Periodic Solutions for Certain Time-dependent Parabolic Variational Inequalities

Toshitaka NAGAI (Received May 20, 1975)

Introduction

For a real Banach space V we denote by V^* the dual space of V, by $\|\cdot\|_V$ and $\|\cdot\|_{V^*}$ the norms in V and V^* , respectively, and by $(\cdot, \cdot)_V$ the natural pairing between V^* and V. A (multivalued) operator A from a Banach space V into its dual V^* (i.e., assigning to each $v \in V$ a subset Av of V^*) is called monotone if

$$(v^* - w^*, v - w)_V \ge 0$$
 for any $[v, v^*], [w, w^*] \in G(A)$,

where G(A) is the graph of the operator A, i.e.,

$$G(A) = \{ [v, v^*] \in V \times V^* : v \in D(A) \text{ and } v^* \in Av \}$$

with $D(A) = \{v \in V : Av \neq \phi\}$. If A is monotone and there is no proper monotone extension of A, then A is called maximal monotone.

Throughout this paper we let H be a Hilbert space and X a Banach space such that $X \subset H$, X is dense in H and the natural injection from X into H is continuous, and suppose that X is uniformly convex and X^* is strictly convex. Identifying H with its dual space by means of the inner product $(\cdot, \cdot)_H$ in H, we have the relation $X \subset H \subset X^*$. By the symbols " \xrightarrow{s} " and " \xrightarrow{w} " we mean the convergence in the strong and weak topology, respectively.

Let $0 < T < \infty$, $2 \le p < \infty$ and 1/p + 1/p' = 1 and let ψ be an extended real-valued function on $[0, T] \times X$ such that for each $t \in [0, T]$, $\psi(t; \cdot)$ is a lower semicontinuous convex function on X with values in $(-\infty, +\infty]$, $\psi(t; \cdot) \not\equiv +\infty$, and such that for each $v \in L^p(0, T; X)$, $t \to \psi(t; v(t))$ is measurable on [0, T]. We define a functional Ψ on $L^p(0, T; X)$ by

$$\Psi(v) = \begin{cases} \int_0^T \psi(t; v(t)) dt & \text{if } v \in D(\Psi), \\ +\infty & \text{otherwise,} \end{cases}$$

where $D(\Psi) = \{v \in L^p(0, T; X): t \rightarrow \psi(t; v(t)) \text{ is integrable on } (0, T)\}.$

We now pose the following problem: Given an $f \in L^{p}(0, T; X^*)$, find a $u \in D(\Psi) \cap C([0, T]; H)$ such that

(i)
$$u(0) = u(T)$$
,

(ii)
$$u' = (d/dt)u \in L^{p'}(0, T; X^*),$$

(iii)
$$\int_0^T (u'-f, u-v)_X dt \le \Psi(v) - \Psi(u) \quad \text{for every} \quad v \in D(\Psi).$$

This problem is referred to as the problem $P[\psi, f]$. A weak solution of the problem $P[\psi, f]$ is defined to be a function $u \in D(\Psi)$ which satisfies

$$\int_0^T (v'-f, u-v)_X dt \le \Psi(v) - \Psi(u)$$

whenever $v \in D(\Psi) \cap C([0, T]; H), v' \in L^{p'}(0, T; X^*)$ and v(0) = v(T).

We consider the following operator $M_p(\text{resp. }S_p)$ from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$: $[u, f] \in G(M_p)$ (resp. $G(S_p)$) if and only if u is a weak (resp. strong) solution of the problem $P[\psi, f]$.

The purpose of this paper is to prove under appropriate assumptions on ψ and f the existence of a strong solution of the problem $P[\psi, f]$ and then to investigate the properties of the operators M_p and S_p . In Section 1 we summarize some results concerning the initial value problem for the above inequality (iii) (cf. [1, 2, 8, 9, 10]). In Section 2 we show that the problem $P[\psi, f]$ has a strong solution by using the results of Section 1 and a fixed point theorem of Browder and Petryshyn [7]. In Section 3 we show that M_p is a maximal monotone operator from $L^p(0, T; X)$ into $L^p'(0, T; X^*)$ and is a kind of closure of S_p . This result extends a theorem of Brèzis [5, Theorem II.16] to the time-dependent case.

The author would like to thank Professor N. Kenmochi for his kind advice and any many helpful suggestions.

1. Initial value problem

Let $\{\psi(t;\cdot)\colon 0\leq t\leq T\}$ be a family of functions as described in the introduction. We put

$$D_t = \{z \in X : \psi(t; z) < \infty\}$$
 for each $t \in [0, T]$

and $D_H = \{ \text{the closure of } D_0 \text{ in } H \}.$

We impose the following two hypotheses on ψ .

