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1. Introduction

Consider the system of ordinary differential equations
(1) x'=AWOx+ft, x), t=to,

where x is an n-vector, A(?) is a continuous n X » matrix function on I=[t,, ),
and f{(t, x) is a continuous n-vector function of # and x on /x R*. Recently, Rab
[7] has taken up the case where all components f; of f depend only on ¢ and some
ofthe components ofx, say, X;,,...,X;, 1 Si; < <i,<n,and has presented con-
ditions which lead to an equivalence between certain components of the solutions
ofthe system (1) and certain components ofthe solutions ofthe unperturbed system

() V' =A@®y, t 2t

He has shown in particular that the first theorem of Hallam [6] concerning the
second order scalar differential equations

3) x" = a(Ox+f(t,x), Y =a(t)y

follows from his theorem as a corollary.

The purpose ofthis note is to establish a theorem which improves considerably
the above mentioned results of Rab and to provide some examples demonstrating
its application to specific classes of differentialequations. In particular it is shown
that our result, when applied to (3), yields the second theorem of Hallam [6] which
is not covered by Rab’s result.

2. Main result

We assume that the components f; of / depend essentially on ¢ and the ¢
components X;,,..., X;, (1<i;<  <i,<n) ofx in the sense that

(4) I.f:i(ta Xiseees xn)l é wj(t5 Ixilla'"’ lxiql)

for (7, x)eIxR"and j =1,..., n, where each wt, ry,...,r,) is continuous on /
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x R{ (R, =[0, o)) and nondecreasing in (ry,..., r,) for each fixed tel.

We are interested in some asymptotic relationships between the p components
X (D505 X (D (1S < - <ip gSp=n)of the solutions x(f) of (1) and the cor-
responding components of the solutions y(?) of (2).

Let Y(f) = (y;;(t)) be afundamental matrix for the system (2) and Y~ (&
(y7i(1)) the inverse matrix of Y(t); obviously, y7/i(t)=7Y ii(t)/det Y(t), where
YJi(t)s the cofactor ofy;(t). Let N ={l,..., n). Suppose that there exist sub-
sets Ng, M of N such that Ny M and positive continuous functions pt), my(t),
i=iy,...,1p, satisfying

w(t) Z2max |y (D, tel, i=iy,..., i,
JjeNo
n’i(t)g max {m?lx lyu(t)|’ ﬂ;(t)}, t615 i= il’-“, ip'
JE

Suppose moreover that there exist a constant K >0 and a subset B (possibly empty)
of Ny such that

5) :wlyjk(s)[wj(s, km(s))ds< oo, JeN, k6A,
(6) Sjo lke?\-No Va(yi () w(s, km(s))ds = o(u(t)) as t—oo,

JEN, =141y

7 \ L2 yuDy o (s, km(©)ds= o(u(t) as 1o,

Jio
jeN, i=i,,..., ip,

where 4 = N\B and m(s) = (m;,(s),..., m;(5)).
Our main result is the following

THEOREM 1. Suppose that the conditions (4)-(7) hold. Then, to any
constant vector (Vy,..., Vn) With X ;|| <k, there exists a solution x(t)=(&(t),...,

EAD) of (1) such that
®) léi(t);eb;_y,'j(t)?f"r o(u(t)) as t—oo, [ =gy ip

In addition, if x(t)— (€,(t),...,&,(1)) is a solution of (1) which satisfies |Et)|
skmyt)for tel and i=i,,..., i,, then there exists a constant vector (Vi,...,Yn)
such that

&) 'fz(t)—ﬁ% yij(Dy = o(u(t)) as t— o0, P=lgyeees pe

PROOF. The proof of the first half of the theorem proceeds as in Rab [7]
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with necessary modifications. Without loss of generality we may suppose that

iy=1,.,i,=p. Let (J1,..., 7») be a constant vector such that X jeux|y;l <xand
take a number § satisfying 0<d<x—3 ;culy;l In view °f (5), (6), (7) we can
choose t, so large that the following inequalities hold :

(10) s (7 PH) @ (sxm(s))ds < A,

fceAlNMJVo

(an (1 5 yu@y*s) 0,0, km(s)ds < 2,0,

JIT KEA\ VO

' ()it . 9,
12§15 yu@yk) 0,6, kmis)ds <L),
fortel,je Nandi=1,...,p. Fori=p-+1,...,nput

