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Introduction

For a real Banach space V we denote by V* the dual space of V, by |||, and
[y« the norms in V and V*, respectively, and by (-, ), the natural pairing bet-
ween V* and V. A (multivalued) operator 4 from a Banach space V into its
dual V* (i.e., assigning to each ve V a subset Av of V*) is called monotone if

w*—=w*v—w), =0 for any [v, v*], [w, w*]e€ G(A),
where G(A) is the graph of the operator A4, i.e.,
G(A4) = {[v,v*] e Vx V*: ve D(A) and v* € Av}

with D(A)={veV: Av # ¢}. If A is monotone and there is no proper monotone
extension of A, then A4 is called maximal monotone.

Throughout this paper we let H be a Hilbert space and X a Banach space
such that X < H, X is dense in H and the natural injection from X into H is con-
tinuous, and suppose that X is uniformly convex and X* is strictly convex. Iden-
tifying H with its dual space by means of the inner product (-, -), in H, we have
the relation X c Hc X*. By the symbols ‘“‘—=-"" and ‘- we mean the con-
vergence in the strong and weak topology, respectively.

Let 0<T<o0,2<p<oo and 1/p+1/p’=1 and let  be an extended real-
valued function on [0, T]x X such that for each te[0, T], Y(t;*) is a lower
semicontinuous convex function on X with values in (— o0, + 0], Y(t; )% + o0,
and such that for each ve LP(0, T; X), t—y(t; v(t)) is measurable on [0, T].
We define a functional ¥ on L?(0, T; X) by

’STW(t;v(t))dt if veD(P),
Po) =1 Jo

+ o0 otherwise,

where D(¥)={ve L?(0, T; X): t—y(t; v(t)) is integrable on (0, T)}.
We now pose the following problem: Given an fe L?'(0, T; X*), find a
ue D(Y)n C([0, T]; H) such that

(i) u(©0) =w(T),
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(ii) u' (=(d/dt)u)e LP'(0, T; X*),
(iii) S:(u' —f u—v)ydt < Y(o)—¥(u)  for every veD(¥).

This problem is referred to as the problem P[y,f]. A weak solution of the
problem P[y, f] is defined to be a function u € D(¥) which satisfies

g:@' —f u—v)dt < P)— P(w)

whenever ve D(¥) n C([0, T]; H), v' e LP'(0, T; X*) and v(0)=uv(T).

We consider the following operator M (resp. S,) from L?(0, T; X) into
L?(0, T; X*): [u, f]1€ G(M,) (resp. G(S,)) if and only if u is a weak (resp. strong)
solution of the problem P[y, f1].

The purpose of this paper is to prove under appropriate assumptions on
Y and f the existence of a strong solution of the problem P[y, f] and then to
investigate the properties of the operators M, and S,. In Section | we summarize
some results concerning the initial value problem for the above inequality (iii)
(cf. [1,2,8,9,10]). In Section 2 we show that the problem P[y, f] has a strong
solution by using the results of Section 1 and a fixed point theorem of Browder
and Petryshyn [7]. In Section 3 we show that M, is a maximal monotone opera-
tor from L?(0, T; X) into LP'(0, T; X*) and is a kind of closure of S,. This result
extends a theorem of Brezis [5, Theorem I1.16] to the time-dependent case.

The author would like to thank Professor N. Kenmochi for his kind advice
and any many helpful suggestions.

1. Initial value problem

Let {{(t;): 0=t= T} be a family of functions as described in the introduction.
We put

D, ={zeX:y(t;z) < o} for each te[0, T]

and Dy ={the closure of D, in H}.

We impose the following two hypotheses on .

(Y.1) There is a positive constant C with the property: For each te[0, T],
zeD, and se[t, T], there is Z € D, such that

lz—Z|x = Clt—s|, and
Y(s;2) = Y(t; 2)+ Cle—sl(L+ ||z + [Y(z; 2))).-
(¥.2) There are positive constants by, b; and b, such that

U(t; z)+bylzl|x+b,=b,[z]% forany te[0,T] and ze X,
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where [-]y is a seminorm on X so that [-]x+ ||, gives a norm on X which is
equivalent to the norm |-| x.

