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Introduction

Let p be an odd prime. Let A denote the Steenrod algebra mod p and
m(S; p) the p-primary component of the kth stable homotopy group of spheres.

J. F. Adams [1] introduced a spectral sequence having H**(A)=Ext{*(Z,,
Z,)as its E, term and a bi-graded algebra associated to m4(S; p) as its E,, term.
In his thesis [5], J. P. May constructed another spectral sequence which has
as its E,, term an algebra EOH**(A),i.c., a tri-graded algebra associated to H**(A),
and he made extensive computations of H**(A4).

In [10], we extended May's computations in his techniques, and obtained
complete informations on the module H* *(4) in the range t—s<(3p2+3p+4)q
-2, q=2(p—1). For the case p=3, we also determined in [11] all differentials
in the Adams spectral sequence E$* in the range r—s=<104, and obtained the
complete group structure of m(S; 3) for fcg!03. On the other hand, for the
primes p=35, we determined in [12] all differentials in the range t—s<(2p2+p)q
— 3 from our results on the groups m,(S; p), which were obtained without any in-
formation on H**(A), together with our results on H**(4) [10].

In this paper, we shall always treat the case p=5. We shall determine differ-
entials in the mod p Adams spectral sequence by the same techniques as in [11],
and by making use ofknown results on 7,(S p). Our main results on differentials
are Theorems 2.1 and 2.4, where all differentials d,on E$* for t-s £ (2p2+4p + 1)q
— 6 and some ones for greater r—s will be computed. From these results, we
shall determine the ES* term and the group m(S;p) for t—s and fc*(2p° +4p
+1)g— 7 in Theorems 3.1 and 4.1, respectively. Several partial results for E
and 7,(S; p) in higher degrees will be also obtained.

In §1, we shall compute several products in the algebra H**(A) which differ
from ones in the algebra E°H**(A)(Theorem 1.1). We shall compute the
differentials in §2 and the E_ term in §3. The group m(S; p), together with
its generator, will be determined in §4. In § 5, several Toda bracket formulas in
n+(S; p) will be obtained and the group extension in mep2 4 p41)g-3(S; p) will be
determined.
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§ 1.  Algebra structure of Ext%*(Z,, Z,)

Throughout this paper, p will denote a prime integer =5, and we will set
q=2(p—1) and write H**(A) instead of Ext}*(Z,, Z,) for the cohomology of
the mod p Steenrod algebra A.

The algebra H**(A) is naturally isomorphic as a module over Z, to an
associated graded algebra E°H**(A), and the structure of the algebra E®H**(A)
(and of the module H**(A) also) has been computed by A. Liulevicius [4], J.
P. May [5] and the first-named author [10]. We shall use the same notations
for the elements of ECH**(A) (and corresponding ones of H**(A)) as in the
previous paper [10]. Some of these notations differ from May's original ones,
i.e., we write b;;,g;,and k;, in place of his ftj, g} and k!, respectively.

Now we first correct errors of our paper [10].

CORRECTIONS TO THEOREMS 33 AND 44 OF [10]. (i) The relation
11. g) in Theorem 3.3 should be replaced by
11. ).  ky,ow = gz,0% if p=3,

fc,w=0, 0=1=<p-3, if p=5.
(ii) The elements 17. h) and 44. ¢) in Theorem 4.4 should respectively be replaced
by
17. h). hobb k, bt e (2k+1+7, 2p2+kp+Ip+2p+1+2)q—2k-7),
1=sl=sp-3

4. ¢). feufc,e(/ +5, Qp*H3p+ip+i+1)g-5), 0=/=p-4.

In our computations of H**(4) [10] by May's techniques, the product
obtained from Theorem 3.3 and Proposition 4.3 of [I0], which is actually the
product with respect to the algebra structure of ECH**(A), may not be the one
in the algebra H**(4). A product in H**(A) of two elements always contains
as a summand their product in ECH**(4) but may possibly contain also other
terms of the same bi-grading but of lower weight in the sense of J. P. May [5].
The following relations in H**(A) differ from ones in ECH**(A). This list
is by no means complete.

THEOREM 1.1. In the algebra H**(A), p=5, the following relations hold.
(i) hy-u =af e

(ii) gz,l'hlboz = hok1,1b11, h, .‘12,11702= 2hok1,1b11,

hiboz*g2,1b02 = 3hoky,1by1bo,

(iii) hohibos = —ky0byy

Gv) hy hibyy= byc.

(v) hy hibg;= —byc—2byd, hy hyby, = fcg,d+2by,c

(Vi) hy hybo, = —by,d.
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(vii) k1,z hiboy = —b01k2,l, 0s/=p—4%
hy *fei uboz = 1/(/ +Dborkap 0=/ sp-4
(vili) fc, hybop = —(I+3)/(/+2)by1ks, 0=/ =p—4
hy kyybo, = —1/(1+2)by 1k, 0=/ =p—4
(ix) hy'gs,bo,= 2bg4v; 1=1=sp-3,
g2, habos = boyv), 0_-Il_-p-3
( X ) hz uboz = _2b01G.

