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Introduction

In our previous paper [3], we have introduced a concept of a geodesic homo-

geneous Lie loop G which is a generalization of the concept of Lie groups, and

shown that the tangent space © at the identity of G forms a Lie triple algebra

under the operations defined by the torsion and curvature tensors of the canonical

connection of G, and that © characterizes locally the homogeneous Lie loop

G (cf. [3, Definitions 3.1,3.5 and Theorems 7.2,7.3,7.8]).

In this paper, we observe the correspondence between the set of Lie sub-

loops of G and the set of subsystems*} of ©, and show the following main theorem:

THEOREM 1. Let G be a connected geodesic homogeneous Lie loop and

© its Lie triple algebra. Then, for any connected left invariant Lie subloop H

of G, the Lie triple algebra ξ> of H is a left invariant subsystem o/©.

Conversely, for any left invariant subsystem § of ©, there exists a unique

connected left invariant Lie subloop H of G whose Lie triple algebra is § .

Here, we call a subloop H of G (resp. subsystem § of ©) left invariant if

it is invariant under the left inner mapping group L0(G) of G (resp. the group

dL0(G) of linear transformations of © induced from L0(G)).

It should be noted that, when G is reduced to a Lie group, the above theorem

is reduced to the well known theorem of the correspondence of Lie subgroups of

G and Lie subalgebras of the Lie algebra © of G.

The notations and terminologies used in this paper are all refered to [3].

§ 1. Local subloops of a homogeneous Lie loop

To study local subloops of a geodesic local Lie loop in a locally reductive

space, we consider its auto-parallel submanifolds. Let M be a differentiate

manifold with a linear connection V . A submanifold N of M is called autopara-

llel if, for each vector X tangent to N at any x and for each piecewise difFerentiable

1) By a subsystem of a Lie triple algebra ®, we mean a subalgebra of ® which is closed under
the ternary operation of ©,
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curve y starting from x and contained in N, the parallel displacement of X along

y (w.r.t. V) yields a vector tangent to JV. Auto-parallel submanifolds have

been treated in [4, Ch.VII §8]. We recall here some results about them (cf.

loc. cit. Propositions 8.2-8.6). A submanifold N of M is auto-parallel if and only

if the vector field y XY is tangent to N at each point of N, for any vector fields

X9 Y on N, and so a linear connection y ' on N is naturally induced from y

by \l'χY=VχY' Moreover, the torsion tensor S', curvature tensor R' and

their successive covariant derivatives of y ' are obtained by the natural restriction

of those of y to JV, respectively. Especially, if M is locally reductive, that is,

the torsion S and curvature R of y are both parallel, then so is N (w.r.t. y ' ) .

Every auto-parallel submanifold of M is totally geodesic. Conversely, if the tor-

sion S of M vanishes identically, then every totally geodesic submanifold of M

is auto-parallel.

Let (U, μ) be a local Lie loop with the identity e (cf. [3, Definition 4.2]). A

submanifold V of U through e will be called a local Lie subloop of (U,μ) if the

restriction μv of μ to the intersection of Fx V and the domain of μ forms a local

Lie loop in F.

PROPOSITION 1. Let (U,μ) be a geodesic local Lie loop at e in a locally

reductive space [3, Definition 4.1]. Any auto-parallel submanifold of U through

e has a neighborhood V of e which is a local Lie subloop of {U,μ) and which

coincides with a geodesic local Lie loop with respect to the induced connection

y ' onV.

Conversely, any local Lie subloop Vof(U, μ) is an auto-parallel submanifold

ofU.

Moreover, the Lie triple algebra of any local Lie subloop Vof(U,μ) is a

subsystem of the Lie triple algebra of U at e (cf. [3, Theorem 7.2]).

PROOF. Let V be an auto-parallel submanifold of U through e. Then any

[/-geodesic tangent to V must be a F-geodesic (a geodesic with respect to the

induced connection y ' in F). Since the [/-parallel displacement of vectors

tangent to V yields vectors tangent to F, along any F-geodesic, and since such a

U-parallelism is also a F-parallelism, we see that there exists a F-geodesic local

Lie loop defined in F a t e, such that it is a local Lie subloop of the CZ-geodesic

local Lie loop ([/, μ).

