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Introduction

The extremal length of a network, which is the reciprocal of the value of a
quadratic programming problem, was first investigated by R. J. Duffin [4] on a
finite graph and next by the second author [7] on an infinite graph. In this paper
we shall be concerned with a generalized form of the extremal length as in [5] along
the same lines as in [4] and [7]. The generalized extremal length of an infinite
network may be regarded as the reciprocal of the value of a convex programming
problem. One of our main purposes is to establish a reciprocal relation between
the generalized extremal distance and the generalized extremal width of an infinite
network which was established by M. Ohtsuka [5] for the continuous case.
We shall also study the generalized extremal length of an infinite network relative
to a finite set and the ideal boundary of the network. A concept of non-linear
flows which was studied in [1] and [3] will appear in §3 and §4 in connection
with the extremal width of a network.

§1. Preliminaries

Let X be a set of nodes and let Y be a set of directed arcs. Since we always
consider the case where X and Y consist of a countably infinite number of elements,
we put

X=1{0,1,2..,n,..},
Y={1,2,...,n,..}.

Let K=(K,;) be the node-arc incidence matrix. Namely K, ;=1 if arcj is directed
toward node v, K,;= —1 if arc j is directed away from node v and K, ;=0 if arc j
and node v do not meet.

We assume that X, Y and K satisfy the following conditions:
(1.1) {jeY; K,;0} is a nonempty finite set for each v e X.
(1.2) e(j)={veX; K,;#0} consists of exactly two nodes for each je Y.

(1.3) For any «, feX, there are v,...,v,€X and j,,...,j,+1 €Y such that
e(ji)={v,-_1, v,-}, i=1,..-, n+1 With VO=(X and v,,+1=ﬁ.
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Given a strictly positive function r on Y, the quartet <X, Y, K, r> is then
called an infinite network. For simplicity denote by <X, Y> a network <X,
Y, K, r> if there is no confusion from the context.

Let X’ and Y’ be subsets of X and Y respectively and let K’ and ' be the
restrictions of K and r onto X’ x Y’ and Y’ respectively. We say that <X’, Y'>
=<X', Y, K, r> is a subnetwork of <X, Y, K, r> if it is a network in itself.
In case X’ (or Y’') is a finite set, we call <X’, Y'> a finite subnetwork of <X,
Y>.

We say that a sequence {<X,, Y,>} of finite subnetworks of <X, Y> is
an exhaustion of <X, Y> if

(1.4) X=0U0X, and Y= U Y,,
n=1 n=1
(1.5) {jieY; K,; #0} = Y, for each veX,.
Let p and q be positive numbers such that
(1.6) 1/p+1/g=1 and p>1.

Let L(X) and L(Y) be the sets of all real functions on X and Y respectively.
For u e L(X) and we L(Y), we put

U, = u(v), wj = W(j)a

Su={veX;u,#0}, Sw={jeY;w;#0},

(1.7) D,(u) = 121 ri-r| ;0 K7,
(1.8) Hy0) = & riwip.

We shall use the following classes of functions on X and Y:
Ly(X) = {u e L(X); Su is a finite set},
Ly(Y) = {we L(Y); Sw is a finite set},
L*(Y) ={weL(Y); w; =0 on Y},
L,(Y; 1) = {(we L(Y); Hy(w) < o},
Li(Y; r) = {we L*(Y); Hy(w) < ©}.

Note that L(Y; r) is a reflexive Banach space with respect to the norm [H,(w)]*/».
If H,(w—w™)—0 as n—co, then w{” -»w; as n— oo for each j.
For a nonempty subset 4 of X, let us put
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D® = D®:4 = {ye L(X); D,(u) < co and u = 0 on A4}.
We have

LemMmA 1.1.1)  For any n, there exists a constant M,, such that

3. Il < M,[D,@)]' 7
for all ue D®.

ProrosiTION 1.1. D@ is a reflexive Banach space with respect to the
norm [D,(u)]'/7 .