The results for p=3 corresponding to the above are seen in Proposition
1.1 of [11]. In particular, (i), (iii), (v) and the second of (ix) also hold for p=3,
and (iv) and (vi) differ from the case p=3: h; hybg,=b%; and h, h,by,=
—bg1by;—by(d for =3. We obtained the results for p=3 by computations
in the cobar construction F*(A*), but some of the computations are too long
for the case p=5. So we shall also make use of May's imbedding method [5]
and matric Massey products [6]; (i) and (ii) in Theorem 1.1 are proved by the
imbedding method, (iii)-(vi) are proved by computations in the cobar construc-
tion, and (vii)-(x) are proved by computations of matric Massey products.

PROOF OF THEOREM 1.1. (i) For any element a in H**(A), we denote
its dual in Hyx(A4)=Tors.(Z,Z,) by a*. By dimensional and filtrational con-
siderations, we have h, u=waaf~tc for some a€Z, To determine the co-
efficient a, we compute the comultiplication of the dual (a% 'c)*. By routine
computations, (aj~1c)* is represented in the bar construction B(4) of 4 by the
element

£ = (PY+{P1}+(Q0} ™! — {PH}x{PY}+{0,}"""

P21(= D=~ DHPHIQ TP~ +{Qo} "
+ ZE3(— DK IPYILQ. TP~ Ja{Qo}

P3(— 1"t iH[Q1 (PP~ p{PL}{Qo}? -2
+ EE2(- DAHIQ T I(PHP 1} {Pge{Q,)7 -2
+ SIS (= DIHIQ, T PP

+{[Q: (PR~ }{Qo}mimi=>
+ P TPk 1 (= )R (k4 i) k) (p— k +1)!
{[Q:1* (PG~ PP+ 1 (PP 441} #(PYI{Q,}72.

Here we use the same notations as in [5]; Q; and Pi=PR, R=(0,..., 0, pi, 0,...),
are the Milnor basis elements [8] and * denotes the shuffle product in B(4). For
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convenience we use the following abbreviated notations:
[x]} = [x|-+-|x] (i-times),
[¥)+y] = Timo(— 1ecsrmests/[x]ily|[x]~.

Let D denote the comultiplication of B(4). Then the summand in DE having
the left component {P%} is

—{P}} ® {P§}*{Q,}77 .

Since h% and u* are represented by {P}} and — {P9}*{Q,}""! respectively, we
have h, u=a¥% !¢ as desired.

(ii) For dimensional and filtrational reason, we see that in each equality
the element in the left is a multiple of the one in the right. The dual element
(hoky 1by1)* is represented in B(A) by

n = —{PY{P1}+{PP+{PI(P})" 1 }*{Q,}
— {P1{PE}+{[P11+[P3]I(P1)"~2}+{Q>}
+{PP}+{P1}+{P}+{P2I(P9)"~ }+{Q,}
+{P1}+{P2}*{PE}+{PSI(PH"~ }+{Q4},

and the summands with the left components —{P}}*{P3|(P3)*~!} and {P}} in
Dp are, respectively,

—{P1}+{PRI(PD)" '} @ —{PP}*{P3}x{Q,}
and
{Pi} ® 4,
where A = {P}+{P2}*{P1I(P1)"~'}={Q,}
—{P9}+{[P11+[P21I(P1)*~2}*{Q,}
—{PY}+{P2}={PRI(P2)"~ '}*{Q,}
+{P}+{P3}*{P3I(P2)"~}*{Q,}
= 2{PY}+{P9}+{P3I(P2)"~1}»{Q,} +04',
A" = —{P1}={PP}*{P3}*{P1I(P))"~'}+{Q,}
+{P1}+{P2}*{[P11+[PIII(PD)"~*}*{Q,}
+{P1}+{P}{P3}*{[P{]1*[Q.1I(P})"~?}
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—2{Pi}+{PEI+{[P{]1+[PI1+[Q,]I(P})"~3}
+{P}+{PY}*{P2}={PRI(P9)"~ ' }*{Q:}.

Since (hybo,)* and h¥ are represented by —{P1}*{P3|(P9)’~!} and {P}}, we have
hiboy*g2,1="hoky,1byy and hy g, 1boy=2hok, 1by;.
Similarly, (hoky,1by1bo2)* is represented by

C={PU*{Pi}+{PS}+{P1|(P1)"~ ' }x{PSI(P9)*~ ' }+{Q2}
+{P1}{P+{[PII+[PS1I(P1)"~ 2} »{P3I(P$)"~1}*{Q,}
— {P}{P1}*{PE}*{PRI(P3)"~ 1 }+{P5I(P3)*~ 1 }*{Q,}
— {Pi1}+{PO}+{P3}*{PSI(PS)"~ 1 }={PSI(PS)"~'}*{Q4},

and the summand with the left component —{P}}*{P3|(P})’~!} in D{is —{P}}
*{P3|(P9)*~ '} ®B, where

[3 {PO}={PEI*{ PP 1 #{Q,} + {PU}*{P{}+{PE}+{(P1)"~ ' }*{Q,}
—{PE}={[P11+[PEII(P )"~ 2}#{Q2} — {P1}+{PE}*{PSI(P1)""2}*{Q,}
= {PY}*{P}={PRI(PY)"~ 1} %{Q2} + 2{PY}+{PE}*{PI(PE)"~*}*{Q,}

= 3{PY}+{PE}*{PYI(P$)"~}*{Q,} + 6B’

for some B. Hence we have h1bgs " 63,1002 = 3hoky, by 1bgs.
(iii) We consider the cobar construction ([4], [5]) F*(4*). Let by, be a
cochain

