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§ 1. Introduction

The purpose of this note is to study what kind of finite groups can act freely

on closed surfaces.

Let X be a given closed surface. Suppose that a finite group G acts freely on

X. Then, it is well known that the orbit space Y=X/G is also a closed surface

and there is a normal covering

(1.1) p:X—>Y=X/G,

that is, the image p^π^X) of the induced monomorphism p*: πΐ(X)-*πί(Y) of

the fundamental groups is a normal subgroup of π^Y) and π1(Y)lpitπί(X)^G.

Therefore,

(1.2) x(X) = χ(Y)g te^i),

where χ means the Euler characteristic and g = # G is the order of G. Also, we

see easily the following.

(1.3) In the case that X is orientable, Y is orientable if and only if the action

of G preserves the orientation of X.

Conversely, suppose that

(1.4.1) Yis a closed surface satisfying (1.2) for some integer g^ί, and N

is a normal subgroup of π^Y) of index g, and

(1.4.2) N is isomorphic to πγ(X).

Then, we have a normal covering p': X'->Ywith the covering group

(1.5) G = π1(Y)/iV,

and the closed surface X' satisfies χ(X') = χ(X), n^X'^n^X) by (1.4.1-2).

Therefore, we see that X' is homeomorphic to X by the classification theorem of

closed surfaces, and so G acts freely on X.

Thus, we have the following

THEOREM 1.6. Let X be a closed surface. Then, a finite group G acts

freely on X if and only if G is given by (1.5) under the assumptions (1.4.1-2).

Furthermore, in the case that X is orientable, G acts on X preserving or
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reversing the orientation according as Yin (1.4.1-2) is orientable or non-orienta-
ble.

Here, we say that G acts on X reversing the orientation, if some element of G
reverses the orientation of X.

Since two orientable closed surfaces are homeomorphic if their Euler charac-
teristics coincide, we have the following

COROLLARY 1.7. Let X be a closed orientable surface. Then a finite group
G acts freely on X preserving the orientation if and only if G is given by (1.5),
under the assumption (1.4.1) with the additional assumption that Yis orientable.

Using these results and the elementary group theory, we obtain the following
results, some of which may be known.

THEOREM 1.8. The finite group which acts freely on the Klein bottle U2

is the cyclic group

Zn of order n = 2(2s+1) or 2s+l (s ^ 0),

and then the orbit surface is always homeomorphic to U2>

THEOREM 1.9. The finite group which acts freely on the torus Tλ reversing
the orientation is one of the following groups:

{x,y;xyx = y,xs = y2t}, {x,y;xyx = y,xs = y2ΐ = 1}, (s,t ^ 1),

and then the orbit surface is always U2.

Here, the notation

{x1?..., xn; Rί9...9 Rk}

means the group with generators xl9...9 xn and defining relations J R 1 V . . , Rk.

The groups in this theorem for ί = l , s > l are the generalized quaternion
groups and the dihedral groups.

THEOREM 1.10. The finite abelian group, which acts freely on the orientable
closed surface Tm (m^O) of genus m preserving the orientation, is the direct sum

ZS lΘ ΘZS2n, n ^ 0, m - 1 = (n-l)51...52 r t,

of the cyclic groups ZSi of order s^l, and then the orbit surface is Tn. Also,
any finite group which acts freely on Tm (O gm^ό) preserving the orientation is
an abelian group.

Concerning this theorem, P. A. Smith [2, Ch. 15] calculated the number of
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certain classes of free abelίan actions on 2-manifolds. Also, we notice in § 3 the
results for m^7.

The author wishes to express his gratitude to Professor M. Sugawara for his
valuable suggestions and reading this manuscript carefully.

§ 2. Proofs of Theorems 1.8 and 1.9.

In this section, we consider the Klein bottle U2 or the torus 7\.

LEMMA 2.1. If a finite group G acts freely on U2 or on Tt reversing the
orientation, then the orbit surface is homeomorphic to U2.

PROOF. Since χ(U2) = χ(Tί) = 0, the result follows immediately from (1.2)
and (1.3). q.e.d.

As is well known, the fundamental group of U2 is given by

(2.2) π1(U2) = H = {x,y,xyx = y}.

We see easily the following

LEMMA 2.3. In the group H, the relation xnym = ymχ(~l)mn holds for any
integers m and n. Moreover, any element of H can be represented uniquely
by the form xnym for some integers m and n.