P = 3 01+ S 501 || 1346w, em(s)ds
keB

+ 3 a0l Tyl om(s)ds, e
ked

Let F denote the set of all vector functions x(#) = (&,(%),...¢,(t)) which are con-
tinuous on / and satisfy

KOOI em(®, i=L...,p; |&OISpd), i =p+1l,...n

We now define the operator @ acting on F by

@00 = 2 vt vy e fsx(s)ds
(13) o el

(7 5 Oy R HNds,  i=1n.
keA

a) D maps Finto F. Ifie{l,...,p}, then by (12) we have

DR RTCEEOT
keB

= (1S ru0rr©0,6, sms)ds < Su,

JjeN Jto

and using (10) and (11) we see that

(" 5 suoyrornsxeds

keAnNg
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< 3 a0l Ol s, km(s)ds

- €.
keAnNo

w5 ("), m)ds < ),
keAnNo

v 365, x(s)d|

Je
keA\No
(o

< ) yik d <_— .
ng Jt fIceA\JV yu@y () @(s, xm(s))ds wi(®) -

It follows that for i=1,..., p
[(@x)(1)] < (jgll)’jl)’ni(t)+5#i(t)
= (jEZMh’ﬂ +6)m(t) < km(1), tel.
From the definition of p,(f) it is easy to see that |(®x)(t)|<p(t), tel, for i=p
+1,..., n. Therefore, @ maps F into itself.

b) @ is continuous. Suppose that x,€ F and, as |- oo, x,(t)—x(t) uniformly
on any finite subinterval of I. Consider an interval of the form [ty,, T] Given
an €¢>0, there is t; = T such that

© ik € .
(14) S“ Y | 0,(s, km(s)ds < —ErjEN, ked,

where K= max{ r[nax |yu(®I}. Choose I,>0 so large that /=1, implies
i,keN telto

(15) YO58 2D =38, D] < gzt

for se[ty, t;]and 7, fceJV. This is possible since f is continuous and x(t) con-
verges uniformly to x(f) on [#,, t;]. Now we have for { € [¢,, T]

(@0 -@01 < ('3 yal YOI 16, 3D =165, x(6Dlds
keB
(16) {3 1Oy fs, 54 ~F (s xds
ked

+7 % OO s, 5N ~1i X6l
keA

Using (14) we see easily that the last integral in (16) does not exceed
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(o .
2K S |p7%(s) | @, (s5m(s))ds < —g—a.
fay oo

The sum of the first two integrals in (16) is bounded from above by
t .
= 1] O, 3D =115 *6ids,
keN °

which in turn is bounded by €/3 on account of (15) provided [>1,. Consequently,
we obtain |(®Px)(t)—(Px)(t)|<dor te[ty, T] and ieN. Therefore, ®xt)
—®x(t) as - oo uniformly on every finite subinterval of /. This means that @
is continuous.

c¢) DF is uniformly bounded and equicontinuous at every point of I.
The uniform boundedness of ®F is obvious. Differentiating (13) and using the
equations

Vij®) = 3 au(yu D), 2 Yl DyMO= oy
heN keN
where a(t) are the entries of the matrix A(t), we obtain

(@901 S % JauO_Z, w1

t N
+ 3 S | = yu(O)y7*(s)lwy(s, km(s))ds
to fceB

JjeN

+ 3 (15 yuyHOlogs, ims)ds |+, xmv),
which implies that, on any finite subinterval of /, the functions (@x)i(t), i € N,
are bounded by a constant independent of x e F. Hence, ®F is equicontinuous
on every finite subinterval of /.

From the above observation we are able to apply the Schauder-Tychonoff
fixed point theorem as formulated in Coppel [4, p. 9] to conclude that @ has a
fixed point x=x(t) = ({,(t), , & (D)€F. Clearly, this x(?) is a solution of (1)
on [t,, ). Using (13) we see that

AN > YOy HSlos, km(s)ds

eNJ

[&(0) — %y.,(t)v,l s

+ 55713 vyl km)ds

keA\No

1, 5 (TlyHslofs, em(s)ds

keAnNo
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for i=1,..., p. This together with (5)-(7) shows that the solution x(¢) has the re-
quired asymptotic property (8).

