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Introduction

For a real Banach space V we denote by F* the dual space of V, by || || v and
|| | |κ the norms in Fand F*, respectively, and by ( , -)v the natural pairing bet-
ween F* and V. A (multivalued) operator A from a Banach space F into its
dual F* (i.e., assigning to each veV a, subset Av of F*) is called monotone if

(v* — w*, v — w)v ^ 0 for any [v, ι>*], [w, w*] e G(A),

where G(A) is the graph of the operator A, i.e.,

= {[>, U*] e Fx F * : i? e D(X) and υ* e Av}

with D(A) = {v e V: Av Φ φ}. If A is monotone and there is no proper monotone
extension of A, then A is called maximal monotone.

Throughout this paper we let H be a Hubert space and X a Banach space
such that XczH, X is dense in H and the natural injection from X into H is con-
tinuous, and suppose that X is uniformly convex and X* is strictly convex. Iden-
tifying H with its dual space by means of the inner product ( , -)H in H, we have
the relation XαHαX*. By the symbols "—5->" and "-™->" we mean the con-
vergence in the strong and weak topology, respectively.

Let 0<T<oo, 2^p<co and l/p+l/p' = l and let ψ be an extended real-
valued function on [ 0 , T ] x I such that for each ίe[0, T], ψ(ί ) is a lower
semicontinuous convex function on X with values in (— oo, + oo], φ(t; •)# + oo,
and such that for each veLP(0, T X), t-+ψ(t; v(t)) is measurable on [0, T].
We define a functional Ψ on Lp(0, T; X) by

(V( if veD(Ψ)9

Ψ(v)= j o

^ +oo otherwise,

where D(Ψ) = {v e 1/(0, T; X): ί-»^(ί; KO) is integrable on (0, T)}.
We now pose the following problem: Given an feLp'(0, T X*), find a

u e D(Ψ) n C([0, Γ] ^) such that

( i ) ιι(0) =
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(ii) u* ( = (dldt)u)eLrχθ9T;X*)9

(iii) [T(uf -/, u - v)xdt g Ψ(v)- Ψ(u) for every veD(Ψ).
Jo

This problem is referred to as the problem P[φ,f]- A weak solution of the
problem P[φ,f] is defined to be a function u eD(Ψ) which satisfies

[T(v'-f,u-Ό)xdt£Ψ(Ό)-Ψ(μ)
Jo

whenever VED(Ψ)(] C([0, Γ] H), t?' e L*'(0, T; **) and ι<0) = ι>(Γ).
We consider the following operator Mp(resp. Sp) from Lp(0, T; X) into

IX(0, T; X*): [wj] e G(Mp) (resp. G(Sp)) if and only if u is a weak (resp. strong)
solution of the problem P\_φ,f~\.

The purpose of this paper is to prove under appropriate assumptions on
φ and / the existence of a strong solution of the problem P\_φJ"\ and then to
investigate the properties of the operators Mp and Sp. In Section 1 we summarize
some results concerning the initial value problem for the above inequality (iii)
(cf. [i, 2, 8, 9,10]). In Section 2 we show that the problem P[>,/] has a strong
solution by using the results of Section 1 and a fixed point theorem of Browder
and Petryshyn [7]. In Section 3 we show that Mp is a maximal monotone opera-
tor from L*(0, T; X) into L*>'(0, T; X*) and is a kind of closure of Sp. This result
extends a theorem of Brezis [5, Theorem 11.16] to the time-dependent case.

The author would like to thank Professor N. Kenmochi for his kind advice
and any many helpful suggestions.

1. Initial value problem

Let {φ(t; •)• O^ί^T} be a family of functions as described in the introduction.
We put

Dt = {zeX: φ(t;z) < oo} for each ίe[0, T]

and DH = {the closure of Do in H}.
We impose the following two hypotheses on φ.
(φΛ) There is a positive constant C with the property: For each t e [0, T],

zeDι and s e [ί, T], there is z e Ds such that

| | z - z | | x ^ C | ί - 5 | , and

(φ.2) There are positive constants bOi bt and b2 such that

z\\x + bί^b2lz']% for any t e [0, T] and zeX,
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where [ ] x is a seminorm on X so that [ ]χ+| | ||/j gives a norm on X which is
equivalent to the norm || -1| j^.

