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1. Introduction

Recently quite a few authors have spent considerable effort in finding condi-

tions to ensure that nonoscillatory solutions of both ordinary and their companion

retarded differential equations approach zero asymptotically. For these criteria,

the reader is referred to [3, 5, 6, 8, 9] and references cited in them. However

the literature is very scanty about similar results in regard to oscillatory solutions

of these equations. Our purpose here is to find conditions to ensure that the oscil-

latory solutions of the general n-th order equation

(1) my'(t)Y«-" + a(f)ylt) =/(ί), yτ(t) s y(t-τ(t))

approach to zero as ί-> oo.

We now give definitions and assumptions that hold in the rest of this paper:

(i) τ(ί), KOJ β(0>/(0 a r e real, continuous and defined on the whole real line R.

(iί) r(t) and τ(t) are positive on R. τ(t) is bounded above by Ko>0.

We call a function h(t) e C[0, oo) oscillatory if it has arbitrarily large zeros.

Otherwise h(t) is called nonoscillatory on the half line [0, oo).

In what follows only continuous and extendable solutions of equations (1)

and (2) will be considered. The term "solution" applies only to such solutions

in this manuscript.

2. Main results

LEMMA 1. Suppose pί>p2>p3>P4> ~>pn-2 are respectively the zeros

of

'(t))', (r(0/(0)", , (K0/(0)("-3\

where y(t) is a solution of equation (1). Further suppose that tί<pn_2

t2>Pι are zeros of y(t). Suppose
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M = max\y(t)\, te\tu ί2] .

If\yτ(t)\<M ίnltut2lthen

PROOF. On repeated integration from equation (1) we have

(4)
t Js2JS3

Since pi >p2 > Pi > >p n -2 w e g^t from (4)

I(KO/(O)Ί < ( P 1 ( P 1 (P 1 | φ ) | \yτ(s)\dsdsn-2~.ds2
J J Sn-2

\f(s)\dsdsn_2-ds2,
Jt JS2 Jsn-2

which gives

(5) \(r(t)y'(i)Y\ < ^'(s

{-^~'\a(s)\\yτ(s)\ds + ^ ί ^ - ^ \f(s)\ds

Let

(6) M = |Xίo)|, toe[tlf ί2]

Now

±M = y(t0) = ['°y'(t)dt,
Jti

which yields

(7) M<[t0\y'(t)\dt.
Jtί

Similarly

Jto

gives

(8) M < [t2\y'(t)\dt.
Jto
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Adding (7) and (8) we have

2M < [2\y'(t)\dt

By Schwarz's inequality we have

(9) 4M2

Integrating the second integral by parts we have

(10)
\lr{t)dt

since y(tl) = y(t2)=0. From (10) we get

(ii) TTΓ^ £ \ \yί»\\r(t)y'(t)y\dt.
! / # • ( / ) *

From (6) and (11) we have

-JTΓ^ < M\'2\r(ί)y'(t)Y\dt
\tl/r(t)dt J "

(12) T ϊ 7

i M < \"\(r(t)y'(t)Y\dt.

From (5) and (12) we get

(13) -fj- < \ \ v J \yτ(x)\\a(x)\dxds

Jt2

Dividing by M and noting that ί 2

> P i w e have from (13)

(14) -TTΓ-* < fa ^ ι \a{x)\dxds
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From (14) we have

and the proof is complete.

THEOREM 1. Let y(t) be an oscillatory solution of equation (1). Suppose
further that

(15) \ tn~2\f(t)\dt < oo

(16) \ tn~2\a(t)\dt < oo

Then y(t)^O as t-*co.

PROOF. Suppose to the contrary that y(ί)-t->0 as ί-> oo. Then

(18) liminflXOI = 0
t-*oo

and

(19) limsuplXOI > Id

for some d>0. Due to oscillatory nature of y(t), (r(t)y'{t)yn~2) must be oscil-
latory. In fact if (K0/(0)(M~2) is nonoscillatory, then r(t)y'(t) assumes one sign
eventually. Since r(ί)>0, y\t) becomes nonoscillatory which in turn forces y(t)
to be nonoscillatory, a contradiction. Hence (KOj;/(O)(π"2) ̂ s oscillatory. Simi-
larly (K0/(0) ("~3 ),(K0/(0) (""4 )v.. ί(K0X0)' are all oscillatory. Let T be
large enough so that

T< ti+Ko <q< pn_2 < /?rt_3 <•"< p3 <P2<

are points where

(20) y(ti) = o, y(q) = O, y(t2) = O

(21) (Kft)/(ft))(l) = 0, i = 1, 2, 3,..., n-2 .