Proor. It follows from Lemma 1.1 and the Minkowski inequality that
[D,(u)]'/? is a norm on D®). We can prove by a standard argument that D®
is a Banach space. Let E be the linear transformation from L(X) into L(Y)
defined by

00
w; = (Eu); = r;! VZ_‘,O K,ju,

and denote by E(D®) the image of D® under E. From the relation H,(Eu)
=D (u), it follows that E is a Banach space isomorphism from D® onto E(D®).
It is easily seen that E(D®) is a closed linear subspace of L,(Y; r). Since L,(Y;
r) is a reflexive Banach space, E(D®)) is also a reflexive Banach space (cf. [2],
p. 116, Proposition 11). Therefore D) is reflexive.

LemMMA 1.2.2) Let Tbe a normal contraction of the real line R and u e D®,
Then Tu € DP) and D,(Tu) < D ,(u).

We often use the following theorem to assure the existence of an optimal
solution of an extremum problem.

THEOREM A.3) Let Z be a reflexive Banach space with the norm |z| and
C be a nonempty closed convex set in Z. Then there exists a point 2 e C such
that ||2||=min {||z||; ze C}. This minimizing point is unique if every boundary
point of the ball ||z|| £1 is an extreme point.

§2. Generalized extremal length of a network

A path P from node a to node g is the triple (Cx(P), Cy(P), p(P)) of a finite

1) Cf. Lemma 1 in [7].
2) Cf. Lemma 2 in [7].
3) [2], p. 117, Exercise 1.
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ordered set Cy(P)={vqy, v4,...,v,} of nodes, a finite ordered set Cy(P)={}j,,
J2s--+» juy Of arcs and a function p(P) on Y called the index of P such that

V0=OC,Vn=ﬁ,Vi?5Vk (l?ék),
e(j) = {vi—1, vi} if jeCy(P),
Pj(P)= 0 if j¢Cy(P),

p_](P) = _K‘,] With V= v,-_l if j =ji'

(P)

A path P from node a to the ideal boundary co of <X, Y > is the triple
(Cx(P), Cy(P), p(P)) of an infinite ordered set Cyx(P)={v,, v;,...} of nodes, an
infinite ordered set Cy(P)={j, j,,...} of arcs and a function p(P) on Y called the
index of P which satisfy condition (P) except the terminal condition v,=f.

Denote by P, (resp. P,,) the set of all paths from node o to node f (resp.
). Note that condition (1.3) means P,;# ¢ for any a, fe X. For mutually
disjoint nonempty subsets A and B of X, denote by P, 5 the set of all paths P
such that PeP,;, Cy(P)n A={o} and Cx(P)nB={p} for some acA and
peB. Let Py, be the set of all paths P such that PeP,, and Cx(P)nA
={a} for some x e A.

Let I" be a set of paths in an infinite network <X, Y, K, r>. For every
We L*(Y), a value #(W; I') is defined by

2.1 tw; F)=inf{2rJ W;; Pel},

where Z r;W; is an abbreviation of Z r W,

We define the extremal length 4 (F ) of I of order p by
2.2) (M)~ = inf{H (W); WeE/(I)},
where E (I ={WeLi(Y;r); (W; ) =z 1}.
We use the convention in this paper that the infimum of a real function on the
empty set ¢ is equal to co. We shall study some properties of the extremal
length which are analogous to the continuous case (cf. [6]).

Let I'; and I', be sets of paths in <X, Y>. We shall write I'y <I, if for
any P eI, there is a P(V e I'; such that Cy(P(D)= Cy(P(®).

We easily obtain

LemMmA 2.1. If I'y and T', are sets of paths in <X, Y> such that T,
<TI'y, then 2,(I')) SA,T>).

PROPOSITION 2.1. Let P be a path and set R(P)= X r;. Then A ({P})
P
=R(P)r~ 1.



Generalized Extremal Length of an Infinite Network 99

Proor. Let WeE,({P}). Then X r;W;=1. It follows from Holder’s
P

inequality that 1<R(P)!/4H,(W)!/». Thus we have A,({P})SR(P)»"'. Next
we show the converse inequality. Let {<X,, Y,>} be an exhaustion of <X, Y>
such that Cy(P)nY;#¢. Set Y,=Cy(P)nY, and define W e L(Y) by W{
=(Xr)tifjeY, and WW=0if j¢Y,. Then W™ eE,({P}) and

Y

HPD 2 HOVO = (S rjp
By letting n—oo, we conclude that )ip({P})>R(P)p 1. This completes the
proof.

