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1. Introduction

Consider the system of ordinary differential equations

(1) x' = A(t)x+J(t9x)9 t^t09

where x is an n-vector, A(t) is a continuous n x n matrix function on /=[fo> °°),
and/(ί, x) is a continuous n-vector function of t and x on / x Rn. Recently, Rab
[7] has taken up the case where all components /,• of/depend only on t and some
of the components of x, say, xfl,..., xίg, I^z 1< <i9^n, and has presented con-
ditions which lead to an equivalence between certain components of the solutions
of the system (1) and certain components of the solutions of the unperturbed system

(2) / = A(ί)y, t ̂  t0.

He has shown in particular that the first theorem of Hallam [6] concerning the
second order scalar differential equations

(3) x" = α(0x+/(ί,x), y" = a(f)y

follows from his theorem as a corollary.
The purpose of this note is to establish a theorem which improves considerably

the above mentioned results of Rab and to provide some examples demonstrating
its application to specific classes of differential equations. In particular it is shown
that our result, when applied to (3), yields the second theorem of Hallam [6] which
is not covered by Rab's result.

2. Main result

We assume that the components /7 of / depend essentially on t and the q
components xiί9...9xiq(ί^iί< <iq^n) of x in the sense that

(4) I///, *!,..., xπ)| g ω/ί, |xfl|,..., |xj)

for (t, x)e!xRn and j = l,..., n, where each ω/ί, rl9...9 rq) is continuous on I
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xR$ (R+ = [Q, oo )) and nondecreasing in (r ls..., rq) for each fixed tel.
We are interested in some asymptotic relationships between the p components

x/t(i),..., xip(t)(l^i1< "<ip, qίzP^n) of the solutions x(t) of (1) and the cor-
responding components of the solutions y(t) of (2).

Let Y(0 = (Λ/0) be a fundamental matrix for the system (2) and Y~1(t) =
(yji(t)) the inverse matrix of Ύ(t)\ obviously, yi(ί)=Γ 'l(0/det 7(ί), where
YJi(f) is the cofactor of y^t). Let N = {1,..., n}. Suppose that there exist sub-
sets NO, M of N such that N0c:M and positive continuous functions μ4(f),
i = ί !,..., ip, satisfying

;> max 1^01, ί e /, ί = ίlv.., / ,

mfc) ^ max {max |ylV(OI, μfc)}9
j* εΛί"

Suppose moreover that there exist a constant K > 0 and a subset B (possibly empty)
of N0 such that

(5) I y *(s)|ω/s, fcm(s))ίfo < oo, j e N, k 6 X,
ίo

jeN, i = *!,..., ip,

(7) \ I Σ ^(OyH^lω/Cs, κm(s))ds = o(μi(i)) as f-»oo,
Jίo keB

jeN, / = /!,..., ip,

where A = N\B and m(s) = (mίl(s),..., miq(s)).
Our main result is the following

THEOREM 1. Suppose that the conditions (4)-(7) hold. Then, to any

constant vector OΊ,..., yn) Wf/i Σ./eMly/l< 'c> ί/ι^re βx/5ίs a solution x(i) = (ξί(f),...,

αθ) o/ (1) such that

(8) \ξti)-ΣyιWyj\ = o(μM) as ί^αo, i = il9...9ip.
jeΛf

/n addition, if x(t) — (ξί(t),..., ξn(t)) is a solution of (1) vv/πc/i satisfies \ξt(t)\

^κmι(t) for tel and i = il9..., iq, then there exists a constant vector (γί9...9 γn)
such that

(9) |£(0- Σ ytfi)γj\ = o(μM) as t-*<x>, i = i lv.., ip.
jeN

PROOF. The proof of the first half of the theorem proceeds as in Rab [7]
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with necessary modifications. Without loss of generality we may suppose that

/! = !,..., ip = p. Let (7ι,...,7M) be a constant vector such that ΣjeM\Ύj\<κ and
take a number δ satisfying 0<δ<κ— Σ j e Λ f l y / l In γiew °f (5), (6), (7) we can
choose t0 so large that the following inequalities hold :

(10) Σ Γ \y'k(s)\ωj(s9 κm(s))ds < A,
fceΛΠJVo Jίo ta

(11) ί°°| Σ JΊ*(/V*(*)|ωj(j, κm(s))ds<-%-μl(f),

(12) Γ I Σ **
Jto keB

for tel, je JV and / = !,..., p. For / = £ + !,..., n put

.Σ |yft(OI
7eN Jί

ί ε /.