— i1 /(p— Y5 IEL]
Pl Rz /(p—k—i)kliI[ERIEs -k | &L &Y ]
+ P23 /(p— DI+ DI[EEP-D|gRG+ ],

Here &s are the Milnor basis elements [8] in the dual Hopf algebra A* of A.
Put

o1 = — X5zt /(p—NYIEEIIEL],
by, = = Z5zH1/(p—NYIERP-DIER].
These cochains in F*(A*) represent by, and fc, respectively. Then we have
dboz = [&11by1 —[£8*1bo1s

and hence
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8{ =[5+ 11bo2 + €210z _[E77 7+ 11bo 1 +[€1851b0s +[E57°¢21b0s — [€31b01}
= [€,1(h1bo2)"+ Ky 0bys,
where
(hibo2)™ = [€41bo2—1/2[£371by s +[E57*71bos — [€51b0,
and
kio= —[&IE01+ &5 0] +1/2[¢,1¢37].

Since the cochains [, (hybo,)~and ky orepresent ho, hyby, and ky gespectively,
wehaveho * hyboy=—fei.o™n
(iv) We have

O{—1/2[£3"1bor + 1/6[£371b,  + [£5E51boy — 1/2[E57* 271Dy, }
= [&41(hybo2)~ — by,

where ¢=[&5|E8]+1/2[E5%|E2P]. Since [¢8] and c are representatives of h,
and c respectively, we have h; *hybg, =cby;.
(v) Since we have

0{—[&51bo,—[¢5°¢51bo 1} = [E5°1(h1bo2)™ +Cbyy +2dby,
and
0{[¢51bo2 —[&5**P1bo, +[£551by  +[£5°¢51b0s — 1/2[E3P7%P]b04 }
=[&41(hboy)~—22b,; —dby,,
where d=[¢51£5]+ 1/2[£37*(¢5] and (hyboz)™=[£571bo- [€51 D11+ 1/2[€37° 1Dy,
are representatives of d and h,by, respectively, the desired results h,-h by,
=—Cb11—2b01dand hl h2b02=20b11 +db01 fOHOW.

(vi) This follows from O0{—1/2[£27*]by,—1/6 [5‘;’”2]501} = [&5"1(hybo2)™
+3b,,.

Before proving the rests of the theorem, we prepare some results on matric
Massey products in H**(4). We recall the May spectral sequence (E,, 8,)[5]

and Priddy's one (E,, 0,)[16], whose initial and terminal terms are given as
follows:

E, = H** (E°4), E, = EOH**(A)

E, = H***(ESE°A), E, = ECH***(E°A).
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The algebra H****(ECE°A), from which our calculations of H**(A4)[10]started,
is equal to

E(RYi 2 0,/ 2 1) ® P(Slk 2 0) ® PRi 2 0,j 2 1),

where E and P denote an exterior and a polynomial algebras, respectively (cf. [10;
pp. 10-117]).

In the above two spectral sequences E,, ZE, and Adams' one E,, (matric)
Massey products [6] can be formed, and we make often use of May's convergence
theorem [6; Th. 4.1] for Massey products in E, or Ez, and Moss’ one [9; (1.2)]
in E,. Roughly speaking, these convergence theorems are stated as follows: if
v; (e Er, E, or E,) converges to w; (€ H***(E°A), H**(A) or n,(S; p)), 1=5i £3,
Massey products v =<{vy,v,, v3>and w=<{w, w,, w3» (in E,, w is a Toda bracket)

are defined, and if some condition ([6; Th. 4.1, (*)] or [9; (1.3)]) on perma-
nent (co)cycles is satisfied, then v converges to w, (cf. [11; Th. 2.6, Th. 2.8]).

CONVENTION. R. M. F. Mossalso defined a triple (matric) Massey product
[9; pp. 294-295]. His definition slightly differs from May's one [6]. In this
paper, we adopt Moss’ definition for triple products. In particular the usual
triple product {a, b, ¢> is defined as follows: if ab =0 andfcc=0, then {a, b, c>
consists of all elements represented by (co)cycles (—1)4¢8a*1an+ Ec, where
ab =0(f) and bc =d(n) at (co)chain level (6 =4, or d,), that is,

* n ¢\
£ b
a

is a defining system for {a, b, ¢>. Then the associative law for this triple pro-
duct is given by the formulas [9; (3.4)] and

a<b9 C, d> = (—l)desa+1<a5 b, C>d5
which also differ from May's ones [6; Th. 3.1, Cor. 3.2].

LEMMA 1.2. The following matric Massey product formulas hold in
H**(A).

] by,
(i) <h1, (hy, hy), < >> = hybo,.
‘_b01

/ byy
(ii) \hz, (hp hz), b = hzboz-
—0o1y
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ZEAN

} - —kl,lbOZ’ 0 é l é p’—4.

(
\—=bo1//

Gii) < fc,, (hy,hy), )
\ /
bll
= —92,b02s 1sl=sp-3.
b01

(iv) <92,b (hy, hy),

(v) <ho“’ (hy, hz),<

—by,
(vi) <kyphy, (hy, b)) =0, k), 0= /<p-4.

(vii) <hy, fo, (hy, ha)y = (0, 1/(/+ k), 0=/ = p—4
(vili) <y by (hys Bo)y = ((I+3)/(/ + Dk 0), 0Z /< p—4a.
(ix) <hy, fo,, (hyshy)y = (114 2Dk 0), 0= /< p—4.
(x) <ha g2 (hys h3)) =(0,20), 1= /=p-3

(i) <gap by (hy, h3)> = (0, 0), 0=/ = p-3.