Let I'y and I', be sets of paths in <X, Y>. We say that I'; and I', are
mutually disjoint if Cy(P()n Cy(P)=¢ for every PV el'; and PP erl,.

LEMMA 2.2.4) Let {I',; n=1, 2,...} be mutually disjoint sets of paths and
I be a set of paths. If I',<I for each n, then

NG E D WROAES

Proor. If A,(I',)=oo for at least one n, our inequality is valid by Lemma
2.1. Therefore we may assume that A,(I',) <o for each n. Moreover we may
assume that A,(I',)>0, i.e., E(I',)#¢ for each n. Let Y,=U{Cy(P); PeT,}.
Then

A )~ = inf{H,(W); WeE/(I',) and W= 0on Y-Y,}.

Choose any positive integer m and fix it. Let ¢, t,,..., t,, be non- negative num-
bers such that Z t,=1; they will be determined below. Taking W;= Z t, W("’

with W""eEp(I“) such that W™ =0 on Y—Y™, we have W;=t, W('" for each
jeY, and

IIV

S = 8 Lznw

P P

for every PeT, so that We E(I'). Therefore
AN = j}i il 'gl LW = él L H (W),
It follows that

PRI W /NN
n=1

4) Cf. [6], p. 79, Theorem 2.10.
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Now we choose t,,=/1p(I’,,)‘1‘1< i /1},(1",,)‘1“>_1 and obtain
n=1

2y 2| $ )|

which leads to the desired inequality.

Let A and B be mutually disjoint nonempty subsets of X. We define the
extremal distance EL,(A, B) (resp. EL,(A, o)) of order p of an infinite network
<X, Y, K, r> relative to A and B (resp. A and ) by

(2.3) EL,(A, B) = 2,(P,p),
(2.4) EL, (A, ) = AP, ).
Next we consider the following extremum problem:
(2.5) Find
d, (A, B) = inf{D,(u); ue L(X),u =0on A and u = 1 on B}.
We have

LEMMA 2.3.3) Let Ve L*(Y). There exists u € L(X) such that u=0 on A,

(2.6) | S Ku, <V, foreach jev,
v=0
and
2.7 inf{X>V;; Pe P, g} = inf{u,; ve B}.
P

THEOREM 2.1. d, (A, B)=EL, (A, B)™'.

Proor. We set d,=d (4, B) and EL,=EL, (A, B). First we shall prove
d,<EL;' in case EL,'<oo. Let WeE (P,p) and put V;=r;W, Then
inf{}>V;; PeP,gi=t(W;P,p)=1. We can find ueL(X) by Lemma 2.3

P

such that u=0 on A and u satisfies (2.6) and (2.7). Then u=1 on B and

D)= 3 ri=r| ¥ K, u, [P < ¥ ri-rV? = H(W) < .
j=1 v=0 j=1

Let v=min(u, 1). Then v=0 on 4 and v=1 on B, so that

d, < D,(v) < Dyu) < H,(W)

5) Cf. Theorem 3 in [7].
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by Lemma 1.2. By the arbitrariness of W, we obtain d,<EL;'. Next we shall
show that EL;'<d, in case d,<oo. Let ue L(X) satisfy u=0 on A4, u=1 on
B and D,(u)<oo. Define WeL*(Y) by W,.=r,—.1|§0 K,u,. Then it is easily
seen that We E (P, p) (cf. the proof of Theorem 4 in [7]). Hence EL;!<H (W)
=D,(u) and EL,'=d,. Thus we have d,=EL;".

By the aid of Theorem A, we have

ProposITION 2.2. In case E (P4 p)# ¢, there exists a unique We E (P, p)
such that EL,(A, B)~'=H (W).

ProrosiTION 2.3. In case {ueD®4;u=1 on B}#¢, there exists a
unique optimal solution G of problem (2.5), i.e., i €{ueD®:4; u=1 on B}
such that d (A, B)=D(#).