Let F denote the set of all vector functions x(t) = (ξί(f)9...9 ξn(t)) which are con-
tinuous on / and satisfy

)9 i = 1,..., p; \ξtf)\ ^ pfc\ i = p+l,...9 n.

We now define the operator Φ acting on F by

(ΦX).(0= Σ yij(t)yj+(t Σ y^tWWfa x(s))ds
(13) JeM )toJ^B

N
/ce/l

a) Φ maps F into F. If ie {!,..., p}, then by (12) we have

I (' .Σ yuMyJtstfJs, X(s))dsUίo

^ ΣjeN Jto keB

and using (10) and (11) we see that

I Γ . Σ yik(t)yjkWj(s, χ(s))ds
\Jt JeN
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^ . Σ lΛΛO|(V*(s)|ωχs,κro(s))<fe
JeN Jt
keAf]No

. Σ
JeN Jί
keAΐ)N0

e Xs, χ(s))ds
keA\N0

< Σ I Σ JΊ* WW I ωy(ί, κι»(5))<fc
J e N J f f c e Λ \ J V 0

It follows that for ί = l,..., p

jeM

From the definition of p((ί) it is easy to see that KΦx^Ol^p^O, ίe/, for i = p
+ 1,..., n. Therefore, Φ maps F into itself.

b) Φ is continuous. Suppose that xl e F and, as /-» oo, x ί̂)-*^) uniformly
on any finite subinterval of/. Consider an interval of the form [f0> T] Given
an ε>0, there is ti ̂  Γsuch that

(14) ^\yJ*(s)\ωJ(s9κm(s))ds<^£^9 JeN, keA,

where K= max{ max \yik(t)\}. Choose /0>0 so large that /*>/<, implies
i . fceΛT ίe[ί0,Γ]

(15)

for se[ί0, ί^ and 7, fceJV. This is possible since /is continuous and x,(ί) con-
verges uniformly to x(t) on [ί0, ίj. Now we have for ί e [ί0, T]

^' Σ

keA

/ce/1

Using (14) we see easily that the last integral in (16) does not exceed
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Σ \yjk(s)\a>j(s,
JeN
keA

The sum of the first two integrals in (16) is bounded from above by

JeN
keN

which in turn is bounded by ε/3 on account of (15) provided / Ξ> /0. Consequently,
we obtain \(Φxl)i(t)-(Φx)i(t)\<ε for ίe[ί0, T] and ieN. Therefore, Φxt(t)
->Φx(0 as ί-»oo uniformly on every finite subinterval of /. This means that Φ
is continuous.

c) ΦF is uniformly bounded and equicontίnuous at every point of I.
The uniform boundedness of ΦF is obvious. Differentiating (13) and using the
equations

/i/O = Σ *Λ(θΛ/0, Σ yik(t)yjk(t) = δij9heN keN

where aih(t) are the entries of the matrix A(f), we obtain

heN LjeM

+ Σ (Ί Σ ΛkίOj^ωiω/s, ιcm(s))ds
JeΛrJίo fceB

+ Σ (°°IΣ Λt(θy*(s)|ω/s, K:m(s))i/s] + Wi(i, ιcm(O),

which implies that, on any finite subinterval of /, the functions (Φx)J(ί), i e N,
are bounded by a constant independent of x e F. Hence, ΦF is equicdntinuous
on every finite subinterval of /.

From the above observation we are able to apply the Schauder-Tychonoff
fixed point theorem as formulated in Coppel [4, p. 9] to conclude that Φ has a
fixed point x = x(0 = (£ι(0» » £n(0)eF. Clearly, this x(t) is a solution of (1)
on [ί0, oo). Using (13) we see that

l«0- Σ Λ/ί^l ̂  Σ Γ I Σ
JeM jeίV Jίo fcefl

/s, ιcm(s))Λ
J
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for / = !,..., p. This together with (5)-(7) shows that the solution x(ί) has the re-
quired asymptotic property (8).

To prove the second assertion of the theorem, let x(t) = (ξί(t),..., ξn(t)) be a
solution of (1) satisfying \ξ^t)\^κmι(t) for ίe/, ι = l9...9q. Define the vector

function X0 = 0?ι(θ5 > ^«(0) by

nι(t) = WO- Γ Σ yik(t)yjk(s)fj(s, χ(s))ds
(\Ί\ J to JeN
V 1 ' / keB

+ \ Σ yik(t)yjk(s)fi(s, x(s))ds9 ίeN.
J t JeN

keA

It is easy to see that y(t) is a solution of (2) on /. Put y7 = Σ <yί /(*o)*/ί(ίo)> 7 e ^»

and consider the function z(t) = (ζί(t)9...9ζn(t))9 where C4(0 = Σ ^/07y> i e J V .

