3-Primary β -Family in Stable Homotopy

Shichirô OKA and Hirosi Toda

(Received May 19, 1975)

§1. Introduction

Let p be an odd prime. L. Smith [9] discovered, for each $p \ge 5$, an infinite family $\{\beta_i\}$ in the stable homotopy groups G_* of spheres. The construction of this family is assured by the existence of the stable complex V(2) for p considered in [9], [15].

The case p=3 is quite different from the case $p \ge 5$ [16, §6], e.g., V(2) does not exist [15, Th. 1.2] and so the construction of β_t for general t is not known; it is, however, known from the results on G_* ([6], [7, Th. B], [11]) that β_t , $t \le 6$ except for t=4, exist and that β_4 can not be defined.

Let B be a stable mapping cone $S^0 \cup_{\beta_1} e^{i_1}$ of $\beta_1 \in G_{10}$ of order 3, and $j: S^0 \to B$ be an inclusion. The purpose of this paper is to construct non-trivial elements $\bar{\beta}_t \in \pi_{16t-6}(B)$ of order 3 for all $t \ge 2$ such that $j\beta_t = \bar{\beta}_t$ if $\beta_t \in G_*$ exists. We shall also construct non-trivial elements $\bar{\rho}_t \in \pi_{48t-10}(B)$, $t \ge 1$, corresponding to the elements $\rho_{t,1} \in G_*$ of [8, Th. A].

For the simplicity, we shall denote by M and V the spectra V(0) and V(1) for p=3 in [15]. In stable notations, $M=S^0 \cup_3 e^1$ and $V=M \cup_{\alpha} C\Sigma^4 M$, and we have the cofiberings $S^0 \xrightarrow{i} M \xrightarrow{\pi} S^1$ and $M \xrightarrow{i_1} V \xrightarrow{\pi_1} \Sigma^5 M$. Put $VB = V \wedge B$. Its Brown-Peterson homology is given by the direct sum:

$$BP_{*}(VB) = BP_{*}(V) + \Sigma^{11}BP_{*}(V) = BP_{*}/(3, v_{1}) + \Sigma^{11}BP_{*}/(3, v_{1}),$$

where $BP_* = \pi_*(BP) = Z_{(3)}[v_1, v_2, ...]$, deg $v_i = 2(3^i - 1)$ [2] [3]. Let $[\beta i_1]: \Sigma^{16}M$ $\rightarrow V$ and $[\pi_1\beta]: \Sigma^{11}V \rightarrow M$ be the elements having $V\left(1\frac{1}{2}\right)$ and $\Sigma^{-5}\left(V(2)/V\left(\frac{1}{2}\right)\right)$ as their mapping cones [16, §6].

THEOREM 1.1. There exists a stable map

$$\overline{\beta}: \Sigma^{16} VB \longrightarrow VB$$

such that

(a) $\overline{\beta}$ induces the multiplication by v_2 on each factor of $BP_*(VB)$,

and hence $BP_*/(3, v_1, v_2) + \Sigma^{11}BP_*/(3, v_1, v_2)$ is realizable as the BP homology

The first-named author was partially supported by the Sakkokai Foundation.

of the mapping cone of $\overline{\beta}$. Moreover, such a $\overline{\beta}$ is unique by the equalities

(b) $\overline{\beta}(i_1 \wedge 1_B) = [\beta i_1] \wedge 1_B, (\pi_1 \wedge 1_B)\overline{\beta} = [\pi_1 \beta] \wedge 1_B.$

The theorem, together with some additional properties, will be proved in § 3. It is known that $BP_*/(3, v_1, v_2)$ can not be realizable. We also notice that there are distinct spaces realizing $BP_*/(3, v_1, v_2) + \Sigma^{11}BP_*/(3, v_1, v_2)$. Roughly speaking, the element $\overline{\beta}$ corresponds to $\beta \wedge 1_B$ for $p \ge 5$, and (a) asserts that $V(2) \wedge B$ exists (not uniquely) even if V(2) does not.

DEFINITION 1.2. We define $\overline{\beta}_t \in \pi_{16t-6}(B)$, $t \ge 1$, by the following composition $(\overline{\beta}_1=0)$:

$$S^{16t} \xrightarrow{j} \Sigma^{16t} B \xrightarrow{i_1 i \wedge 1_B} \Sigma^{16t} V B \xrightarrow{\overline{\beta}^t} V B \xrightarrow{\pi \pi_1 \wedge 1_B} \Sigma^6 B.$$

D. C. Johnson and R. Zahler ([4], [18]) obtained, for any prime $p \ge 3$, an infinite family in $\operatorname{Ext}_{A}^{2,*}(BP^*, BP^*)$, the E_2 -term of the Adams-Novikov spectral sequence, corresponding to the β -family when $p \ge 5$. Our family $\{\overline{\beta}_t\}$ (except t=1) corresponds to their family in Ext for p=3, and we shall prove in §4 the non-triviality of $\overline{\beta}_t$ by Zahler's method [18].

THEOREM 1.3. For $t \ge 2$, $\overline{\beta}_t$ is non-zero element of order 3.

For $t \leq 6$, we shall see in § 5 that $\bar{\beta}_t = j\beta_t$, $t \neq 4$, and $k\bar{\beta}_4 \neq 0$, where $k: B \to S^{11}$ is the collapsing map. This suggests a definition of β 's in G_* for p=3: for $t \geq 2$ such that $k\bar{\beta}_t=0$, $\beta_t \in G_{16t-6}$ is given by $j\beta_t=\bar{\beta}_t$.

We shall also consider a similar construction corresponding to the elements ρ 's of [8]. Put $W = M \cup_{\alpha^2} C\Sigma^8 M$ and $WB = W \wedge B$, whose BP homology is $BP_*/(3, v_1^2) + \Sigma^{11}BP_*/(3, v_1^2)$.

THEOREM 1.4. There exists a stable map

$$\bar{\rho}: \Sigma^{48} WB \longrightarrow WB$$

inducing the multiplication by v_2^3 , i.e., the mapping cone of $\bar{\rho}$ realizes $BP_*/(3, v_1^2, v_2^3) + \Sigma^{11}BP_*(3, v_1^2, v_2^3)$.

Let us denote the cofibering for W by $M \xrightarrow{i_2} W \xrightarrow{\pi_2} \Sigma^9 M$.