(i) <hy, hotty (hy, hy)y = (0, 2h0G).

PROOF. Since h}=0, h;h,=0 and 8,bo,=h;b,;— h,by, in the E, term
[10; Th. 3.3, Prop. 4.3], the matric Massey product in (i) is defined and equal
to hyby, in the Ep+l term by definition. The condition (*) in May's conver-
gence theorem is satisfied for this Massey product in EI,H, and hence (i) holds
in H**(A). In the same way, (ii)-(v) are proved. The elements fc, hy, h,,
k,, are represented by RiR9S%, R},R}, RIR}{RYSY, respectively, and (R})?
=0 and 6;R3}= —R?}R1in the El term [10; Th. 3.3, Prop. 1.3]. So the matric
Massey product <ky,, hy, (hy, hy)> is defined and equal to (0, — fc,) in the
Ez term. By iterated use of the May convergence theorem, we obtain the
relation (vi) in H**(A4). In the same way, (vii)-(xii) are proved. qg.e.d.

PROOF OF THEOREM 1.1 (coNTINUED). (vi) By Lemma 12 (i), (vi and
the associativity of the matric Massey products, we have

by
kl,z'hlboz = kl,l hy, (hy, hy),
—bo,

by
= —<k1,z, hy, (hys hy))
—boy
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[ bir)\
= —(0, =k, = —ky,boy

01

Similarly we have

by,
h, 'kl,tboz = —h; kl,ta (hy, hy),
—bo,

bll
_<h1’ kl,h (hla h2)>

01

1/(1+2)k; 1bo,

by Lemma 1.2 (iii), (vii).
(viii) Similarly the first and the second formulas follow from Lemma 1.2
(i), (viii) and (iii), (ix), respectively.
(ix) This follows from Lemma 1.2 (iv), (x), (ii) and (xi).
(x) By dimensional consideration, h, uby,=aGby; for some aeZ,
By Lemma 1.2 (v) and (xii), we have h,* houby,=2hyGbg, #0, and hence o= —2.
qg.e.d.

%2. Differentials in the Adams spectral sequence

From now on, we shall write (E,, d,) and (E,,8,) for the modp Adams
spectral sequence and May's, respectively. Since Toda's first nontrivial dif-
ferential on E-pe[21-IT], the differentials d, have been computed by the several
aﬁthors, e.g., A. Liulevicius [4], N. Shimada and T. Yamanoshita [17], H. H.
Gershenson [3], J. P. May [5], R. J. Milgram [7], H. Toda [21, 22, 23, 24], E.
Thomas and R. S. Zahler [19], and S. Oka and H. Toda [15].

In our case p=5, from these works and our results on E,[10] and on n.(S;
p)l12], we have recently determined all differentials d, and elements surviving to
E_ in the range {—s<(2p2+p)q —4 [12-1II]. In this section, we shall compute
them and obtain complete information in the range t—s<(2p2+4p+)q— 7.

THEOREM 2.1. In the E, term of the modp Adams spectral sequence,
p=5, the following equalities are satisfied up to nonzero coefficients. All
nontrivial differentials d, on E$*' in the range t—s<(2p%*+4pt2)q— 8 are
given by Theorem 21.1.1 of [12] and by the following 1.

I (i) dy(blig,,b%1) = bli1g4,1410%4, 0sl<p-5 k=0

(11) dy(abd) = ai1hybo;, 0 =i < p—2,
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dy(ahbo;d)= abt1bg hyby,, 0= i < p-3,
dy(abbl,d) = alf b hyboy,, O0=<i=p-—4, k22
(iii) dy(abb,,c)= aktthybgy,bg,, 0iZp-3
Gv) d2(V) = g1,+41h2bos; 0= 1= p-3.
(v) dy(bl193.b11) = b192041b11bo2s 0SS 1S p—4, k2.
(vi)rf,(*S*,'B|,A2B2) =at bk 'by1a;, 0S i< p—4,k20.
(vii) rf,(fed132A1«2) = g1,1+1b81'b11a;, O0=1=<p—-4, k 20.
(viii) dy(abh,d) = af'(bod+cbyy), 0 =1i=p-2.
Cix)rf,(BS™'-"c6,,)=ab*"2h,b%,, 0<i<p.
(x) rfa”LjC) = gy1,bo1ha;,  0=1=p-2,
dy(bo,G) = abh,b3,.
(xi)rf,(/J,w)= a§~'cbg, — by, G,
dy(g,hw) = g,,b01G, 0= /= 1.
(xii) rf,(fli,((>01C«2-aow(02)) = at" '(bo1hyboras—agubd,), 0 < i < p—2,
d,(ahb%,(bgica, —aiwby,)) = abt b (bghiboa, —agubd,),
0Ligp-4, k1.
(xiii) da(h293) = borvy+1, 0=1=p-4,
dy(bl1hagso) = blilo;, k1.
(i) dyabbyd) = altihybyibg,, 0 =i £ p-2,
dy(b§,abby d) = altibf hybyibos, 0= i =p-S.
(ii) d2(b1h1g3,0b02) = bl1hoky,1b11bos, k
(iii)y d2(bb1h1g3,0a;) = b1hoky,1b11a;, k20
(iv) da(b§1)iaz) = b1hokysibiia, 1S 1Sp
vy dy(bl192,b31) = b¥i'g1,144031, O0=SI1=p-—

To prove the theorem, we prepare some lemmas.
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LEMMA 2.2. For the same nonzero coefficient o, the identities d,(h,)
=aagby, and d,(h,)=aayb,, hold.