 $(\psi.1)$ There is a positive constant C with the property: For each $t \in [0, T]$, $z \in D_t$ and $s \in [t, T]$, there is $\tilde{z} \in D_s$ such that

$$||z - \tilde{z}||_X \le C|t - s|$$
, and $\psi(s; \tilde{z}) \le \psi(t; z) + C|t - s|(1 + ||z||_X^p + |\psi(t; z)|)$.

 $(\psi.2)$ There are positive constants b_0 , b_1 and b_2 such that

$$\psi(t;z) + b_0 \|z\|_X + b_1 \ge b_2 [z]_X^p$$
 for any $t \in [0, T]$ and $z \in X$,

where $[\cdot]_X$ is a seminorm on X so that $[\cdot]_X + \|\cdot\|_H$ gives a norm on X which is equivalent to the norm $\|\cdot\|_X$.

Under these hypotheses we have the following

PROPOSITION 1 (Kenmochi [8,9]). (1) For any given $u_0 \in D_0$ and $f \in L^{p'}(0, T; X^*)$ with $f' \in L^{p'}(0, T; X^*)$, there exists a function $u \in D(\Psi) \cap C([0, T]; H)$ such that

(1.1)
$$\begin{aligned} u(0) &= u_0, \quad u' \in L^2(0, T; H), \\ t &\longrightarrow \psi(t; u(t)) \text{ is bounded on } [0, T], \text{ and} \\ \int_0^T (u' - f, u - v)_X dt &\leq \Psi(v) - \Psi(u) \quad \text{ for every } v \in D(\Psi). \end{aligned}$$

(2) Let u_i be a function in $D(\Psi) \cap C([0, T]; H)$ which satisfies (1.1) for $u_0 = u_{0,i} \in D_0$ and $f = f_i \in L^{p'}(0, T; X^*)$ with $f'_i \in L^{p'}(0, T; X^*)$ (i = 1, 2). Then, for $s, t \in [0, T]$ with $s \le t$,

$$(1.2) ||u_1(t) - u_2(t)||_H^2 - ||u_1(s) - u_2(s)||_H^2 \le 2 \int_s^t (f_1 - f_2, u_1 - u_2)_X dr.$$

Using Proposition 1 and a result in [10] we can prove the following proposition.

PROPOSITION 2. (1) For any given $u_0 \in D_H$ and $f \in L^{p'}(0, T; X^*)$, there exists a function $u \in D(\Psi) \cap C([0, T]; H)$ such that

(1.3)
$$\begin{cases} u(0) = u_0, & and \\ \int_0^T (v' - f, u - v)_X dt - \frac{1}{2} \|u_0 - v(0)\|_H^2 \leq \Psi(v) - \Psi(u) \\ & for \ every \quad v \in D(\Psi) \cap C([0, T]; H) \ with \ v' \in L^{p'}(0, T; X^*). \end{cases}$$

(2) If u_i is a function in $D(\Psi) \cap C([0, T]; H)$ satisfying (1.3) with $u_0 = u_{0,i} \in D_H$ and $f = f_i \in L^{p'}(0, T; X^*)$ (i = 1, 2), then the inequality (1.2) holds for any $s, t \in [0, T]$ with $s \le t$.

PROOF. The assertion (2) is true by Corollary 1 of [10]. Hence, we need only to verify the assertion (1). For this purpose choose sequences $\{u_{0,n}\} \subset D_0$ and $\{f_n\} \subset L^{p'}(0, T; X^*)$ such that $f'_n \in L^{p'}(0, T; X^*)$, $u_{0,n} \stackrel{s}{\longrightarrow} u_0$ in H and $f_n \stackrel{s}{\longrightarrow} f$ in $L^{p'}(0, T; X^*)$. By Proposition 1 there exists, for each n, a function $u_n \in D(\Psi) \cap C([0, T]; H)$ satisfying (1.1) with $u_0 = u_{0,n}$ and $f = f_n$. Since

$$\int_0^T (u_n' - f_n, u_n - v)_X dt \le \Psi(v) - \Psi(u_n) \quad \text{for every} \quad v \in D(\Psi),$$

we have by integration by parts

(1.4)
$$\int_0^T (v'-f_n, u_n-v)_X dt - \frac{1}{2} \|u_{0,n}-v(0)\|_H^2 \leq \Psi(v) - \Psi(u_n)$$

for every $v \in D(\Psi) \cap C([0, T]; H)$ with $v' \in L^{p'}(0, T; X^*)$. Taking u_1 as v in (1.4) and using the assumption $(\psi.2)$, we obtain