Conversely, let (F, μv) be a local Lie subloop of (I/, μ). By [3, Proposition

4.4] we know that there exists a local 1-parameter subgroup x(t) of U which is

a geodesic tangent to X at e, for each tangent vector X at e. Assume that X is

tangent to F and consider the vector field X on U defined by X(x) = dLx(X)

(x E U). Since (F, μv) is supposed to be a local Lie subloop, we see that the

restriction of X to F is a differentiable vector field on a neighborhood of e in V,
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Then, the local 1-parameter subgroup x(t) becomes an integral curve of this

vector field and so it must be a local 1-parameter subgroup of (V, μv). Thus we

see that any geodesic x(t) tangent to F a t e = x(0) is contained in Fin a neighbor-

hood of e. By definition, the left translation Lx^t) induces the parallel displace-

ment along the geodesic x(t). We know also that any left translation Lx of (U, μ)

is a local affine transformation [3, Lemma 4.2], and so we see that it commutes

with the parallel displacements of vectors along any geodesic and along its Lx-

image. Therefore, it follows that the tangent space 33 e to F at e is sent to 9SX

tangent to Fat x by the left translation Lx, and that the parallel displacement along

a geodesic in F through x is obtained, locally, as an image of the parallel displace-

ment along a geodesic in F through e, under Lx. From these facts we can conclude

that the parallel displacement of a F-vector along any geodesic contained in V is

still tangent to V. Hence y XY is tangent to Ffor any vector fields X, Y on F,

that is, Fis an auto-parallel submanifold of U.

Let V ' be the induced connection on V. Then we see that μv is coincident,

locally, with the local multiplication of a geodesic local Lie loop in F at e. Thus

the Lie triple algebra $ = 33e of an arbitrarily given local Lie subloop (F, μv) is

well defined as that of the underlying locally reductive space of the geodesic local

Lie loop. Since the torsion and curvature of V ' are obtained by the restriction

of those of U, it is clear that 33 is a subsystem of the Lie triple algebra of the

geodesic local Lie loop (U, μ).

q.e.d.

§ 2. Germs of subloops of a geodesic homogeneous Lie loop

Let M be a differentiate manifold. Two local Lie loops (Hί9 μx) and

(H2,μ2) defined in M are equivalent if they have a common point e as their

identities and a common neighborhood of e on which the local multiplication

μx coincides with μ2. A germ of local Lie loops of M is an equivalence class of

local Lie loops of M. On a locally reductive space M with a fixed point e, there

is determined a unique germ of local Lie loops at e to which all geodesic local

Lie loops at e belong. Moreover, from Proposition 1 it follows that any germ

of local Lie subloops of a geodesic local Lie loop (U, μ) of M at e can be represent-

ed by a geodesic local Lie loop of an auto-parallel submanifold of M through e,

and that there corresponds to each germ of local Lie subloops of (I/, μ) a subsystem

of its Lie triple algebra. In the following, we study the inverse of this correspon-

dence for a geodesic homogeneous Lie loop G.

A homogeneous Lie loop G can be regarded as a reductive homogeneous

space A(G)IK(G\ where A(G) = GxK(G) (semi-direct product) and K(G) is the

closure of the left inner mapping group L0(G) [3, Theorem 3.7]. If G is geodesic

[3, Definition 5.1], then it belongs to the germ of local Lie loops determined
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by any geodesic local Lie loop at the identity e of G (with respect to the canonical

connection of G which is known to be locally reductive [3, Theorem 5.7]).

We have proved in [2] the following result:

LEMMA [2, Theorem 4]. Let G = A/K be a reductive homogeneous space

with the origin e, A acting effectively on G, and let § be an arbitrary subsystem

of the Lie triple algebra (δ> of the geodesic local Lie loop at e (w.r.t. the canonical

connection). Then there exists an auto-parallel submanifold H of G tangent

to § at e.

By using this lemma we show the following

THEOREM 2. Let G be a geodesic homogeneous Lie loop and (5 its Lie triple

algebra. There exists a one-to-one correspondence between the set of all germs

of local Lie subloops of G and the set of all subsystems of(&.

PROOF. TO a representative H of an arbitrarily given germ of local Lie

subloops of G we can assign the Lie triple algebra § of H which is a subsystem of

(5, by Proposition 1. Then § does not depend on the choice of the representative

H of the germ. If the same subsystem § is assigned to two germs with represen-

tatives Hγ and H2, respectively, then by Proposition 1 H^s are auto-parallel

submanifolds tangent to each other at the identity e. Since the exponential

mapping at e (w.r.t. the canonical connection) is a local diffeomorphism which

sends a neighborhood of zero vector in § to an auto-parallel submanifold of G,

we see that Hι and H2 have a common neighborhood of e. Using Proposition 1

again, we can conclude that H^ and H2 are equivalent to a geodesic local Lie

loop with respect to the induced connection. Thus the germ to which a given

subsystem § is assigned is unique, if it exists.