Under these hypotheses we have the following

ProrosiTION 1 (Kenmochi [8,9]). (1) For any given ugeD, and
fELP, T; X*) with f'eL” (0, T;X*), there exists a function ueD(¥P)
n C([0, T]; H) such that

(u(0) = uo, u'e€L*0,T;H),
(1.1) J t — Y(t; u(t)) is bounded on [0, T], and

\

JL SZ(“'—fa u—v)xdt < Y()—¥Yu)  for every veD(¥).

(2) Let u; be a function in D(¥Y)n C([0, T]; H) which satisfies (1.1) for
uo=ug, €Dy and f=feLP' (0, T; X*) with f;eLr'(0,T; X*)(i=1,2). Then,
for s, te[0, T] with s<t,

12) 1 @=uaO =l =017 < 2{ (= Fo0 w1, ~ua)edr

Using Proposition 1 and a result in [10] we can prove the following proposi-
tion.

ProrosiTioN 2. (1) For any given uye Dy and fe LP'(0, T; X*), there
exists a function u e D(¥Y)n C([0, T]; H) such that

u(0) = uy, and

13w —f umo)xdi= 5 lug = 0@ G Y (0) — ¥(w)

{for every veD(¥Y)n C([0, T]; H) with v'e L?' (0, T; X*).

) If u; is a function in D(¥)n C([0, T1; H) satisfying (1.3) with u,
=uo;€ Dy and f=f,€ LP'(0, T; X*) (i=1, 2), then the inequality (1.2) holds for
any s, te[0, T] with s<t.

Proor. The assertion (2) is true by Corollary 1 of [10]. Hence, we need
only to verify the assertion (1). For this purpose choose sequences {u,,} <D,
and {f,} =LP'(0, T; X*) such that f} € LP'(0, T; X*), uo,, —> uoin Hand f, - f
in L?’(0, T; X*). By Proposition 1 there exists, for each n, a function u, e D(¥)
n C([0, T]; H) satisfying (1.1) with ug=u, , and f=f,. Since

SZ(u !t —fus Uy —0)xdt < P(v)— ¥(u,) for every veD(¥),
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we have by integration by parts
T
4y [ 0=t s 0edi= N0, = 0 OIS ¥ () ¥ (u)

for every ve D(¥) n C([0, T]; H) with v’ e L?'(0, T; X*). Taking u, as v in (1.4)
and using the assumption (y.2), we obtain

T
(1.5) o [un05dt<b, T+ () + S0 n— o,

T T
+§ s uede+ { bo+ 1w ) .
On the other hand, it follows from the inequality (1.2) that for any ¢ € [0, T]
lun(®)—u, (Ol

T p/2
< g,y =tto, i +27 ({1 fu= i e bty = )
T . \P/2p'/(T 1/2
(1.6) = 2%hug =0, il +22% ({1 fulede )™ ([ g =, 15
)4 T , p/p’
<2l uo,u—so, i+ 2 (1 S 150

e (T »
+TS0”un_u1"xdt,

where ¢ is an arbitrary positive number. Noting that || x is equivalent to [-]x
+ ||l g> we see from (1.5) and (1.6) that {u,} is bounded in L?(0, T; X). By (1.4)
and (y.2) it follows that {¥(u,)} is bounded.

Now, the inequality (1.2) implies that {u,} converges in H uniformly on [0, T]
to a function u € C([0, T]; H) with u(0)=u,. Then, obviously, u € L?(0, T; X),
u, —*- u in LP(0, T; X) as n— o0, and since ¥ is lower semicontinuous on L?(0, T;
X) by (y.1) and (¥.2),

— 0 < PY(u) < liminf?(u,) < + 0.

n—o0
Letting n— oo in (1.4), we see that u is the desired function.
The following is an immediate consequence of Propositions 1 and 2.