Under these hypotheses we have the following

PROPOSITION! (Kenmochί [8,9]). (1) For any given uoeDo and
feLP'(O,T;X*) with f eU'(09T\X*\ there exists a function ueD(Ψ)
Π C([0, T];H) such that

κ(0) = tιo, u'eL2(0,T,H),

t • φ(t; u(t)) is bounded on [0, Γ], and

[T(uf -f, u - v)xdt ^ Ψ(v)- Ψ(u) for every veD(Ψ).
Jo

(2) Let Ui be a function in D(Ψ) Π C([0, T]; H) which satisfies (1.1) for
uo = uo>ieDo and f=fleLP'(0,T;X*) with f\ eL"'(0, T; Z*) (/=1, 2).
/ors, ίe[0, T] with s^t,

(1.2) ||tti(O-

Using Proposition 1 and a result in [10] we can prove the following proposi-
tion.

PROPOSITION 2. (1) For any given uoeDH and feLp'(0, T X*), there
exists a function ueD(Ψ) f] C([0, T]; H) such that

(1.3)

w(0) = w0,

' - / , U-Ό)XA—^\\uo-v

for every veD(Ψ)f] C([0, T] //) wfίA i;' e L*'(0, Γ;

(2) // wf is a function in D(Ψ)nC([0,Γ];iί) satisfying (1.3) wzί/i uo

= u0>ieDH and f=fieLP'(0, T; X*) (i = 1,2), then the inequality (1.2) holds for
any s, ίe[0, T] wΐί/i s^ί.

PROOF. The assertion (2) is true by Corollary 1 of [10]. Hence, we need
only to verify the assertion (1). For this purpose choose sequences {uOjn}czDo

and {/„}cL*'(0, T; X*) such that/; e U ' φ , T; X*), uo,n ^>uQmHand fn-^f
in Lp(0, T X*). By Proposition 1 there exists, for each n, & function uneD(Ψ)
Π C([0, T] H) satisfying (1.1) with uo = uo>n and /=/„. Since

[\K -fn, un- v)xdt ^ ψ(υ)- Ψ(un) for every veD(Ψ),
Jo
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we have by integration by parts

(1.4) Γ V - / Π , un-υ)xdt--i-\\uo>n-υ(0)\\2

H^Ψ(υ)-Ψ(un)

Jo 2.

for every v e D(Ψ) n C([0, T] # ) with ί/ e L"'(0, T; X*). Taking ut as z; in (1.4)

and using the assumption (^.2), we obtain

(1.5) [
J

+ Γ(Λ-«Ί, «,W Γ(
Jo Jo

On the other hand, it follows from the inequality (1.2) that for any t e [0, T]

ιι«.ω-«i(oιι&
P/2

G T

oIIΛ-/ill5i

Pl2p'/(TH _ m \ l / 2

where ε is an arbitrary positive number. Noting that || | | x is equivalent to [•]*

+ || i n , we see from (1.5) and (1.6) that {un} is bounded in L"(0, T; X). By (1.4)

and (ψ.2) it follows that {Ψ(un)} is bounded.

Now, the inequality (1.2) implies that {un} converges in H uniformly on [0, T]

to a function u e C([0, T ] ; # ) with u(0) = uo. Then, obviously, M eL^(0, Γ; Z),

Mn — -̂> M in Lp(0, T; X) as n-+ oo, and since IF is lower semicontinuous on Lp(0, T;

X) by OM) and GM),

- oo < ^(M) ^ liminf Ψ(un) < + oo .
n-*oo

Letting n->oo in (1.4), we see that u is the desired function.

The following is an immediate consequence of Propositions 1 and 2.