(1.5)
$$b_{2} \int_{0}^{T} [u_{n}(t)]_{X}^{p} dt \leq b_{1} T + \Psi(u_{1}) + \frac{1}{2} \|u_{0,n} - u_{0,1}\|_{H}^{2} + \int_{0}^{T} (f_{n} - u'_{1}, u_{1})_{X} dt + \int_{0}^{T} (b_{0} + \|f_{n} - u'_{1}\|_{X^{*}}) \|u_{n}\|_{X} dt.$$

On the other hand, it follows from the inequality (1.2) that for any $t \in [0, T]$

$$||u_{n}(t)-u_{1}(t)||_{H}^{p}$$

$$\leq 2^{p}||u_{0,n}-u_{0,1}||_{H}^{p}+2^{p+1}\left(\int_{0}^{T}||f_{n}-f_{1}||_{X^{*}}||u_{n}-u_{1}||_{X}dt\right)^{p/2}$$

$$(1.6) \quad \leq 2^{p}||u_{0,n}-u_{0,1}||_{H}^{p}+2^{p+1}\left(\int_{0}^{T}||f_{n}-f_{1}||_{X^{*}}^{p/2}dt\right)^{p/2p'}\left(\int_{0}^{T}||u_{n}-u_{1}||_{X}^{p}dt\right)^{1/2}$$

$$\leq 2^{p}||u_{0,n}-u_{0,1}||_{H}^{p}+\frac{2^{p}}{\varepsilon}\left(\int_{0}^{T}||f_{n}-f_{1}||_{X^{*}}^{p'}dt\right)^{p/p'}$$

$$+\frac{\varepsilon}{2}\int_{0}^{T}||u_{n}-u_{1}||_{X}^{p}dt,$$

where ε is an arbitrary positive number. Noting that $\|\cdot\|_X$ is equivalent to $[\cdot]_X + \|\cdot\|_H$, we see from (1.5) and (1.6) that $\{u_n\}$ is bounded in $L^p(0, T; X)$. By (1.4) and $(\psi.2)$ it follows that $\{\Psi(u_n)\}$ is bounded.

Now, the inequality (1.2) implies that $\{u_n\}$ converges in H uniformly on [0, T] to a function $u \in C([0, T]; H)$ with $u(0) = u_0$. Then, obviously, $u \in L^p(0, T; X)$, $u_n \xrightarrow{w} u$ in $L^p(0, T; X)$ as $n \to \infty$, and since Ψ is lower semicontinuous on $L^p(0, T; X)$ by $(\psi.1)$ and $(\psi.2)$,

$$-\infty < \Psi(u) \leq \liminf_{n \to \infty} \Psi(u_n) < +\infty$$
.

Letting $n \to \infty$ in (1.4), we see that u is the desired function.

The following is an immediate consequence of Propositions 1 and 2.

PROPOSITION 3. (1) For any given $u_0 \in D_H$ and $f \in L^{p'}(0, T; X^*)$ with $f' \in L^{p'}(0, T; X^*)$, there is a function $u \in D(\Psi) \cap C([0, T]; H)$ such that $u(0) = u_0$ and the following holds for each $\delta \in (0, T]$:

(1.7)
$$\begin{cases} u' \in L^2(\delta, T; H), \\ t \longrightarrow \psi(t; u(t)) \text{ is bounded on } [\delta, T], \text{ and} \\ \int_{\delta}^{T} (u' - f, u - v)_X dt \leq \int_{\delta}^{T} \{\psi(t; v(t)) - \psi(t; u(t))\} dt \\ \text{for every } v \in D(\Psi). \end{cases}$$

(2) Let u_i be a function in $D(\Psi) \cap C([0, T]; H)$ which satisfies (1.7) for $u_0 = u_{0,i} \in D_H$ and $f = f_i \in L^{p'}(0, T; X^*)$ with $f'_i \in L^{p'}(0, T; X^*)$ (i = 1, 2). Then the inequality (1.2) holds for any $s, t \in [0, T]$ with $s \leq t$.

REMARK 1.1. In case X = H and p = 2 the hypothesis $(\psi.1)$ can be replaced by the following weaker one:

 $(\psi.1)'$ There is a positive nondecreasing function $r \to C(r)$ with the following property: For each r > 0, each pair $s, t \in [0, T], s \le t$, and for each $z \in D_s$ with $||z||_H \le r$ there is $\tilde{z} \in D_s$, such that

$$\|\tilde{z} - z\|_H \le C(r)|t - s|$$

and

$$\psi(t;\tilde{z}) \leq \psi(s;z) + C(r)|t-s|(1+|\psi(s;z)|).$$

In this case Propositions 1, 2 and 3 hold without the condition $f' \in L^2(0, T; H)$, and moreover, the function u appearing in the first statement of Proposition 2 (and 3) is such that $t \to t \psi(t; u(t))$ is bounded on (0, T] (cf. [9]).