Since z(ί) is a solution of (2) and

Σ yίj(to)yj = Σ (Σ yij(to)ykj(to))*ik(to) = nfco) >

for ί e AT, XO and z(ί) must coincide on /, i. e.,

(18) ηM = Σ yij(t)yj for tel, ieN.
JeN

From (17) and (18) it follows that XO satisfies the asymptotic relationship (9).
This completes the proof of Theorem 1.

REMARK. In the particular case where N0 = M = N and A = {iί9...9iq}
Theorem 1 reduces to Rab's theorem obtained in [7].

3. Applications

A) We first consider the scalar second order differential equations

(19)

(20)

where p(t)>Q and q(t) are continuous on / = [ί0> °o)» and φ(t, u, u') is continuous
on IxR2. The equations (19), (20) can be written as the vector equations

(21) x' = A(t)x+f(t9x)9

(22) / = A(t)y9

where x = (xi9 *2) = (w, p(t)u')9 y = (yi9 y2) = (v,
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o ι/κo\ / o
A(t) = and /(f, x) =

-q(t) 0

Let ϋjCOϊ ^2(0 be linearly independent solutions of (20) such that

no = i

is a fundamental matrix for (22) with det Y(i)== 1 on /. Then,

Suppose that there exist positive continuous functions t f (ί), ^*(0 satisfying

(23) K(0l^ί(0, WOI^t;f(0, ίe/.

Let φ(t, u, u') satisfy the inequality

(24) |φO, ii, tι')| ^ ω(ί, |κ|), (ί, 11, ιι') e / x K2,

where ω(ί, r) is a continuous function on IxR+ which is nondecreasing in r for
each fixed t e /.

THEOREM 2. Lei (23) and (24) /?o/d. Assume that

Γ°°
(25) \ ι>?(s)ω(s, ιct>5 (s))ds < oo

Jίo

/or some constant /c>0,

(26) Um

Then, for any constant y with \γ\<κ, there exists a solution u(t) of (19) such that

(27) u(f) = yv2(f) + φf(0) «5 ί->oo.

/n addition, ifu(t) is any solution of (19) satisfying \u(t)\^κυ%(t)9 then there
exists a constant γ for which (27) /jo/ds.

PROOF. In this case, q = 1 and ϊ\ = 1. In view of (26) we may suppose that
t?5(f)^t>ι(0 on /. We want to apply Theorem 1 to the systems (21) and (22) by
putting

p = l, JV0 = M={1,2}, A = {2}, £ = {!},
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Condition (5) is satisfied, since by (25)

f αo C oo

\ \y22(s)\ω(s> κm1(s))ds ^ \ r*(s)ω(s, κv*(s))ds < oo.
Jfo Jfo

Since A\N0 = φ9 condition (6) holds trivially true. Using (26) we have

to

-Ί^ Γ ΌXSWS> ™ϊ(*))<fo ̂  0 as t — > oo,
U2UJ Jίo

which implies (7). Therefore, it follows from Theorem 1 that, for any constant

y with |y|<fc, there exists a solution x(t) = (x1(t), x2(0) of (21) such that

as ί->oo.

This means that equation (19) has a solution u(t) such that (27) holds.
The opposite relationship between the solutions of (19) and (20) follows readily

from the second half of Theorem 1.

THEOREM 3. Let (23) and (24) hold. Assume that

(28) ί°° ι?ί(s)ω(s, κυ\(s))ds < oo ,
Jfo

(29) ( °° i f (s)ω(s, κι;?(s))ds < oo ,
Jfo

(30) li

Then, for any constant γ with \γ\<κ, there exists a solution u(t) of (19) such that

(31) w(0 = Fι(0 + Φι(0) as ί->oo.

/π addition, if u(ί) is a solution o/(19) satisfying \u(f)\^κυ*(t), then there

exists a constant y such that (31) holds.