PROPOSITION3. (1) For any given uoeDH and fe Lp'(0, T; X*) with

/ ' e L*'(0, T; X*), ίftere is a function ueD(Ψ)(] C([0, T] if) sue* ίftαί u(0) = w0

the following holds for each δe(09 T ] :
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u'eL2(δ,T;H),

t > φ(t; u(0) is bounded on [δ, T], and

(1.7) { (τ rT

J δ J δ

for every veD{Ψ).

(2) Let Ui be a function in D(Ψ) n C([0, T~];H) which satisfies (1.7) for
= uOtieDH and f=fteIT(0, T; X*) with /< eL"'(0, T; X*) (ί = l, 2). Γftew
e inequality (1.2) holds for any s, ί e [0, T] wiί/i sgί.

REMARK 1.1. In case X = H and p = 2 the hypothesis (i/̂ .l) can be replaced
by the following weaker one:

(φΛ)f There is a positive nondecreasing function r-+C(r) with the following
property: For each r>0, each pair s, f e[0, T], s^ί, and for each zeDs with
| |z]|H^r there is z e Dt such that

and

ψ(t;z) ί ψ(

In this case Propositions 1, 2 and 3 hold without the condition / 'eL 2 (0, T; H),
and moreover, the function u appearing in the first statement of Proposition 2
(and 3) is such that t-+tψ(t; u(t)) is bounded on (0, T] (cf. [9]).

2. Existence of a strong solution of

Let {ψ(t; -): O^ί^T} be a family of functions as described in the introduction.
Throughout this section it is assumed that this family satisfies in addition to
(φΛ) the assumptions (ψ.2)' and (^.3) given below.

(φ.2)r There are positive constants Cx and C2 such that

φ(t;z) ^ CJzllJ-Ca for all ίe[0, T] a n d z e l .

(^.3) DΓ c Do, i.e., {zeX:φ(T;z) < oo} c {zeXi^O z) < oo}.

The objective here is to prove the existence of a strong solution of the problem
P[φ,f] using a fixed point theorem of Browder and Petryshyn [7] and techniques
similar to those developed in [3] and [4].

LEMMA 1. Let fe L°°(0, T; X*) and let {un}czD(Ψ) Π C([0, T ] ; # ) be a
sequence such that u'neL2(0, T; H) and
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{T(u'n -f, un- v)xdt g Ψ(v)- Ψ(u) for every veD(Ψ).
Jo

If the sequence {\\un(0)\\H—\\un(T)\\H} is bounded above, then the sequence
{un(T)} is bounded in H and moreover, {un} is bounded in C([0, T]; H).

PROOF. In view of (2) of Proposition 1 we see that

(2.1) WuAή-uMU^Wu^-uMWH

for any s, ίe[0, T] with s^t. Now suppose for contradiction that {un(T)} is
not bounded in H. Then we may assume, taking a subsequence if necessary, that
\\un(T)\\H-+co as /i->oo. Thus it follows from (2.1) that inf \\un(t)\\H-*oo as

We choose a Lipschitz continuous function h from [0, T] into X such that
t^ψ(t; h(t)) is bounded on [0, T]. It is known that under the hypotheses (ψΛ)
and (ψ.2) such a function h does indeed exist (cf. [9, Lemma 3.3]). Let L be an
arbitrary number such that L>C = esssup ||/— h'\\x*. Since inf \\un(t) — h(t)\\H

->oo as W-+OO, the assumption (ψ.2)' implies that

fora.a. ί e [ 0 , T ] ,

provided that n is sufficiently large.
Therefore, for each pair s, t e [0, T] with s^t,

\\f-h',un-h)xdr
Js

>{'(u'n-h',un-h)xdr+{'{ψ(r;un)-ψ(r;h)}dr

so that for each pair s, te [0, T], s^t,

where C3 is a positive constant such that ||x||tf^C3||x||;r for every xeX. This
inequality implies that

.~ c)Ci Hi ~ ̂ ) ύ o

for any t, s e [0, T] with s^t. Therefore, taking s = 0 and t = T9 we have



Time-dependent Parabolic Variational Inequalities 543

which contradicts the hypothesis that {||wM(0)||H— ||wn(T)||H} is bounded above.