ProrosiTiON 3. (1) For any given uoeDy and feLP'(0, T; X*) with
f'eLrP(0, T; X*), there is a function u e D(¥)n C([0, T]; H) such that u(0)=u,
and the following holds for each é €(0, T]:
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u'eL?*, T; H),

t — Y(t; u(t)) is bounded on [8, T], and

(1.7) T T
[ g u—onear s vy -y utoar

for every veD(¥).

(2) Let u; be a function in D(WY)n C([0, T]; H) which satisfies (1.7) for
uo=ug; €Dy and f=f,eL? (0, T; X*) with f;eLr'(0,T; X*)(i=1,2). Then
the inequality (1.2) holds for any s, te [0, T] with s<t.

REMARK 1.1. In case X=H and p=2 the hypothesis ({.1) can be replaced
by the following weaker one:

(¥.1)’ There is a positive nondecreasing function r— C(r) with the following
property: For each r>0, each pair s, te[0, T], s<t, and for each z € D, with
[|zllg<r there is Z € D, such that

[Z—z|g £ C(r)|t—s]|
and
Y(t;2) < Y(s;2)+ CIE—sl(1+ Y(s; 2)I) .

In this case Propositions 1, 2 and 3 hold without the condition f’ € L%(0, T; H),
and moreover, the function u appearing in the first statement of Proposition 2
(and 3) is such that t—ty(¢; u(t)) is bounded on (0, T] (cf. [9]).

2. Existence of a strong solution of P[y, f]

Let {{/(t;): 0Lt < T} be a family of functions as described in the introduction.
Throughout this section it is assumed that this family satisfies in addition to
(.1) the assumptions (.2)" and (i.3) given below.

(¥.2)" There are positive constants C; and C, such that

YU(t; z) = C,llzll5—C, forall te[0,T]and zeX.
W.3) Dy < Dy, ie., {zeX:Y(T;z) < 0} = {zeX:yY(0;z) < o0}.

The objective here is to prove the existence of a strong solution of the problem
P[Y, f] using a fixed point theorem of Browder and Petryshyn [7] and techniques
similar to those developed in [3] and [4].

Lemma 1. Let feL®0, T, X*) and let {u,}=D(¥)n C([0, T]; H) be a
sequence such that u,, e L2(0, T; H) and
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S:(u;, —fiu,—v)ydt < Y(v)—¥(u)  for every veD(V).

If the sequence {|u,(0)|ly—llu(T)|u} is bounded above, then the sequence
{u(T)} is bounded in H and moreover, {u,} is bounded in C([0, T]; H).

Proor. In view of (2) of Proposition 1 we see that

2.1 lun(O)=u Dl = lluals) =1 ()

for any s, te[0, T] with s<t. Now suppose for contradiction that {u,(T)} is

not bounded in H. Then we may assume, taking a subsequence if necessary, that

luT)|g—o0 as n—oo. Thus it follows from (2.1) that inf |lu,(¢)|z—c0 as
0=t=T

n—00.

We choose a Lipschitz continuous function A from [0, T] into X such that
t—y(t; h(t)) is bounded on [0, T]. It is known that under the hypotheses (.1)
and (.2) such a function h does indeed exist (cf. [9, Lemma 3.3]). Let L be an
arbitrary number such that L>C=esssup || f—h'||x«. Since inf [u,(t)—h(®)|y

0StsT 0StsT
—00 as n— 00, the assumption (i.2)" implies that
Y(t; u(0)—yY(t; h(1) 2 Llu()—h(1)|x foraa.te[0,T],

provided that n is sufficiently large.

Therefore, for each pair s, t € [0, T] with s<t,

(=1 uy= wygar
2 =, = e+ § s u) — s ) ar

2 {1, wy = hydr+ L u,— hi

t
t
=%(Ilu,.(t)—h(t) 1&—lun(s)—h(s)IZ)+ Lgsllun—hllxdr,
so that for each pair s, te [0, T], s<t,

t
S = B3 = ()= M)+ (L= OOC5 |y = bl dr S0,
where C; is a positive constant such that || x| <C;|x|x for every xe X. This
inequality implies that
un(®) = Bl g — () — h() g+ (L— CO)C3'(t—5) £ 0

for any t, se [0, T] with s<t. Therefore, taking s=0 and t=T, we have
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(L-OC3" = [uy0)=h(O)||g— luT)— (D)l &1 »

which contradicts the hypothesis that {|u,(0)|y— |u.(T)|g} is bounded above.
Hence, it must be true that {u,(T)} is bounded in H.