2. Existence of a strong solution of $P[\psi, f]$

Let $\{\psi(t;\cdot)\colon 0\leq t\leq T\}$ be a family of functions as described in the introduction. Throughout this section it is assumed that this family satisfies in addition to $(\psi.1)$ the assumptions $(\psi.2)'$ and $(\psi.3)$ given below.

 $(\psi.2)'$ There are positive constants C_1 and C_2 such that

$$\psi(t;z) \ge C_1 \|z\|_Y^p - C_2$$
 for all $t \in [0,T]$ and $z \in X$.

$$(\psi.3)$$
 $D_T \subset D_0$, i.e., $\{z \in X : \psi(T; z) < \infty\} \subset \{z \in X : \psi(0; z) < \infty\}$.

The objective here is to prove the existence of a strong solution of the problem $P[\psi, f]$ using a fixed point theorem of Browder and Petryshyn [7] and techniques similar to those developed in [3] and [4].

LEMMA 1. Let $f \in L^{\infty}(0, T; X^*)$ and let $\{u_n\} \subset D(\Psi) \cap C([0, T]; H)$ be a sequence such that $u'_n \in L^2(0, T; H)$ and

$$\int_0^T (u_n' - f, u_n - v)_X dt \le \Psi(v) - \Psi(u) \quad \text{for every} \quad v \in D(\Psi).$$

If the sequence $\{\|u_n(0)\|_H - \|u_n(T)\|_H\}$ is bounded above, then the sequence $\{u_n(T)\}$ is bounded in H and moreover, $\{u_n\}$ is bounded in C([0, T]; H).

PROOF. In view of (2) of Proposition 1 we see that

$$||u_n(t) - u_1(t)||_H \le ||u_n(s) - u_1(s)||_H$$

for any $s, t \in [0, T]$ with $s \le t$. Now suppose for contradiction that $\{u_n(T)\}$ is not bounded in H. Then we may assume, taking a subsequence if necessary, that $\|u_n(T)\|_{H} \to \infty$ as $n \to \infty$. Thus it follows from (2.1) that $\inf_{0 \le t \le T} \|u_n(t)\|_{H} \to \infty$ as $n \to \infty$.

We choose a Lipschitz continuous function h from [0, T] into X such that $t \to \psi(t; h(t))$ is bounded on [0, T]. It is known that under the hypotheses $(\psi.1)$ and $(\psi.2)$ such a function h does indeed exist (cf. [9, Lemma 3.3]). Let L be an arbitrary number such that $L > C = \text{ess sup } ||f - h'||_{X^*}$. Since $\inf_{0 \le t \le T} ||u_n(t) - h(t)||_H$ $\to \infty$ as $n \to \infty$, the assumption $(\psi.2)'$ implies that

$$\psi(t; u_n(t)) - \psi(t; h(t)) \ge L \|u_n(t) - h(t)\|_X$$
 for a.a. $t \in [0, T]$,

provided that n is sufficiently large.

Therefore, for each pair $s, t \in [0, T]$ with $s \le t$,

$$\int_{s}^{t} (f - h', u_{n} - h)_{X} dr$$

$$\geq \int_{s}^{t} (u'_{n} - h', u_{n} - h)_{X} dr + \int_{s}^{t} \{\psi(r; u_{n}) - \psi(r; h)\} dr$$

$$\geq \int_{s}^{t} (u'_{n} - h', u_{n} - h)_{X} dr + L \int_{s}^{t} \|u_{n} - h\|_{X} dr$$

$$= \frac{1}{2} (\|u_{n}(t) - h(t)\|_{H}^{2} - \|u_{n}(s) - h(s)\|_{H}^{2}) + L \int_{s}^{t} \|u_{n} - h\|_{X} dr,$$

so that for each pair $s, t \in [0, T], s \leq t$,

$$\frac{1}{2}(\|u_n(t)-h(t)\|_H^2-\|u_n(s)-h(s)\|_H^2)+(L-C)C_3^{-1}\int_s^t\|u_n-h\|_Hdr\leq 0,$$

where C_3 is a positive constant such that $||x||_H \le C_3 ||x||_X$ for every $x \in X$. This inequality implies that

$$||u_n(t)-h(t)||_H - ||u_n(s)-h(s)||_H + (L-C)C_3^{-1}(t-s) \le 0$$

for any $t, s \in [0, T]$ with $s \le t$. Therefore, taking s = 0 and t = T, we have

$$(L-C)C_3^{-1} \leq \|u_n(0)-h(0)\|_H - \|u_n(T)-h(T)\|_H$$

which contradicts the hypothesis that $\{\|u_n(0)\|_H - \|u_n(T)\|_H\}$ is bounded above. Hence, it must be true that $\{u_n(T)\}$ is bounded in H.