Hence, it must be true that {un(T)} is bounded in H.

Combining the inequality (2.1) with the fact that {wπ(0)} is bounded in H,

we readily conclude that {un} is bounded in C([0, T];//). This completes the

proof.

One of the main results of this paper is the following existence theorem.

THEOREM 1. For a given / e ί / ' ( 0 , T X*) with / ' e L*"(0, T; X*), there

exists a function u e D(Ψ) Π C([0, T] if) such that

( i ) iι(0) = u(T);

(ii) u'eL2(0,T;H);

(iii) [T(u' -/, u -υ)xdt £ Ψ(υ)- Ψ(u) for every veD(Ψ).
Jo

PROOF. Let x be any element of DH. According to (1) of Proposition 3

there exists a unique function u eD(Ψ) n C([0, T];H) with initial value uo = x

and satisfying (1.7). Then we put Sx = u(T). In this manner we can define a

(singlevalued) operator S from the closed convex set DH in H into itself. From

Proposition 3 and the assumption (ψ.3) it follows that the range of S is contained

in Do and that S is contractive on DH, i.e.,

\\Sx-Sy\\H£l!ix-y\\H for all x,yeDH.

Now we form the sequence of iterates {Snx} for an arbitrary but fixed x e Do.

By definition, S"x is the value at ί = T o f the function un(t) which satisfies (1.1)

with uo = Sn~1x. Then,

\\uM\\B-\\Un(T)\\B ^ I IS- '^-S-JCIIH ύ \\Sx-x\\H9

which shows that {||wn(0)||H- | |M W (Γ) | | H } is bounded above. Since {Snx} is bound-

ed in H by Lemma 1, we can apply a fixed point theorem of Browder and Petryshyn

[7] to conclude that S has a fixed point ύ: Sύ = M. Let u be the function which

satisfies (1.1) with wo = w. Then it is easy to see that this u is the required solution

of our problem. Thus the proof is complete.

REMARK 2.1. In case X = H and p = 2, modifying slightly the proof of

Lemma 1, we see that the conclusion of Lemma 1 is valid if / e L 2 ( 0 , T H).

Hence, if (ψΛ) is replaced by (ψA)', then the conclusion of Theorem 1 holds for

fe L2(0, T; H) without the condition / ' e L2(0, T; H). See Remark 1.1.

REMARK 2.2. If we replace the assumption (ψ.2)' by (ψ.2), the problem
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P[ψ9f] does not necessarily have a strong solution. For example, let X = H

= R1 (1-dimensional Euclidean space), p = 2 and ι^(ί;x)=|x| for xeR1. Then

the initial value problem

L , ίe(0, 00),

where dψ(t; •) denotes the subdifferential of ψ(t; •), has the following solutions:

u(t) = t + x0 if x o^0,

-yX0 fθΓ/^-yXθ5

if*0<0.

0^t^--yx0,

Clearly, u(0)#w(T) for any x0 eRK

3. Properties of the operators Mp and Sp

Let φ and Ψ be as in the introduction and let DH be as in Section 1.

We denote by IF the duality mapping of X into X* associated with gauge

function μ(r) = rp~1. By definition, IF assigns to each z e l a z * e l * such that

(z*,z)x= ||z||5 and | |z* | | x*=| |z | |£~ 1 . (Such a z* is uniquely determined by z

because of the strict convexity of X*.) Then the mapping F from ί/(0, T; X)

into LP'(0,T;X*) defined by (Fu)(t) = #r[u(t)~\ is also the duality mapping of

ί/(0, T; X) into LPXO, T; X*) associated with the same gauge function μ.

The purpose of this section is to prove the following theorem.

THEOREM 2. Suppose that the following conditions hold:

(a) Ψ is lower semicontinuous, Ψφoo and Ψ> — oo on Lp(0, T; X).

(b) There exists a subset 3> of LP'(O,T;X*) with the property: 3) is

dense in L*'(0, T; X*) and for each ge@ there is ueD(Sp) such that geu + Fu

+ Sp(u).