To prove the second assertion of the theorem, let x(¢) =(&,(8),...,&,(t)) be a
solution of (1) satisfying |E(f)|<xkmyt)for tel, 1=1,...,q. Define the vector

function y(8) = (n:(2), , 1()by

0 = EO— " 3 yuOy ) (x(s)ds
17) Jto el

7S Oy (sx)ds,  ieN.
It ey

It is easy to see that y(f) is a solution of (2) on /. Put y;,= _ENyii(to)'li(to), JEN,

and consider the function z(1)=({,(®),..., {,(t)),where ()= X y;i(t)y;, i€N.
jenN

Since z(t) is a solution of (2) and '

jgNyij(tO)YJ: kg,ﬂ (JEV Vij(to)yEito)mto)= ni(to),

for i e N, y(t) and z(f) must coincide on /, i.e.,
(18) nt) =2 yii(tyy;  for tel, ieN.
Jje

From (17) and (18) it follows that y(t) satisfies the asymptotic relationship (9).
This completes the proof of Theorem 1.

REMARK. In the particular case where No=M=N and A={iy,..., i}
Theorem 1 reduces to Rab’s theorem obtained in [7].

3. Applications

A) We first consider the scalar second order differential equations
(19) (P +q()u = ¢(t, u, u'),
(20) (p()v') +q(t)v = 0,

where p(t)>0 and q(?) are continuous on I = [t,, ), and ¢(t, u, u’)is continuous
on I x R2. The equations (19), (20) can be written as the vector equations

@1) x' = A)x+f(t, x),
(22) y' =A@y,

where x =(xy, x3) = (4, p(Ou’),y = (y1,y2) = (v, p()’),
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[ 0 1/p(0)\ / 0 )
A(t) = and f(t, x) = \ .
\—q(» 0 ) o, x4, X5/ p(1))

Let v,(1), v,(¢) be linearly independent solutions of (20) such that

< Y11 Y12 ) < Uy U, )
Y(t) = =
Va1 Va2 p(t)v'y p(t)v)

is a fundamental matrix for (22) with det Y(f)=I1 on /. Then,

DA S p)yvy  —v,
Y 1(t) = = .
yizo oy —-p@)vy v,
Suppose that there exist positive continuous functions ¢ §(¢), v%(f) satisfying
(23) o] S 010, |v(DI = v3(),  tel.
Let ¢(t, u, u’) satisfy the inequality
(24) |61, u, w)| < o, |u]), (&, u, u)e/xR?,

where w(t, r) is a continuous function on I x R, which is nondecreasing in r for
each fixed fe /.

THEOREM 2. Let (23) and (24) hold. Assume that
(25) So v¥(s)w(s, kv¥(s))ds< oo

for some constant k>0, and that

(26) lim vi(n) St vi(s)w(s, kvi(s))ds=0.

t—© Ug(t) to
Then,for any constant y with |y|<k, there exists a solution u(t) of (19) such that
(27) u(t)= yo, ()t o(v3(t)) as t—oo.

In addition, ifu(t)is any solution of (19) satisfying |u(t)| < xv%(t),then there
exists a constant y for which (27) holds.

PROOF. Inthis case, ¢=1 and i; =1. In view of (26) we may suppose that
v¥(®)=v¥(®) on /. We want to apply Theorem 1 to the systems (21) and (22) by
putting

p=1 No=M={1,2}, A={2}, B={1},
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(1) = my(1) = v3(2).

Condition (5) is satisfied, since by (25)
(o
) y2@latscmy()ds < |7 vi)ols, ko3()ds < oo.
to to
Since 4\Ny = ¢, condition (6) holds trivially true. Using (26) we have

e Oy @), tmy()ds

to

* t
s ZO( vss)o(swos()ds — 0 a1 — » oo
2) Jeo ’

which implies (7). Therefore, it follows from Theorem 1 that, for any constant
y with |y]| <k, there exists a solution x(f)= (x,(¢), x,(¢)) of (21) such that

x1(1) = yy12()+o(v3() as t-o0.

