3-Primary β-Family in Stable Homotopy

Shichirô Oka and Hirosi Toda

(Received May 19, 1975)

§ 1. Introduction

Let p be an odd prime. L. Smith [9] discovered, for each $p \geqq 5$, an infinite family $\left\{\beta_{t}\right\}$ in the stable homotopy groups G_{*} of spheres. The construction of this family is assured by the existence of the stable complex $V(2)$ for p considered in [9], [15].

The case $p=3$ is quite different from the case $p \geqq 5[16, \S 6]$, e.g., $V(2)$ does not exist [15, Th. 1.2] and so the construction of β_{t} for general t is not known; it is, however, known from the results on $G_{*}\left([6],\left[7\right.\right.$, Th. B], [11]) that $\beta_{t}, t \leqq 6$ except for $t=4$, exist and that β_{4} can not be defined.

Let B be a stable mapping cone $S^{0} \cup_{\beta_{1}} 1^{11}$ of $\beta_{1} \in G_{10}$ of order 3 , and $j: S^{0} \rightarrow B$ be an inclusion. The purpose of this paper is to construct non-trivial elements $\bar{\beta}_{t} \in \pi_{16 t-6}(B)$ of order 3 for all $t \geqq 2$ such that $j \beta_{t}=\bar{\beta}_{t}$ if $\beta_{t} \in G_{*}$ exists. We shall also construct non-trivial elements $\bar{\rho}_{t} \in \pi_{48 t-10}(B), t \geqq 1$, corresponding to the elements $\rho_{t, 1} \in G_{*}$ of [8, Th. A].

For the simplicity, we shall denote by M and V the spectra $V(0)$ and $V(1)$ for $p=3$ in [15]. In stable notations, $M=S^{0} \cup_{3} e^{1}$ and $V=M \cup_{\alpha} C \Sigma^{4} M$, and we have the cofiberings $S^{0} \xrightarrow{i} M \xrightarrow{\pi} S^{1}$ and $M \xrightarrow{i_{1}} V \xrightarrow{\pi_{1}} \Sigma^{5} M$. Put $V B=V \wedge B$. Its Brown-Peterson homology is given by the direct sum:

$$
B P_{*}(V B)=B P_{*}(V)+\Sigma^{11} B P_{*}(V)=B P_{*} /\left(3, v_{1}\right)+\Sigma^{11} B P_{*} /\left(3, v_{1}\right),
$$

where $B P_{*}=\pi_{*}(B P)=Z_{(3)}\left[v_{1}, v_{2}, \ldots\right], \operatorname{deg} v_{i}=2\left(3^{i}-1\right)[2][3]$. Let $\left[\beta i_{1}\right]: \Sigma^{16} M$ $\rightarrow V$ and $\left[\pi_{1} \beta\right]: \Sigma^{11} V \rightarrow M$ be the elements having $V\left(1 \frac{1}{2}\right)$ and $\Sigma^{-5}\left(V(2) / V\left(\frac{1}{2}\right)\right)$ as their mapping cones $[16, \S 6]$.

Theorem 1.1. There exists a stable map

$$
\bar{\beta}: \Sigma^{16} V B \longrightarrow V B
$$

such that
(a) $\bar{\beta}$ induces the multiplication by v_{2} on each factor of $B P_{*}(V B)$, and hence $B P_{*} /\left(3, v_{1}, v_{2}\right)+\Sigma^{11} B P_{*} /\left(3, v_{1}, v_{2}\right)$ is realizable as the $B P$ homology

[^0]of the mapping cone of $\bar{\beta}$. Moreover, such $\bar{\beta}$ is unique by the equalities
(b) $\bar{\beta}\left(i_{1} \wedge 1_{B}\right)=\left[\beta i_{1}\right] \wedge 1_{B},\left(\pi_{1} \wedge 1_{B}\right) \bar{\beta}=\left[\pi_{1} \beta\right] \wedge 1_{B}$.

The theorem, together with some additional properties, will be proved in $\S 3$. It is known that $B P_{*} /\left(3, v_{1}, v_{2}\right)$ can not be realizable. We also notice that there are distinct spaces realizing $B P_{*} /\left(3, v_{1}, v_{2}\right)+\Sigma^{11} B P_{*} /\left(3, v_{1}, v_{2}\right)$. Roughly speaking, the element $\bar{\beta}$ corresponds to $\beta \wedge 1_{B}$ for $p \geqq 5$, and (a) asserts that $V(2) \wedge B$ exists (not uniquely) even if $V(2)$ does not.

Definition 1.2. We define $\bar{\beta}_{t} \in \pi_{16 t-6}(B), t \geqq 1$, by the following composition ($\bar{\beta}_{1}=0$):

$$
S^{16 t} \xrightarrow{j} \Sigma^{16 t} B \xrightarrow{i_{1} i \wedge 1_{B}} \Sigma^{16 t} V B \xrightarrow{\bar{\beta}^{t}} V B \xrightarrow{\pi \pi_{1} \wedge 1_{B}} \Sigma^{6} B .
$$

D. C. Johnson and R. Zahler ([4], [18]) obtained, for any prime $p \geqq 3$, an infinite family in $\mathrm{Ext}_{A}^{2}, *\left(B P^{*}, B P^{*}\right)$, the E_{2}-term of the Adams-Novikov spectral sequence, corresponding to the β-family when $p \geqq 5$. Our family $\left\{\bar{\beta}_{t}\right\}$ (except $t=1$) corresponds to their family in Ext for $p=3$, and we shall prove in $\S 4$ the non-triviality of $\bar{\beta}_{t}$ by Zahler's method [18].

Theorem 1.3. For $t \geqq 2, \vec{\beta}_{t}$ is non-zero element of order 3.
For $t \leqq 6$, we shall see in $\S 5$ that $\bar{\beta}_{t}=j \beta_{t}, t \neq 4$, and $k \bar{\beta}_{4} \neq 0$, where $k: B \rightarrow S^{11}$ is the collapsing map. This suggests a definition of β 's in G_{*} for $p=3$: for $t \geqq 2$ such that $k \bar{\beta}_{t}=0, \beta_{t} \in G_{16 t-6}$ is given by $j \beta_{t}=\bar{\beta}_{t}$.

We shall also consider a similar construction corresponding to the elements ρ 's of [8]. Put $W=M \cup_{\alpha^{2}} C \Sigma^{8} M$ and $W B=W \wedge B$, whose $B P$ homology is $B P_{*} /(3$, $\left.v_{1}^{2}\right)+\Sigma^{11} B P_{*} /\left(3, v_{1}^{2}\right)$.

Theorem 1.4. There exists a stable map

$$
\bar{\rho}: \Sigma^{48} W B \longrightarrow W B
$$

inducing the multiplication by v_{2}^{3}, i.e., the mapping cone of $\bar{\rho}$ realizes $B P_{*} /(3$, $\left.v_{1}^{2}, v_{2}^{3}\right)+\Sigma^{11} B P_{*}\left(3, v_{1}^{2}, v_{2}^{3}\right)$.

Let us denote the cofibering for W by $M \xrightarrow{i_{2}} W \xrightarrow{\pi_{2}} \Sigma^{9} M$.
Definition 1.5. Define $\bar{\rho}_{t} \in \pi_{48 t-10}(B)$ by the following composition $(t \geqq 1)$:

$$
S^{48 t} \xrightarrow{j} \Sigma^{48 t} B \xrightarrow{i_{2} i \wedge 1_{B}} \Sigma^{48 t} W B \xrightarrow{\bar{\rho}^{t}} W B \xrightarrow{\pi \pi_{2} \wedge 1_{B}} \Sigma^{10} B .
$$

Theorem 1.6. $\quad \bar{\rho}_{t} \neq 0$ and $\bar{\beta}_{3 t} \in\left\{\bar{\rho}_{t}, 3, \alpha_{1}\right\}$ for $t \geqq 1$.
(1.4) and (1.6) will be proved in § §3-4.