Hereafter in this section, we always assume that A4 is a nonempty finite subset
of X and that {<X,, Y,>} is an exhaustion of <X, Y> such that AcX;.
We shall be concerned with the relation between EL,(4, X —X,) and EL, (A4, 00).

We prepare

Lemma 2.4, Let WelL*(Y) and set t(W)=t(W; P,x_x,) and HW)
=t(W; P, ). Then t(W)=t,, (W)StW) and t(W)-tW) as n—»>oo. Fur-
thermore there exists Pe P, , such that t(W)=>r;W,.

P

Proor. Since Py y_x, <P, y_x,,,<P4.> we have (W)=t (W) = t(W).
For each n there exists P e P, x_x such that t (W)= Z)”jo- Since A is a
P(n

finite set, there is a, € A such that ay € Cy(P™) for infinitely many n. For each
o e X, we put

Y() = {jeY; K,; # 0},
X(x) = {veX;v+#aand K,; # 0 for some je Y(x)}.

Since X(ap) is a finite subset of X, there are a; € X(op) and j, € Y(ag) such that
e(j)={ag o,;} and j, € Cy(P™) for infinitely many n. Similarly there are
o, € X(a;) and j, € Y(ay) such that e(j,)={«;, @} and {j,, j,} =Cy(P™) for in-
finitely many n. Repeating this process, we can define ordered sets Cy(P) and
Cy(P) by

Cx(P) = {ag, 2y, @,...} and  Cy(P) = {jy, jz>---}-

Define p(P)€ L(Y) by p(P)=—K,; with v=0,;_; if j=j; and p,(P)=0 if j¢ Cy(P).
Then PeP, ,. For any m, there are infinitely many n such that {j, j;,..., jm}
< Cy(P™). Thereby we have
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S 1 S 3 W, = 6W) < lim (W),
k=1 PG n—o0

By letting m— oo, we have

(W) £ X r;W; < limt,(W).
P n-—o

This completes the proof.
We have
THEOREM 2.2. limEL (A, X~ X,)=EL,(A, c0).

n—o0

Proor. Since P,y x <P,x x,,,<Pas. we have ELJA4, X—X,)
SEL(A, X—X,,,)SEL,(A, ) by Lemma 2.1. Therefore

lim EL(A, X —X,) < EL,(A, ).

h—o0

Let WeE,/(P,.). Then t(W)=4W; P, )=1. Since t,(W)=tW; P,x_x,)
—t(W) as n—oo by Lemma 2.4, we may assume that #,(W)>0 for all n. Writing
W =Wt (W), we see that WM e E (P, x_x,) and EL(4, X—X,)ZH (W™)~!
=t,(W)P(H,(W))~1. It follows that

lim EL,(4, X—X,) 2 (W) (H (W)~ 2 H,(W)!

n—ao

for all WeE,(P,,) Hence limEL/(A, X—X,)ZEL,(A, ©). This com-
pletes the proof.

We shall give upper and lower bounds for EL, (A4, o0).
ProprosiTION 2.4.  EL (A, 0)<R(P)*~! for every Pe P, .
Proor. Let PeP, .. Then
EL,(A, o0) £ 4,({P}) = R(P)P~!
by Lemma 2.1 and Proposition 2.1.

By taking I',=Py, x,,,-x, and '=P, , in Lemma 2.2, we obtain

PROPOSITION 2.5. EL,(4, )4 '2 3 EL (X, X,ey—X,)7 1.
n=1
We have

ProrosiTION 2.6. Let Z,=Y,,,~Y, and p,= 3 r}P. Then
z,

EL(A, o)t = § pi-a.
n=1
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Proor. In view of Proposition 2.5, it suffices to show that A ()" '=upu,
for all n, where I',=Px_x. ., -x,. Put U,=U{Cy(P); Pel,}. Then U,cZ,.
Define W eL(Y) by W’ =rj! if jeZ, and W{¥=0 if j¢Z,. Then W™e
EI',) and

ALY S VW) = T ri =
Zn

§3. Max-flows and min-cuts

Let A and B be mutually disjoint nonempty subsets of X. We say that a
subset Q of Y is a cut between A and B if there exist mutually disjoint subsets
Q(A) and Q(B) of X such that A=Q(A4), B=Q(B), X=0(A4) U Q(B) and the set

0(4) e 0B) ={jeY; K,;K,; = —1 for some a € Q(4) and b e Q(B)}
is equal to Q.