DEFINITION 1.5. Define $\bar{\rho}_t \in \pi_{48t-10}(B)$ by the following composition $(t \ge 1)$:

$$S^{48t} \xrightarrow{j} \Sigma^{48t} B \xrightarrow{i_2 i \wedge 1_B} \Sigma^{48t} WB \xrightarrow{\rho} WB \xrightarrow{\pi \pi_2 \wedge 1_B} \Sigma^{10} B.$$

THEOREM 1.6. $\bar{\rho}_t \neq 0$ and $\bar{\beta}_{3t} \in \{\bar{\rho}_t, 3, \alpha_1\}$ for $t \geq 1$.

(1.4) and (1.6) will be proved in \S \S 3–4.

In contrast with (1.4), we obtain the following non-realizing result.

THEOREM 1.7. $BP_*/(3, v_1^2, v_2^3)$ can not be realized.

In §5 we shall proved (1.7) and the non-realizability of $BP_*/(3, v_1, v_2^t)$ for small t. In Appendix, we shall discuss a similar consideration for the 5-primary γ -family, and show that $BP_*/(5, v_1, v_2, v_3) + \Sigma^{39}BP_*/(5, v_1, v_2, v_3)$ can be realizable.

§2. Some additional results on the algebra $\mathscr{A}_*(V)$

For any (finite) stable complexes (*CW*-spectra) X and Y, we shall denote by $\pi_k(X; Y)$ the additive group consisting of all homotopy classes of stable maps $\Sigma^k X \to Y$, and set $\pi_k(X) = \pi_k(S^0; X)$, $\mathscr{A}_k(X) = \pi_k(X; X)$ and $\mathscr{A}_*(X) = \sum_k \mathscr{A}_k(X)$. The composition of maps induces a product on $\mathscr{A}_*(X)$, and $\mathscr{A}_*(X)$ forms a graded ring; $1_X \in \mathscr{A}_0(X)$ being the unit.

A space (spectrum) X is called a Z_3 -space (-spectrum) if 1_X is of order 3, or $\mathscr{A}_*(X)$ is an algebra over Z_3 [16, Lemma 1.2]. We introduced in [16, § 2] the operations $\theta: \pi_k(X; Y) \rightarrow \pi_{k+1}(X; Y)$ and $\lambda_X: \mathscr{A}_k(M) \rightarrow \mathscr{A}_{k+1}(X)$ and discussed their properties. In particular, M and V are (non-associative) Z_3 -spaces [16, § 6], and we shall use the same notations as in [16] for the generators of $\mathscr{A}_*(M)$ and $\mathscr{A}_*(V)$:

$$\begin{split} \delta &= i\pi \in \mathscr{A}_{-1}(M), \quad \alpha \in \mathscr{A}_{4}(M) \text{ the attaching class of } V, \\ \beta_{(1)} &= \pi_{1}[\beta i_{1}] = [\pi_{1}\beta]i_{1} \in \mathscr{A}_{11}(M), \quad \beta_{(2)} = [\pi_{1}\beta][\beta i_{1}] \in \mathscr{A}_{27}(M); \\ \delta_{1} &= i_{1}\pi_{1} \in \mathscr{A}_{-5}(V), \quad \delta_{0} &= i_{1}\delta\pi_{1} \in \mathscr{A}_{-6}(V), \\ \alpha'' \in \mathscr{A}_{2}(V) \quad \text{the associator of } V, \\ \beta' &= \lambda_{V}(\delta\beta_{(1)}\delta) = \beta_{1} \wedge 1_{V}, \quad [\beta\delta_{0}] = [\beta i_{1}]\delta\pi_{1} \in \mathscr{A}_{10}(V), \\ [\beta\delta_{1}] &= [\beta i_{1}]\pi_{1}, \quad [\delta_{1}\beta] = i_{1}[\pi_{1}\beta] \in \mathscr{A}_{11}(V). \end{split}$$

The following relation is the mod 3 version of the last equality in [16, Th. 4.2].

LEMMA 2.1. $\lambda_V(\beta_{(1)}\delta) = [\beta\delta_1] - [\delta_1\beta].$

PROOF. By [16, Cor. 2.5, (3.7), (2.8) and Th. 6.4], $\lambda_{V}(\beta_{(1)}\delta)i_{1} = i_{1}\lambda_{M}(\beta_{(1)}\delta) = -i_{1}\beta_{(1)} = -[\delta_{1}\beta]i_{1}$ and $\pi_{1}\lambda_{V}(\beta_{(1)}\delta) = \pi_{1}[\beta\delta_{1}]$. Since $\lambda_{V}(\beta_{(1)}\delta) \in \mathscr{A}_{11}(V) = \{[\beta\delta_{1}], [\delta_{1}\beta]\}$ [16, Th. 6.11], we have the desired result. q.e.d.

Since θ is derivative [16, Th. 2.2], it follows immediately from [16, Th. 6.4] that

Shichirô Oka and Hirosi Toda

(2.2)
$$\theta[\beta\delta_1] = \alpha''[\beta\delta_0].$$

By [16, (6.1) and Lemma 6.5], we have $\theta[\delta_1\beta] = \theta[\beta\delta_1] - \theta\lambda_{\nu}(\beta_{(1)}\delta) = \theta[\beta\delta_1] + \alpha''\lambda_{\nu}(\delta\beta_{(1)}\delta)$, and hence

(2.3)
$$\theta[\delta_1\beta] = \alpha''[\beta\delta_0] + \beta'\alpha''.$$

THEOREM 2.4. In $\mathscr{A}_{22}(V) = \{ [\delta_1 \beta] [\beta \delta_1], \beta' \alpha'' [\beta \delta_0], \beta' \beta' \alpha'' \}, the following relations hold:$

- (i) $[\beta\delta_1]^2 = -[\delta_1\beta][\beta\delta_1] \beta'\alpha''[\beta\delta_0],$
- (ii) $[\delta_1\beta]^2 = -[\delta_1\beta][\beta\delta_1] \beta'\alpha''[\beta\delta_0] \beta'\beta'\alpha''$.

PROOF. By [16, Th. 2.4 (iii)] with $\xi = \beta_{(1)}\delta$, we have

(*)
$$([\beta\delta_1] - [\delta_1\beta])\gamma = (-1)^{deg\gamma}\gamma([\beta\delta_1] - [\delta_1\beta]) + \beta'\theta(\gamma)$$

for any $\gamma \in \mathscr{A}_{*}(V)$. By using (2.2)-(2.3), the desired relations follow from (*) for $\gamma = [\beta \delta_{1}], [\delta_{1}\beta]$. q.e.d.

In the same way as above, we also obtain the following relations.

(2.4)' (i) $[\beta\delta_1][\beta i_1] \equiv -[\delta_1\beta][\beta i_1] \mod \operatorname{Im} \beta'_*,$ (ii) $[\pi_1\beta][\delta_1\beta] \equiv -[\pi_1\beta][\beta\delta_1] \mod \operatorname{Im} \beta'^*.$

An additive basis of $\mathscr{A}_{*}(V)$ for deg < 27 is given by [16, Th. 6.11]. We shall compute $\mathscr{A}_{27}(V)$.