This means that equation (19) has a solution u(f) such that (27) holds.
The opposite relationship between the solutions of (19) and (20) follows readily

from the second half of Theorem 1.

THEOREM 3. Let (23) and (24) hold. Assume that

(28) wa v¥(s)w(s, xkv¥(s))ds< oo ,
o
(29) (":fz £ (s)as, kv*(s))ds < 00 ,
(30) lim gg; S:”vf(s)w(s, Ko*(s))ds =0.

Then, for any constant y with |y| <k, there exists a solution u(t) of (19) such that
31 u(®) = yo, () + o(v¥(t)) as t—o0.

In addition, if u(t) is a solution of (19) satisfying |u(t)| S xkv¥(t)then there
exists a constant y such that (31) holds.

PROOF. In this case, ¢g=1 and i; =1. Put
P=1, N0:M={1}’ A={192}a 5:¢’
ua() = my(1) = v1(1).

From (28) and (29) we find
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4] )
[ by @lots emy(s)dss {7 o3(s)ats, kot(o)ds< oo ,
Lo L0

[ lyr@latsim, @)dss \ "ot ools, kot©)s< oo,
Lo Lo

which guarantee that condition (5) holds. Condition (6) is satisfied, since by
(30)

ull(t) Sw 1y12(0y?2(s) | (s, kmy(s))ds

< v3(® S°°

S10) v¥(s)w (s, kv¥(s))ds —>0as t — » 00 .
1 t

The conclusion of Theorem 3 now follows from Theorem 1.
THEOREM 4. Let (23) and (24) hold. Assume that v¥(t) Svi(t)for tel,

("ot (s)ats, rv3(s))ds < o0,

Jio

and

}Lrg z%g; Sjov’{‘(s)w(s, kv%(s))ds=0.

Then, for any constants Y1, Y2 With [p{|+ |y2l <k, there exists a solution y(t)
of (19) such that

(32) u(®) = ;0,(0) +7,0,() +0(v¥(1)) as t-o0.

In addition, if u(tYs any solution of (19) satisfying |u(t)| < kvi(f),then there
are constants vy, v, forwhich (32) holds.

PROOF.  Put

NO = {1}’ M = {1’ 2}a A= {1’ 2}, B = ¢’ #l(t): Uf(t)’ ml(t)= 1’5(1)’
and apply Theorem 1.

REMARK. Theorems 2 and 3 generalize slightly Theorems 1 and 2 of Hallam
[6], respectively.

EXAMPLE. Consider the differential equation
(33) 'Y+ Bt~ u = a(tyu’,

where a, B, r>0, are constants, and a(?) is a continuous function for t=1. We
suppose a2 —48=<0. The associated homogeneous equation

(=10’ + pr= 1o =0
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has linearly independent solutions v,(f), v,(f) given by
v,() =172, vy(f) = t7*/%logt, (x2—4p=0),

S4B — a2 . /4B —n2
v,®) =t"*2cos 5 log ¢, v,(1)= t*/%sin > log ¢,

(x2—48 < 0).

Let a2 —4f=0. We take v}(®)=v(t), i=1, 2, and apply Theorems 2 and 4.
From Theorem 2 it follows that if

st‘“‘”')/z(log s)'la(s)|ds < o0 ,
and
lim (log )" 5=+ #7)12(log)! *"la(s)lds = O,
then, for any constant 7, there is a solution u(¢) of (33) which satisfies
u(t) = yt~*/2log t + o(t~*/2log 0 as t—o0.
Theorem 4 implies that if

S”s- (1+1/2(log 5)1+|a(s)|ds < oo,
1

then for any constants y, y,, there is a solution u(¢) of (33) such that
u()= t7%2(y; +y,log) + o(t*/2) as t—oo.