Let

ί e [ ί l f ί 2 ] .
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We shall show that y(t) is bounded. Suppose not. Let <h>ί2 be the first point

such that yiqx)>Mo. Let t3>q1 be the smallest zero of y(t). Let

(22) L 1=max|XOI ? te[tl9 ί 3 ] .

Let

(23) L2 = max|Xί)|, ί e [ ί 2 , ί 3 ] .

Then L X >L 2 . Let

(24) Li=titq), tqeltl9t3].

Since by construction Lί>M0 we must have a point ίβ such that

(25) h>tq>qγ> t2.

Hence

(26) L2 > L t

From (24) and (25)

Li = L2 = Lo.

Thus max|XOI i n \Ju h] ^s achieved at a point tqι>tq and

*βl e [ί2, ί3]

Thus

(27) Lo = max |,y(ί)l» t e [tί9 ί3] and achieved in [ί2, ί3] .

Now for ί e [̂ f, ί3]

ί -τ( ί )> ί-X 0

and by construction

tί<t-K0<t3 for ίe[^f, ί 3 ] .

Hence

(28) max 1^01 < U, ίe[g, ί 3 ] ,

(29) max I j (01 < Lo, ί e [ g , ί 3 ] ,

and

(30) y(tqι) = Lo.
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Replacing M by Lo, t2 by ί3 and tι by g we get from conclusion (3) of Lemma 1

(31) - ^
\ \\r(t)dt (n-2)\ {n-2)\

Since in (31), the right hand side can be made as small as we please and the left

hand side can be made as large as we please in view of (15), (16) and (17), and

choices of q, t3, this is a contradiction and hence y(t) is bounded.

In fact looking at the proof more carefully we have shown that

<t3< en_2

y(t2) =

(32)

and hence

(33)

Let now

(34) T< t2

be such that

(35)

and

(36) (Ke

ί = l , 2,..., n-2; To is such that

max \y(t)\ > d

max I j;t(ί)l > d

Let ί4 > To be such that y(t4) = 0. Let

Then

(37)

WOI<M0, ίe[ί2, oo)

\yτ(t)\ < M 0 , tε[t2 + K0, oo).

e3 < e2

= 0

= 0

3, T o ] .

d<Mi< Mo.

Now in the proof of Lemma 1 we recourse to inequality (13). Replacing

*i by ί3, ί2 by ί4, M by M x and 'p's by 'β's we have

(38)
AM,

\ \\r(f)dt
Jt3

\yτ(x)\ \a(x)\dxds.



Forced Oscillations in General Ordinary Differential Equations 13

From (37) and (38) and the fact that e1<tA we have

(39) -JT^ < M 0 η s ) \a{x)\dxds

\ l/r(t)dt J f 3 ) s ( n ~ 3 ) !

Since right hand side of (39) can be made arbitrarily small and left hand side

arbitrarily large by proper choice of t3 and ί4, a contradiction is obtained. This

completes the proof.

EXAMPLE 1. Consider the equation

(40) (ety'iW + e-*-2* sin ty(t-π) = 4(Γ ίcosί-h2£Γ ίsinί-£Γ3 ίsin2ί.

All conditions of Theorem 1 are satisfied. Hence all oscillatory solutions of

equation (40) approach to zero as t-+oo. One such solution is

y(t) = e~2ίsinί.

REMARK. It is not possible to violate condition (17) on r(t) if (15) and (16)

hold. The following example indicates this fact.

EXAMPLE 2. The equation

(41) /»(*)+ «-,(/)

t > 0, τ(0 Ξ 0

has y(t) = sin (In t)

as an oscillatory solution not approaching zero. Only the condition on r(t) is

violated.
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