PROOF. In this case, q = 1 and i^ = 1. Put

p = l , JV0 = M = {1}, 4 = {1,2}, 5 = 0,

From (28) and (29) we find
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Soo Γoo

\y21(s)\ω(s, Km^sfids ^ \ v%(s)ω(s, Kvf(s))ds < oo ,
ίo Jίo

$ 00 Γao

\y22(s)\ω(s, Km^sfids ^ \ t;f(s)ω(s, κv^(s))ds < oo ,
ίo Jίo

which guarantee that condition (5) holds. Condition (6) is satisfied, since by
(30)

w:
*0 as ί — * oo .

The conclusion of Theorem 3 now follows from Theorem 1.
THEOREM 4. Let (23) and (24) hold. Assume that v^(t)^v%(t) for ίe/,

(Oo

\ v\ (s)ω(s, Kuf (s))rfs < oo ,
Jίo

, /or αnj constants yί9y2

 Wϊ ί^ I7ι l + ly2l < / c > ίΛ^rβ exisίs α solution u(t)
of (19) swc/ί

(32)

7π addition, ifu(f) is any solution of (19) satisfying \u(t)\£κv%(t), then there
are constants γί9 γ2for which (32) holds.

PROOF. Put
JV0 = {!}, M = {1, 2}, X = {1, 2}, B = φ, μι(ί) = ι;*(0, m,(ί) = t f(ί),

and apply Theorem 1.

REMARK. Theorems 2 and 3 generalize slightly Theorems 1 and 2 of Hallam
[6], respectively.

EXAMPLE. Consider the differential equation

(33) (tΛ+ίuJ + βta-lu = a(ϊ)ur,

where α, β, r>0, are constants, and a(t) is a continuous function for ί^l. We
suppose α2 — 4/?^0. The associated homogeneous equation
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has linearly independent solutions υ^t), v2(t) given by

ι>ι(0 = r*/2, *2(0 = Γ«/2log*, (α2-40 = 0),

Ό l ( t ) = r«'2 cos 2 log /, v2(t) = r«/2 sin 2 log * ,

(α2-40<0).

Let α2-4jβ = 0. We take t??(0 = t>ί(0» ί=l, 2, and apply Theorems 2 and 4.
From Theorem 2 it follows that if

and

limOogί)"1!' J"β(1+r)/2(logs)1+r|fl(s)|ds = 0,
f-*oo J 1

then, for any constant 7, there is a solution u(t) of (33) which satisfies

u(i) = γt~*/2 log ί + o(r α/2 log 0 as

Theorem 4 implies that if

f "j- d+ < 00j

then for any constants y^ y2> there is a solution u(t) of (33) such that

u(ί) = rα/2(y1+y2logO + o(Γα/2) as

Let α 2 — 4/?<0. Taking ι??(/) = ι;5(ί) = ί""α/2 and applying Theorem 4, we
conclude that if

then, for any constants γί9 y2, there is a solution w(ί) of (33) such that

sin ^ log/)

as

B) Next we examine systems of differential equations

(34) x'
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(35) / = Ay,

for t^.tθ9 where A is a constant nxn matrix and/(ί, x) is a continuous n-vector

function on IxR"9 /=[f 0» °°). We assume that A is in Jordan canonical form:

where JΛ is a square matrix of order nh with λh on the diagonal, 1 on the sub-
diagonal, and 0 elsewhere. A fundamental matrix Y(t) = (yij(ty) = etA of (35) is
given explicitly by

Y(t) = etA = diag[>ίjs etj2,

where

6 ** =

1 ί
2! («„-!)!

0 1 /

Lθ 0 0 1

,//=!,...,/.

Take real numbers α and α0, α0^α, from {Re A l 5..., ReAJ and let v and v0 be inte-
gers such that

1 ̂  v ̂  max {nh: Re λh = α} ,

1 ̂  v0 ̂  max {nh: Re λh = α0}

we assume that v0^v if α = α0. We need the following notation:

H. = {Λ: Reλh < α0}, H0 = {Λ: ReλΛ = α0}, H+ = {Λ: ReAΛ > α0},

X_ = {Λ: ReΛΛ < α}, K0 = {h: ReAh = α},

ΛeS
h for

M = L(X_)UM*, where M* =
Λ

N = {1 ..... n).

Define the functions μ((ί), m^t) by
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if ϊ <

if ίeLΛ, heH 0,

m,(0 = max |j|/ί)l, /i/ί)}, i = I,..., n.
jeM

5. Let /(ί, x) foe α

(4) on Ix Rn.