In contrast with (1.4), we obtain the following non-realizing result.
Theorem 1.7. $\quad B P_{*} /\left(3, v_{1}^{2}, v_{2}^{3}\right)$ can not be realized.
In $\S 5$ we shall proved (1.7) and the non-realizability of $B P_{*} /\left(3, v_{1}, v_{2}^{t}\right)$ for small t. In Appendix, we shall discuss a similar consideration for the 5 -primary γ-family, and show that $B P_{*} /\left(5, v_{1}, v_{2}, v_{3}\right)+\Sigma^{39} B P_{*} /\left(5, v_{1}, v_{2}, v_{3}\right)$ can be realizable.

§ 2. Some additional results on the algebra $\mathscr{A}_{*}(V)$

For any (finite) stable complexes ($C W$-spectra) X and Y, we shall denote by $\pi_{k}(X ; Y)$ the additive group consisting of all homotopy classes of stable maps $\Sigma^{k} X \rightarrow Y$, and set $\pi_{k}(X)=\pi_{k}\left(S^{0} ; X\right), \mathscr{A}_{k}(X)=\pi_{k}(X ; X)$ and $\mathscr{A}_{*}(X)=\Sigma_{k} \mathscr{A}_{k}(X)$. The composition of maps induces a product on $\mathscr{A}_{*}(X)$, and $\mathscr{A}_{*}(X)$ forms a graded ring; $1_{X} \in \mathscr{A}_{0}(X)$ being the unit.

A space (spectrum) X is called $a Z_{3}$-space (-spectrum) if 1_{X} is of order 3, or $\mathscr{A}_{*}(X)$ is an algebra over Z_{3} [16, Lemma 1.2]. We introduced in [16, § 2] the operations $\theta: \pi_{k}(X ; Y) \rightarrow \pi_{k+1}(X ; Y)$ and $\lambda_{X}: \mathscr{A}_{k}(M) \rightarrow \mathscr{A}_{k+1}(X)$ and discussed their properties. In particular, M and V are (non-associative) Z_{3}-spaces [16, §6], and we shall use the same notations as in [16] for the generators of $\mathscr{A}_{*}(M)$ and $\mathscr{A}_{*}(V)$:

$$
\begin{aligned}
& \delta=i \pi \in \mathscr{A}_{-1}(M), \quad \alpha \in \mathscr{A}_{4}(M) \text { the attaching class of } V, \\
& \beta_{(1)}=\pi_{1}\left[\beta i_{1}\right]=\left[\pi_{1} \beta\right] i_{1} \in \mathscr{A}_{11}(M), \quad \beta_{(2)}=\left[\pi_{1} \beta\right]\left[\beta i_{1}\right] \in \mathscr{A}_{27}(M) ; \\
& \delta_{1}=i_{1} \pi_{1} \in \mathscr{A}_{-5}(V), \quad \delta_{0}=i_{1} \delta \pi_{1} \in \mathscr{A}_{-6}(V), \\
& \alpha^{\prime \prime} \in \mathscr{A}_{2}(V) \text { the associator of } V, \\
& \beta^{\prime}=\lambda_{V}\left(\delta \beta_{(1)} \delta\right)=\beta_{1} \wedge 1_{V}, \quad\left[\beta \delta_{0}\right]=\left[\beta i_{1}\right] \delta \pi_{1} \in \mathscr{A}_{10}(V), \\
& {\left[\beta \delta_{1}\right]=\left[\beta i_{1}\right] \pi_{1}, \quad\left[\delta_{1} \beta\right]=i_{1}\left[\pi_{1} \beta\right] \in \mathscr{A}_{11}(V) .}
\end{aligned}
$$

The following relation is the mod 3 version of the last equality in $[16, \mathrm{Th}$. 4.2].

Lemma 2.1. $\quad \lambda_{V}\left(\beta_{(1)} \delta\right)=\left[\beta \delta_{1}\right]-\left[\delta_{1} \beta\right]$.
Proof. By [16, Cor. 2.5, (3.7), (2.8) and Th. 6.4], $\lambda_{V}\left(\beta_{(1)} \delta\right) i_{1}=i_{1} \lambda_{M}\left(\beta_{(1)} \delta\right)$ $=-i_{1} \beta_{(1)}=-\left[\delta_{1} \beta\right] i_{1}$ and $\pi_{1} \lambda_{V}\left(\beta_{(1)} \delta\right)=\pi_{1}\left[\beta \delta_{1}\right]$. Since $\lambda_{V}\left(\beta_{(1)} \delta\right) \in \mathscr{A}_{11}(V)=$ $\left\{\left[\beta \delta_{1}\right],\left[\delta_{1} \beta\right]\right\}[16$, Th. 6.11] , we have the desired result. q.e.d.

Since θ is derivative [16, Th. 2.2], it follows immediately from [16, Th. 6.4] that

$$
\begin{equation*}
\theta\left[\beta \delta_{1}\right]=\alpha^{\prime \prime}\left[\beta \delta_{0}\right] \tag{2.2}
\end{equation*}
$$

By $\left[16,(6.1)\right.$ and Lemma 6.5], we have $\theta\left[\delta_{1} \beta\right]=\theta\left[\beta \delta_{1}\right]-\theta \lambda_{V}\left(\beta_{(1)} \delta\right)=\theta\left[\beta \delta_{1}\right]$ $+\alpha^{\prime \prime} \lambda_{V}\left(\delta \beta_{(1)} \delta\right)$, and hence

$$
\begin{equation*}
\theta\left[\delta_{1} \beta\right]=\alpha^{\prime \prime}\left[\beta \delta_{0}\right]+\beta^{\prime} \alpha^{\prime \prime} \tag{2.3}
\end{equation*}
$$

Theorem 2.4. In $\mathscr{A}_{22}(V)=\left\{\left[\delta_{1} \beta\right]\left[\beta \delta_{1}\right], \beta^{\prime} \alpha^{\prime \prime}\left[\beta \delta_{0}\right], \beta^{\prime} \beta^{\prime} \alpha^{\prime \prime}\right\}$, the following relations hold:
(i) $\left[\beta \delta_{1}\right]^{2}=-\left[\delta_{1} \beta\right]\left[\beta \delta_{1}\right]-\beta^{\prime} \alpha^{\prime \prime}\left[\beta \delta_{0}\right]$,
(ii) $\left[\delta_{1} \beta\right]^{2}=-\left[\delta_{1} \beta\right]\left[\beta \delta_{1}\right]-\beta^{\prime} \alpha^{\prime \prime}\left[\beta \delta_{0}\right]-\beta^{\prime} \beta^{\prime} \alpha^{\prime \prime}$.

Proof. By [16, Th. 2.4 (iii)] with $\xi=\beta_{(1)} \delta$, we have

$$
\begin{equation*}
\left(\left[\beta \delta_{1}\right]-\left[\delta_{1} \beta\right]\right) \gamma=(-1)^{\operatorname{deg} \gamma} \gamma\left(\left[\beta \delta_{1}\right]-\left[\delta_{1} \beta\right]\right)+\beta^{\prime} \theta(\gamma) \tag{*}
\end{equation*}
$$

for any $\gamma \in \mathscr{A}_{*}(V)$. By using (2.2)-(2.3), the desired relations follow from (*) for $\gamma=\left[\beta \delta_{1}\right],\left[\delta_{1} \beta\right]$.
q.e.d.

In the same way as above, we also obtain the following relations.
(i) $\left[\beta \delta_{1}\right]\left[\beta i_{1}\right] \equiv-\left[\delta_{1} \beta\right]\left[\beta i_{1}\right] \quad \bmod \quad \operatorname{Im} \beta_{*}^{\prime}$,
(ii) $\left[\pi_{1} \beta\right]\left[\delta_{1} \beta\right] \equiv-\left[\pi_{1} \beta\right]\left[\beta \delta_{1}\right] \quad \bmod \quad \operatorname{Im} \beta^{\prime *}$.