THEOREM 2.5. The homomorphisms $i_1^*: \mathscr{A}_{27}(V) \to \pi_{27}(M; V)$ and $\pi_{1*}: \mathscr{A}_{27}(V) \to \pi_{22}(V; M)$ are isomorphic. Define $[\delta_1\beta^2]$ and $[\beta^2\delta_1]$ by $i_1^*[\delta_1\beta^2] = [\delta_1\beta][\beta_1]$ and $\pi_{1*}[\beta^2\delta_1] = [\pi_1\beta][\beta\delta_1]$, and put $[\beta\delta_1\beta] = [\beta i_1][\pi_1\beta]$. Then, $\mathscr{A}_{27}(V)$ has a basis $\{[\beta^2\delta_1], [\beta\delta_1\beta]\}$ and there hold the relations $[\delta_1\beta^2] = -[\beta^2\delta_1]$ and $\lambda_V(\beta_{(2)}\delta) = [\beta^2\delta_1]$.

PROOF. N. Yamamoto [17] computed the algebra $\mathscr{A}_{*}(M)$ for deg < 32, cf. [16, (6.4)], and the obstruction to compute $\mathscr{A}_{32}(M)$ was the composition $\alpha_1\beta_1^3$ in G_{33} . The triviality of this composition [13] leads to the result $\mathscr{A}_{32}(M) = \{\alpha^8\}$.

From the results on $\mathscr{A}_k(M)$, k=27, 28, 31, 32, we obtain $\pi_{32}(M; V)=0$ and $\pi_{27}(V; M)=0$. We have proved in [16, Prop. 6.9] that $\pi_{31}(M; V)=0$, and dually we can prove $\pi_{26}(V; M)=0$. Therefore i_1^* and π_{1*} in the theorem are isomorphic by the exact sequences:

$$\pi_{32}(M; V) \longrightarrow \mathscr{A}_{27}(V) \xrightarrow{i_1^*} \pi_{27}(M; V) \longrightarrow \pi_{31}(M; V),$$

3-Primary β -Family in Stable Homotopy

$$\pi_{27}(V; M) \longrightarrow \mathscr{A}_{27}(V) \xrightarrow{\pi_{1*}} \pi_{22}(V; M) \longrightarrow \pi_{26}(V; M).$$

From the results on $\mathscr{A}_{*}(M)$, in particular the relation $\delta\alpha\delta(\beta_{(1)}\delta)^{2} = \beta_{(1)}^{2}$ = $\pi_{1}[\beta\delta_{1}\beta]i_{1}$ [16, Th. 6.4.(i)], we see that $\pi_{27}(M; V) = \{i_{1}\beta_{(2)} = [\delta_{1}\beta] [\beta i_{1}], [\beta\delta_{1}\beta]i_{1}\}$ and $\pi_{22}(V; M) = \{\beta_{(2)}\pi_{1} = [\pi_{1}\beta] [\beta\delta_{1}], \pi_{1}[\beta\delta_{1}\beta]\}$. Hence,

$$\mathscr{A}_{27}(V) = \{ [\beta^2 \delta_1], [\beta \delta_1 \beta] \} = \{ [\delta_1 \beta^2], [\beta \delta_1 \beta] \}.$$

We put $\lambda_{\nu}(\beta_{(2)}\delta) = x[\beta^2\delta_1] + y[\beta\delta_1\beta]$. Then, $[\delta_1\beta][\beta\delta_1] = i_1\beta_{(2)}\pi_1$ $= -i_1\lambda_M(\beta_{(2)}\delta)\pi_1 = \delta_1\lambda_{\nu}(\beta_{(2)}\delta) = x[\delta_1\beta][\beta\delta_1] + y[\delta_1\beta]^2$ and x=1, y=0, since $[\delta_1\beta][\beta\delta_1]$ and $[\delta_1\beta]^2$ are linearly independent by (2.4). Next put $\lambda_{\nu}(\beta_{(2)}\delta)$ $= x'[\delta_1\beta^2] + y'[\beta\delta_1\beta]$. Then, $[\delta_1\beta][\beta\delta_1] = -\lambda_{\nu}(\beta_{(2)}\delta)\delta_1 = -x'[\delta_1\beta][\beta\delta_1]$ $- y'[\beta\delta_1]^2$ and x'=-1, y'=0 by (2.4). Thus, we obtain $[\beta^2\delta_1] = \lambda_{\nu}(\beta_{(2)}\delta)$ $= -[\delta_1\beta^2]$ as desired. q.e.d.

§3. Constructing elements

Let us denote the cofibering for B by

$$(3.1) S^{10} \xrightarrow{\beta_1} S^0 \xrightarrow{j} B \xrightarrow{k} S^{11}$$

We write XB, β_X , j_X and k_X for the smash products $X \wedge B$, $1_X \wedge \beta_1$, $1_X \wedge j$ and $1_X \wedge k$, respectively, and we have the cofibering

$$(3.1)_X \qquad \Sigma^{10} X \xrightarrow{\beta_X} X \xrightarrow{j_X} XB \xrightarrow{k_X} \Sigma^{11} X.$$

It is clear that $\xi \beta_X = \beta_Y \xi$ for any $\xi \in \pi_k(X; Y)$, i.e.,

(3.2)
$$\beta_X^* = \beta_{Y*} \colon \pi_k(X;Y) \longrightarrow \pi_{k+10}(X;Y).$$

Consider the element $\beta_1 \wedge 1_B = \beta_B \in \mathscr{A}_{10}(B)$. By [12, Lemma 3.5], $\beta_1 \wedge 1_B = k^* j_*(\alpha^*)$ for some $\alpha^* \in G_{21}$. Since $G_{21} * Z_3 = 0$ [11], we obtain

(3.3)
$$\beta_1 \wedge 1_B = 0 \quad \text{in } \mathscr{A}_{10}(B).$$

From (3.2)–(3.3), it follows that $\beta_X^*: \pi_k(X; YB) \to \pi_{k+10}(X; YB)$ and $\beta_{Y*}: \pi_k(XB; Y) \to \pi_{k+10}(XB; Y)$ are trivial for any X and Y. Hence the following short exact sequences are obtained:

$$(3.4) \qquad 0 \longrightarrow \pi_{k+11}(X; YB) \xrightarrow{k_X^*} \pi_k(XB; YB) \xrightarrow{j_X^*} \pi_k(X; YB) \longrightarrow 0;$$

$$(3.4)^* \quad 0 \longrightarrow \pi_k(XB; Y) \xrightarrow{j_{Y^*}} \pi_k(XB; YB) \xrightarrow{k_{Y^*}} \pi_{k-11}(XB; Y) \longrightarrow 0.$$