PROOF. This follows easily from O=d,(hh,)=dy(h)h,— h,d,(h,) and
aob()lhzzaohlbll?éo. q.e.d.

The coefficient a above will often appear in the proof of Theorem 2.1 below.
LEMMA 2.3. The following Massey product formulas hold in H**(A).
(i) <hy, —hy, hd>=d.

(ii) <boy, —ab, d) = boyh,a,.

(i) <bo1» —a%b, habo2) = bo1by1a,.

(iv) <vp —ao, ag 'hyy=aw, 0=I=<p-3.

(v) {gihaboz, —ag, ab" hy> = gy ,boha,, 0= (=< p-—2.

(vi) <ab™!, bo1, haw) = af~'wby,.

(vii) <ab, ft,1, ab~'cboy—bo;G> = —1/2abubj,.

Proofr. (i) The elements hy, h, and d are represented in the cobar con-
struction F¥(A4*) by the elements [E2], [£53] and d =[¢8%|E5] + (1/2)[E3P%|ER],
(cf. [4]). Since O[¢5]=—[¢1’[¢5] and 8[£3P*]= —2[EF°IE°], <hay —hay hy)
contains an element represented by d. By dimensional consideration, we obtain
Chyy —hy, hyy=d.

(ii)-(iii) Since &,,-4(ha,)=abd in Ezp_l [5, Th. II. 6.9], (cf. [10, Th.
4.2]), the Massey product in (ii) is defined and equal to by, h,a, in Ezp. By May's
convergence theorem, (ii) holds in H**(A4). By using the relation d,(b;,a,)=
afh,by,in E‘p [10], (iii) is proved similarly.

(iv)-(v)  Since HP*1,(2p*+2p=1)a+p-2(4) js generated by h,x with May's
weight 2p — 2 and agv,- 3 has May's weight p— 1, we have agv,_3; =0 in H**(4),
and hence these Massey products are defined in H**(A4). Then, by the relations
0,(a;)=—a%hy,aov; =0 and aeg,,h,bo=0in Ep [10] and by May's convergence
theorem, the desired results are obtained.

(vi)-(vii) These follow from 6,(wbg,)=—bg,h,w in Ep and 8,,-,(hybg,a,)
=2a¢by;G—2a%chy, in Ezp_ 1[10; Prop. 4.2]. q.e.d.

PROOF OF THEOREM 2.1. 1. (i), (iii), (v), (vii) and II. (v) are easily derived
from Theorem 21.2. I of [12-II1].

I. (i) By Moss’ Leibnitz formula [9; (1.1)] and Lemmas 2.2, 2.3 (i), we
have
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dl(d) = d2<h2’ _th h1>

e )
€ AN V- o117 PYE > = .
\ \ aaghyy —h, / aaobo,

The last matric Massey product P has a defining system

0 hy
*
®aobo, aaobg

—hz O
(0, 0)
aaob, 1 —hz

\ (aaoby 1, k)

and so P is defined and equal to

0 hy
(—aagb, 1, hy) +(0, 0) = aaghobo,
aaogb oo aaogb;

in the Ep+1 term of the May spectral sequence. Hence we have
2.1) dy(d) = —aghybo,.

The desired results follow from this and
(22) aqy and by, are permanent cycles.
I. (iv) By the relations 4. k) and 4. a) of Theorem 3.3 [10],

91,p-3-11 = 1/(1+2)al 3bg,d,
91,p-3-191,+1 = 1/(I1+2)al"2by,,

for 0SI<p—3. Then, by .1), —91,,-3-1d2()=—0fl+2)af 2bo h;bo,
=—0agy,,-3-1"91,+1h2bo2. For dimensional reason, we see that d(v) is a
multiple of g1,1+1h2bos (#0). Therefore

(2.3) dy(v) = 01,1+ 1h2bo,, 0=/=p-3,

as desired.

I. (vi) By Lemma 2.3 (ii), Moss’ formula [9; (1.1)], (2.1) and Lemma 2.3
(iii), we have da(boih,a;) =aagbg1bi1a, Then the desired results follow from
2.2).

I. (viti) dy(hyd)=0agbg d+ aagh, hybg, =20(aghy,d+ agch,;) by Lemma
2.2 and Theorem 1.1 (v).

I (iX-(x) By [10; Th. 33] and Lemma 23 (iv), g¢,,G=a,0_;=<v,_y



Some Differentials in the mod p Adams Spectral Sequence (p =5) 317

—ay, ab~th;>. Then we have d,(g,,G)=ag,,bo1h,a, for 121 by [9; (1.1)],
(2.3) and Lemma 2.3 (v). By the relation 14 of [10; Prop. 4.1], a¢be,G=
afch,y, in H**(A) and so

— qP-2 — 2P-3 —
91,p-291,06 = af bo,G = a§" 3chy, = —91,091,p-20.

Then we have

91,p-282(91,00)= 9g1,,-2"g1,0bo1hra,= 2ad?~2h,b3, # 0,
afdy(ab3chy,) = —0ad?"2h b3, # 0.