Combining the inequality (2.1) with the fact that $\{u_n(0)\}$ is bounded in H, we readily conclude that $\{u_n\}$ is bounded in C([0, T]; H). This completes the proof.

One of the main results of this paper is the following existence theorem.

THEOREM 1. For a given $f \in L^{p'}(0, T; X^*)$ with $f' \in L^{p'}(0, T; X^*)$, there exists a function $u \in D(\Psi) \cap C([0, T]; H)$ such that

- (i) u(0) = u(T);
- (ii) $u' \in L^2(0, T; H)$;

(iii)
$$\int_0^T (u'-f, u-v)_X dt \le \Psi(v) - \Psi(u) \quad \text{for every} \quad v \in D(\Psi).$$

PROOF. Let x be any element of D_H . According to (1) of Proposition 3 there exists a unique function $u \in D(\Psi) \cap C([0, T]; H)$ with initial value $u_0 = x$ and satisfying (1.7). Then we put Sx = u(T). In this manner we can define a (singlevalued) operator S from the closed convex set D_H in H into itself. From Proposition 3 and the assumption $(\psi.3)$ it follows that the range of S is contained in D_0 and that S is contractive on D_H , i.e.,

$$||Sx - Sy||_H \le ||x - y||_H$$
 for all $x, y \in D_H$.

Now we form the sequence of iterates $\{S^nx\}$ for an arbitrary but fixed $x \in D_0$. By definition, S^nx is the value at t = T of the function $u_n(t)$ which satisfies (1.1) with $u_0 = S^{n-1}x$. Then,

$$||u_n(0)||_H - ||u_n(T)||_H \le ||S^{n-1}x - S^nx||_H \le ||Sx - x||_H$$

which shows that $\{\|u_n(0)\|_H - \|u_n(T)\|_H\}$ is bounded above. Since $\{S^n x\}$ is bounded in H by Lemma 1, we can apply a fixed point theorem of Browder and Petryshyn [7] to conclude that S has a fixed point $\tilde{u}: S\tilde{u} = \tilde{u}$. Let u be the function which satisfies (1.1) with $u_0 = \tilde{u}$. Then it is easy to see that this u is the required solution of our problem. Thus the proof is complete.

REMARK 2.1. In case X=H and p=2, modifying slightly the proof of Lemma 1, we see that the conclusion of Lemma 1 is valid if $f \in L^2(0, T; H)$. Hence, if $(\psi.1)$ is replaced by $(\psi.1)'$, then the conclusion of Theorem 1 holds for $f \in L^2(0, T; H)$ without the condition $f' \in L^2(0, T; H)$. See Remark 1.1.

REMARK 2.2. If we replace the assumption $(\psi.2)'$ by $(\psi.2)$, the problem

 $P[\psi, f]$ does not necessarily have a strong solution. For example, let X = H = R^1 (1-dimensional Euclidean space), p=2 and $\psi(t; x) = |x|$ for $x \in R^1$. Then the initial value problem

$$\begin{cases} \frac{du}{dt} + \partial \psi(t; u(t)) \ni 2, & t \in (0, \infty), \\ u(0) = x_0 \in R^1, \end{cases}$$

where $\partial \psi(t;\cdot)$ denotes the subdifferential of $\psi(t;\cdot)$, has the following solutions:

$$u(t) = t + x_0 if x_0 \ge 0,$$

$$u(t) = \begin{cases} t + \frac{1}{3}x_0 & \text{for } t \ge -\frac{1}{3}x_0, \\ 3t + x_0 & \text{for } 0 \le t \le -\frac{1}{3}x_0, \end{cases} if x_0 < 0.$$

Clearly, $u(0) \not\equiv u(T)$ for any $x_0 \in R^1$.

3. Properties of the operators M_p and S_p

Let ψ and Ψ be as in the introduction and let D_H be as in Section 1.

We denote by \mathscr{F} the duality mapping of X into X^* associated with gauge function $\mu(r) = r^{p-1}$. By definition, \mathscr{F} assigns to each $z \in X$ a $z^* \in X^*$ such that $(z^*, z)_X = \|z\|_X^p$ and $\|z^*\|_{X^*} = \|z\|_X^{p-1}$. (Such a z^* is uniquely determined by z because of the strict convexity of X^* .) Then the mapping F from $L^p(0, T; X)$ into $L^p'(0, T; X^*)$ defined by $(Fu)(t) = \mathscr{F}[u(t)]$ is also the duality mapping of $L^p(0, T; X)$ into $L^p'(0, T; X^*)$ associated with the same gauge function μ .