We shall treat the case X, Y=M or V. Then, $\beta_X = \lambda_X(\delta\beta_{(1)}\delta)$ [16, Th. 2.4. (iv)], and so

(3.5)
$$\beta_M = \beta_{(1)} \delta + \delta \beta_{(1)}, \quad \beta_V = \beta'.$$

LEMMA 3.6. (i) $\pi_{16}(MB; VB)$ has a Z₃-basis

$$\{ [\beta i_1] \land 1_{\mathbf{B}}, \quad j_{\mathbf{V}}[\delta_1 \beta] [\beta i_1] k_{\mathbf{M}} = -j_{\mathbf{V}}[\beta \delta_1] [\beta i_1] k_{\mathbf{M}} \}.$$

(ii) $\pi_{11}(VB; MB)$ has a Z_3 -basis

$$\{ [\pi_1\beta] \land 1_B, j_M[\pi_1\beta] [\beta\delta_1] k_V = -j_M[\pi_1\beta] [\delta_1\beta] k_V \}.$$

PROOF. From $\pi_k(M; V) = 0$, k = 5, 6, and $\pi_{16}(M; V) = \{ [\beta i_1] \}$ [16, Prop. 6.9], it follows that $\pi_{16}(M; VB) = \{ j_V[\beta i_1] \}$. Also $\pi_{27}(M; VB) = \{ j_V[\delta_1\beta] [\beta i_1] = -j_V[\beta \delta_1] [\beta i_1] \}$ by using (2.4)' (i). Then, from (3.4) for X = M, Y = V, (i) follows.

(ii) follows from similar calculations using the following results on $\pi_k = \pi_k(V; M)$: $\pi_0 = \pi_1 = 0$, $\pi_{11} = \{ [\pi_1 \beta] \}$, $\pi_{12} = \{ \delta[\pi_1 \beta] \alpha'' \}$, $\pi_{21} = \{ [\pi_1 \beta] \beta' \}$ and $\pi_{22} = \{ [\pi_1 \beta] [\beta \delta_1], [\pi_1 \beta] [\delta_1 \beta] \}$. q. e. d.

The Brown-Peterson homology for M and V is given by ([9], cf. [4], [18])

$$BP_*(M) = BP_*/(3), \quad BP_*(V) = BP_*/(3, v_1),$$

where $BP_* = \pi_*(BP) = Z_{(3)}[v_1, v_2, ...]$, the polynomial ring over the integers localized at 3, $v_i \in BP_{2(3^{i-1})}$ [2] and $(x_1, ..., x_n)$ denotes the ideal generated by $x_1, ..., x_n$. Applying $BP_*($) to (3.1), (3.1)_M and (3.1)_V, we get

(3.7) (i) $BP_*(B) = BP_* + \Sigma^{11}BP_*,$

(ii) $BP_*(MB) = BP_*/(3) + \Sigma^{11}BP_*/(3)$,

(iii)
$$BP_*(VB) = BP_*/(3, v_1) + \Sigma^{11}BP_*/(3, v_1),$$

where an *n*-fold suspension $\Sigma^n M$ of a graded module $M = (M_i)$ is given by $(\Sigma^n M)_i = M_{i-n}$, in particular $BP_*(\Sigma^n X) = \Sigma^n BP_*(X)$.

Now we shall prove Theorem 1.1.

PROOF OF (1.1). The construction of $\overline{\beta}$ starts from the stable map $[\beta i_1]$: $\Sigma^{16}M \rightarrow V$ having $V\left(1\frac{1}{2}\right)$ as its mapping cone [16, p. 239]. This coincides with $\tilde{\psi}$ of L. Smith [9, 2nd line on p. 824] up to sign, and induces the multiplication by v_2 . There is a relation [16, Th. 6.7]

$$[\beta i_1]\alpha = \beta'(\beta' i_1 + \delta_1[\beta \delta_1]\delta).$$

Since $V = C_{\alpha}$ and $VB = C_{\beta'}$ by $(3.1)_V$ and (3.5), this relation gives an element $\beta_0: \Sigma^{16}V \rightarrow VB$ such that $\beta_0i_1 = j_V[\beta i_1]$ and $k_V\beta_0 = \beta'\delta_1 + \delta_1[\beta\delta_0]$. Since $\mathscr{A}_{16}(V) = 0$ and $\mathscr{A}_5(V) \cap \operatorname{Ker} \beta'_* = \{\beta'\delta_1 + \delta_1[\beta\delta_0]\}, \beta_0$ is unique and generates $\pi_{16}(V; VB)$. By (3.4) for X = Y = V, there is $\overline{\beta}$ such that $\overline{\beta}j_V = \beta_0$, and so by (2.5)

(3.8)
$$\mathscr{A}_{16}(VB) = \{\bar{\beta}, \ j_V[\beta^2\delta_1]k_V, \ j_V[\beta\delta_1\beta]k_V\}.$$

By (3.6), (3.8) and easy calculations, we see that

(3.9) there is $\bar{\beta} \in \mathscr{A}_{16}(VB)$ such that $\bar{\beta}(i_1 \wedge 1_B) \equiv [\beta i_1] \wedge 1_B \mod j_V[\delta_1\beta]$. $\cdot [\beta i_1]k_M, (\pi_1 \wedge 1_B)\bar{\beta} \equiv [\pi_1\beta] \wedge 1_B \mod j_M[\pi_1\beta] [\beta\delta_1]k_V$ and $k_V\bar{\beta}j_V = \beta'\delta_1 + \delta_1[\beta\delta_0]$, and such $\bar{\beta}$'s form a coset of the subgroup $I = \{j_V[\beta^2\delta_1]k_V, j_V[\beta\delta_1\beta]k_V\}$ of $\mathscr{A}_{16}(VB)$.

For any $\overline{\beta}$ in (3.9), $\overline{\beta}(i_1 \wedge 1_B)$ and $[\beta i_1] \wedge 1_B$ induce the same homomorphism on $BP_*()$. Since $(i_1 \wedge 1_B)_*$ is the natural epimorphism to the quotient (3.7) (iii) of (3.7) (ii), we see that any $\overline{\beta}$ in (3.9) satisfies (a).

