defining relations of (*) are

$$xyx = y, y^{2j} = x^i, y^{2l} = x^k$$
 $(i > 0, k > 0).$

Then, we have $x^s = y^{2a}$ for some integer a, where $s = g.c.m. \{i, k\}$, and so

$$y^{2j} = \begin{cases} 1, & \text{if } i/s \text{ is even,} \\ x^s, & \text{if } i/s \text{ is odd,} \end{cases} \quad y^{2l} = \begin{cases} 1, & \text{if } k/s \text{ is even,} \\ x^s, & \text{if } k/s \text{ is odd.} \end{cases}$$

Hence, in the case where i/s and k/s are odd, the defining relations of (*) are reduced to

$$xyx = y$$
, $y^{2j} = x^s$, $y^{2(j-l)} = 1$.

If j=0 or j=l, the desired result is trivial. If $i \neq 0$, l, then we have $y^{2t}=1$ for $t=g.c.m. \{2|j|, |j-l|\}$, and these relations are reduced to

$$\begin{cases} xyx = y, \quad y^{2t} = x^{s} = 1, \quad \text{if } 2|j|/t \text{ is even}, \\ xyx = y, \quad y^{2t} = x^{s}, \quad \text{if } 2|j|/t \text{ is odd}, \end{cases}$$

and t is even for the latter case. Therefore, we have the desired result. We car prove by the same way the result for i/s or k/s even.

Thus, we have proved that G of (*) is one of the groups of Theorem 1.9 The converse is seen in the above proof (I). q.e.d

§3. Proof of Theorem 1.10

In this section, we use the following notations.

 F_{2n} = the free group generated by $x_1, \dots, x_n, y_1, \dots, y_n$,

$$r_n = [x_1, y_1] \dots [x_n, y_n] \in F_{2n},$$

 $\{w_1, \dots, w_k\}$ = the minimal normal subgroup of F_{2n} containing the elements

$$w_1, ..., w_k$$
 of F_{2n} ,

where $[x_i, y_i]$ is the commutator of x_i and y_i .

As is well known, the fundamental group and the Euler characteristic of the orientable closed surface T_m of genus m are given by

(3.1)
$$\pi_1(T_m) = F_{2m}/\{r_m\}, \quad \chi(T_m) = 2 - 2m.$$

By Corollary 1.7 and (3.1), we see immediately

PROPOSITION 3.2. A finite group G acts freely on T_m $(m \ge 0)$ preserving the orientation if and only if

$$G = F_{2n}/N', N' \ni r_n, m-1 = (n-1) \# G.$$

PROOF OF THEOREM 1.10. The first half of Theorem 1.10 is an immediate consequence of the above proposition. The last half is also so, since any group of order ≤ 5 is abelian. q.e.d.

It is difficult to determine the groups which act freely on T_m $(m \ge 7)$ preserving the orientation. We notice finally the results for $m \le 31$, which is obtained by using the following proposition and the known classification theorem of non-abelian groups of lower order.

PROPOSITION 3.3. Let G be a finite group and assume that the number of generators of G is less than n+1. Then, G acts freely on T_m preserving the orientation, where m=1+(n-1) # G.

PROOF. By the assumption, we see that G is isomorphic to a quotient group F_{2n}/K , where K contains $x_1y_1^{-1}, \ldots, x_ny_n^{-1}$. Then, K contains $r_n = [x_1, y_1] \ldots [x_n, y_n]$, and so the desired result follows immediately from Proposition 3.2.

q.e.d.

THEOREM 3.4. A finite non-abelian group G acts freely on T_m ($m \le 31$) preserving the orientation if and only if # G is a divisor of m-1.

PROOF. The necessity is an immediate consequence of (1.2), (1.3) and (3.1). Conversely, assume # G is a divisor of m-1. If G is generated by 2 elements, then G acts freely on T_m preserving the orientation by the above proposition. Since $\# G \leq 30$, G is generated by 2 or 3 elements and only the following groups are generated by 3 elements by [1, Table 1]:

266

A Note on Finite Groups which Act Freely on Closed Surfaces

$$A = \{x, y, z; x^2 = y^2 = z^2 = (zx)^2 = (xy)^2 = (yz)^4\}, \#A = 16,$$

$$B = \{x, y, z; x^2 = y^2 = (xy)^2, z^2 = x^{-1}zxz = y^{-1}zyz = 1\}, \#B = 16,$$

$$C = \{x, y, z; x^2 = y^2 = z^2 = 1, xyz = yzx = zxy\}, \#C = 16,$$

$$D = \{x, y, z; x^2 = y^2 = z^2 = (xyz)^2 = (xy)^3 = (xz)^3 = 1\}, \#D = 18,$$

$$E = \{x, y, z; x^2 = y^2 = z^2 = (yz)^6 = (zx)^2 = (xy)^2 = 1\}, \#E = 24.$$

Therefore, it remains to show that these groups G act on T_m for m=1+#G.

Take the normal subgroup K of F_4 as follows:

$$\begin{split} &K = \{x_1^2, y_1^2, x_2^2, x_2 y_2^{-1}, (x_2 x_1)^2, (x_1 y_1)^2, (y_1 x_2)^4\}, \text{ for } G = A, \\ &K = \{x_2 y_2^{-1}, x_2^2 x_1^{-2}, x_1^2 (x_2 x_1)^{-2}, y_1^2, x_2^{-1} y_1 x_2 y_1, x_1^{-1} y_1 x_1 y_1\}, \text{ for } G = B, \\ &K = \{x_1^2, x_2^2, x_2 y_2^{-1}, (x_2^{-1} y_1)^2, (x_1 y_1) (y_1 x_1)^{-1}, (y_1 x_1) (x_2^{-1} y_1 x_1 x_2)^{-1}\}, \text{ for } G = C, \\ &K = \{x_1^2, x_2^2, y_2^2, y_1 (x_2 y_2)^{-1}, (x_1 y_1)^2, (x_1 x_2)^3, (x_1 y_2)^3\}, \text{ for } G = D, \\ &K = \{x_1^2, y_1^2, x_2^2, x_2 y_2^{-1}, (x_2 x_1)^2, (x_1 y_1)^2, (y_1 x_2)^6\}, \text{ for } G = E. \end{split}$$

Then, it is easy to see that $K \ni r_2$ and $F_4/K \cong G$. Therefore, we have the desired result by Proposition 3.2. q.e.d.

References

- H. S. M. Coxeter and W. D. J. Moser: Generators and relations for discrete groups, Erg. d. Math. 14, Springer, 1957.
- [2] P. A. Smith: Abelian actions on 2-manifolds, Michigan Math. J., 14 (1967), 257-275.

Department of Mathematics, Faculty of Science, Hiroshima University