Now we apply the above lemma to our homogeneous Lie loop G = A(G)/

K(G). Then, given a subsystem § of the Lie triple algebra (5, we get an auto-

parallel submanifold H tangent to § at e. Since G is supposed to be geodesic,

Proposition 1 shows that § is the Lie triple algebra of a geodesic local Lie loop

in H, which is a subsystem of (5. q.e.d.

§ 3. Left invariant subloops

Let G be a homogeneous Lie loop. A submanifold H of G is called a Lie

subloop of G if H is a subloop of G and if μH: H x H^H is differentiable, where

μH is the restriction of the multiplication μ of G to H x H.

PROPOSITION 2. Every connected Lie subloop H of a geodesic homoge-

neous Lie loop G is itself geodesic homogeneous. Moreover, H is an auto-

parallel submanifold of G and the canonical connection of H is coincident with
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the induced connection on H.

PROOF. Let H be a connected Lie subloop of G. Then H is itself homo-

geneous since any abstract subloop of a homogeneous loop is homogeneous.

By Proposition 1, there exists a neighborhood V of the identity e in H which is

an autoparallel submanifold of G. Since any left translation of G is an affine

transformation, by translating V under Lx (x e H), it can be shown that H is

auto-parallel. Let § be the tangent space to H at e. For any fixed Xoeξ>9

consider an integral curve x(t) (x(0) = e) of the vector field XH(x) = dRH

x(X0)

(xeH) on H.2) Then, by [3, Proposition 5.1], the curve x(t) is a geodesic of H

with respect to the canonical connection of H. Since H is a Lie subloop of G,

x(t)issiho an integral curve of the vector field X(x) = dRx(X0) (x e G) on G.

It follows that any //-geodesic through e is a G-geodesic. By considering the

homogeneous structure [3, Definition 1.5] of H, we see that any //-geodesic is a

geodesic of the induced connection in //, and vice versa. Moreover, since G is

geodesic, the left translation Lxit) induces a parallel displacement along the curve

x(t) in a neighborhood of e = x(0), and so, restricting it to H and taking account

of the homogeneity of //, we can show that the canonical connection of H is

coincident with the induced connection of //. The equality Lx{t)x(s) = id on G

implies Lf(ί)jJC(s) = id on H, which shows that H is geodesic. q.e.d.

In the rest of this paper, a homogeneous Lie loop G is always assumed to be

geodesic. Then, by Theorem 2 and Propositino 2, the Lie triple algebra of any

Lie subloop of G is a subsystem of the Lie triple algebra (5 of G. Let L0(G) denote

the left inner mapping group of G and dL0(G) the group of linear transformations

of (5 induced from L0(G). A subloop H of G will be called left invariant if H

is invariant under L0(G). For instance, any normal subloop of G is left invariant

and, when G is reduced to a Lie group, any subgroup of G is left invariant.

A subsystem § of the Lie triple algebra © of G will be called left invariant

if the group dL0(G) leaves § invariant.

PROPOSITION 3. For any left invariant subsystem § of (5, the assignment

Σ: x-+ξ>x = dLx(ξ>) (xeG) defines a differentiable distribution on G which is

parallel with respect to the canonical connection.

PROOF. For any fixed basis {Xί9X29...9Xm} (m = dim$) of the subspace

§ of (5, the differentiable vector fields Xt (i = 1,2,..., m) defined by X^x) = dLx(X?)

(x e G) form a basis of ξ>x at each xeG. Hence the distribution Σ is differentiable.

We observe that Σ is invariant under any left translation L(

y

x) of any transposed

loop G(x) of G centered at x. In fact, by the definition [3, (1.5)] of the multiplica-

tion of G ( x ), we get

2) The superscript H denotes the corresponding argument in the homogeneous Lie loop H.
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dL (

y

x)(ξ>x) = dLχodLx-ίyodL-χi(ξ>

= dLy(ξ>) = $3, for any x, yeG.