(36) c s,

f€>0 is α m(s) = (mίl(s),..., miq(s)). for
(γ !,..., yw) jj*=Q for jeN\M ΣjeMlTjl< l cJ

ι(0, » o/(34)

(37) Σ Σ r

J

A f l^
f

A = i j = ϊ (7 — 0!

Jπ If x(0 = (ίι(0»— » WO) " « 0/(34)
/ = !,..., n, α (Tiί -5 ?«) -swell 7j = 0

βHrf (37)

It Is the Σ if i
J=I

We the of the (̂0 = 0^/0) ^-1(
are by

(j^ι)f eλht if i^j, i,JeLh, h = l , . . . , l ,

0 if j< ί, i, jeLΛ, Λ = 1,..., I,

or if JeJLr, ft ^ Λ',

ίf fe=^' Λ = !,...,/,

0 if J<fe , fc,Je

J* r,. Λ

We the N09 A, B of N as

Nί=
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A = L(/f +) U A*, A* = \j Ah, Ah =
heli° Φ (v0 > nh

β = L(tf_) U B , ΰ* = U B,, βA = Lh\Λ.
ΛeHo

It is obvious that A U B = N9 A Π £ = φ and N0<=M.

It can be shown without difficulty that /^(f)^ m^x Iji/OI f°Γ I== !>•••» n
jeNo

shall show that conditions (5), (6), (7) of Theorem 1 are satisfied.

Condition (5). Note that keA implies keL(H+ U H0). Let j, fceLΛ for
some heH+. Then,

I^ ΉOI < /J-^-^6^^ ̂  e-αoί ̂  ι/μ/0

for all t ̂  ί0, provided ί0 is taken sufficiently large. Let J, k e Lh for some ft e JF/0.
Then, /c^σ Λ _ 1 + v0, and so

In any case we have by (36)

/ , ^ \ j ^ / , ,ί(^, κm(s))ds ^ \ — J ' ds < oo .
Jίo ^jΛ yJ

Condition (6). We obtain

(Ί Σ yίk(t)yjk(s)\ωj(s, κm(s))ds
Jt k^A\N0

^ Σ ("l Σ y«(θy*(s)|ω/s, /cm(s))dS
heH+Jt keLh

+ Σ Σ
ΛsHo *eX

Let heH+. We need only to consider those 1,7 which lie in Lh. Since μ(

(38) Σ J
keLh ( Λ f1 0 if

we see with the use of (38) that

Σ y
t keLh



416 Yuichi KITAMURA

ds

ω. O, ,

where Ci = suρ z-'~ie~(ReA'»~ao)z«x). Let heH0. It suffices to consider only
z ^ Othose i, 7 which lie in LΛ and satisfy i^k^j. Observe that

I v ι,(rt I tk-ie&ot
\y t f c V * / I <-• *̂  c _ __ fk-ffh-i-vo

~ - '

Using these and the inequality k^.σh-± + v0, we have

/J, ICIff(j))

,
ds - > 0 oo

. Γ°° ω/ί
- nh \ —" Jί

Thus the condition (6) is satisfied.

Condition (7). It holds that

(' I Σ ^(O^ωiω/s, κm(s))ds
Jto keB

^ Σ Γ I Σ
HeH-Jto keLh

+ Σ Σ
heHokeBh

Suppose heH, and consider those i,j, feeLΛ such that i^
=μj(t) = eaot, we obtain, using (38),

i

. Since
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ro

where C2 = sup zJ-*^-(«o-ReAh)Z/2 < QQ Taking (36) into account and applying a
2 £0

lemma of Brauer [2], we conclude that the last integral tends to zero as f-»oo.
Suppose now that heH0. If v0 = l, then Bh = φ. If V Q ^ I , then k — σh,ί — v0

<0, and we have

Σ | j Ί f c ( O I \ \yjk(s)\ωj(s,κm(s))ds
keBh Jίo

^ Σ / f c _ f f h _ 1 _ v o Γ 0<yfc. l+vo- t ^(J, ιc/ιι(j))

By a lemma of Hallam [5] the last sum tends to zero as ί-»oo. It follows that the
condition (7) is satisfied.

The above observation enables us to apply the first half of Theorem 1 (with

p = n) to (34) and (35) to conclude that there exists a solution x(ί) = (£ι(0» »
ξn(t)) of (34) which satisfies the relation (37). The second half of Theorem 1
yields the opposite relationship between the solutions of (34) and (35). The proof
is thus complete.