Let a2—48<0. Taking v¥(#)=v¥({)=1t"*/2 and applying Theorem 4, we
conclude that if

o)
S 52 (1+012 |g(s)|ds < oo,
1

then, for any constants 9;,7,, there is a solution u(f) of (33) such that

4B—a? JVAB—a? )

u(t)=t‘°‘/2(y1 cos \/# log t+7, sin 5~ log¢

+o(t™*/2) as t—o0.
B) Next we examine systems of differential equations

(34) x' = Ax+f(t, x),
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35 y' = Ay,

for t=t,, where A is a constant nx n matrix and f(¢, x) is a continuous n-vector
function on I x R",I=[t,, o0). We assume that A is in Jordan canonical form:

A = diag[Jl, 12,-.., Jl]’

where J, is a square matrix of order n, with 4, on the diagonal, 1 on the sub-
diagonal, and 0 elsewhere. A fundamental matrix Y(£)=(y;;(t))=e"4 of (35) is
given explicitly by

Y(H)= e'4 = diag[e'’s, e''2,.., e"1],

where
- t2 tn;.—l -
1
2! (n,—1)!
-2
0 1 ¢ LA

e h o= elht

.........

0 0 0 - o J

Take real numbers « and o, ag=0a, from {Rel,,..., Re4;} and let v and v, be inte-
gers such that

1 £ v max{n,:Rel, =a},
1 = vo < max{n,:Rel, =a,}
we assume that vo<v ifa=a, We need the following notation:
H_ = {h:Rel, <oy}, Hy={h: Reld,= ao}, H, = {h: Re i, > a,},
K_ = {h: Re},<a}, Ko={h:Rel, = a},
6,=0, g, =n,++ny, h=1,...,1,
L,={o4-1+1,..., 04}, h=1,..,1,
L(S) =hg L, for Sc<{l,..,1}, (L(¢) = ¢),

M = L(K_)UM*, where M* :h\xj [{ah—l+ll"" 0',,_.1+V} nLh]
€Ko

Define the functions g(t), my(t) by
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ot if ieL(H_.UH,),
w(t) = ; .
toh-1tvo~igaot if iELh, hEHO’

my(t) = max Vi Ol w0},  i=1,..,n
jeM

THEOREM 5. Let f(t, x) foe a continuous n-vector function which satisfies
(4) on I XR". Suppose that

© ;(s, km(s)) ,
36 s S ds < 0, =1,...,n,
(36) o Mi(s) g / §
where k>0 is o m(s)= (m; (s),..., m; (s)). for any constant
vector (Pise--s Vo) y;=0 for je N\M > jemlyjl <x, there exists a

solution x()=(&,(®), , of (34) such that

l_ oh LVIN
7 j—i A —_—
(37) h=zl 5 ((7-__Jib|’ ti e ht+o(#i(t)) as it o] )
i=1,..,n
In If X(1) = (£1(D),..., E() 15 a of (34) satisfying [£(1)]
skm(t), i=1,...,n, o (v1, -» Yn) Such y;=0
for je N\M and (37) holds.
ReMARrk. It s the f"'_ ) if i>a,,.
j=i
PrOOF. We the of the Y(0) = (yi;(1) Y-1(9)
=(y/!(1) are by
timi e e s
-(j—-i)!e ot if iZj,i,jel,p =1,..,1,
Vis(®) =
1 0 if j<i,i,jeL,, h=1,..,1,
or if JeLy, ft #F,
D rem i e h= L,
yiKE) = '
0 if j<k, fC,JeLh, h=1,...,‘ l,
or if keL,,, J*GL;,', h # K,
We the Ny, A, B of N as follows:

No=L(H_)UN§, N§ =he\1{ [{on-1+1,..0; 04— 1 +vo} N L]
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! {Oh—1+ V0505 04} (vo=ny)
¢ (vo > ny)
p =LH-)UB , B*= B, B,=L)\4,
€Ho

A = L(H+)U A*, A* =h };Ah’ Ah=

It is obvious that A U B=N,An B=¢ and Noc= M.
It can be shown without difficulty that p(t)= Engx Iyl fori=1,....,n We
€Ng
shall show that conditions (5), (6), (7) of Theorem 1 are satisfied.