Then we have:

( I ) Ifue D(Mp\ then u e C([0, T] H) and u(0) = w(T).

(II) [«,/] e G(Mp) if and only if there is a sequence {[>„,/„]} c=L*(0, T; X)

XLP'(0,T;X*) such that [ι/rt,/J e G(Sp) for each njn-^f in Lr'φ9T9X*)9

un -*-» u in LP(0, T; X) and in H uniformly on [0, T] as n->oo.

(III) Mp is a maximal monotone operator from Lp(0, T; X) into Lp'(0,

T X*).
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REMARK 3.1. If X* is uniformly convex, then "/„ —£->/" in (II) can be

replaced by " / „ _ * - / " .

COROLLARY. Suppose that the family {φ(t; •)• O^ίrgT} satisfies the

assumptions (φΛ) and (ψ.3). Then the statements (I), (II) and (III) of Theorem

2 hold. In particular, in case X = H and ρ = 2 the assumption (ψA) can be

replaced by (ψΛ)'.

PROOF OF COROLLARY. Under (ψΛ) (or (ψ.ϊ)') we see that there are

positive numbers a0 and aγ such that

ψ(t;z) + ao\\z\\x + a1 ^ 0 for every zeX.

(Cf. [9, Lemma 3.2].) Using this property and Theorem 1 we can easily verify

that (a) and (b) of Theorem 2 are satisfied.

In order to prove Theorem 2 we introduce an operator Sp from Lp(0, T; X)

into Lp'(0, T; X*) as follows: [u,/]eG(S p ) if and only if there is a sequence

{["»,/,]}<= GGSp) such that/, - ^ / i n Lp'(0, Γ; * * ) and MM - ^ U in L*(0, T; X).

Proceeding as in the proofs of Lemmas 2 and 3 in [10] we can prove the

following two lemmas regarding Sp.

LEMMA 2. Suppose that (a) and (b) 0/ Theorem 2 are satisfied. Then:

(1) // u e D(Sp), ίften u e D(Ψ) n C([0, Γ] # ) and M(0) = w(T).

(2) M p is an extension of Sp9 i.e., G(§p)c:G(Mp).

LEMMA 3. // [11^/J G G(Mp) and [w2,/2] e

(3.1) J^σi-/2,«i-i*2)χΛ^0.

COROLLARY. SP is a monotone operator from Lp(0, T; X) into Lp'(0, T;

X*).

We now prove the following

LEMMA 4. If uteD(Sp) and ^eUi + Fu^Spiui) (i = l,2), then for any
ίe[0,T]

(3.2)

(fι-f2>uί-u2)xdr.
o

PROOF. The relation /f e uf + F« f+S/i/;) (i = 1,2) implies that
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(3.3) [\ui + u, + Fu,-f0 Ut-vWt ύ Ψ(v)-
Jo

for every v e D(Ψ). For any measurable set £<= [0, T] we set

ί iι2(ί)(resp. 11,(0) if teE,
»x(0 (resp. »2(0) =

I «,(0 (resp. nj(O) if ί e [ 0 , T ] \ £ .

Since v, e D(Ψ) ( ί= 1,2), we have by (3.3)

\ (ui + Ui+FUi-^Ui-uJxdt+i {φ(t;u,)-
J E J E

for i, 7 = 1,2, which implies that for f, j = 1, 2,

-/X0, «X0 - Uj(t))x

(3.4)
+ ^(ί wf(0) - ^(ί M / 0 ) ^ 0 for a.a. ί e [0, T] .

Adding inequalities (3.4) with pairs (i, j) = (l, 2), (2, 1) and using the monotonicity
of F, we obtain

(M'dt)-*2(t), n 1(0-i

^ ( Λ ( 0 - / 2 ( 0 , Wi(0-t/2(0)χ for a.a. / e [0, T] .