An additive basis of $\mathscr{A}_{*}(V)$ for $\operatorname{deg}<27$ is given by [16, Th. 6.11]. We shall compute $\mathscr{A}_{27}(V)$.

Theorem 2.5. The homomorphisms $i_{1}^{*}: \mathscr{A}_{27}(V) \rightarrow \pi_{27}(M ; V)$ and $\pi_{1 *}$: $\mathscr{A}_{27}(V) \rightarrow \pi_{22}(V ; M)$ are isomorphic. Define $\left[\delta_{1} \beta^{2}\right]$ and $\left[\beta^{2} \delta_{1}\right]$ by $i_{1}^{*}\left[\delta_{1} \beta^{2}\right]$ $=\left[\delta_{1} \beta\right]\left[\beta i_{1}\right]$ and $\pi_{1 *}\left[\beta^{2} \delta_{1}\right]=\left[\pi_{1} \beta\right]\left[\beta \delta_{1}\right]$, and put $\left[\beta \delta_{1} \beta\right]=\left[\beta i_{1}\right]\left[\pi_{1} \beta\right]$. Then, $\mathscr{A}_{27}(V)$ has a basis $\left\{\left[\beta^{2} \delta_{1}\right],\left[\beta \delta_{1} \beta\right]\right\}$ and there hold the relations $\left[\delta_{1} \beta^{2}\right]$ $=-\left[\beta^{2} \delta_{1}\right]$ and $\lambda_{V}\left(\beta_{(2)} \delta\right)=\left[\beta^{2} \delta_{1}\right]$.

Proof. N. Yamamoto [17] computed the algebra $\mathscr{A}_{*}(M)$ for $\operatorname{deg}<32$, cf. $[16,(6.4)]$, and the obstruction to compute $\mathscr{A}_{32}(M)$ was the composition $\alpha_{1} \beta_{1}^{3}$ in G_{33}. The triviality of this composition [13] leads to the result $\mathscr{A}_{32}(M)$ $=\left\{\alpha^{8}\right\}$.

From the results on $\mathscr{A}_{k}(M), k=27,28,31,32$, we obtain $\pi_{32}(M ; V)=0$ and $\pi_{27}(V ; M)=0$. We have proved in [16, Prop. 6.9] that $\pi_{31}(M ; V)=0$, and dually we can prove $\pi_{26}(V ; M)=0$. Therefore i_{1}^{*} and $\pi_{1 *}$ in the theorem are isomorphic by the exact sequences:

$$
\pi_{32}(M ; V) \longrightarrow \mathscr{A}_{27}(V) \xrightarrow{i_{1}^{*}} \pi_{27}(M ; V) \longrightarrow \pi_{31}(M ; V),
$$

$$
\pi_{27}(V ; M) \longrightarrow \mathscr{A}_{27}(V) \xrightarrow{\pi_{1 *}} \pi_{22}(V ; M) \longrightarrow \pi_{26}(V ; M) .
$$

From the results on $\mathscr{A}_{*}(M)$, in particular the relation $\delta \alpha \delta\left(\beta_{(1)} \delta\right)^{2}=\beta_{(1)}^{2}$ $=\pi_{1}\left[\beta \delta_{1} \beta\right] i_{1}[16, \mathrm{Th} .6 .4$.(i) $]$, we see that $\pi_{27}(M ; V)=\left\{i_{1} \beta_{(2)}=\left[\delta_{1} \beta\right]\left[\beta i_{1}\right]\right.$, $\left.\left[\beta \delta_{1} \beta\right] i_{1}\right\}$ and $\pi_{22}(V ; M)=\left\{\beta_{(2)} \pi_{1}=\left[\pi_{1} \beta\right]\left[\beta \delta_{1}\right], \pi_{1}\left[\beta \delta_{1} \beta\right]\right\}$. Hence,

$$
\mathscr{A}_{27}(V)=\left\{\left[\beta^{2} \delta_{1}\right],\left[\beta \delta_{1} \beta\right]\right\}=\left\{\left[\delta_{1} \beta^{2}\right],\left[\beta \delta_{1} \beta\right]\right\} .
$$

We put $\quad \lambda_{V}\left(\beta_{(2)} \delta\right)=x\left[\beta^{2} \delta_{1}\right]+y\left[\beta \delta_{1} \beta\right]$. Then, $\quad\left[\delta_{1} \beta\right]\left[\beta \delta_{1}\right]=i_{1} \beta_{(2)} \pi_{1}$ $=-i_{1} \lambda_{M}\left(\beta_{(2)} \delta\right) \pi_{1}=\delta_{1} \lambda_{V}\left(\beta_{(2)} \delta\right)=x\left[\delta_{1} \beta\right]\left[\beta \delta_{1}\right]+y\left[\delta_{1} \beta\right]^{2} \quad$ and $\quad x=1, y=0$, since $\left[\delta_{1} \beta\right]\left[\beta \delta_{1}\right]$ and $\left[\delta_{1} \beta\right]^{2}$ are linearly independent by (2.4). Next put $\lambda_{V}\left(\beta_{(2)} \delta\right)$ $=x^{\prime}\left[\delta_{1} \beta^{2}\right]+y^{\prime}\left[\beta \delta_{1} \beta\right]$. Then, $\quad\left[\delta_{1} \beta\right]\left[\beta \delta_{1}\right]=-\lambda_{V}\left(\beta_{(2)} \delta\right) \delta_{1}=-x^{\prime}\left[\delta_{1} \beta\right]\left[\beta \delta_{1}\right]$ $-y^{\prime}\left[\beta \delta_{1}\right]^{2}$ and $x^{\prime}=-1, y^{\prime}=0$ by (2.4). Thus, we obtain $\left[\beta^{2} \delta_{1}\right]=\lambda_{V}\left(\beta_{(2)} \delta\right)$ $=-\left[\delta_{1} \beta^{2}\right]$ as desired.

§3. Constructing elements

Let us denote the cofibering for B by

$$
\begin{equation*}
S^{10} \xrightarrow{\beta_{1}} S^{0} \xrightarrow{j} B \xrightarrow{k} S^{11} . \tag{3.1}
\end{equation*}
$$

We write $X B, \beta_{X}, j_{X}$ and k_{X} for the smash products $X \wedge B, 1_{X} \wedge \beta_{1}, 1_{X} \wedge j$ and $1_{X} \wedge k$, respectively, and we have the cofibering

$$
\begin{equation*}
\Sigma^{10} X \xrightarrow{\beta_{X}} X \xrightarrow{j_{X}} X B \xrightarrow{k_{X}} \Sigma^{11} X . \tag{3.1}
\end{equation*}
$$

It is clear that $\xi \beta_{X}=\beta_{Y} \xi$ for any $\xi \in \pi_{k}(X ; Y)$, i.e.,

$$
\begin{equation*}
\beta_{X}^{*}=\beta_{Y *}: \pi_{k}(X ; Y) \longrightarrow \pi_{k+10}(X ; Y) . \tag{3.2}
\end{equation*}
$$

Consider the element $\beta_{1} \wedge 1_{B}=\beta_{B} \in \mathscr{A}_{10}(B)$. By [12, Lemma 3.5], $\beta_{1} \wedge 1_{B}$ $=k^{*} j_{*}\left(\alpha^{*}\right)$ for some $\alpha^{*} \in G_{21}$. Since $G_{21} * Z_{3}=0$ [11], we obtain

$$
\begin{equation*}
\beta_{1} \wedge 1_{B}=0 \quad \text { in } \quad \mathscr{A}_{10}(B) . \tag{3.3}
\end{equation*}
$$