By dimensional consideration, we obtain
d5(91,00) = 0gy1,0bo1haas, dy(a§ 3chgy) = —aaf™2h bf,.

We have also agdy(bgG)=d,(abchy,)=—aal* h,b}, and so d,(by,G)=
—aabh,bi,.

I. (xi) We have —hy dy(hyw)=h, dy(hgw)=h, hgubgy, =2hoby;G#0 by
Theorem 1.1 (x). Since a§~'cby,— bo,Gis the only d,-cycle in E5*3,(2p?+3p)a+p—1
we obtain d,(h,w) =2(af ™ chy;—bo1G). Since apg, =0, dy(g, h,w=2g,,b0,G
for0gIL1.

I. (xii) By Lemma 2.3 (vi)-(vii), we have d,(afwby,)=(1/2)adub3,. By
dimensional consideration and by (2.2), we obtain (xii).

I. (xili) dy(hags)=hy g214+1b02, Which is equal to 2by,v,4, by Theorem
1.1 (iv).

II. (i) This follows immediately from I. (ii) and (2.2).

IL. (i) By Theorem 1.1 (ii), d5(g3,0h1b02)=92,1b02" h1bos=3hoky,;1b;1bo,.

II. (iii))-(iv) By Theorem 3.3 of [I0], we have f-j,= —b3,ja, f-hy=
aoubgibo; —bf1hia; and f-hobyy= —hobd by1a;, for f=boi(ajbo,—azbo,).
Since dy(b31j1a;)=—1fd,(j)=bd1hok,+1b11a;we have dy(jiaz) =hoky,41b11a,
and (iv) follows. By Theorem 1.1 (i), b3 hya;95 1bo2=—fhy g3,1bo2=
2hob§1ky,1b11a;, and  so  boihiaygs,1bos=2hobo ky,1b11a,.  Then  bo,
dy(h193,0a5)=2hobg 1k, 1by1a, and (iii) follows. q.e.d.

The first unknown differential d, after Theorem 2.1 is d,(hok, 0b3,)€
E$>(2p2+4pt a1 where hoky ob3, and bo1ky, b}, generate E}-(2p*+4p+2)q
=Z, and E$-(2p*+4p+2)ati— Z,, respectively, and the determination of this
d, is equivalent to determine the product hy hok, b3, which is a multiple of
b 1h293,0.

THEOREM 2.4. In the E,terms, r=3, of themod p Adams spectral sequence,
P25, the following equalities are satisfied up to nonzero coefficients, and all
nontrivial differentials d,, r=3, on E$* in the range t—s=(2p?+4p+1)g-6
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are given by Theorem 21.1. 11, IIl and Proposition 21.4 of [12] and by the
following 1.
. () dy+1(bb192,-4b%1) = hobli2k, ,_4a,, k=0
(i)  dzp-1(b§191,p-3b11b0o2) = bGE*g5,5-3b11, k2 0.
(i) dap1(bh102,-3b31) = AB3BEH 2y, k20,
(iv) dyps1(b1h;x) = boEF1 k=o0.
(v) dy(blik,0x)= ab 3bk %h;a,, kzo0.
(vi) dyp(aghyw)= bf1ky 0a;.
(vii)  dp+1(b6192,0%) = bGY*~hoky 0bos, fc"O.
(viii) dPH(b’élkl ob11bo2)= b¥i2hoby1a,, k= 0.
(ix) djp—1(b%1(boshybgya, —agub3,)) = bhik*t 1k, oa,, k=1.
II. (i) dp+1(bbiky0bora;) = bl 1ho(Z), k =0,
where (Z) = a3b%,—2by,a,bg2a,+b3,a3.
(i) dap(bb1ks,a,) = bBi*k, 440, 0I=<p—-4, k=0
(iii) dyp-1(bl1ky 1by1bo,) = bi*hok, 1bos, 1<1<p-4, k0.
(iv) dyp-1(bY1631) = hoblHi*b},, k=o.
(v) dy(bliky bgsas) = beh hok, a3, 151<p-4, k0.
(vi)  djp—1(bl1by1x) = hobGhkx, k=o0.
(vii) dyp-1(b1hyby1bgy) = bGE* 1k, ob% 4, k=0

PROOF. 1. (i) By IIL (i) of [12; Th. 21.2], we have d,. (ky,p-4-k1,0bo2)
=Ky p-a-borey =hob1ky ,—4a,#0 in E,.,. Hence ky,_4 k;obo,#0 and
kip-4fc,0°02=4g3,-4b%; up to anonzero coefficient. Then we have the
result.

I. (ii) By7.e)and 11.a)of [10; Th. 3.3], we have h; ky p_3==—¢; ,-3b11
and feu,*\,,-3 =1/292,-3byy By HL (iii) of [12; Th. 12.1], we have dz,-:
(91,p-3b11b02)=dzp—1(—ky p-3-h1bos)=—ky -3 - b1k ,0=—1/2b8195, ,-3by1-

I (i) By HLGi) of [12; Th. 21.1], d3,-1(92,5-3b31)=d2p-1(2ky p-3
kyi,0b11)=2ky p-3hobG1k1 0=hog2,p-3b81b11=—af 3hbYY by =af 2 h,bGY2.