Let 4 be a nonempty finite subset of X. We say that a subset Q of Yis a cut
between A and the ideal boundary oo of <X, Y> if there exist mutually dis-
joint subsets Q(A) and Q(c0) such that A=Q(A4), Q(0)=X—Q(A4), Q(4) is a
finite set and Q=Q(4)©Q(x). Denote by Q,p (resp. Q4 ) the set of all
cuts between A and B (resp. c0). We define the characteristic function u=u(Q)
€ L(X) of Q€Q 4 p and the index s =5(Q) € L(Y) of Q by

u,=0ifveQ(4) and u,=1if veQ(B),

vjuv'

We have s;=0if j ¢ Q and |s;|=1if je Q.
Let A and B be mutually disjoint nonempty finite subsets of X. We say
that we L(Y) is a flow from A to B of strength I(w) if

(3.1) il K,w;=0 (v¢A U B),
P
(3.2) Iw=-3 3 Kw;=3 3 K,w;.
ved j=1 veB j=1

Denote by F(A, B) the set of all flows from A4 to B and set
G(4, B) = F(A, B) n Ly(Y).

Let F (A, B) be the closure of G(4, B) in L(Y; r). Thus for any we F (4, B),
there exists a sequence {w(™} in G(4, B) such that H (w—w()—-0 as n—oo. It
follows that we F(4, B) and I(w(™)—I(w) as n—oo0.



104 Tadashi NAKAMURA and Maretsugu YAMASAKI

Let g,(t) be the real function on the real line R defined by
g,(t) = [t]7~ " sign (7).
It is clear that

tg,0= 1117 and & |t]7=pg,(0).

We say that we L(Y) is a p-flow from A4 to B of strength I,(w) if g,ow is a

flow from A4 to B and I, (w)=1I(g,ow). Denote by F®)(A4, B) the set of all p-
flows from A4 to B and set

G®P)(4, B) = F®X(A, B) n Ly(Y).

It is clear that F(?)(4, By=F(A, B) and I,(w)=I(w). We remark that a p-flow
is a non-linear flow in the sense of Birkhoff [1] and Duffin [3].

REMARK 3.1. we G?)(A, B) if and only if g,ow e G(4, B).

REMARK 3.2. Let A and B be mutually disjoint nonempty finite subsets of
X and let 2 be the optimal solution of problem (2.5). Define we L(Y) by

W' =r;1 vgovaﬁv.

J
Then it can be shown that we F(®)(A4, B).
We prepare

LeEMMA 3.1. Let ue L(X) and we L(Y). Then

3.3) vio uv<§‘,1 K,w; )= 121 Wj(v§0 vauv>
holds if any one of the following conditions is fulfilled:

(i) ueLy(X) or weLyY).

(ii) D,(u) < o and weF/(A, B).

Proor. If condition (i) is satisfied, then (3.3) is clear. Assume condi-
tion (ii). Then there exists a sequence {w(™} in G(A, B) such that H (w—w(®)
—0as n—»oo. We have

Ms

0

I

v

SENBS 3 (n
S wi( £ Kgu)= 5 u(E Kgwi?)
j=1 v=0 =1
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= Z uv( i vawfi"))
j=1

veAUB
2 0 0
- Z uv( vawj) = Z uv( Z vawj>
vedAUB Jj=1 v=0 j=1

as n— o0, since w(j")—+wj as n—oo for each je Y. On the other hand, we have
3 OITR s 1 1
,-‘=\:1 w;—will 2 Kyul = [Hy(w—w)]'/4[D (u)]'

by Holder’s inequality, so that

g‘,l wj<§,0 vauv)= lim f w&n)(i K‘.,-uv>= i uv<i K”.wj),

n—ow j=1 v=0

This completes the proof.

Let We L*(Y). Let us consider the following extremum problems which
are generalizations of the max-flow problem in network theory on a finite graph.

(3.4) Find
M(W; F (A, B)) = sup {I(w); we F (4, B) and |w;| < W, on Y}.