From (3.2)-(3.3), it follows that $\beta_{X}^{*}: \pi_{k}(X ; Y B) \rightarrow \pi_{k+10}(X ; Y B)$ and $\beta_{Y *}$: $\pi_{k}(X B ; Y) \rightarrow \pi_{k+10}(X B ; Y)$ are trivial for any X and Y. Hence the following short exact sequences are obtained:

$$
\begin{equation*}
0 \longrightarrow \pi_{k+11}(X ; Y B) \xrightarrow{k_{x^{*}}} \pi_{k}(X B ; Y B) \xrightarrow{j_{X^{*}}} \pi_{k}(X ; Y B) \longrightarrow 0 ; \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
0 \longrightarrow \pi_{k}(X B ; Y) \xrightarrow{j_{Y \star}} \pi_{k}(X B ; Y B) \xrightarrow{k_{Y \star}} \pi_{k-11}(X B ; Y) \longrightarrow 0 . \tag{3.4}
\end{equation*}
$$

We shall treat the case $X, Y=M$ or V. Then, $\beta_{X}=\lambda_{X}\left(\delta \beta_{(1)} \delta\right)[16$, Th. 2.4. (iv)], and so

$$
\begin{equation*}
\beta_{M}=\beta_{(1)} \delta+\delta \beta_{(1)}, \quad \beta_{V}=\beta^{\prime} . \tag{3.5}
\end{equation*}
$$

Lemma 3.6. (i) $\pi_{16}(M B ; V B)$ has a Z_{3}-basis

$$
\left\{\left[\beta i_{1}\right] \wedge 1_{B}, \quad j_{V}\left[\delta_{1} \beta\right]\left[\beta i_{1}\right] k_{M}=-j_{V}\left[\beta \delta_{1}\right]\left[\beta i_{1}\right] k_{M}\right\}
$$

(ii) $\pi_{11}(V B ; M B)$ has a Z_{3}-basis

$$
\left\{\left[\pi_{1} \beta\right] \wedge 1_{B}, \quad j_{M}\left[\pi_{1} \beta\right]\left[\beta \delta_{1}\right] k_{V}=-j_{M}\left[\pi_{1} \beta\right]\left[\delta_{1} \beta\right] k_{V}\right\}
$$

Proof. From $\pi_{k}(M ; V)=0, k=5,6$, and $\pi_{16}(M ; V)=\left\{\left[\beta i_{1}\right]\right\}$ [16, Prop. 6.9], it follows that $\pi_{16}(M ; V B)=\left\{j_{V}\left[\beta i_{1}\right]\right\}$. Also $\pi_{27}(M ; V B)=\left\{j_{V}\left[\delta_{1} \beta\right]\left[\beta i_{1}\right]\right.$ $\left.=-j_{V}\left[\beta \delta_{1}\right]\left[\beta i_{1}\right]\right\}$ by using (2.4)' (i). Then, from (3.4) for $X=M, Y=V$, (i) follows.
(ii) follows from similar calculations using the following results on π_{k} $=\pi_{k}(V ; M): \pi_{0}=\pi_{1}=0, \pi_{11}=\left\{\left[\pi_{1} \beta\right]\right\}, \pi_{12}=\left\{\delta\left[\pi_{1} \beta\right] \alpha^{\prime \prime}\right\}, \pi_{21}=\left\{\left[\pi_{1} \beta\right] \beta^{\prime}\right\}$ and π_{22} $=\left\{\left[\pi_{1} \beta\right]\left[\beta \delta_{1}\right],\left[\pi_{1} \beta\right]\left[\delta_{1} \beta\right]\right\}$.
q.e.d.

The Brown-Peterson homology for M and V is given by ([9], cf. [4], [18])

$$
B P_{*}(M)=B P_{*} /(3), \quad B P_{*}(V)=B P_{*} /\left(3, v_{1}\right),
$$

where $B P_{*}=\pi_{*}(B P)=Z_{(3)}\left[v_{1}, v_{2}, \ldots\right]$, the polynomial ring over the integers localized at $3, v_{i} \in B P_{2\left(3^{i-1}\right)}$ [2] and (x_{1}, \ldots, x_{n}) denotes the ideal generated by x_{1}, \ldots, x_{n}. Applying $B P_{*}()$ to (3.1), (3.1) M_{M} and (3.1) $)_{V}$, we get
(i) $B P_{*}(B)=B P_{*}+\Sigma^{11} B P_{*}$,
(ii) $B P_{*}(M B)=B P_{*} /(3)+\Sigma^{11} B P_{*} /(3)$,
(iii) $B P_{*}(V B)=B P_{*} /\left(3, v_{1}\right)+\Sigma^{11} B P_{*} /\left(3, v_{1}\right)$,
where an n-fold suspension $\Sigma^{n} M$ of a graded module $M=\left(M_{i}\right)$ is given by $\left(\Sigma^{n} M\right)_{i}$ $=M_{i-n}$, in particular $B P_{*}\left(\Sigma^{n} X\right)=\Sigma^{n} B P_{*}(X)$.

Now we shall prove Theorem 1.1.
Proof of (1.1). The construction of $\bar{\beta}$ starts from the stable map [βi_{1}]: $\Sigma^{16} M \rightarrow V$ having $V\left(1 \frac{1}{2}\right)$ as its mapping cone [16, p. 239]. This coincides with $\tilde{\psi}$ of L. Smith [9, 2nd line on p. 824] up to sign, and induces the multiplication by v_{2}. There is a relation [16, Th. 6.7]

$$
\left[\beta i_{1}\right] \alpha=\beta^{\prime}\left(\beta^{\prime} i_{1}+\delta_{1}\left[\beta \delta_{1}\right] \delta\right) .
$$

Since $V=C_{\alpha}$ and $V B=C_{\beta^{\prime}}$ by (3.1) $)_{V}$ and (3.5), this relation gives an element $\beta_{0}: \Sigma^{16} V \rightarrow V B$ such that $\beta_{0} i_{1}=j_{V}\left[\beta i_{1}\right]$ and $k_{V} \beta_{0}=\beta^{\prime} \delta_{1}+\delta_{1}\left[\beta \delta_{0}\right]$. Since $\mathscr{A}_{16}(V)$ $=0$ and $\mathscr{A}_{5}(V) \cap \operatorname{Ker} \beta_{*}^{\prime}=\left\{\beta^{\prime} \delta_{1}+\delta_{1}\left[\beta \delta_{0}\right]\right\}, \beta_{0}$ is unique and generates $\pi_{16}(V$; $V B$). By (3.4) for $X=Y=V$, there is $\bar{\beta}$ such that $\bar{\beta} j_{V}=\beta_{0}$, and so by (2.5)

$$
\begin{equation*}
\mathscr{A}_{16}(V B)=\left\{\bar{\beta}, \quad j_{V}\left[\beta^{2} \delta_{1}\right] k_{V}, \quad j_{V}\left[\beta \delta_{1} \beta\right] k_{V}\right\} . \tag{3.8}
\end{equation*}
$$

By (3.6), (3.8) and easy calculations, we see that
(3.9) there is $\bar{\beta} \in \mathscr{A}_{16}(V B)$ such that $\bar{\beta}\left(i_{1} \wedge 1_{B}\right) \equiv\left[\beta i_{1}\right] \wedge 1_{B} \bmod j_{V}\left[\delta_{1} \beta\right]$. $\cdot\left[\beta i_{1}\right] k_{M},\left(\pi_{1} \wedge 1_{B}\right) \bar{\beta} \equiv\left[\pi_{1} \beta\right] \wedge 1_{B} \bmod j_{M}\left[\pi_{1} \beta\right]\left[\beta \delta_{1}\right] k_{V}$ and $k_{V} \bar{\beta} j_{V}=\beta^{\prime} \delta_{1}+\delta_{1}\left[\beta \delta_{0}\right]$, and such $\bar{\beta}$'s form a coset of the subgroup $I=\left\{j_{V}\left[\beta^{2} \delta_{1}\right] k_{V}, j_{V}\left[\beta \delta_{1} \beta\right] k_{V}\right\}$ of $\mathscr{A}_{16}(V B)$.