Condition (5). Note that ke A implies ke L(H, U H,). Let j, fcel, for
some he H,. Then,

Iy""(t)l < tj-—ke—(kelh)t < e~ aot < l/ll-j(t)

for all = t,, provided t, is taken sufficiently large. Let j, k € L, for some ft € Hy,.
Then, k=0,-{ + vy, and so

[yK(D)] < timon-17v0 7%t < 1[u\(t).
In any case we have by (36)

o rni(’s’ DY AN

ST [yi*(s) | w i(s, km(s))ds <™\

ds < 0.
Jto BiS)

Condition (6). We obtain

(715 vyl (sem(s)ds

Jt k

= 271 = 0prelo s ks
t keLp

= heH,

> lyik(mg 9IS\ (5, km(s))ds.
heHo keAp t

Let he H,. We need only to consider those 1, j which lie in L,. Since uy(t)
=p(t)=e*" and

—(t—,_—s—?j—ﬂ.—elu(t—s)
(38) k ZL JVik(t)yjk(s) = ! (] _l)'
€
h v (V) uf g,_1+1Sj<i=Zoy,

if 6,_,+1<i<j<o,

we see with the use of (38) that

1 Z yuOy M) (s, km(s))ds

t keLp
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w;(s, km(s)) ds

S b 13,y aOr @l 2

n @,(s, km(s))

00
éS (s—t)i~ig~(Rein=ao)(s=
t ”J(S)

gclswwakﬁo as t— ®,
t 1;i(s)

where Cy=sup zi~le~(Rein-a0)z< o0, Let he H, It suffices to consider only
220

those 1, 7 which lie in L, and satisfy i<k< j. Observe that

Wu@®l _ et v
i) T e ’

lyjk(s) Iﬂj(s)ésj—ke—aos.sa;._|+vo—jeaos — sdn—ﬁ-Vo—k .

Using these and the inequality k=0o,_+ vy, We have

5 Z a1 (T 1940) 0,5, em(s))ds

Yu®] (®.; (s, km(s))
= kezAp. ll:(t) S: ly "(s)luj(s) ! 1i(s) ds

§Ch- 1+vo—k ; (S’ Km(s)) d

< tk_ﬂh—l_"og 77
Z t Au_](s)

keApn

Ny = wwds —-0 as t— ©.

-) t 12 _](s )
Thus the condition (6) is satisfied.

Condition (7). It holds that

)( LS yu(0y(s)loy(s, km(s)ds

s = YuOY MOl (s, rm(s)ds

heH Jto ke

IIA

. ly,k(mg |yi*(s)lw (s, km(s))ds.

Suppose he H_ and consider those i, j, feeL, such that iSk=<j. Since uyt)
= p(t)=e**, we obtain, using (38),

e LE Y a0y @) (s, em(s)ds
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ég' (t— 5)i~ig=(@o~Rein)(t=s) @;(s, km(s)) ds
to ﬂj(s)

= ngt e~ (@o—Redn)(t=s)/2 M d
o p;(s)

k]

where C,=sup zi-ig=(20-Retn)z/2 <« on Taking (36) into account and applying a

z20
lemma of Brauer [2], we conclude that the last integral tends to zero as t—oo.
Suppose now that he Hy,. Ifvg=1, then B,=¢. Ifvy#1, then k— a,_—v,
<0, and we have

0 15, PeOLL ROl km()ds

< Z thk=on-1—vo\ «oOn-1+vo—k wj(s’ Km(s))_ ds

—kEB;. Jto #J(s)

By a lemma of Hallam [5] the last sum tends to zero as t—oo. It follows that the
condition (7) is satisfied.

The above observation enables us to apply the first half of Theorem 1 (with
p=n)to (34) and (35) to conclude that there exists a solution x(i) = (&,(¥), ,
& (1) of (34) which satisfies the relation (37). The second half of Theorem 1
yields the opposite relationship between the solutions of (34) and (35). The proof
is thus complete.

REMARK. It can be shown that a result of Brauer and Wong [3, Theo-
rem 2] follows from Theorem 5 as a corollary.