I. (iv) By [12; Th. 21.2], the element fe H**(A4) survives to E, and
corresponds to the element BiB,4+; €m4(S;p). By [24; Th. 5.8], B4B,+1=0,
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and hence the permanent cycle b%7! f ikilled by some differential.  For dimen-
sional reason, there is only one possible differential d,(hx)=bj7'f.

I. (v By Proposition 21.4 of [12] and Theorem 3.3, 11. a) of [10], d,(k, oX)
=hok,0k1 p-30,=1/2hog> p-3b11a, = —1/2a573b3  h,a,.

I. (vi) By [12; Th. 21.2], the element k, ga,survives to E,, and corresponds
to Bp+2€mx(S; p). By the relation BiB,.,=0 [24; Th. 5.8], b}k, a, is
killed by some differential. Hence we have (vi).

I (viii) By IIL (i)-(ii) of [12; Th. 21.2], d,,(b;;)=0and d,,(k, 0bo2)
=boe; =hobf,a,. Hence dpy1(ky,0b11bo2) =hobf by as.

I. (vii) and II. (iii) The survivor hok; ;bgs, 0SI<p—4, corresponds to the
element k. ; € 14(S;p), by Theorem 21.2 of [12]. We have

Bikies = {BiBprir1> a5 21 >BY by [12;(19.1)]
= —BiBpri+1or, ay, Bid= —Bpr1e1€ by [12;(6.2)]
=(I+1)/(1+3)B;+3B,- 1€ by [24; (5.7)]
=0 by [12;(23.8)].

Hence bfihoky bo2, 0SI<p—4, is killed by some differential, and so d,,
(b0192,0%)= bG1hoky,0bo> and d,—y(ky,by1bos3= bh1hoky b, for 1=I<p—4.
By dimensional consideration, d, ;(92,0%F b33 hok; obo,-

I. (ix) Since bgy(borhibora;—aoubfy)= —hiboy f, b3 1k oa,= —ky o f
and dy,_(hybo2)="bf 1ky,0, We have bg d;,— 1 (bo1hybora, —agubd,)=bg" 'k, oa,.
By dimensional consideration, we obtain (ix).

II. (i), (ii) and (v) In a manner similar to the above, we have d,,(b§k, o
bo2a3)=—d, 4 1((fk1,0b02) = —fbore1=—hob3(Z), ds(bG1ks,.a2)= —dyy(ks1f5
—b51k1,1+1f=b5t2k1,1+202, 0<l/<p—-4, and dp(b(%1k1,1b02a2)=—dp(kl,lb02.f)
= —hoboiky 10y f=hobd ks a1 SI<p—4, by III of [12; Th. 21.1].
Therefore the desired results follow from dimensional considerations.

II. (iv) This follows immediately form III. (ii) of [12; Th. 21.1].

II. (vii) By Theorem 1.1 (iii) and III. (ii) of [12; Th. 21.1], we have
dyp-1(hzby1bo2)=hob81 hyboy =hobfi" *hiborby = —bfi'ky 0bty

II. (vi) By the discussions in [12; §21] and I. (ii) of Theorem 2.1, we
see that the element hox € E5*1-(2p2+P)a+P=2gyrvives to E,. By Moss’ con-
vergence theorem [9; (1.2)], we also see that the Toda bracket v= (ﬁzp_l, oy,
o, is defined (in 7 (S; p)) and corresponds to hgx (cf. Proposition 5.1 in the
below). An argument similar to 1. (vii) and II. (iii) shows the relation g5+1y=0.
Then ftgy~o* is killed by some differential, and we have the result. g.e.d.

The first unknown differential after Theorems 2.1 and 2.4 is d, (k;,0bo2),
which is a multiple of fc“,0'u’2  Here Kkjoboy € Ejy(2P*+4P+1)a=7Z and
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bo1ky,0b110, € EpES (224t atin=Z  We shall propose in (20) of the next
section a problem equivalent to the above.

§3. E, term of the Adams spectral sequence

We now immediately obtain information on the E_ term from Theorems
2.1 and 24. In [12; Th. 21.2 and Prop. 21.3] we listed all elements of E$:* for
t—s<(2p%2+p)g—4. So, in the following results, we shall omit almost all
survivors in this range.

THEOREM 3.1. In the mod p Adams spectral sequence, p=5, the following
elements survive to the E term, and give, at least in the range (2p*+p)g— 3
St—sSQp2+4p+Dq-1, q=2(p—1), a Z,basisfor Et (Following [S5] and
[10], we write simply a€(s, t—s) instead of a € E5?).

1) graie(p+¥1, (jp+l+1)g-1), 0= /=p-2, j20.
(2) abalue((j+Dp+i,(j+2pg—1),  j# —2modp, i=p-—1,p.
(3) aba}r3ua,e(2p®>—p+i, 3p?q—1), p*+p-2=<i=p’+p.
@) bk, ek, kpg—2k), Kk <3p+2.
b)) blikya,€k+1+p+2,(p>+kp+Ip+3p+1+1)g—2k-2),
0<I<p-3, 0<k<p,
b¥,k, a3 € Qk+14+2p+2, 2p2+kp+Iip+4p+1+1)g—2k-2),
0<I1<p-3, 05k<p, 0LZk+1£p-3.
6) a,G—2a% 'ca,e(2p+1, 2p%2+3p)g-2),
af*'wbo, € 2pt 3, (2p>+4p)q—4),
bk (Z) e 2pt 2k+4, (2p2+ kp +4p)q—2k—4), 15k<p-2.
(7) hoa,Ge(p+2, 2p* 3p + 1)g-3),
hoky 83 €(2p+1+43, 2p2+Ip+4p+1+2)g—3), O0=I1=Zp-4,
boyhoky,p-4a3€(Bp+1, 3p2+2p—2)q-5).
(8) hobk1ky bo, €Rk+H-5, (p2+kp+Ip+3p+1+2)g—2k-75),
O<sk=p-2if1=0, 0sk=sp-1 if 1 SI1=p-4,