For any $\bar{\beta}$ in (3.9), $\bar{\beta}\left(i_{1} \wedge 1_{B}\right)$ and $\left[\beta i_{1}\right] \wedge 1_{B}$ induce the same homomorphism on $B P_{*}(\quad)$. Since $\left(i_{1} \wedge 1_{B}\right)_{*}$ is the natural epimorphism to the quotient (3.7) (iii) of (3.7) (ii), we see that any $\bar{\beta}$ in (3.9) satisfies (a).

Put $\bar{\beta}\left(i_{1} \wedge 1_{B}\right)-\left[\beta i_{1}\right] \wedge 1_{B}=x j_{V}\left[\delta_{1} \beta\right]\left[\beta i_{1}\right] k_{M}$ and $\left(\pi_{1} \wedge 1_{B}\right) \bar{\beta}-\left[\pi_{1} \beta\right] \wedge 1_{B}=$ $y j_{M}\left[\pi_{1} \beta\right]\left[\beta \delta_{1}\right] k_{\nu}$. Then,

$$
\bar{\beta}^{\prime}=\bar{\beta}-(x-y) j_{V}\left[\beta^{2} \delta_{1}\right] k_{V}-(x+y) j_{V}\left[\beta \delta_{1} \beta\right] k_{V}
$$

satisfies (b) by (2.5) and (3.6). The uniqueness of $\bar{\beta}$ satisfying (b) follows from (3.8) and

$$
I \cap \operatorname{Ker}\left(i_{1} \wedge 1_{B}\right)^{*} \cap \operatorname{Ker}\left(\pi_{1} \wedge 1_{B}\right)_{*}=0 .
$$

q.e.d.

Remark 3.10. Let \mathscr{A} be the Steenrod algebra $\bmod 3$. Denote by E_{n} the exterior algebra generated by Milnor's primitive elements Q_{0}, \ldots, Q_{n}. Identifying E_{n} with a quotient of \mathscr{A}, we may regard E_{n} as an \mathscr{A}-module. Then, E_{0} and E_{1} are realized by the cohomology of M and $V[15, \mathrm{Th} .1 .1]$. Let M_{n} be an extension (as an A-module) of E_{n} by $\Sigma^{11} E_{n}$ such that $\mathscr{P}^{3} a=Q_{0} b$ in M_{n}, where a and b are the generators corresponding to E_{n} and $\Sigma^{11} E_{n}(\operatorname{deg} a=0, \operatorname{deg} b$ $=11)$. If E_{n} is realized, then so is M_{n}. In fact, $H^{*}\left(V(n) \wedge B ; Z_{3}\right)=M_{n}$ if $V(n)$ exists. In particular, M_{0} and M_{1} are realized by $M B$ and $V B$. We see also that the mapping cone $V B(2)$ of $\bar{\beta}$ realizes M_{2}, i.e.,

$$
H^{*}\left(V B(2) ; Z_{3}\right)=M_{2},
$$

though E_{2} can not be realized [15, Th. 1.2].
Theorem 3.11. Let $\bar{\delta}_{1}=\delta_{1} \wedge 1_{B} \in \mathscr{A}_{-5}(V B)$. Then the element $\bar{\beta} \bar{\delta}_{1}-\bar{\delta}_{1} \bar{\beta}$ belongs to the center of $\mathscr{A}_{*}(V B)$. In particular, there is a relation

$$
\begin{equation*}
\bar{\beta}^{2} \bar{\delta}_{1}+\bar{\beta} \bar{\delta}_{1} \bar{\beta}+\bar{\delta}_{1} \bar{\beta}^{2}=0 . \tag{3.12}
\end{equation*}
$$

Proof. By the definition of $\lambda_{X}, \lambda_{V B}\left(\beta_{(1)} \delta\right)=\lambda_{V}\left(\beta_{(1)} \delta\right) \wedge 1_{B}$ [16, Th. 2.4. (ii)], and so $\lambda_{V B}\left(\beta_{(1)} \delta\right)=\left[\beta \delta_{1}\right] \wedge 1_{B}-\left[\delta_{1} \beta\right] \wedge 1_{B}=\bar{\beta} \delta_{1}-\bar{\delta}_{1} \bar{\beta}$ by (2.1) and (1.1) (b). By (3.5), $\lambda_{V B}\left(\delta \beta_{(1)} \delta\right)=\beta_{1} \wedge 1_{V B}=0$, and hence $\lambda_{V B}\left(\beta_{(1)} \delta\right) \xi=(-1)^{\operatorname{deg} \xi} \xi \lambda_{V B}$
$\left(_{(1)} \delta\right)$ for any $\xi \in \mathscr{A}_{*}(V B)$ by [16, Th. 2.4. (iii)]. Letting $\xi=\bar{\beta}$, we obtain (3.12).
q.e.d.

From (3.12) we have immediately
Corollary 3.13. $\quad \bar{\beta}^{3} \bar{\delta}_{1}=\bar{\delta}_{1} \bar{\beta}^{3}$.
Now, we denote the cofibering for $W=M \cup_{\alpha^{2}} C \Sigma^{8} M$ by $M \xrightarrow{i_{2}} W \xrightarrow{\pi_{2}} \Sigma^{9} M$. There is a sequence of cofiberings [8, Lemma 1.5]

$$
\begin{equation*}
\Sigma^{4} V \xrightarrow{a} W \xrightarrow{b} V \xrightarrow{\delta_{1}} \Sigma^{5} V, \tag{3.14}
\end{equation*}
$$

where a and b are given by

$$
\begin{equation*}
a i_{1}=i_{2} \alpha, \quad \pi_{2} a=\pi_{1} ; \quad b i_{2}=i_{1}, \quad \pi_{1} b=\alpha \pi_{2} . \tag{3.15}
\end{equation*}
$$

Proof of (1.4). By (3.14), $W B$ is the mapping cone of $\bar{\delta}_{1}$. Hence, by (3.13), there is $\bar{\rho}: \Sigma^{48} W B \rightarrow W B$ such that $\bar{\rho} \bar{a}=\bar{a} \bar{\beta}^{3}$ and $\bar{b} \bar{\rho}=\bar{\beta}^{3} \bar{b}, \bar{a}=a \wedge 1_{B}$, $\bar{b}=b \wedge 1_{B}$. By (3.15) and (1.1) (a), \bar{a} and $\bar{\beta}^{3}$ induce the multiplications by v_{1} and v_{2}^{3}, respectively. Hence $\bar{\rho}$ induces the multiplication by v_{2}^{3}. q.e.d.

In the above we have obtained

$$
\begin{equation*}
\bar{\rho} \bar{a}=\bar{a} \bar{\beta}^{3}, \quad \bar{\rho} \bar{\rho}=\bar{\beta}^{3} b \quad\left(\bar{a}=a \wedge 1_{B}, \bar{b}=b \wedge 1_{B}\right) . \tag{3.16}
\end{equation*}
$$

As a consequence of (3.16), we have
Proposition 3.17. For the elements $\bar{\beta}_{3 t}$ in (1.2) and $\bar{\rho}_{t}$ in (1.6), there holds the relation $\bar{\beta}_{3 t} \in\left\{\bar{\rho}_{t}, 3, \alpha_{1}\right\}$.

Proof.

$$
\begin{array}{rlr}
\bar{\beta}_{3 t} & =\left(\pi \pi_{1} \wedge 1_{B}\right) \bar{\beta}^{3 t} j_{V} i_{1} i \\
& =\left(\pi \pi_{2} \wedge 1_{B}\right) \bar{a} \bar{\beta}^{3 t} j_{V} i_{1} i & \text { by }(3.15) \\
& =\left(\pi \pi_{2} \wedge 1_{B}\right) \bar{\rho}^{t} j_{W} a i_{1} i & \text { by }(3.16) \\
& =\left(\pi \pi_{2} \wedge 1_{B}\right) \bar{\rho}^{t} j_{W} i_{2} \alpha i & \text { by }(3.15) .
\end{array}
$$

Since $\left(\pi \pi_{2} \wedge 1_{B}\right) \bar{\rho}^{t} j_{W} i_{2}$ and αi are an extension of $\bar{\rho}_{t}$ and a coextension of $\alpha_{1}, \bar{\beta}_{3 t}$ lies in the bracket $\left\{\bar{\rho}_{t}, 3, \alpha_{1}\right\}$.
q.e.d.