Put $\overline{\beta}(i_1 \wedge 1_B) - [\beta i_1] \wedge 1_B = xj_V[\delta_1\beta] [\beta i_1]k_M$ and $(\pi_1 \wedge 1_B)\overline{\beta} - [\pi_1\beta] \wedge 1_B = yj_M[\pi_1\beta] [\beta\delta_1]k_V$. Then,

$$\bar{\beta}' = \bar{\beta} - (x - y)j_V[\beta^2 \delta_1]k_V - (x + y)j_V[\beta \delta_1 \beta]k_V$$

satisfies (b) by (2.5) and (3.6). The uniqueness of $\overline{\beta}$ satisfying (b) follows from (3.8) and

$$I \cap \operatorname{Ker}(i_1 \wedge 1_B)^* \cap \operatorname{Ker}(\pi_1 \wedge 1_B)_* = 0.$$

$$q.e.d.$$

REMARK 3.10. Let \mathscr{A} be the Steenrod algebra mod 3. Denote by E_n the exterior algebra generated by Milnor's primitive elements Q_0, \ldots, Q_n . Identifying E_n with a quotient of \mathscr{A} , we may regard E_n as an \mathscr{A} -module. Then, E_0 and E_1 are realized by the cohomology of M and V [15, Th. 1.1]. Let M_n be an extension (as an A-module) of E_n by $\Sigma^{11}E_n$ such that $\mathscr{P}^3 a = Q_0 b$ in M_n , where a and b are the generators corresponding to E_n and $\Sigma^{11}E_n$ (deg a=0, deg b=11). If E_n is realized, then so is M_n . In fact, $H^*(V(n) \wedge B; Z_3) = M_n$ if V(n)exists. In particular, M_0 and M_1 are realized by MB and VB. We see also that the mapping cone VB(2) of β realizes M_2 , i.e.,

$$H^*(VB(2); Z_3) = M_2,$$

though E_2 can not be realized [15, Th. 1.2].

THEOREM 3.11. Let $\bar{\delta}_1 = \delta_1 \wedge 1_B \in \mathscr{A}_{-5}(VB)$. Then the element $\bar{\beta} \bar{\delta}_1 - \bar{\delta}_1 \bar{\beta}$ belongs to the center of $\mathscr{A}_*(VB)$. In particular, there is a relation

(3.12)
$$\bar{\beta}^2 \bar{\delta}_1 + \bar{\beta} \bar{\delta}_1 \bar{\beta} + \bar{\delta}_1 \bar{\beta}^2 = 0.$$

PROOF. By the definition of λ_x , $\lambda_{VB}(\beta_{(1)}\delta) = \lambda_V(\beta_{(1)}\delta) \wedge 1_B$ [16, Th. 2.4. (ii)], and so $\lambda_{VB}(\beta_{(1)}\delta) = [\beta\delta_1] \wedge 1_B - [\delta_1\beta] \wedge 1_B = \overline{\beta}\overline{\delta}_1 - \overline{\delta}_1\overline{\beta}$ by (2.1) and (1.1) (b). By (3.5), $\lambda_{VB}(\delta\beta_{(1)}\delta) = \beta_1 \wedge 1_{VB} = 0$, and hence $\lambda_{VB}(\beta_{(1)}\delta)\xi = (-1)^{deg\xi}\xi\lambda_{VB}$ $(\beta_{(1)}\delta)$ for any $\xi \in \mathscr{A}_{*}(VB)$ by [16, Th. 2.4. (iii)]. Letting $\xi = \overline{\beta}$, we obtain (3.12). q. e. d.

From (3.12) we have immediately

COROLLARY 3.13. $\bar{\beta}^3 \bar{\delta}_1 = \bar{\delta}_1 \bar{\beta}^3$.

Now, we denote the cofibering for $W=M \cup_{\alpha^2} C\Sigma^8 M$ by $M \xrightarrow{i_2} W \xrightarrow{\pi_2} \Sigma^9 M$. There is a sequence of cofiberings [8, Lemma 1.5]

(3.14)
$$\Sigma^4 V \xrightarrow{a} W \xrightarrow{b} V \xrightarrow{\delta_1} \Sigma^5 V,$$

where a and b are given by

(3.15)
$$ai_1 = i_2 \alpha, \quad \pi_2 a = \pi_1; \quad bi_2 = i_1, \quad \pi_1 b = \alpha \pi_2.$$

PROOF OF (1.4). By (3.14), WB is the mapping cone of $\bar{\delta}_1$. Hence, by (3.13), there is $\bar{\rho}: \Sigma^{48}WB \to WB$ such that $\bar{\rho}\bar{a} = \bar{a}\bar{\beta}^3$ and $\bar{b}\bar{\rho} = \bar{\beta}^3\bar{b}$, $\bar{a} = a \wedge 1_B$, $\bar{b} = b \wedge 1_B$. By (3.15) and (1.1) (a), \bar{a} and $\bar{\beta}^3$ induce the multiplications by v_1 and v_2^3 , respectively. Hence $\bar{\rho}$ induces the multiplication by v_2^3 . *q.e.d.*

In the above we have obtained

(3.16)
$$\bar{\rho}\bar{a} = \bar{a}\bar{\beta}^3, \quad \bar{b}\bar{\rho} = \bar{\beta}^3\bar{b} \qquad (\bar{a} = a \wedge 1_B, \ \bar{b} = b \wedge 1_B).$$

As a consequence of (3.16), we have

PROPOSITION 3.17. For the elements $\bar{\beta}_{3t}$ in (1.2) and $\bar{\rho}_t$ in (1.6), there holds the relation $\bar{\beta}_{3t} \in \{\bar{\rho}_t, 3, \alpha_1\}$.

PROOF.

$$\bar{\beta}_{3t} = (\pi \pi_1 \wedge 1_B) \bar{\beta}^{3t} j_V i_1 i$$

$$= (\pi \pi_2 \wedge 1_B) \bar{a} \bar{\beta}^{3t} j_V i_1 i \qquad \text{by (3.15)}$$

$$= (\pi \pi_2 \wedge 1_B) \bar{\rho}^t j_W a i_1 i \qquad \text{by (3.16)}$$

$$= (\pi \pi_2 \wedge 1_B) \bar{\rho}^t j_W i_2 \alpha i \qquad \text{by (3.15)}.$$

Since $(\pi \pi_2 \wedge 1_B) \bar{\rho}^i j_W i_2$ and αi are an extension of $\bar{\rho}_t$ and a coextension of α_1 , $\bar{\beta}_{3t}$ lies in the bracket $\{\bar{\rho}_t, 3, \alpha_1\}$. q. e. d.