Combining the inequality (2.1) with the fact that {u,(0)} is bounded in H,
we readily conclude that {u,} is bounded in C([0, T]; H). This completes the
proof.

One of the main results of this paper is the following existence theorem.

THEOREM 1. For a given feLP'(0,T; X*) with f'eL?'(0, T, X*), there
exists a function ue D(¥Y)n C([0, T]; H) such that

(i) u(0)=u(T);

(ii) w'eL?*(0, T;H);
T

(iii) g W —f,u—v)ydt < P()—P(u) for every veD(P).
(1]

Proor. Let x be any element of Dy. According to (1) of Proposition 3
there exists a unique function u € D(¥)n C([0, T]; H) with initial value uy=x
and satisfying (1.7). Then we put Sx=u(T). In this manner we can define a
(singlevalued) operator S from the closed convex set Dy in H into itself. From

Proposition 3 and the assumption (.3) it follows that the range of S is contained
in D, and that S is contractive on Dy, i.e.,

ISx=Syllg = Ix=yllz  forall x, yeDy.

Now we form the sequence of iterates {S"x} for an arbitrary but fixed x € D,,.
By definition, S"x is the value at t=T of the function u,(t) which satisfies (1.1)
with ug=S""1x. Then,

14,Oll g — (D) = 18" ' x = S"x ]|y £ |1Sx—x[a,

which shows that {||u,(0)|| g — llu,(T)llg} is bounded above. Since {S"x} is bound-
ed in H by Lemma 1, we can apply a fixed point theorem of Browder and Petryshyn
[7] to conclude that S has a fixed point #: Si=#. Let u be the function which
satisfies (1.1) with ug=1i. Then it is easy to see that this u is the required solution

of our problem. Thus the proof is complete.

ReEMARK 2.1. In case X=H and p=2, modifying slightly the proof of
Lemma 1, we see that the conclusion of Lemma 1 is valid if fe L2(0, T; H).
Hence, if (y.1) is replaced by (y.1)’, then the conclusion of Theorem 1 holds for
fe L?(0, T; H) without the condition f’ € L2(0, T; H). See Remark 1.1.

REMARK 2.2. If we replace the assumption (¥.2)' by (¥.2), the problem
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P[y, f] does not necessarily have a strong solution. For example, let X=H
=R! (1-dimensional Euclidean space), p=2 and y(¢; x)=|x| for xe R!'. Then
the initial value problem

AU op(e; u)o2, 1e(0, ),
u(0)=x,€eR!,
where dy(t; -) denotes the subdifferential of Y(¢; -), has the following solutions:

u(t)=t+x0 if xogo,

1 1

{t+Txo fortg—Txo,

u(®) = if x,<0.
d+x, for Oété—%xo,

Clearly, u(0)#£u(T) for any x, € R!.

3. Properties of the operators M, and S,

Let ¢ and ¥ be as in the introduction and let Dy be as in Section 1.

We denote by & the duality mapping of X into X* associated with gauge
function p(r)=rp~1. By definition, & assigns to each ze€ X a z* € X* such that
(z*, 2)x=|z|% and |z*||,»=]lz|%!. (Such a z* is uniquely determined by z
because of the strict convexity of X*.) Then the mapping F from LP(0, T; X)
into LP'(0, T; X*) defined by (Fu)(f)=&[u(f)] is also the duality mapping of
Lr(0, T; X) into L?'(0, T; X*) associated with the same gauge function u.

The purpose of this section is to prove the following theorem.

THEOREM 2. Suppose that the following conditions hold:

(@) Y is lower semicontinuous, ¥ # oo and ¥ > — oo on L?(0, T; X).

(b) There exists a subset 2 of LP'(0, T; X*) with the property: 2 is
dense in L?'(0, T; X*) and for each g € 2 there is u € D(S,) such that geu+Fu
+S,(u).