§4. Proof of Theorems $\mathbf{1 . 3}$ and 1.6

R. Zahler [18] [4] defined an invariant taking values in $\operatorname{Ext}_{A}^{2, *}\left(B P^{*}, B P^{*}\right)$, $A=B P^{*}(B P)$ the Steenrod ring of the Brown-Peterson cohomology theory, whose coefficient ring is $B P^{*}\left(=B P_{-*}\right)=Z_{(3)}\left[v_{1}, v_{2}, \ldots\right]$, $\operatorname{deg} v_{i}=-2\left(3^{i}-1\right)[2, \S 6] \mathrm{cf}$. [3] (this v_{i} is the dual of $v_{i} \in B P_{*}$ in the previous sections). This invariant detects
β 's of [9] and ρ 's of [8] for $p \geqq 5$ (cf. [4, Remark at the end of §2]). We shall follow his line with minor alteration.

Denote by W_{r} the mapping cone $M \cup_{a^{r}} C \Sigma^{4 r} M\left(W_{1}=V, W_{2}=W\right)$ and $i_{r}: M \rightarrow W_{r}$ the inclusion. Let $H_{k}(r)$ be the image of $\left(i_{r} i\right)^{*}: \pi_{k}\left(W_{r} ; B\right) \rightarrow \pi_{k}(B)$. Take ξ $=\eta i_{r} i \in H_{k}(r)$. Since $i_{r}^{*}=0: B P^{*}\left(W_{r}\right) \rightarrow B P^{*},\left(\eta i_{r}\right)^{*}=0$ and there is a short exact sequence of A-modules:

$$
E_{\eta}: \quad 0 \longrightarrow \Sigma^{k+2} B P^{*} /(3) \longrightarrow B P^{*}\left(C_{n i r}\right) \longrightarrow B P^{*}(B) \longrightarrow 0,
$$

and we obtain the class $\left\{E_{\eta}\right\} \in \operatorname{Ext}_{A}^{1, k+2}\left(B P^{*}(B), B P^{*} /(3)\right)$. Denote by $\Delta: \operatorname{Ext}_{A}^{j, i}$ $\left(-, B P^{*} /(3)\right) \rightarrow \operatorname{Ext}_{A}^{i+1, j}\left(-, B P^{*}\right)$ the connecting homomorphism associated with the short exact sequence of A-modules:

$$
0 \longrightarrow B P^{*} \xrightarrow{\times 3} B P^{*} \xrightarrow{\bar{\pi}} B P /(3) \longrightarrow 0,
$$

and by $\iota: B P^{*} \rightarrow B P^{*}(B)=B P^{*}+\Sigma^{11} B P^{*}$ the right inverse of $j^{*}: B P^{*}(B) \rightarrow B P^{*}$. Let η^{\prime} also satisfy $\eta^{\prime} i_{r} i=\xi$. Then $\eta i_{r} \equiv \eta^{\prime} i_{r} \bmod \pi^{*} \pi_{k+1}(B)$. If $k \not \equiv-1 \bmod 4$ and $k \neq 10$, any element of $\pi_{k+1}(B)$ induces the trivial homomorphism, and hence $\left\{E_{\eta}\right\} \equiv\left\{E_{\eta^{\prime}}\right\} \bmod \operatorname{Im} \bar{\pi}_{*}=\operatorname{Ker} \Delta$. Therefore $\Delta\left\{E_{\eta}\right\}$ depends only on ξ. Thus, letting $e_{r}(\xi)=\iota^{*} \Delta\left\{E_{\eta}\right\}, \eta \in\left(i_{r} i\right)^{*-1} \xi$, we obtain a well-defined homomorphism

$$
\begin{equation*}
e_{r}: H_{k}(r) \longrightarrow \operatorname{Ext}_{A}^{2, k+2}\left(B P^{*}, B P^{*}\right), \quad k \not \equiv-1 \bmod 4, \quad k \neq 10 \tag{4.1}
\end{equation*}
$$

Let $t=3^{f} a$, where $a \not \equiv 0 \bmod 3, a \geqq 1$ and $f \geqq 0$. If $1 \leqq r \leqq 3^{f}$, the multiplication $v_{2}^{t}: \Sigma^{-16 t} B P^{*} \rightarrow B P^{*} /\left(3, v_{1}^{r}\right)$ is an A-homomorphism [18, Lemma 2]. Hence

$$
v_{2}^{t} \in \operatorname{Ext}_{A}^{0,16 t}\left(B P^{*}, B P^{*} /\left(3, v_{1}^{r}\right)\right) .
$$

Denote by $\Delta_{r}: \operatorname{Ext}_{A}^{i, j}\left(-, B P^{*} /\left(3, v_{1}^{r}\right)\right) \rightarrow \operatorname{Ext}_{A}^{i+1, j-4 r}\left(-, B P^{*} /(3)\right)$ the connecting homomorphism associated with

$$
E_{r}: \quad 0 \longrightarrow \Sigma^{-4 r} B P^{*} /(3) \xrightarrow{-v_{1}^{r}} B P^{*} /(3) \longrightarrow B P^{*} /\left(3, v_{1}^{r}\right) \longrightarrow 0,
$$

and put

$$
e(r, t)=\Delta\left(\Delta_{r}\left(v_{2}^{t}\right)\right) \in \operatorname{Ext}_{A}^{2,16 t-4 r}\left(B P^{*}, B P^{*}\right)
$$

for $1 \leqq r \leqq 3^{f}, t=3^{f} a, f \geqq 0, a \geqq 1, a \not \equiv 0 \bmod 3$. Then, D. C. Johnson and R. Zahler ([4, § 2], [18, Th. 1. a]) proved

Theorem 4.2. $e(r, t) \neq 0$.
Now we shall prove Theorems 1.4 and 1.6.
Proof of (1.4). We shall show $e_{1}\left(\bar{\beta}_{t}\right)=e(1, t)$. Then $\bar{\beta}_{t} \neq 0$ follows from (4.2). Put $\eta=\left(\pi \pi_{1} \wedge 1_{B}\right) \bar{\beta}^{t} j_{V}, k=16 t-6$. Then $\bar{\beta}_{t}=\eta i_{1} i \in H_{k}(1)$ and $e_{1}\left(\bar{\beta}_{t}\right)$ is
defined for $t \geqq 2$.
Since $\left[\pi_{1} \beta\right]$ is the Spanier-Whitehead dual of $\left[\beta i_{1}\right]$, it follows from (3.9) that the coset $\bar{\beta}+I$ in (3.9) is self-dual. Hence, any $\bar{\beta}$ in (3.9) induces the multiplication by v_{2} on the $B P$-cohomology. So, $\phi=\eta^{*} \in \operatorname{Ext}_{A}^{0,16 t}\left(B P^{*}(B), B P^{*} /(3\right.$, $\left.v_{1}\right)$) is given by $\phi \iota=v_{2}^{t}$ and $\phi k^{*}=0$.

Applying $B P^{*}(\quad)$ to the cofiber sequences for i_{1} and ηi_{1}, we obtain the commutative diagram of short exact sequences:

Then $\left\{E_{\eta}\right\}=\phi^{*}\left\{E_{1}\right\}$ in Ext ${ }^{1, *}$, and we have

$$
\iota^{*}\left\{E_{\eta}\right\}=\left(\phi_{\iota}\right)^{*}\left\{E_{1}\right\}=\Delta_{1}(\phi \iota)=\Delta_{1}\left(v_{2}^{t}\right)
$$

Thus, $e_{1}\left(\bar{\beta}_{t}\right)=\iota^{*} \Delta\left\{E_{\eta}\right\}=\Delta \Delta_{1}\left(v_{2}^{t}\right)=e(1, t)$.
q.e.d.