Multiplying both sides of this inequality by e\ integrating them on [0, T] and
noting that Mί(0) = w/(T) (i = l, 2), we get

(3.5)

On the other hand, from (2) of Proposition 1 and the monotonicity of the mapping
V-ΪV + FV from L*(0, T; X) into L*'(0, Γ; X*) it follows that

(3.6)

for any t e [0, T]. Now the required inequality (3.2) follows from (3.5) and (3.6).

We also need the following lemma. Since the proof is easy, we omit it.

LEMMA 5. Let A be a monotone operator from a (real) Banach space V
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into its dual V* and let B be a singlevalued strictly monotone operator from
V into V*9 that is, (Bv-Bw,v-w)v>0 for any υ, weD(B) with v*w. If the
range of A + B is all of V*, then A is maximal monotone.

PROOF OF THEOREM 2. According to Corollary to Lemma 3, Sp is a
monotone operator from Lp(09 T; X) into I/'(0, T; X*). If the maximal mono-
tonicity of Sp is shown, then Theorem 2 follows readily from Lemmas 2 and 3.
On account of Lemma 5, in order to show that Sp is maximal monotone it is
enough to prove that Sp + F +J is surjective, where / is the identity operator on
Lp(0, T; X). Below we shall show that this is indeed the case.

Let/be any element of Lp'(0, T X*) and choose a sequence {fn}cD such
that /„ -~±->f in Lp'(0, Γ; X*). In view of the assumption (b) there exists, for
each n, a uneD(Sp) such that fneun + Fun + Sp(un\ or equivalently, un(0) = un(T)
and

(3.7)

for every veD(Ψ). Observe now that by (b) there is at least one function h0

eD(Ψ)nC([0,T] ,H) such that ho(0) = ho(T) and h'o eL*'(O, T; X*). Taking
h0 in (3.7) as v, we obtain by integration by parts

\h'0 + un + FuH-fH9uH-h0)xdt £ Ψ(ho)-Ψ(un).
o

The above inequality yields

(3.8)

In view of the assumption (a) there are/* GL P ' (0 , Γ; X*) and a number C such
that

Ψ(υ) ̂  ( T(f*9 v)xdt + C for all υ e Lp(0, T; X).
Jo

Hence, by (3.8), we see that {un} is bounded in 1/(0, T; X) and {Ψ(un)} is bounded.
On the other hand, from Lemma 4 it follows that {un} converges in H uniformly
on [0, T] to a function u e C([0, T] H) with u(0) = u(T). Thus u e L*(0, Γ; X),
t/w - ^ w in Lp(0, T; X) as n-^oo? and
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-oo < Ψ(u) S liminf Ψ(un) < +00
n-*ao

because of the lower semicontinuity of Ψ. We may assume, taking a subsequence

if necessary, that Fun -£-• g in L*'(0, T; X*) as n->oo for some # e L*>'(0, T; X*).

Since w eD(Ψ), replacing υ by w in (3.7) and using the monotonicity of the

mapping I + F, we obtain

(3.9) Kmsup\T {(u>n,un-u)xdt+Ψ(un)-Ψ(u)} ^ 0.
n-*co JO

Moreover, since un -^U u in 1/(0, T; X) and FMM -*U g in L*'(0, Γ; X*), we have

(T

limsup\ (Fun,un-u)xdt
n->oo JO

^ lim sup \ T(Funi un- υ)xdt +[T(g,v- u)xdt
w->oo JO JO

^ [\v\ v- u)xdt + Ψ(v)- Ψ(u) + [\f-g-u9u-v)xdt
Jo Jo

for every veD(Ψ) Π C([0, T];H) such that ι;(0) = ̂ (T) and Ό'SLP'(Q9 T X*).

Take U = MΠ in the last expression of the above and let n tend to infinity. Then

from (3.9) we find

(T

lim sup \ (Fun, un - u)xdt g 0.
H-+00 J o

This together with the uniform convexity of Lp(0, Γ; X) implies that un —s-» w

in L*(0, T; Z) and FMW _ S U FM in L^'(0, Γ; X*). Thus f-u-Fue Sp(u) by the

definition of Sp. It follows that Sp + F + I is surjective. This completes the

proof of Theorem 2.
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