Then we have:

(I) IfueD(M)), then ue C([0, T]; H) and u(0)=u(T).

(D [u,f]1€G(M)) if and only if there is a sequence {[u,, f,1} =L?(0, T; X)
x LP'(0, T; X*) such that [u,,f,] € G(S,) for each n, f, 2 f in L*"(0, T; X*),
u, - u in L?(0, T; X) and in H uniformly on [0, T] as n— 0.

(II) M, is a maximal monotone operator from L»(0,T; X) into LP'(0,
T, X*).
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ReMARk 3.1. If X* is uniformly convex, then ‘‘f, —» > in (II) can be
replaced by “‘f, = .

COROLLARY. Suppose that the family {Y(t;*): 0=Zt<T} satisfies the
assumptions (Y.1) and (y.3). Then the statements (I), (II) and (III) of Theorem
2 hold. In particular, in case X=H and p=2 the assumption ({.1) can be
replaced by (y.1)'.

Proor oF CoroLLARY. Under (Y.1) (or (y¥.1)') we see that there are
positive numbers a, and a, such that

U(t; 2)+aglzllx+a, =0 forevery zeX.

(Cf. [9, Lemma 3.2].) Using this property and Theorem 1 we can easily verify
that (a) and (b) of Theorem 2 are satisfied.

In order to prove Theorem 2 we introduce an operator S, from L?(0, T; X)
into L?'(0, T; X*) as follows: [u,f] eG(§p) if and only if there is a sequence
{[up, fu]} =G(S)) such that f, - fin L¥’(0, T; X*) and u, —» u in L?(0, T; X).

Proceeding as in the proofs of Lemmas 2 and 3 in [10] we can prove the
following two lemmas regarding §p.

LeEMMA 2. Suppose that (a) and (b) of Theorem 2 are satisfied. Then:
) Ifu eD(§p), then u e D(¥Y) n C([0, T]; H) and u(0)=u(T).
(2) M, is an extension of §p, ie., G(§p)c:G(Mp).

LemMaA 3. If [uy, fi]1€ G(M,) and [u,, f,1€ G(S,), then
3.1) ([hi=tfowi—uar z 0.

COROLLARY. §p is a monotone operator from L*(0,T; X) into L?'(0, T;
X*).

We now prove the following

Lemma 4. If u;eD(S,) and fieu;+Fu,+S,(u;) (i=1,2), then for any
tef[0, T]

(32) 2@ = w2V S o2 (e =0 = 2)edr

+2. (fi=fw—updr.

ProoOF. The relation f; € u;+ Fu;+ S,(u;) (i=1, 2) implies that
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(3.3) S:(u; g+ Fuy—f, uy—v)ydt < (0)— P(uy)

for every ve D(¥). For any measurable set Ec[0, T] we set

u,(t) (resp. u(1)) if teE,
vy(2) (resp. v(1) ={ )

u,(2) (resp. u,(1)) if te[0, TI\E.

Since v; € D(¥) (i=1, 2), we have by (3.3)

[ it Fu— i w—uede+ | g u)—giesupyar < 0
for i, j=1, 2, which implies that for i, j=1, 2,
i) +u D)+ (Fuy) () = f(0), u(t)—u )y
+Y(t;u (D) —Y(t;u () =0 for a.a.te[0,T].

Adding inequalities (3.4) with pairs (i, j)=(1, 2), (2, 1) and using the monotonicity
of F, we obtain

(3.4)

(Wi (O —u3(0), uy () —ux())x + |u () —u,(OllF
= (i(O—120, uy()—uy())x  for aa.te[0,T].

Multiplying both sides of this inequality by e?, integrating them on [0, T] and
noting that u(0)=u(T) (i=1, 2), we get

%(e’f—l)nul(O)—uz(O)”sz

1 (T T
39 S| el - ws@lhde+ (e (fi=ro = ur)eds
o 0
T
< et = o uy =,
o

On the other hand, from (2) of Proposition 1 and the monotonicity of the mapping
v—v+ Fv from LP(0, T; X) into L?’(0, T; X*) it follows that

(36 InmO=wOlf S 1@=u O +2{ (fi—fo ws—uy)dr

for any te [0, T]. Now the required inequality (3.2) follows from (3.5) and (3.6).
We also need the following lemma. Since the proof is easy, we omit it.