Proof of (1.6). In the same way as above, we see that $e_{2}\left(\bar{\rho}_{t}\right)=e(2,3 t)$ and $\bar{\rho}_{t} \neq 0$. The relation $\bar{\beta}_{3 t} \in\left\{\bar{\rho}_{t}, 3, \alpha_{1}\right\}$ is proved in (3.17).

q.e.d.

§ 5. Remarks for small \boldsymbol{t} and non-realizability

We shall compare our elements $\bar{\beta}_{t}$ and $\bar{\rho}_{t}$ with the results on G_{*}. The nonrealizability of some cyclic $B P_{*}$-modules will be proved. As we only treat the 3-primary elements, we denote simply by G_{*} the 3 -component of G_{*}.

It is easy to see from (1.1) (b) that

$$
\bar{\beta}_{1}=i \beta_{1}=0 \quad \text { and } \quad \bar{\beta}_{2}=j \beta_{2}
$$

for $\beta_{2}=\pi\left[\pi_{1} \beta\right]\left[\beta i_{1}\right] i \in G_{26}$.
The elements $k \bar{\beta}_{t}$ and $k \bar{\rho}_{t}$ lie in $G_{16 t-17}$ and $G_{48 t-21}$, which contain the image of the J-homomorphism [1]. But $k \bar{\beta}_{t}$ and $k \bar{\rho}_{t}$ can not be contained in $\operatorname{Im} J$, because these elements factor through V or W. Since $G_{16 t-17} / \operatorname{Im} J(t=3$, 5,6) and $G_{27} / \operatorname{Im} J$ vanish ([11], [7, Th. B], [6]), we have $k \bar{\beta}_{t}=0$ for $t=3,5,6$ and $k \bar{\rho}_{1}=0$. Therefore,

$$
\bar{\rho}_{1}= \pm j \varepsilon_{1}, \quad \bar{\beta}_{3}= \pm j \varepsilon_{2}
$$

where $\varepsilon_{1}=\left\{\alpha_{1}, \beta_{1}^{3}, 3, \alpha_{1}\right\}$ and $\varepsilon_{2}=\left\{\varepsilon_{1}, 3, \alpha_{1}\right\}$, and

$$
\bar{\beta}_{5}=j \beta_{5}, \quad \bar{\beta}_{6}=j \beta_{6} .
$$

These two equalities give generators β_{5} of G_{74} and β_{6} of G_{90}.
We proved [7] that the element β_{4} does not exist. In fact, the following
relation is easily seen from [7, Th. B]

$$
k \bar{\beta}_{4}= \pm \beta_{1} \varepsilon^{\prime} \quad(\neq 0)
$$

and $\bar{\beta}_{4}$ can not lie in the image of j_{*}.
Since $\left(\alpha_{1} \beta_{2}\right)_{*}: G_{46} \rightarrow G_{75}$ is monomorphic [7], we have

$$
\left\{\varepsilon_{1}, 3, \alpha_{2}\right\}=\left\{\varepsilon_{2}, 3, \alpha_{1}\right\}=0 .
$$

The non-existence of β_{4} is equivalent to the relation

$$
\begin{equation*}
\left\{\varepsilon_{1}, 3, \alpha_{2}, 3\right\}=\left\{\varepsilon_{2}, 3, \alpha_{1}, 3\right\} \equiv \pm \beta_{1} \varepsilon^{\prime} \tag{5.1}
\end{equation*}
$$

This means that $\left(\pi \pi_{2} \wedge 1_{B}\right) \bar{\rho} j_{W}$ (and $\left(\pi \pi_{1} \wedge 1_{B}\right) \bar{\beta}^{3} j_{V}$ also) can not be compressed to the bottom sphere of B. Furthermore the element $k_{W} \bar{\rho}_{W} \in \mathscr{A}_{37}(W)$ satisfies
(5.2) $\quad k_{W} \bar{\rho} j_{W} i_{2} i=i_{2} i \varepsilon^{\prime}, \quad \pi \pi_{2} k_{W} \bar{\rho} j_{W}=-\varepsilon^{\prime} \pi \pi_{2} \quad$ for suitable sign of ε^{\prime}.

There are elements $\tilde{\beta}_{t}: S^{16 t+4} \rightarrow W, t=1,2$, such that $\pi \pi_{2} \tilde{\beta}_{t}=\beta_{t}$. Then, since $\beta_{2} \varepsilon^{\prime}=0$, the element $\left(\pi \pi_{2} \wedge 1_{B}\right) \bar{\rho} j_{W} \tilde{\beta}_{2}$ can be compressed to the bottom sphere of B, and the compression is β_{5}. But, since $\beta_{1} \varepsilon^{\prime} \neq 0$, such a compression does not exist for $t=1$.

From (5.2), we can see $k \bar{\rho}_{2}=\left(\pi \pi_{2} k_{W} \bar{\rho}\right)\left(\bar{\rho} j_{W} i_{2} i\right)=\left(\pm \varepsilon_{1}\right) \varepsilon^{\prime}-\varepsilon^{\prime}\left(\pm \varepsilon_{1}\right)=0$. Hence we obtain an element ρ_{2} such that

$$
\bar{\rho}_{2}=j \rho_{2}, \quad \beta_{6}=\left\{\rho_{2}, 3, \alpha_{1}\right\}
$$

This generates G_{86} and coincides with Nakamura's $\rho_{1}[6]$ up to sign.
In the following, we shall discuss the non-realizability of $B P_{*}$-modules. We first prove Theorem 1.7.

Proof of (1.7). Let assume that there is an X such that $B P_{*}(X)=B P_{*} /(3$, v_{1}^{2}, v_{2}^{3}) as a $B P_{*}$-module. Then, in the same way as L. Smith [10, Lemmas 2.12.2], the homology group of X localized at 3 is calculated and we see that X is 3-equivalent to a complex

$$
X^{\prime}=S^{0} \cup_{3} e^{1} \cup e^{9} \cup_{3} e^{10} \cup e^{49} \cup_{3} e^{50} \cup e^{58} \cup_{3} e^{59}
$$

Let Y be the 10 -skeleton of X^{\prime} and Y^{\prime} be $\Sigma^{-1}\left(X^{\prime} / Y\right)$. Then there is a cofibering $Y^{\prime} \rightarrow Y \rightarrow X^{\prime}$ and we have a short exact sequence

$$
\begin{equation*}
0 \longrightarrow B P_{*}\left(Y^{\prime}\right) \longrightarrow B P_{*}(Y) \longrightarrow B P_{*}\left(X^{\prime}\right) \longrightarrow 0 \tag{*}
\end{equation*}
$$

The complexes Y and Y^{\prime} are mapping cones of some elements of $\mathscr{A}_{8}(M)=Z_{3}$, generated by α^{2}. The $B P$ homology of the mapping cone of $x \alpha^{2}$ is $B P_{*} /\left(3, v_{1}^{2}\right)$ or $B P_{*} /(3)+\sum^{9} B P_{*} /(3)$ according as $x \neq 0$ or $x=0$. Hence, it follows from (*) that the attaching classes for Y and Y^{\prime} are non-zero. Thus, we obtain a map
$f: \Sigma^{48} W \rightarrow W$ realizing the multiplication by v_{2}^{3}.
Put $\gamma=\pi \pi_{2} f i_{2} i \in G_{38}$. Then, exactly the same discussion as in [8], [9] shows $\gamma \neq 0$. Hence γ is a non-zero multiple of ε_{1} and satisfies $\left\{\gamma, 3, \alpha_{2}, 3\right\} \equiv 0$. This contradicts to (5.1).

> q.e.d.