§4. Proof of Theorems 1.3 and 1.6

R. Zahler [18] [4] defined an invariant taking values in $\operatorname{Ext}_{A}^{2,*}(BP^*, BP^*)$, $A = BP^*(BP)$ the Steenrod ring of the Brown-Peterson cohomology theory, whose coefficient ring is $BP^*(=BP_{-*})=Z_{(3)}[v_1, v_2, ...]$, deg $v_i = -2(3^i - 1)[2, \S 6]$ cf. [3] (this v_i is the dual of $v_i \in BP_*$ in the previous sections). This invariant detects

 β 's of [9] and ρ 's of [8] for $p \ge 5$ (cf. [4, Remark at the end of §2]). We shall follow his line with minor alteration.

Denote by W_r the mapping cone $M \cup_{\alpha^r} C\Sigma^{4r} M(W_1 = V, W_2 = W)$ and $i_r: M \to W_r$ the inclusion. Let $H_k(r)$ be the image of $(i_ri)^*: \pi_k(W_r; B) \to \pi_k(B)$. Take $\xi = \eta i_r i \in H_k(r)$. Since $i_r^* = 0$: $BP^*(W_r) \to BP^*$, $(\eta i_r)^* = 0$ and there is a short exact sequence of A-modules:

$$E_{\eta}: \qquad 0 \longrightarrow \Sigma^{k+2}BP^*/(3) \longrightarrow BP^*(C_{\eta i_r}) \longrightarrow BP^*(B) \longrightarrow 0,$$

and we obtain the class $\{E_{\eta}\} \in \operatorname{Ext}_{A}^{1, k+2}(BP^{*}(B), BP^{*}/(3))$. Denote by $\Delta: \operatorname{Ext}_{A}^{j, i}(-, BP^{*}/(3)) \to \operatorname{Ext}_{A}^{i+1, j}(-, BP^{*})$ the connecting homomorphism associated with the short exact sequence of A-modules:

$$0 \longrightarrow BP^* \xrightarrow{\times 3} BP^* \xrightarrow{\tilde{\pi}} BP/(3) \longrightarrow 0,$$

and by $\iota: BP^* \to BP^*(B) = BP^* + \Sigma^{11}BP^*$ the right inverse of $j^*: BP^*(B) \to BP^*$. Let η' also satisfy $\eta' i_r i = \xi$. Then $\eta i_r \equiv \eta' i_r \mod \pi^* \pi_{k+1}(B)$. If $k \not\equiv -1 \mod 4$ and $k \neq 10$, any element of $\pi_{k+1}(B)$ induces the trivial homomorphism, and hence $\{E_\eta\} \equiv \{E_{\eta'}\} \mod \operatorname{Im} \overline{\pi}_* = \operatorname{Ker} \Delta$. Therefore $\Delta\{E_\eta\}$ depends only on ξ . Thus, letting $e_r(\xi) = \iota^* \Delta\{E_\eta\}, \eta \in (i_r i)^{*-1}\xi$, we obtain a well-defined homomorphism

$$(4.1) e_r: H_k(r) \longrightarrow \operatorname{Ext}_A^{2,k+2}(BP^*, BP^*), k \neq -1 \mod 4, \quad k \neq 10.$$

Let $t=3^{f}a$, where $a \neq 0 \mod 3$, $a \geq 1$ and $f \geq 0$. If $1 \leq r \leq 3^{f}$, the multiplication $v_{2}^{t}: \Sigma^{-16t}BP^{*} \rightarrow BP^{*}/(3, v_{1}^{r})$ is an A-homomorphism [18, Lemma 2]. Hence

$$v_2^t \in \operatorname{Ext}_A^{0, 16t}(BP^*, BP^*/(3, v_1^r))$$

Denote by Δ_r : Ext_A^{i,j} $(-, BP^*/(3, v_1^r)) \rightarrow Ext_A^{i+1,j-4r}(-, BP^*/(3))$ the connecting homomorphism associated with

$$E_r: \qquad 0 \longrightarrow \Sigma^{-4r} BP^*/(3) \xrightarrow{\cdot v_1^r} BP^*/(3) \longrightarrow BP^*/(3, v_1^r) \longrightarrow 0,$$

and put

$$e(r, t) = \Delta(\Delta_r(v_2^t)) \in \operatorname{Ext}_A^{2, 16t-4r}(BP^*, BP^*)$$

for $1 \le r \le 3^f$, $t = 3^f a$, $f \ge 0$, $a \ge 1$, $a \ne 0 \mod 3$. Then, D. C. Johnson and R. Zahler ([4, §2], [18, Th. 1. a]) proved

THEOREM 4.2. $e(r, t) \neq 0$.

Now we shall prove Theorems 1.4 and 1.6.

PROOF OF (1.4). We shall show $e_1(\bar{\beta}_t) = e(1, t)$. Then $\bar{\beta}_t \neq 0$ follows from (4.2). Put $\eta = (\pi \pi_1 \wedge 1_B) \bar{\beta}^t j_V$, k = 16t - 6. Then $\bar{\beta}_t = \eta i_1 i \in H_k(1)$ and $e_1(\bar{\beta}_t)$ is

defined for $t \ge 2$.

Since $[\pi_1\beta]$ is the Spanier-Whitehead dual of $[\beta i_1]$, it follows from (3.9) that the coset $\overline{\beta} + I$ in (3.9) is self-dual. Hence, any $\overline{\beta}$ in (3.9) induces the multiplication by v_2 on the *BP-co*homology. So, $\phi = \eta^* \in \text{Ext}_A^{0,16t}(BP^*(B), BP^*/(3, v_1))$ is given by $\phi_\ell = v_2^t$ and $\phi_k = 0$.

Applying $BP^*()$ to the cofiber sequences for i_1 and ηi_1 , we obtain the commutative diagram of short exact sequences:

$$E_{\eta}: \qquad 0 \longrightarrow \Sigma^{k+2} BP^{*}/(3) \longrightarrow BP^{*}(C_{\eta i_{1}}) \longrightarrow BP^{*}(B) \longrightarrow 0.$$

Then $\{E_{\eta}\} = \phi^* \{E_1\}$ in Ext^{1,*}, and we have

$$\iota^* \{ E_\eta \} = (\phi \iota)^* \{ E_1 \} = \varDelta_1(\phi \iota) = \varDelta_1(v_2^t).$$

Thus, $e_1(\bar{\beta}_t) = \iota^* \Delta \{E_\eta\} = \Delta \Delta_1(v_2^t) = e(1, t).$

PROOF OF (1.6). In the same way as above, we see that $e_2(\bar{\rho}_t) = e(2, 3t)$ and $\bar{\rho}_t \neq 0$. The relation $\bar{\beta}_{3t} \in \{\bar{\rho}_t, 3, \alpha_1\}$ is proved in (3.17). q.e.d.

q.e.d.