LEMMA 5. Let A be a monotone operator from a (real) Banach space V
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into its dual V* and let B be a singlevalued strictly monotone operator from
V into V*, that is, (Bv—Bw,v—w),,>0 for any v, we D(B) with vxw. If the
range of A+ B is all of V*, then A is maximal monotone.

ProOOF OF THEOREM 2. According to Corollary to Lemma 3, 5,, is a
monotone operator from LP(0, T; X) into LP’(0, T; X*). If the maximal mono-
tonicity of §p is shown, then Theorem 2 follows readily from Lemmas 2 and 3.
On account of Lemma 5, in order to show that S"p is maximal monotone it is
enough to prove that §,,+F +1 is surjective, where [ is the identity operator on
L?0, T; X). Below we shall show that this is indeed the case.

Let f be any element of L?'(0, T; X*) and choose a sequence {f,} =D such
that f, — f in L?'(0, T; X*). In view of the assumption (b) there exists, for
each n, a u,e D(S,) such that f, eu,+ Fu,+S,(u,), or equivalently, u,(0)=u,(T)
and

T
(37) S (u;|+uu+Fum “n‘v)xdt é l]’(v)—'}/(un)

0
for every ve D(¥). Observe now that by (b) there is at least one function h,
e D(¥Y)n C([0, T]; H) such that hy(0)=ho(T) and h{eLP’(0, T; X*). Taking
hgo in (3.7) as v, we obtain by integration by parts

[+ 10,4 P =y g hoedt < Who) = ¥(u,).
0

The above inequality yields

T T
W(u,t)+§ lunledt-+ . gl
0 0
(3.8) < o)+ (ol + Lfule) Gl + Do)

T T
+{ Mhollalulldi+ a3 Uholxat.

In view of the assumption (a) there are f* e L?'(0, T; X*) and a number C such
that

Y) = gZ(f*, Ddi+C  forall veL?O,T;X).

Hence, by (3.8), we see that {u,} is bounded in L?(0, T; X) and {¥(u,)} is bounded.
On the other hand, from Lemma 4 it follows that {u,} converges in H uniformly
on [0, T] to a function u € C([0, T]; H) with u(0)=u(T). Thus ue L?(0, T; X),
u, - u in. LP(0, T; X) as n— 0, and
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—00 < ¥Y(u) < liminf PY(u,) < + ©

because of the lower semicontinuity of ¥. We may assunze, taking a subsequence
if necessary, that Fu, —*- g in L?’(0, T; X*) as n— oo for some g € LP'(0, T; X*).
Since u € D(¥), replacing v by u in (3.7) and using the monotonicity of the
mapping I + F, we obtain
T
[}

(3.9) lim supS (s, 1, — ) ydt+ Pu,) — P(w)} < 0.
Moreover, since u, —*> u in LP(0, T; X) and Fu, - g in L?'(0, T; X*), we have

T
lim sup g (Fu,, u,—u)ydt
0

n—-o

< limsup ST(Fu,,, u,—v)xdt+ ST(g, v—u)ydt
0o 0

T T
< [ @, o—udr+ ¥@ - W)+ (=g —u, u—o)yds

for every ve D(¥)n C([0, T]; H) such that v(0)=v(T) and v e L?'(0, T; X*).
Take v=u, in the last expression of the above and let n tend to infinity. Then
from (3.9) we find

T
lim Supg (Fu,, u,—u)ydt < 0.

n-oo 0
This together with the uniform convexity of LP(0, T; X) implies that u, —S»> u
in L?(0, T; X) and Fu, —*-> Fu in L?’(0, T; X*). Thus f—u—Fue §p(u) by the
definition of §p. It follows that §p+F +1 is surjective. This completes the
proof of Theorem 2.
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