LEMMA 2.4. Let a map f: H-*H be given by

Then, f is a monomorphism such that Im/ is a normal subgroup of H of finite
index if and only if i= ±1 or + 2, / = 0 and I is an odd integer.

PROOF. If / is a homomorphism, the relation χyχ = y implies 2j + l = l and
/ + (— iy/c4-(— l)j+ιi = k by the above lemma, which show that 7 = 0 and I is odd.
Then, we have

f(χ'yb) = χai+kybl (b: odd), = xaίybι (b: even).

Therefore, we have i^O, iff is monomorphic. Furthermore, if Im/is a normal
subgroup of H, then xf(y)x~ί, yf(y)y~x e lm/ and so ai — 2 and afi=—2k for
some a, af. These show that i= ± 1 or ±2, and the necessity is proved.

The sufficiency is proved easily. q.e.d.

PROOF OF THEOREM 1.8. By Theorem 1.6 and Lemma 2.1, the finite group
G which acts freely on U2 is given as the quotient group H/lmf, where/: H-+H
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is a monomorphism of the above lemma. Therefore,

G = Hβmf= {x, y xyx = y,xi = xky2s+ί = 1},

where ί = 1 or 2 and s^O. Then, we can easily verify that this group G is given by

Z2s+ j , generated by y, if ί = 1,

G = Z 2 ( 2 s + i) , generated by y, if i = 2 and fc is odd,

Z2(2s+i), generated by xy, if / = 2 and fc is even.

Thus, the proof of Theorem 1.8 is completed. q. e. d.

Now, we can verify the following lemma by the routine calculations by using
Lemma 2.3.

LEMMA 2.5. Let a map f: πi(T1) = Z®Z^πι(U2) = H be given by

f(a) — xlyJ\ f(b) = xkyι,for the generators a, b of Z@Z.

Then, f is a monomorphism such that Imf is a normal subgroup of H with finite
index if and only ifj and I are even integers, d=il—jk^O and d is a divisor of
il+jk,2ij andlkl

PROOF. If /is a homomorphism, the equality f(a)f(b) =f(b)f(a) implies

ϊfj is odd and / is even, then this equality implies k = 0. Then, we see that/(fc) = yι

and f(2a) = y2J. By the same way f(a) = yj and f(2b) = y21, if j is even and / is
odd. Also f(2a) = y2J and f(2b) — y21, if j and / are odd. Therefore, / is not
monomorphic for these cases.

For evenj and /, we have f(ambn) = xim+knyjm+ln. Therefore

d= il-jk^O,

if/is monomorphic. Furthermore, if Im/is a normal subgroup, then yilmfiy'1

e l m / and so x'^3, x~kyι elm/. These show that d is a divisor of il+jk, 2ij
and 2kl as desired, and the necessity is proved.

The sufficiency is proved easily. q.e. d.

PROOF OF THEOREM 1.9. By Theorem 1.6, Lemmas 2.1 and 2.5, a finite
group G which acts freely on Tx reversing the orientation is given by

(*) G = {x, y; xyx = y, y2J = x\ y21 = xk},

where d=il—jk^O and d is a divisor of il+jk, 2ij and 2kl.
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Now, we prove that G of (*) is one of the groups of Theorem 1.9. We notice

the following fact, which is easily seen.

(2.6) The relations xyx = y and y2j = xi imply y*i =z\=χ2i.

(I) The case /c = 0. (The proof for i = 0 is similar.) Then, il±?09 and as-

sume y^O, since the desired result is trivial if j = 0. The defining relations of (*)

are

xyx = y, y2* = x\ y21 = 1,

where ijl±?0 and / is a divisor of 2/. Therefore, these relations are reduced to

xyx = y, y21 = x* = 1, if 2j/l is even,

xyx = y, yι = x1', if 2jjl is odd,

and / is even for the latter case, as desired.

(II) The case ik±?0. Assume the defining relations of (*) are

xyx = y, y2J = x\ y21 = xk (i > 0, k > 0).

Then, we have xs = y2a for some integer α, where s = g.c.m. {/, fc}, and so

( 1, if i/s is even, ί 1, if k/s is even,

y2l =

xs, if i/s is odd, [ xs, if fc/s is odd.