The purpose of this section is to prove the following theorem.

THEOREM 2. Suppose that the following conditions hold:

- (a) Ψ is lower semicontinuous, $\Psi \not\equiv \infty$ and $\Psi > -\infty$ on $L^p(0, T; X)$.
- (b) There exists a subset \mathscr{D} of $L^{p'}(0,T;X^*)$ with the property: \mathscr{D} is dense in $L^{p'}(0,T;X^*)$ and for each $g \in \mathscr{D}$ there is $u \in D(S_p)$ such that $g \in u + Fu + S_p(u)$.

Then we have:

- (1) If $u \in D(M_n)$, then $u \in C([0, T]; H)$ and u(0) = u(T).
- (II) $[u, f] \in G(M_p)$ if and only if there is a sequence $\{[u_n, f_n]\} \subset L^p(0, T; X)$ $\times L^{p'}(0, T; X^*)$ such that $[u_n, f_n] \in G(S_p)$ for each $n, f_n \xrightarrow{w} f$ in $L^{p'}(0, T; X^*)$, $u_n \xrightarrow{s} u$ in $L^p(0, T; X)$ and in H uniformly on [0, T] as $n \to \infty$.
- (III) M_p is a maximal monotone operator from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$.

REMARK 3.1. If X^* is uniformly convex, then " $f_n \xrightarrow{w} f$ " in (II) can be replaced by " $f_n \xrightarrow{s} f$ ".

COROLLARY. Suppose that the family $\{\psi(t;\cdot): 0 \le t \le T\}$ satisfies the assumptions $(\psi.1)$ and $(\psi.3)$. Then the statements (I), (II) and (III) of Theorem 2 hold. In particular, in case X=H and p=2 the assumption $(\psi.1)$ can be replaced by $(\psi.1)'$.

PROOF OF COROLLARY. Under $(\psi.1)$ (or $(\psi.1)'$) we see that there are positive numbers a_0 and a_1 such that

$$\psi(t; z) + a_0 ||z||_X + a_1 \ge 0$$
 for every $z \in X$.

(Cf. [9, Lemma 3.2].) Using this property and Theorem 1 we can easily verify that (a) and (b) of Theorem 2 are satisfied.

In order to prove Theorem 2 we introduce an operator \widetilde{S}_p from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$ as follows: $[u, f] \in G(\widetilde{S}_p)$ if and only if there is a sequence $\{[u_n, f_n]\} \subset G(S_p)$ such that $f_n \xrightarrow{w} f$ in $L^p(0, T; X^*)$ and $u_n \xrightarrow{s} u$ in $L^p(0, T; X)$.

Proceeding as in the proofs of Lemmas 2 and 3 in [10] we can prove the following two lemmas regarding \tilde{S}_p .

LEMMA 2. Suppose that (a) and (b) of Theorem 2 are satisfied. Then:

- (1) If $u \in D(\widetilde{S}_p)$, then $u \in D(\Psi) \cap C([0, T]; H)$ and u(0) = u(T).
- (2) M_p is an extension of \tilde{S}_p , i.e., $G(\tilde{S}_p) \subset G(M_p)$.

LEMMA 3. If $[u_1, f_1] \in G(M_n)$ and $[u_2, f_2] \in G(\widetilde{S}_n)$, then

(3.1)
$$\int_0^T (f_1 - f_2, u_1 - u_2)_X dt \ge 0.$$

COROLLARY. \tilde{S}_p is a monotone operator from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$.

We now prove the following

Lemma 4. If $u_i \in D(S_p)$ and $f_i \in u_i + Fu_i + S_p(u_i)$ (i = 1, 2), then for any $t \in [0, T]$

(3.2)
$$||u_1(t) - u_2(t)||_H^2 \le \frac{2}{e^T - 1} \int_0^T e^r (f_1 - f_2, u_1 - u_2)_X dr$$

$$+ 2 \int_0^t (f_1 - f_2, u_1 - u_2)_X dr.$$

PROOF. The relation $f_i \in u_i + Fu_i + S_p(u_i)$ (i = 1, 2) implies that

(3.3)
$$\int_0^T (u_i' + u_i + Fu_i - f_i, u_i - v)_X dt \le \Psi(v) - \Psi(u_i)$$

for every $v \in D(\Psi)$. For any measurable set $E \subset [0, T]$ we set

$$v_1(t) \text{ (resp. } v_2(t)) = \begin{cases} u_2(t) \text{ (resp. } u_1(t)) & \text{if } t \in E, \\ u_1(t) \text{ (resp. } u_2(t)) & \text{if } t \in [0, T] \setminus E. \end{cases}$$