The above proof can easily be generalized, and in the same way the following results are obtained.
(5.3) If $B P_{*} /\left(3, v_{1}, v_{2}^{t}\right)$ is realized, there is a non-zero element $\gamma \in G_{16 t-6}$ such that $3 \gamma=0,\left\{\gamma, 3, \alpha_{1}\right\} \equiv 0$ and $\left\{\gamma, 3, \alpha_{1}, 3\right\} \equiv 0$.
(5.4) If $B P_{*} /\left(3, v_{1}^{2}, v_{2}^{3 t}\right)$ is realized, there is a non-zero element $\gamma \in G_{48 t-10}$ such that $3 \gamma=0,\left\{\gamma, 3, \alpha_{2}\right\} \equiv 0$ and $\left\{\gamma, 3, \alpha_{2}, 3\right\} \equiv 0$.

Since $\left\{\beta_{2}, 3, \alpha_{1}\right\} \neq 0 \quad\left[14\right.$, Prop. 15.6], $\left\{\varepsilon_{2}, 3, \alpha_{1}, 3\right\} \not \equiv 0$ and $G_{58}=0$ [7], it follows from (5.3) that
(5.5) for $t=2,3,4, \quad B P_{*} /\left(3, v_{1}, v_{2}^{t}\right)$ can not be realized.

Appendix. 5-Primary $\boldsymbol{\gamma}$-family

For $p=5$, the existence of $V(3)$ (and the construction of the γ-family) is not known. We can, however, construct γ 's in $\pi_{*}(B)$ for $p=5$ in a similar manner.

Set $B=S^{0} \cup_{\beta_{1}} e^{39}$ and $V B(2)=V(2) \wedge B . \quad$ A map $\mu: V(2) \wedge V(2) \rightarrow V B(2)$ is called a multiplication if the restrictions of μ on $V(2) \wedge S^{0}=V(2)$ and on S^{0} $\wedge V(2)=V(2)$ are the inclusions.

By Theorem 5.2 of [15], $\pi_{*}(V B(2))$ is isomorphic, for deg<197, to the graded vector space A in the theorem, and hence

$$
\pi_{i}(V B(2))= \begin{cases}Z_{5} & \text { for } i=0,7,39,54,86,93 \\ 0 & \text { otherwise for } \quad i<197\end{cases}
$$

We can therefore extend any $\operatorname{map}\left(V(2) \wedge S^{0}\right) \cup\left(S^{0} \wedge V(2)\right) \rightarrow V B(2)$ over the whole of $V(2) \wedge V(2)$. Thus,
(A.1) there exists a multiplication $\mu: V(2) \wedge V(2) \rightarrow V B(2)$.

The relation $\beta_{1} \wedge 1_{B}=0$ in (3.3) holds for any $p \geqq 3$, and we have
(A.2) there exists a multiplication $\mu_{B}: B \wedge B \rightarrow B$.

Now, we denote by

$$
\begin{equation*}
\gamma_{0}: S^{248} \longrightarrow V(2) \tag{A.3}
\end{equation*}
$$

an element having $V\left(2 \frac{1}{8}\right)$ as its mapping cone. Then,
(A.4) γ_{0} induces the multiplication by v_{3} on the $B P$ homology.

Using the elements of (A.1)-(A.3), we define

$$
\begin{equation*}
\bar{\gamma}: \Sigma^{248} V B(2) \longrightarrow V B(2) \tag{A.5}
\end{equation*}
$$

by the following composition

$$
\begin{aligned}
& \Sigma^{248} V B(2)=S^{248} \wedge V B(2) \xrightarrow{\gamma_{0} \wedge 1} V(2) \wedge V(2) \wedge B \\
& \xrightarrow{\mu \wedge 1} V(2) \wedge B \wedge B \xrightarrow{1 \wedge \mu_{B}} V B(2) .
\end{aligned}
$$

Let $i_{0}: S^{0} \rightarrow V(2)$ be the inclusion. Then, we have easily

$$
\begin{equation*}
\bar{\gamma}\left(i_{0} \wedge 1_{B}\right)=\gamma_{0} \wedge 1_{B} . \tag{A.6}
\end{equation*}
$$

From (A.4) and (A.6), it follows that
(A.7) $\bar{\gamma}$ induces the multiplication by v_{3} on each factor of $B P_{*}(V B(2))=B P_{*} /(5$, $\left.v_{1}, v_{2}\right)+\Sigma^{39} B P_{*} /\left(5, v_{1}, v_{2}\right)$, hence $B P_{*} /\left(5, v_{1}, v_{2}, v_{3}\right)+\Sigma^{39} B P_{*} /\left(5, v_{1}, v_{2}, v_{3}\right)$ is realized by the mapping cone of $\bar{\gamma}$.

Recently, H. R. Miller, D. C. Ravenel and W. S. Wilson [5] have announced the non-triviality of $\gamma_{t} \in G_{\left(t p^{2}+(t-1) p+t-2\right) q-3}, q=2(p-1)$, for all $t \geqq 1$ and primes $p \geqq 7$. So, we expect the non-triviality of the elements $\bar{\gamma}_{t} \in \pi_{248 t-59}(B)$ defined by the compositions

$$
S^{248 t} \xrightarrow{j} \Sigma^{248 t} B \xrightarrow{i_{0} \wedge 1_{B}} \Sigma^{248 t} V B(2) \xrightarrow{\bar{\gamma} t} V B(2) \xrightarrow{\pi_{0} \wedge 1_{B}} \Sigma^{59} B,
$$

where j and i_{0} are the inclusions to the bottom spheres and $\pi_{0}: V(2) \rightarrow S^{59}$ is the collapsing map.

References

[1] J. F. Adams, On the groups $J(X)-I V$, Topology 5 (1966), 21-71.
[2] S. Araki, Typical formal groups in complex cobordism and K-theory, Lectures in Math. Dept. of Math. Kyoto Univ. 6, Kinokuniya Book-Store Co., Ltd., Tokyo, 1973.
[3] M. Hazewinkel, Constructing formal groups I, Netherlands School of Economics, Econometric Institute, Report 7119, 1971.
[4] D. C. Johnson and R. S. Zahler, Detecting stable homotopy with secondary cobordism operations II, to appear.
[5] H. R. Miller, D. C. Ravenel and W. S. Wilson, Novikov's Ext ${ }^{2}$ and the nontriviality of the gamma family, to appear.
[6] O. Nakamura, Some differentials in the mod 3 Adams spectral sequence, Bull. Sci. Engrg. Div. Univ. Ryukyus (Math. Nat. Sci.) 19 (1975), 1-26.
[7] S. Oka, The stable homotopy groups of spheres II, Hiroshima Math. J. 2 (1972), 99-161.
[8] —, A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975), 87-114.
[9] L. Smith, On realizing complex bordism modules. Applications to the homotopy of spheres, Amer. J. Math. 92 (1970), 793-856.
[10] ——, On realizing complex bordism modules III, Amer. J. Math. 94 (1972), 875-890.
[11] H. Toda, p-Primary components of homotopy groups IV. Compositions and toric constructions, Mem. Coll. Sci. Univ. Kyoto, Ser. A, 32 (1959), 288-332.
[12] —, Composition methods in homotopy groups of spheres, Annals of Math. Studies 49, Princeton Univ. Press, Princeton, 1962.
[13] —, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839-842.
[14] —, On iterated suspensions III, J. Math. Kyoto Univ. 8 (1968), 101-130.
[15] —, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53-66.
[16] —, Algebra of stable homotopy of Z_{p}-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.
[17] N. Yamamoto, Algebra of stable homotopy of Moore spaces, J. Math. Osaka City Univ. 14 (1963), 45-67.
[18] R. S. Zahler, Fringe families in stable homotopy, to appear.

Department of Mathematics, Faculty of Science, Hiroshima University
and
Department of Mathematics, Faculty of Science, Kyoto University

[^0]: The first-named author was partially supported by the Sakkokai Foundation.