(3.5) Find
M(W; G(A, B)) = sup{I(w); we G(4, B) and |w;] < W, on Y}.

(3.6) Find
M (W; G»)(A, B)) = sup {I,(w); we G'»X(4, B) and |w;| < W, on Y}.

For We L*(Y) let us denote by W? the function Ve L(Y) defined by V;
=W?~ for each je Y.
On account of Remark 3.1, we have

ProposiTION 3.1. M, (W; G®)(A4, B))=M(W?~!; G(A4, B)).
We shall prove

LemMA 3.2. Let We Ly(Y;r). Then there exists we F (A, B) such that
W,|SW%= 1 on Y and I(W)=M(W?r~1; G(A4, B)).

Proor. There exists a sequence {w™} in G(4, B) such that |[w{”|<W?~!
on Y and I(w(™) converges to M(W?~!; G(A, B)). Since L(Y; r) is a reflexive
Banach space and {we F (4, B); |w;,/SW?’~! on Y} is a bounded closed con-
vex set in L(Y; r), we may assume that {w(™} converges weakly to we L(Y; r).
Then w{”—>w; as n—oo for each j. Hence We F (A, B), |w,|<W2~! on Y and

IW) =% 2 K = lim I(w™) = M(W?™"; G(4, B)).

veB j=
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This completes the proof.

Let We L*(Y) and consider the following extremum problem which is a
generalization of the min-cut problem in (finite) network theory:

(3.7) Find
M*(W; Q4,) = inf{% Wi; Q€Qy8}-
We have
LEMMA 3.3.9) M(W; G(A, B))=M*(W; Q 4 p).
By Lemma 3.3 and Proposition 3.1, we have

COROLLARY. M (W; G®)(A, B))=M*(W?=1; Q . ).

§4. Generalized extremal width of a network

Let A and B be mutually disjoint nonempty subsets of X. We define the
extremal width EW,(A4, B) of order p of an infinite network <X, Y, K, r>
relative to two sets A and B by the value of the following extremum problem.
(4.1)  Find

EW,(A, B)™' = inf{H,(W); We E}(Q4,p)},

where EF(Q4p) = {WeLl(Y;r); X Wi 1 =1 forall QeQ,p}.
7

Hereafter in this section we always assume that A and B are finite subsets
of X. In connection with the above problem, we consider the following extre-
mum problems.

(4.2) Find
di(A, B) = inf{H (w); we F (A, B) and I(w) = 1}.

(4.3) Find
d*(A, B) = inf {H,(w); we G®)(4, B) and I (w) = 1}.

We shall prove

PROPOSITION 4.1. 3;‘(A, B)=d%(A, B)=inf{H(w); we G(4, B) and I(w)
=1}

ProOF. We set d*=d*(A4, B) and d¥=d*(4, B). By Remark 3.1 and by
the relations I(g,ow)=1,(w) and H(g,ow)=H (w), we have

6) Cf. Theorem 6 in [7].



Generalized Extremal Length of an Infinite Network 107

(4.4) d* = inf{Hz); z € G(4, B) and I(z) = 1},

so that 3;’,‘_>__d§. On the other hand, let we F (4, B) and I(w)=1. There exists
a sequence {w(™} in G(4, B) such that H(w—w()—0 asn—oco0. Since I(w™)
—I(w) as n— o0, we may suppose that I(w)>0 for all n. It follows from (4.4)
that

dy < Hw®[Iw®) = Hw ™) Uw)e
By letting n— oo, we have ajéHq(w), so that 3;,"§d;‘. Hence 3;‘;=d§.
THEOREM 4.1. EW,(A, B)~!=d}(4, B).