Since $v_i \in D(\Psi)$ (i=1, 2), we have by (3.3)

$$\int_{E} (u_{i}' + u_{i} + Fu_{i} - f_{i}, u_{i} - u_{j})_{X} dt + \int_{E} \{ \psi(t; u_{i}) - \psi(t; u_{j}) \} dt \le 0$$

for i, j=1, 2, which implies that for i, j=1, 2,

(3.4)
$$(u_i'(t) + u_i(t) + (Fu_i)(t) - f_i(t), u_i(t) - u_j(t))_X$$

$$+ \psi(t; u_i(t)) - \psi(t; u_j(t)) \leq 0 \quad \text{for a.a. } t \in [0, T].$$

Adding inequalities (3.4) with pairs (i, j) = (1, 2), (2, 1) and using the monotonicity of F, we obtain

$$(u_1'(t) - u_2'(t), u_1(t) - u_2(t))_X + ||u_1(t) - u_2(t)||_H^2$$

$$\leq (f_1(t) - f_2(t), u_1(t) - u_2(t))_X \quad \text{for a.a. } t \in [0, T].$$

Multiplying both sides of this inequality by e^t , integrating them on [0, T] and noting that $u_i(0) = u_i(T)$ (i = 1, 2), we get

$$\frac{1}{2}(e^{T}-1)\|u_{1}(0)-u_{2}(0)\|_{H}^{2}$$

$$\leq -\frac{1}{2}\int_{0}^{T}e^{t}\|u_{1}(t)-u_{2}(t)\|_{H}^{2}dt + \int_{0}^{T}e^{t}(f_{1}-f_{2}, u_{1}-u_{2})_{X}dt$$

$$\leq \int_{0}^{T}e^{t}(f_{1}-f_{2}, u_{1}-u_{2})_{X}dt.$$

On the other hand, from (2) of Proposition 1 and the monotonicity of the mapping $v \rightarrow v + Fv$ from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$ it follows that

$$(3.6) ||u_1(t) - u_2(t)||_H^2 \le ||u_1(0) - u_2(0)||_H^2 + 2 \int_0^t (f_1 - f_2, u_1 - u_2)_X dr$$

for any $t \in [0, T]$. Now the required inequality (3.2) follows from (3.5) and (3.6).

We also need the following lemma. Since the proof is easy, we omit it.

LEMMA 5. Let A be a monotone operator from a (real) Banach space V

into its dual V^* and let B be a singlevalued strictly monotone operator from V into V^* , that is, $(Bv-Bw,v-w)_V>0$ for any $v,w\in D(B)$ with $v\neq w$. If the range of A+B is all of V^* , then A is maximal monotone.

PROOF OF THEOREM 2. According to Corollary to Lemma 3, \tilde{S}_p is a monotone operator from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$. If the maximal monotonicity of \tilde{S}_p is shown, then Theorem 2 follows readily from Lemmas 2 and 3. On account of Lemma 5, in order to show that \tilde{S}_p is maximal monotone it is enough to prove that $\tilde{S}_p + F + I$ is surjective, where I is the identity operator on $L^p(0, T; X)$. Below we shall show that this is indeed the case.

Let f be any element of $L^{p'}(0, T; X^*)$ and choose a sequence $\{f_n\} \subset D$ such that $f_n \stackrel{s}{\longrightarrow} f$ in $L^{p'}(0, T; X^*)$. In view of the assumption (b) there exists, for each n, a $u_n \in D(S_p)$ such that $f_n \in u_n + Fu_n + S_p(u_n)$, or equivalently, $u_n(0) = u_n(T)$ and

(3.7)
$$\int_0^T (u_n' + u_n + Fu_n, u_n - v)_X dt \le \Psi(v) - \Psi(u_n)$$

for every $v \in D(\Psi)$. Observe now that by (b) there is at least one function $h_0 \in D(\Psi) \cap C([0, T]; H)$ such that $h_0(0) = h_0(T)$ and $h'_0 \in L^{p'}(0, T; X^*)$. Taking h_0 in (3.7) as v, we obtain by integration by parts

$$\int_0^T (h'_0 + u_n + Fu_n - f_n, u_n - h_0)_X dt \le \Psi(h_0) - \Psi(u_n).$$

The above inequality yields

$$(3.8) \Psi(u_n) + \int_0^T \|u_n\|_X^p dt + \int_0^T \|u_n\|_H^2 dt$$

$$\leq \Psi(h_0) + \int_0^T (\|h_0'\|_{X^*} + \|f_n\|_{X^*}) (\|u_n\|_X + \|h_0\|_X) dt$$

$$+ \int_0^T \|h_0\|_H \|u_n\|_H dt + \int_0^T \|u_n\|_X^{p-1} \|h_0\|_X dt.$$

In view of the assumption (a) there are $f^* \in L^{p'}(0, T; X^*)$ and a number C such that

$$\Psi(v) \ge \int_0^T (f^*, v)_X dt + C$$
 for all $v \in L^p(0, T; X)$.