§5. Remarks for small t and non-realizability

We shall compare our elements $\overline{\beta}_t$ and $\overline{\rho}_t$ with the results on G_* . The non-realizability of some cyclic BP_* -modules will be proved. As we only treat the 3-primary elements, we denote simply by G_* the 3-component of G_* .

It is easy to see from (1.1) (b) that

$$\bar{\beta}_1 = i\beta_1 = 0$$
 and $\bar{\beta}_2 = j\beta_2$

for $\beta_2 = \pi[\pi_1\beta][\beta i_1]i \in G_{26}$.

The elements $k\bar{\beta}_t$ and $k\bar{\rho}_t$ lie in G_{16t-17} and G_{48t-21} , which contain the image of the J-homomorphism [1]. But $k\bar{\beta}_t$ and $k\bar{\rho}_t$ can not be contained in Im J, because these elements factor through V or W. Since $G_{16t-17}/\text{Im }J$ (t=3, 5, 6) and $G_{27}/\text{Im }J$ vanish ([11], [7, Th. B], [6]), we have $k\bar{\beta}_t=0$ for t=3, 5, 6 and $k\bar{\rho}_1=0$. Therefore,

$$\bar{\rho}_1 = \pm j\varepsilon_1, \quad \bar{\beta}_3 = \pm j\varepsilon_2,$$

where $\varepsilon_1 = \{\alpha_1, \beta_1^3, 3, \alpha_1\}$ and $\varepsilon_2 = \{\varepsilon_1, 3, \alpha_1\}$, and

$$\bar{\beta}_5 = j\beta_5, \quad \bar{\beta}_6 = j\beta_6.$$

These two equalities give generators β_5 of G_{74} and β_6 of G_{90} .

We proved [7] that the element β_4 does not exist. In fact, the following

relation is easily seen from [7, Th. B]

$$k\bar{\beta}_4 = \pm \beta_1 \varepsilon' \quad (\neq 0),$$

and $\bar{\beta}_4$ can not lie in the image of j_* .

Since $(\alpha_1 \beta_2)_*$: $G_{46} \rightarrow G_{75}$ is monomorphic [7], we have

$$\{\varepsilon_1,3,\alpha_2\}=\{\varepsilon_2,3,\alpha_1\}=0.$$

The non-existence of β_4 is equivalent to the relation

(5.1)
$$\{\varepsilon_1, 3, \alpha_2, 3\} = \{\varepsilon_2, 3, \alpha_1, 3\} \equiv \pm \beta_1 \varepsilon'.$$

This means that $(\pi \pi_2 \wedge 1_B) \bar{\rho} j_W$ (and $(\pi \pi_1 \wedge 1_B) \bar{\beta}^3 j_V$ also) can not be compressed to the bottom sphere of *B*. Furthermore the element $k_W \bar{\rho} j_W \in \mathscr{A}_{37}(W)$ satisfies

(5.2)
$$k_W \bar{\rho} j_W i_2 i = i_2 i \varepsilon', \quad \pi \pi_2 k_W \bar{\rho} j_W = -\varepsilon' \pi \pi_2 \quad \text{for suitable sign of } \varepsilon'.$$

There are elements $\tilde{\beta}_t: S^{16t+4} \rightarrow W$, t=1, 2, such that $\pi \pi_2 \tilde{\beta}_t = \beta_t$. Then, since $\beta_2 e' = 0$, the element $(\pi \pi_2 \wedge 1_B) \bar{\rho} j_W \tilde{\beta}_2$ can be compressed to the bottom sphere of *B*, and the compression is β_5 . But, since $\beta_1 e' \neq 0$, such a compression does not exist for t=1.

From (5.2), we can see $k\bar{\rho}_2 = (\pi\pi_2 k_W \bar{\rho})(\bar{\rho} j_W i_2 i) = (\pm \varepsilon_1)\varepsilon' - \varepsilon'(\pm \varepsilon_1) = 0$. Hence we obtain an element ρ_2 such that

$$\bar{\rho}_2 = j\rho_2, \quad \beta_6 = \{\rho_2, 3, \alpha_1\}$$

This generates G_{86} and coincides with Nakamura's $\rho_1[6]$ up to sign.

In the following, we shall discuss the non-realizability of BP_* -modules. We first prove Theorem 1.7.

PROOF OF (1.7). Let assume that there is an X such that $BP_*(X) = BP_*/(3, v_1^2, v_2^3)$ as a BP_* -module. Then, in the same way as L. Smith [10, Lemmas 2.1–2.2], the homology group of X localized at 3 is calculated and we see that X is 3-equivalent to a complex

$$X' = S^0 \cup_{3} e^1 \cup e^9 \cup_{3} e^{10} \cup e^{49} \cup_{3} e^{50} \cup e^{58} \cup_{3} e^{59}$$

Let Y be the 10-skeleton of X' and Y' be $\Sigma^{-1}(X'/Y)$. Then there is a cofibering $Y' \to Y \to X'$ and we have a short exact sequence

$$(*) \qquad 0 \longrightarrow BP_*(Y') \longrightarrow BP_*(Y) \longrightarrow BP_*(X') \longrightarrow 0.$$

The complexes Y and Y' are mapping cones of some elements of $\mathscr{A}_8(M) = Z_3$, generated by α^2 . The BP homology of the mapping cone of $x\alpha^2$ is $BP_*/(3, v_1^2)$ or $BP_*/(3) + \Sigma^9 BP_*/(3)$ according as $x \neq 0$ or x = 0. Hence, it follows from (*) that the attaching classes for Y and Y' are non-zero. Thus, we obtain a map

f: $\Sigma^{48}W \rightarrow W$ realizing the multiplication by v_2^3 .

Put $\gamma = \pi \pi_2 f i_2 i \in G_{38}$. Then, exactly the same discussion as in [8], [9] shows $\gamma \neq 0$. Hence γ is a non-zero multiple of ε_1 and satisfies $\{\gamma, 3, \alpha_2, 3\} \equiv 0$. This contradicts to (5.1). q.e.d.

The above proof can easily be generalized, and in the same way the following results are obtained.

(5.3) If $BP_*/(3, v_1, v_2^t)$ is realized, there is a non-zero element $\gamma \in G_{16t-6}$ such that $3\gamma = 0$, $\{\gamma, 3, \alpha_1\} \equiv 0$ and $\{\gamma, 3, \alpha_1, 3\} \equiv 0$.