Now we show that the distribution Σ is parallel, that is, for any x, yeG the

parallel displacement τγ along any piece wise differentiate curve γ joining x

to y sends ξ>x to § r From the assumption that G is geodesic, it follows that

every transposed loop G ( x ) of G centered at any x e G is also geodesic. There-

fore, if y is a geodesic segment, τγ is coincident with the linear map dLy

x) and

so it sends ξ>x to ξ>y as was shown above. For any piecewise differentiable curve

γ: t ^x(t) (x(0) = x,x(l) = y), we can choose an ordered set {xo = x9xu...,xk = y}

of points on γ such that each χ. = χ(ί.) (0 = ί o < ί 1 < < ί ι _ 1 < ί / < <ί f c = l)

is contained in a normal neighborhood C7t of xf_ i Joining xf_ x to x, by a geode-

sic segment yt in 17,., we see that the parallel displacement along the piecesise

geodesic arc γίγ2...yfc is equal to the composition dL{*k-ί)o...odLiJc

i

i-ί)o-' odLix?

of the linear isomorphisms. Since the parallel displacement τγ of a vector is given

as a solution of the differential equation y xX = 0 along x(t), it can be regarded

as the limit of a sequence of parallel displacements along piecewise geodesic arcs

from x to y (as given above) converging to γ. As each of such parallel displace-

ments sends § x to $ r we have τ y(§ x) = § r q.e.d.

In view of this proof we see the following

COROLLARY. Every left invariant subsystem of the Lie triple algebra

Qΰ of G is invariant under the holonomy group of the canonical connection.

REMARK. From [3, Theorem 7.7] and the above corollary, it follows that

every left invariant subsystem § of (5 is sent into itself under the inner derivation

algebra Λo °f ®> that is, the subsystem § satisfies

(*) [X, 7, &] c § for any X, Ye (5,

where the bracket denotes the ternary operation of (5. Suppose that G is simply

connected and the closure K(G) of L0(G) is a simple Lie group. Then K(G)

coincides with the holonomy group of the canonical connection of G and so the

subsystem § of (5 is left invariant if and only if § satisfies the above condition

(*). (Cf. [3, Theorem 7.3].)

§ 4. Proof of the main theorem

Now we prove Theorem 1 mentioned in the introduction. The first half of

the theorem is clear from Theorem 2, Proposition 2 and from the definition of the
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left invariance of subloops and subsystems. Therefore it is sufficient to show

the following

THEOREM 3. Let G be a connected geodesic homogeneous Lie loop and (5

the Lie triple algebra of G. For any left invariant subsystem § o/(5, the dis-

tribution Σ given in Proposition 3 is completely ίntegrable and the maximal

integral manifold H through the identity e is a left invariant Lie subloop of G.

In fact, if this theorem is proved, then by Theorem 2 and Proposition 2

H is an only Lie subloop of G tangent to § at e such that H is itself a geodesic

homogeneous Lie loop with § as its Lie triple algebra.

PROOF. Let X, Y be any vector fields on G belonging to the distribution

Σ. The value for X, Y of the torsion S of the canonical connection y of G is

given by

(**) S(X9Y) = lx9r\-ηxγ+γγx.

By Proposition 3, Σ is parallel and so the vector fields y x Yand y YX belong again

to Σ. On the other hand, since the connection y is locally reductive, S is parallel

so that

τy(S£Xe,Ye)) = Sx(τγ(Xe),τγ(Ye))

holds for any point xeG and for any curve y joining e to x. The bilinear opera-

tion of the Lie triple algebra © is given, by definition, as the value at e of the tor-

sion tensor S (cf. [3, Theorem 7.3]). Then we get Se(Xe, Ye)eξ> for any Xe9

Yeeξ> and so the preceding equality implies SX(XX, Yx) e § x for the vector field

X, Ye Σ, since Σ is parallel. Thus [X, Y] x eξ>x(xe G) is obtained in (**), which

shows that Σ is completely integrable.

Now, let H be a maximal integral manifold of Σ through e. As was shown

in the proof of Proposition 3, Σ is invariant under any left translation Lx (x e G).

Hence xH is an integral manifold of Σ through x. If x e H, then we have xH a H9

and by the left inverse property of the loop G we get the equalities xH = H = x~ίH.

It follows that H is an abstarct homogeneous subloop of G. It can be shown,

by the same way as in the case of a connected Lie group, that the homogeneous

Lie loop G is generated by any neighborhood of e. Hence G has a countable basis

and so does H. Then it is shown that the restriction μH: H x H^H of the mul-

tiplication μ of G to H x H is differentiable. The proof of this fact goes similarly

to that in the theory of Lie groups (cf., e.g., [1, p. 108]). Therefore, we see that

H is a Lie subloop of G. For any x, y eG, the left inner mapping Lxy leaves

the distribution Σ invariant, and so does L~}y = Ly-1 x. i [3, Lemma 1.8]. It

follows that the submanifold Lxy(H) coincides with H as a maximal integral
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manifold of Σ through e. Thus we proved that H is left invariant. q.e.d.
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