Hence, by (3.8), we see that $\{u_n\}$ is bounded in $L^p(0, T; X)$ and $\{\Psi(u_n)\}$ is bounded. On the other hand, from Lemma 4 it follows that $\{u_n\}$ converges in H uniformly on [0, T] to a function $u \in C([0, T]; H)$ with u(0) = u(T). Thus $u \in L^p(0, T; X)$, $u_n \xrightarrow{w} u$ in $L^p(0, T; X)$ as $n \to \infty$, and

$$-\infty < \Psi(u) \leq \liminf_{n \to \infty} \Psi(u_n) < +\infty$$

because of the lower semicontinuity of Ψ . We may assume, taking a subsequence if necessary, that $Fu_n \xrightarrow{w} g$ in $L^{p'}(0, T; X^*)$ as $n \to \infty$ for some $g \in L^{p'}(0, T; X^*)$.

Since $u \in D(\Psi)$, replacing v by u in (3.7) and using the monotonicity of the mapping I+F, we obtain

(3.9)
$$\limsup_{n\to\infty}\int_0^T \{(u_n',u_n-u)_Xdt+\Psi(u_n)-\Psi(u)\}\leq 0.$$

Moreover, since $u_n \xrightarrow{w} u$ in $L^p(0, T; X)$ and $Fu_n \xrightarrow{w} g$ in $L^{p'}(0, T; X^*)$, we have

$$\begin{split} &\limsup_{n\to\infty} \int_0^T (Fu_n, u_n - u)_X dt \\ &\leq \limsup_{n\to\infty} \int_0^T (Fu_n, u_n - v)_X dt + \int_0^T (g, v - u)_X dt \\ &\leq \int_0^T (v', v - u)_X dt + \Psi(v) - \Psi(u) + \int_0^T (f - g - u, u - v)_X dt \end{split}$$

for every $v \in D(\Psi) \cap C([0, T]; H)$ such that v(0) = v(T) and $v' \in L^{p'}(0, T; X^*)$. Take $v = u_n$ in the last expression of the above and let n tend to infinity. Then from (3.9) we find

$$\limsup_{n\to\infty}\int_0^T (Fu_n, u_n-u)_X dt \le 0.$$

This together with the uniform convexity of $L^p(0, T; X)$ implies that $u_n \xrightarrow{s} u$ in $L^p(0, T; X)$ and $Fu_n \xrightarrow{w} Fu$ in $L^p(0, T; X^*)$. Thus $f-u-Fu \in \widetilde{S}_p(u)$ by the definition of \widetilde{S}_p . It follows that \widetilde{S}_p+F+I is surjective. This completes the proof of Theorem 2.

References

- H. Attouch, Ph. Bénilan, A. Damlamian and C. Picard, Equations d'évolution avec condition unilatérale, C. R. Acad. Sci. Paris Ser. A-B 279 (1974), A607-A609.
- [2] H. Attouch and A. Damlamian, Problèmes d'évolution dan les Hilbert et applications, preprint.
- [3] Ph. Bénilan, Solutions periodiques, Séminaire d'Orsay 1970/71.
- [4] Ph. Bénilan and H. Brézis, Solutions faible d'équations d'évolution dan les espaces de Hilbert, Ann. Inst. Fourier, Grenoble 22 (1970), 311-329.
- [5] H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168.
- [6] F. E. Browder, Problèmes non linéaires, Montréal Univ. Press, Montréal, 1966.
- [7] F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach space, Bull. Amer. Math. Soc. 72 (1966), 571-575.
- [8] N. Kenmochi, The semi-discretisation method and nonlinear time-dependent para-

- bolic variational inequalities, Proc. Japan Acad. 50 (1974), 714-717.
- [9] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math. (to appear).
- [10] N. Kenmochi and T. Nagai, Weak solutions for certain nonlinear time-dependent parabolic variational inequalities, Hiroshima Math. J. (to appear).

Department of Mathematics, Faculity of Science, Hiroshima University