(5.4) If $BP_*/(3, v_1^2, v_2^{3t})$ is realized, there is a non-zero element $\gamma \in G_{48t-10}$ such that $3\gamma = 0$, $\{\gamma, 3, \alpha_2\} \equiv 0$ and $\{\gamma, 3, \alpha_2, 3\} \equiv 0$.

Since $\{\beta_2, 3, \alpha_1\} \neq 0$ [14, Prop. 15.6], $\{\epsilon_2, 3, \alpha_1, 3\} \neq 0$ and $G_{58} = 0$ [7], it follows from (5.3) that

(5.5) for t=2, 3, 4, $BP_*/(3, v_1, v_2)$ can not be realized.

Appendix. 5-Primary γ -family

For p=5, the existence of V(3) (and the construction of the γ -family) is not known. We can, however, construct γ 's in $\pi_*(B)$ for p=5 in a similar manner.

Set $B = S^0 \cup_{\beta_1} e^{39}$ and $VB(2) = V(2) \wedge B$. A map $\mu: V(2) \wedge V(2) \rightarrow VB(2)$ is called a *multiplication* if the restrictions of μ on $V(2) \wedge S^0 = V(2)$ and on $S^0 \wedge V(2) = V(2)$ are the inclusions.

By Theorem 5.2 of [15], $\pi_*(VB(2))$ is isomorphic, for deg<197, to the graded vector space A in the theorem, and hence

$$\pi_i(VB(2)) = \begin{cases} Z_5 & \text{for } i = 0, 7, 39, 54, 86, 93, \\ 0 & \text{otherwise for } i < 197. \end{cases}$$

We can therefore extend any $map(V(2) \land S^0) \cup (S^0 \land V(2)) \rightarrow VB(2)$ over the whole of $V(2) \land V(2)$. Thus,

(A.1) there exists a multiplication $\mu: V(2) \land V(2) \rightarrow VB(2)$.

The relation $\beta_1 \wedge 1_B = 0$ in (3.3) holds for any $p \ge 3$, and we have (A.2) there exists a multiplication $\mu_B: B \wedge B \rightarrow B$.

Now, we denote by

(A.3)
$$\gamma_0: S^{248} \longrightarrow V(2)$$

an element having $V(2\frac{1}{8})$ as its mapping cone. Then,

(A.4) γ_0 induces the multiplication by v_3 on the BP homology.

Using the elements of (A.1)-(A.3), we define

(A.5) $\bar{\gamma}: \Sigma^{248} VB(2) \longrightarrow VB(2)$

by the following composition

$$\Sigma^{248} VB(2) = S^{248} \wedge VB(2) \xrightarrow{\gamma_0 \wedge 1} V(2) \wedge V(2) \wedge B$$
$$\xrightarrow{\mu \wedge 1} V(2) \wedge B \wedge B \xrightarrow{1 \wedge \mu_B} VB(2).$$

Let $i_0: S^0 \rightarrow V(2)$ be the inclusion. Then, we have easily

(A.6) $\bar{\gamma}(i_0 \wedge 1_B) = \gamma_0 \wedge 1_B.$

From (A.4) and (A.6), it follows that

(A.7) $\bar{\gamma}$ induces the multiplication by v_3 on each factor of $BP_*(VB(2)) = BP_*/(5, v_1, v_2) + \Sigma^{39}BP_*/(5, v_1, v_2)$, hence $BP_*/(5, v_1, v_2, v_3) + \Sigma^{39}BP_*/(5, v_1, v_2, v_3)$ is realized by the mapping cone of $\bar{\gamma}$.

Recently, H. R. Miller, D. C. Ravenel and W. S. Wilson [5] have announced the non-triviality of $\gamma_t \in G_{(tp^2+(t-1)p+t-2)q-3}$, q=2(p-1), for all $t \ge 1$ and primes $p \ge 7$. So, we expect the non-triviality of the elements $\overline{\gamma}_t \in \pi_{248t-59}(B)$ defined by the compositions

 $S^{248t} \xrightarrow{j} \Sigma^{248t} B \xrightarrow{i_0 \wedge 1_B} \Sigma^{248t} VB(2) \xrightarrow{\overline{\gamma}t} VB(2) \xrightarrow{\pi_0 \wedge 1_B} \Sigma^{59} B.$

where j and i_0 are the inclusions to the bottom spheres and $\pi_0: V(2) \rightarrow S^{59}$ is the collapsing map.

References

- [1] J. F. Adams, On the groups J(X)-IV, Topology 5 (1966), 21-71.
- [2] S. Araki, Typical formal groups in complex cobordism and K-theory, Lectures in Math. Dept. of Math. Kyoto Univ. 6, Kinokuniya Book-Store Co., Ltd., Tokyo, 1973.
- [3] M. Hazewinkel, Constructing formal groups I, Netherlands School of Economics, Econometric Institute, Report 7119, 1971.
- [4] D. C. Johnson and R. S. Zahler, Detecting stable homotopy with secondary cobordism operations II, to appear.
- [5] H. R. Miller, D. C. Ravenel and W. S. Wilson, Novikov's Ext² and the nontriviality of the gamma family, to appear.
- [6] O. Nakamura, Some differentials in the mod 3 Adams spectral sequence, Bull. Sci. Engrg. Div. Univ. Ryukyus (Math. Nat. Sci.) 19 (1975), 1–26.
- [7] S. Oka, The stable homotopy groups of spheres II, Hiroshima Math. J. 2 (1972), 99-161.
- [8] —, A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975), 87-114.
- [9] L. Smith, On realizing complex bordism modules. Applications to the homotopy of spheres, Amer. J. Math. 92 (1970), 793-856.

- [10] —, On realizing complex bordism modules III, Amer. J. Math. 94 (1972), 875-890.
- [11] H. Toda, p-Primary components of homotopy groups IV. Compositions and toric constructions, Mem. Coll. Sci. Univ. Kyoto, Ser. A, 32 (1959), 288-332.
- [12] —, Composition methods in homotopy groups of spheres, Annals of Math. Studies
 49, Princeton Univ. Press, Princeton, 1962.
- [13] —, An important relation in homotopy groups of spheres, Proc. Japan Acad. 43 (1967), 839–842.
- [14] —, On iterated suspensions III, J. Math. Kyoto Univ. 8 (1968), 101-130.
- [15] _____, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53-66.
- [16] —, Algebra of stable homotopy of Z_p -spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197–251.
- [17] N. Yamamoto, Algebra of stable homotopy of Moore spaces, J. Math. Osaka City Univ. 14 (1963), 45–67.
- [18] R. S. Zahler, Fringe families in stable homotopy, to appear.

Department of Mathematics, Faculty of Science, Hiroshima University and Department of Mathematics, Faculty of Science, Kyoto University