COROLLARY. In the Jordan canonical form of A, let m>0 be the maximum
order of those blocks which corresponds to eigenvalues of A with real part equal
top. Lety(t) be a solution of (35) which is not identically zero and satisfies

limsup t~%¢~7t|| y(¢)[|< o0,
t—0
where g is an integer, 0Sg<m. Suppose that f(t, x) satisfies

1A )N = (2, 1x1D),

where @(t, r) is a continuous function on I x R, which is nondecreasing in r for
each fixed t. Here \\ - \\ denotes any convenient vector norm, say \\x\\ =max |x;|.
ieN

If

@
g e~ lemrtd(t, kt9ert)dt< oo for every K >0,

then there exists a solution x(t) of (34) such that
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x(t) = y(t) + o(t9e**) as t—o0.
PROOF.  We put

wj(t: Fiseees i‘,,) = ¢(t» m?vx ri)s ./ = 13---9 n,
ie

a=o0g=p, v=vy=9g+1,

ert if ieL(H_UH,),

u(H) = m(t) = i .
ton-1tgtiziget  if jeL, heH,,

m(t) = (ml(t)v [RE) mn(t)) .
Then,

max |my(t)] = max {max (er-1tet1i=igrt} = tagrt,
ieN heHo ieLp

and

max—L__ = max {max ti=on-179"1g=pt} = ym=g~1g=rt,
JjeN uj(t) neng JeELp

Therefore, we have

(© _@i(s, km(s)) ;o _ ()‘” 1

i(8))d
Yo il WIS $(s, x max mi(s))ds

[s )
S§ sm=9-1e=ps (s, ks9e?S)ds< 00
to

for j=1,...,n. Now the desired conclusion follows from Theorem 5.
REMARK. For other related results we refer to Bihari [1].
EXAMPLE. Consider the fourth order scalar equation

(39) ul +y” +u"” = ¢, u, u', u”, u"”), tel= [t 00)

where @(t, u, u’,u”, u”)is continuous on / x R* and satisfies

lo(t, u, w', u", u™)| < a(®) |u'|"

for some nonnegative continuous function a(f)on / and some constant »>0. We
compare (39) with the unperturbed equation

D(iu)+vl/l+vll =0.

Let w=col(u, u’, u”", u™), x=col(x,, x,, X3, X4), and make the change of variables
w=Px, where
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1 1 10
o o 0 1 .
P= 0 ol o=(—1+302.
1 1 0 0l

Then, equation (39) is put into the system x’' =Ax+f(t,x) with

o 0 0 0 0
0w 00 0
A= , and f(t, x) = ¢(t, Px)P~1 .
0 0 01 0
Lo 0 0 OJ 1

If we choose a set of functions {u,(t), m,(t)}appropriately, then we are able to apply
Theorem 5 to deduce a corresponding result. Below, we list four propositions
which are obtained in this manner and which, except the third one, do not follow
from Theorem 2 of Brauer and Wong [3].

1) Take ag=0=0 and vo=v=2. In this case, No=M={1, 2, 3, 4}, u(?)
=1(=1,2,4), us(t)=t, and m(t) =1 0=1,2, 4). Ifgwa(t)dt< o0, then for any
7, there is a solution u(t) of (39) such that u(?) =yt +o(t) as t—o0.

2) Take ag=a=0 and vo=1, v=2. In this case, No={l, 2, 3}, M={l,
2.3, 4), w)=1(@=1,2, 3), pa(=1/t, and mH)=1 (i=1, 2, 4). IfSwta(t)dt

< o0, then for any 74, ¥2, there is a solution u(¢) of (39) such that u(t)=y,+7y,t
+o(1) as t—oo.

3) Take ag=a=—1/2 and vo=v=1. In this case, No=M = {1, 2}, u(t)
—e 12 (i=1,2,3,4), and m(f)=e"2 (i=1, 2, 4). Ifg“’eu-wt/z a(t)dt < oo,
then for any 7y,, y,, there exists a solution u(¢f) of (39) such that u(tf)=e"*/2(y,
cos(y/31/2)+7,sin(/3t/2)+0(1)) as t—oo.

4) Take ag=—1/2, «=0 and vo=1, v=2. In this case, No={l, 2}, M
={1, 2, 3,4}, y(O=e"?2 (i=1, 2, 3, 4, m(t)=e*2 (i=1, 2), my(t) = 1. If
Swe‘/za(t)dt<oo, then for any 7y,, ¥, 73, V4, there exists a solution u(f) of (39)
such that

u(t) = e7*12(y, cos (/3 1/2)+y, sin(\/ 31/2))+ 73+ 74t
+o(e~t?) as t—o0.
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