REMARK. It can be shown that a result of Brauer and Wong [3, Theo-
rem 2] follows from Theorem 5 as a corollary.

COROLLARY. In the Jordan canonical form of A, let m>Qbe the maximum
order of those blocks which corresponds to eigenvalues of A with real part equal
to p. Let y(t) be a solution of (35) which is not identically zero and satisfies

1imsupΓ*e-pt\\y(f)\\ < oo,
ί->oo

where g is an integer, Q^g<m. Suppose that f ( t , x) satisfies

\\f(t,x)\\£φ(t9 \\x\\),

where φ(t, r) is a continuous function on IxR+ which is nondecreasing in r for
each fixed t. Here \\ - \\ denotes any convenient vector norm, say \\x\\ =max \Xι\.

ietf

Γ°\ tm~β~le~ptφ(t, κtgept)dt < oo for every K > 0,

then there exists a solution x(t) of (34) such that
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x(t) = y(t) + o(tgept) as ί-»oo.

PROOF. We put

ω/ί, Γj,..., rn) = φ(t, maxrf), j = 1,..., n,

if ieL(#_U#+),

if / e L ,

Then,

max Iw^OI = max {max
ieN heHo ieLh

and

max—pr- = max

Therefore, we have

Γ°° ωΛs, κm(s)) , (*°° 1 ., ,
\ — / \ ds = \ —γ-^φ(s, K max mt(
)to μj(S) Jtoμj\S) ieN

f°°
<Ξ \ s*n-g-\e-ps φ(s^ κS9eps)ds < 00

Jίo

for7 = 1,..., n. Now the desired conclusion follows from Theorem 5.

REMARK. For other related results we refer to Bihari [1].

EXAMPLE. Consider the fourth order scalar equation

(39) M( ί ι ; ) + w'" + w" = φ(t, u, u', M", u'"\ tel = [ί0> oo)

where φ(t, u, u'9 M", u'") is continuous on / x R4 and satisfies

\φ(t, u,u',u"9 u'")\^a(t)\u'\'

for some nonnegative continuous function a(f) on / and some constant r>0. We
compare (39) with the unperturbed equation

Let w = col(w, w', u", u'"}, x = col(x1, x2, x3, x4), and make the change of variables
w=Px, where
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P =

Γ l 1 1 O η

ω ω 0 1

ω ω 0 0

L l 1 0 0 -

Then, equation (39) is put into the system x' = Ax+f(t, x) with

Γω 0 0 O η

0 ω 0 0

0 0 0 1

Lθ 0 0 OJ

and

Γθ

0

0

L l .

If we choose a set of functions {μi(i), mj(t)} appropriately, then we are able to apply
Theorem 5 to deduce a corresponding result. Below, we list four propositions
which are obtained in this manner and which, except the third one, do not follow
from Theorem 2 of Brauer and Wong [3].

1) Take α0 = α = 0 and v0 = v = 2. In this case, N0 = M = {1, 2, 3, 4}, μ£t)

= 1 (ϊ = l, 2, 4), μ3(ί) = f, and m/(ί) = l 0 = 1,2, 4). If (°°έi(ί)dί<oo, then for any

y, there is a solution u(i) of (39) such that u(t) = γt + o(t) as f->oo.
2) Take α0 = α = 0 and v0 = l, v = 2. In this case, JV0 = {1, 2, 3}, M = {1,

2, 3, 4}, ^.(0=1 0=1, 2, 3), μ4(t) = 1/ί, and mi(t) = 1 (ί = 1, 2, 4). If j°°ία(0dί

<oo, then for any y1 ? 72» there is a solution w(ί) of (39) such that M(0 =
+ o(l) as t-+co.

3) Take α0 = α=-l/2 and v0 = v = l. In this case, N0 = M = {1, 2},

= e-'/2 (ί = 1,2, 3,4), and mf(0 = ̂ ~ί/2 0=1,2,4). If f%d-« )ί/2

then for any -y^ y2» there exists a solution w(ί) of (39) such that u(t) = e~t/2(γί

as
4) Take α0=-l/2, α = 0 and v0 = l, v = 2. In this case, N0 = {1, 2}, M

= {1, 2, 3, 4}, μM = er<i* (i = l, 2, 3, 4), m ί(0=e~ ί/2 (ί=l, 2), m4(ί) = 1. If
Γ°°\ etl2a(t)dt<ao, then for any y l 5 y2, y3, y4, there exists a solution u(i) of (39)

such that

ί/2) as ί->oo.
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