Hence, in the case where i/s and kjs are odd, the defining relations of (*) are

reduced to

If j = 0 or j=l9 the desired result is trivial. If ι^0, /, then we have y2t = l foi

ί = g.c.m. {2\j\9 \j — /|}, and these relations are reduced to

xyx = y, y2t = xs = 1, if 2 | ; | / ί i seven,

y, >;2ί = xs, if 2\j\/t is odd,

and t is even for the latter case. Therefore, we have the desired result. We car

prove by the same way the result for ijs or k/s even.

Thus, we have proved that G of (*) is one of the groups of Theorem 1.9

The converse is seen in the above proof (I). q. e. d

§3. Proof of Theorem 1.10

In this section, we use the following notations.
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F2n = t h e f r e e g r o u p g e n e r a t e d b y x ί 9 . i . 9 x n 9 y l 9 . . . 9 y n 9

rn= [ x i j J . . f c

{wls..., wk} = the minimal normal subgroup of F2n containing the elements

w l v..,wk of F 2 l l ,

where [xf, yj is the commutator of xf and yt.

As is well known, the fundamental group and the Euler characteristic of the

orientable closed surface Tm of genus m are given by

(3.1) π x(TJ = F2J{rm}9 χ(Tm) = 2-2m.

By Corollary 1.7 and (3.1), we see immediately

PROPOSITION 3.2. A finite group G acts freely on Tm (ra^O) preserving the

orientation if and only if

G = F2JNf, N'3rn9 m-1 = ( n - l ) # G.

PROOF OF THEOREM 1.10. The first half of Theorem 1.10 is an immediate

consequence of the above proposition. The last half is also so, since any group

of order ^ 5 is abelian. q.e.d.

It is difficult to determine the groups which act freely on Tm (m ̂  7) preserving

the orientation. We notice finally the results for m^31, which is obtained by

using the following proposition and the known classification theorem of non-

abelian groups of lower order.

PROPOSITION 3.3. Let G be a finite group and assume that the number of

generators of G is less than n+1. Then, G acts freely on Tm preserving the

orientation, where m^=l+(n — l)#G.

PROOF. By the assumption, we see that G is isomorphic to a quotient group

F2JK, where K contains x^Y1,..., xny~ι. Then, K contains rn = [x1? y{\...

[xΛ, yΠ], and so the desired result follows immediately from Proposition 3.2.

q. e. d.

THEOREM 3.4. A finite non-abelian group G acts freely on Tm (m:g31)

preserving the orientation if and only if % G is a divisor of m — 1.

PROOF. The necessity is an immediate consequence of (1.2), (1.3) and (3.1).

Conversely, assume # G is a divisor of m —1. If G is generated by 2 elements,

then G acts freely on Tm preserving the orientation by the above proposition.

Since # G^30, Gis generated by 2 or 3 elements and only the following groups

are generated by 3 elements by [1, Table 1]:
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A = {x, y,z;x
2
 = y

2
 = z

2
 = (zx)

2
 = (xy)

2
 = (yz)*}, 9 A = 16,

£ = {x,y,z;x
2
 = y

2
 = (xy)

2
,z

2
 = x~

x
zxz = y~

ι
zyz = 1}, #J3= 16,

C = {x, .y, z x
2
 = y

2
 = z

2
 = l,xyz = .yzx = zxy}, #C = 16,

D = {x,y,z]x
2
 = y

2
 = z

2
 = (xyz)

2
 = (xy)

3
 = (xz)

3
 = 1}, #D = 18,

£ = {x,y,z\x
2
 = y

2
 = z

2
 = (yz)

6
 = (zx)

2
 = (x^)

2
 = 1}, #£ = 24.

Therefore, it remains to show that these groups G act on Tm for m = 1 + # G.

Take the normal subgroup K of F 4 as follows:

K = {xf, )>?, xi, X2J21, (^2^i)2

5 (-^i^i)2, ( y i ^ ) 4 } , for G = ^ ,

K = {x2, xl, x 2 ^I 1 , (xϊVi ) 2 , (xi^iX^iXi)"1, 0>i*iX*21.Ki*i*2)~1}> f o r

G = C,

}, for G = D,

}> for G = E .

Then, it is easy to see that KBΓ2 and FJK^G. Therefore, we have the desired
result by Proposition 3.2. q. e. d.
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