Proor. We set EW,=EW,(A, B) and d}=d}(A, B). For each weG(A4,
B) such that I(w)=1, consider We L*(Y) defined by W;=|w,|'/*»~V on Y. Then
we show that WeE}XQ,p). Let u=u(Q) be the characteristic function of
Q0eQ,p Wehave by Lemma 3.1

[eo]

g uV(,ﬁi KVjo) B j§1 W’(vio KVjuV)

v=0

1 =I(w)

lIA

Z IWJH Z vauvl = Z WII{_I’
j=1 v=0 [4]
Therefore We E¥(Q 4,5) and
EW,' S H (W)= 3 rjlw;|p/?=V = H(w).
i=1

Thus we have EW, ! <d} by Proposition 4.1. On the other hand, let We EX(Q 4 p),
ie, WeLf(Y;r) and M*(Wr~1;Q,p=1. We can find weFy (A4, B) such
that |w;|<W%~! on Y and M(WP~!; G(A, B))=I(w) by Lemma 3.2. It follows
from Lemma 3.3 that I(w)=1. We have

dy < HwlI0) SH0) = 5 rjwle

< $ rwie-v=HW),
=1
so that d¥<EW,*. Therefore d¥=EW,!.
By the aid of Theorem A, we have

PROPOSITION 4.2. There exists a unique WeF,(A, B) such that I(W)=1
and d}(A, B)=H /W), i.e., W is the optimal solution of problem (4.2).

Let A be a nonempty finite subset of X. We define the extremal width
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EW,(A, ) of order p of an infinite network relative to 4 and co by the value
of the following extremum problem.

(3.5) Find
EWp(A’ w)_l = inf{Hp(W); We E:(QA,GO)} H

where E}(Q4,) = {WeL/(Y;r); 2 Wi 1 =1 forall QeQ,,.}-
Q

Let {<X,, ¥,>} be an exhaustion of <X, Y> such that AcX,. We shall
be concerned with the relation between EW, (4, X —~X,) and EW,(4, «).
We shall prove

THEOREM 4.2. limEW, (A, X —X,)=EW,[(A, o).

ProoF. Since Q4 x-x,<Q4x-x,,, Q4. We have EW,(A, c0)SEW,/(A,
X—X,,1)SEW,(A, X—X,), and hence

lim EW,(A, X —X,) 2 EW,(4, o).

To prove the converse inequality we may assume that im EW(4, X — X,)>0.

For each n, there is W™ € E*(Q 4 x—x,) such that EW,(4, X —X,)=H (W)~1,
Since {H ( W™ is a bounded sequence and L(Y; r) is a reflexive Banach space,
we can choose a weakly convergent subsequence of {W1. Denote by {W(}
the subsequence again and let W be the weak limit. We show that We E¥(Q 4,00)-
Let Qe Q4 ,, With Q=0(4)©0(w). Since Q(A) is a finite set, there is a number
ne such that g(4)cX,,. Then X~—X,<Q(co0) and hence Qe Q4 x-x, for all
n2n,. Therefore 3 [W{]p~1 21 for all n2n,. Since {W™} converges weakly

N Q N N
to Wand Q is a finite set, we obtain 3 W21 =1. Thus We E}(Q, ). Since

Q
[H,(w)]'/? is weakly lower semicontinuous in L,(Y; r), we have

im[EW,(A4, X —X,)]"! = lim H (W)
> H (W) 2 [EW,(4, ©0)]"!.

This completes the proof.

§5. A reciprocal relation between EL, and EW,
Let A and B be mutually disjoint nonempty finite subsets of X.
We prepare

LemMmA 5.1.  Let W be the optimal solution of problem (4.2). If w'eFy (A4,
B) and I(w")=0, then
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(5.1) ,Z’x riwig,(w;) = 0.

Proor. For any real number ¢, we have W+tw'e F (A4, B) and I(W+tw")
=1, so that d¥(A4, B)=H,(W)<H,(W+tw'). Thus the derivative of H,(W+tw’)
with respect to ¢ vanishes at t=0. Since H,(W+tw’) can be differentiated term
by term at =0, we obtain (5.1).

COROLLARY 1. Let W be the optimal solution of problem (4.2) and P be
a path from node a.€ A to node feB. Then

(5.2) d¥(4, B) = ;21 ripi(P)g (%)) .

Proor. Note that p(P) is a flow from {«} to {f} such that I(p(P))=1.
Taking w'=Ww— p(P), we see that w'e F (A4, B) and I(w)=0. Thus we have by
(5.1)

j;l rj(wj_pj(P))gq(Wj) =0.

Therefore

dj(4, B) = H, (%)

Il
Ms
&ﬂ

>
.,

P940) = 5, ripAPha ).

COROLLARY 2. Let W be the optimal solution of problem (4.2) and let
o, ve X (x#v). If P and P’ are paths from node a to node v, then

(5.3) ]21 r;pi(P)g,(%;) = ji r;ip(Pg,(%)).

Proor. Taking w'=p(P)—p(P’'), we see that w' e F (A4, B) and I(w')=0.
Then (5.3) follows from (5.1).

Let w be the optimal solution of problem (4.2). For any ac A, we define
v® e L(X) by

(54) v((lnz) = 0, v(v"‘) = j;l rjpj(P)gq(Wj) (V # (X)

for some path P from node « to node v. It follows from Corollary 2 of Lemma
5.1 that v(® is uniquely determined by w. Define & e L(X) by

(5.5) b, = inf {|v®|; x e A}.

We have

LEMMA 5.2. Let © be the function defined by (5.4) and (5.5). Then
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=0on A, D=d}(A, B) on B and
e A
(5.6) | 2 K0, £ rylw;|e1 on Y.
v=0

Proor. Since v{®=0 for any ae A, we have =0 on 4. We have d
=d}(A4, B) on B by Corollary 1 of Lemma 5.1. The proof of (5.6) is carried
out by the same reasoning as in the proof of Lemma 12 in [7].

We shall prove

THEOREM 5.1.  [d (A, B)]'/?[d}(A4, B)] /1= 1.

Proor. We set d,=d, (A, B) and d}=d%(A, B). First we show that
1=(d,)!/?(d¥)*/4. For any ve L(X) such that v=0o0n 4, v=1 on B and D ,(v) < o0
and any w € F (A, B) such that I(w)=1, we have by Lemma 3.1

t=100 = £ o,( £ Kw;) = £ w( £ Kw,)
v=0 ji=1 j=1 v=0

= [D,m]'PLH (w)]'/2,

which leads to the desired inequality. Next we show that (d,)!/?(d¥)'/1<1.
Let w be the optimal solution of problem (4.2) and define 9 € L(X) by (5.4) and

(5.5). Then we have by (5.6)
DO = 2, 7y Z KPS 2 ridlret = Hy(P) = dj.
Writing fi =0/d¥, we see by Lemma 5.2 that #1=0 on 4 and =1 on B, so that
d, = D(i1) = D,(0)(d})™? = (d})' 77 = (d})77/4,

or (d,)/r(d¥)i1<1.
By Proposition 4.1 and Theorem 5.1, we have
COROLLARY. [d,(A, B)]'/?[d*(A, B)]'/4=1.
By Theorems 2.1, 4.1 and 5.1, we have
THEOREM 5.2. [EL,(A, B)]'/?![EW,(A, B)]'/1=1.

Next we shall be concerned with the reciprocal relation between EL,(A4, o)
and EW,(A4, ). Henceforth let A be a nonempty finite subset of X and {<X,,
Y,>} be an exhaustion of <X, Y> such that Ac X.

We prepare
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LEMMA 5.3. For every Q€Qx,. -x, there exists Q' €Q,x_x, such
that Q' < Q.

Proor. Let QeQ,x,,,-x, and 0=0(4)00(X,+;—X,). Let us define
Q'(4) and Q'(X—X,) by

Q) =Q0A)-(X-X,) and Q'(X-X,) =X-0'(4).

Since An(X—X,)=¢ and Q'(An(X—-X,)=¢, we see that A=Q'(4) and
X—-X,cQ(X—-X,), so that Q'=Q'()EQ(X—-X,)eQ,x-x,- It can be
easily shown that Q' = Q.

We have
THEOREM 5.3. EW,(A, c0)=EL,(A4, c0)! 1.
ProoF. Since P, x_x =P, x, . -x, We have
EL (A, X—X,) = EL(A, X,.;—X,).
It follows from Lemma 5.3 that
EW, (A, X—-X,) = EW,(4, X,+,—X,).
We have by Theorem 5.2
EW, (A, X—X,) = EL(4, X—X,)'"4.

Our assertion follows from Theorems 2.2 and 4.2.
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