0<k=p if I=p-3.
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(9) fc 6fct*ite(2fc +5, 2p*+kp+1)g—2k->5), 0k=zp-1.
(10) bk, hoxe(k+p + i, Qp2+kp+p)g—2k-3), O0=k=p-1,
b% hoky0x € Qk+p+3,2p*+kp+3p+1)q—2k-5), 0 = k=p-1.
(11) bk hybg, € Rk+3, 2p2+kp+p)g—2k—3), O0=k=p-1,
hohybo, €@, (2p*+p+1)g—4),
b%iky,0b?,€(2k+ 6, 2p*+kp+2p+1)gq—2k—6), O0=fc=< p-2.
(12) af~'de(p+1, 2p*+p)q—2),
gy haae(p+H 2, Qp2+p+i+1)g-2), 0=/=
(13) gybysae(p+1+3, 2p*+p+i+1)g-3), 0=1=
(14) fe,1/iolTu2e(P+5, (2p2+2p+1)g-5),
bk%.b,a,e(pt+2k+2, 2p2+kptp)gq—2k-2), 1=Zfc=Zp.
(15) fe, +Vrfe(4,(2,+2p)g-4).
(16) abby hya,e(p+ 1+ 3, 2p2+2p)q—3), i =p-3, p-2.
(17) b¥,voe(Rk+ 3, 2p*+kp +p +2)q—2k-3), [ <k £p.
(18) b¥19;,-3b11a,€2p+k+1, 2p?>+kp+3p—1)q—2k—4), 0<k<p-1.
(19) b1k, 0€(5, 2p2+3p+1)g—5),
ky  b%,€(7, 2p2+3p+2)q—6).
(20) fc.bae(p +1+4,(2p2+ip+3p+il+1)g—4), 0=I1=<p-4,
boi1ky p-4b11a,€2p+2, Bp2+p—3)q—6).

REMARK 3.2. All indecomposable elements of E,, listed above except
for (1) and (2) are of total degree less than 3p2q. We can also obtain several
partial informations in the range t—s=3p2q. For example, we obtain the
following survivors.

(21) hob%,b3,€(Rk+7, Bp*kp+1)g—2k-7), k =0, 1.

22) g,,b31he(l+6, Bp*+1+1)gq—6), O0=<I1=Zp-5,
gibiiae(p+i+5, Gp*+p+H1)g-5), 0=I=<p-4
gibyhae(p+14+4, Bp2+p+i+1)g—4), 0 =1=Zp-4.
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§4. Generators for 7,(S; p)

In this section we shall determine the group m(S;p), (2p%?+p)g—3<k=
(2p2+4p+1)q—T,and its generator. Partial results for k>(Q2p?+4p+1)q—7
and several relations on compositions will be also obtained. We shall discuss
them in order of (1),..., (20) in Theorem 3.1. All elements are of order p and
all summands and groups are Z,, unless explicitly stated otherwise. For any
survivor a € ES;*, we denote by {a} the coset of m,_(S;p) which is mapped to
a. If {a} consists of a single element a, we write simply « = {a} instead of a e {a}.

(1) rg—1 stem (r#0mod p,r=1) contains a summand ImJ, generated by
the element o, = {g,,a{} for r=jp+I+1, 0<I<p-—2 ([2], [13; §4D.

(2) rpg—1 stem (r#0modp, r= 1) contains a summand ImJ=Z ., generat-
ed by the element oy, ([2], [13; §4]), which corresponds to a§ 'aj 2u for
r=2.

(3) rp*q—1 stem (r#0modp, r=1) contains a summand ImJ=Zy,,
generated by a;,2([2], [13; §4]), and a3,. 6 {a}’*P~2a2P~3ua,}.

4 pg—2 stem is generated by the element B,= {by,}[21-IV]. For
k=<3p+2, the clement %= {b%,} generates a summand in kpg — 2k stem, since
Bi+1#£0.

(5) (rp +r—1)g— 2 stem contains the element f, of L. Smith [I§] and H.
Toda [24]. For 2<r<3p-1, this stem is Z, by Theorem 3.1, and hence we

have
B, = {ki,—z}for2=sr=<p-1, B, = {g1,-2M2}, Bp+1 = {ab7'c},
pp+r=1Kir-202 for 2 ST SEP—1, B2p = {91,p-2h202},
Bap+1 = {a;G—2a%"'ca,}, Prpsr= {ki,-2a3}for2 < r sp-1.

Let k and r satisfy 0Zk<p,p+2=Zr=<3p—1, r#2p, 2p+1 and k+r=<3p—1.
Then the element B%B, (= {b% k,,_,—2a,} fop +2=r=2p—1, ={bfk;,_2p->
a3} for 2p +2=r=<3p—1)generates a summand in (k+r)p+r—1)q—2k-2
stem.

(6) By [24; Th. 5.3], there is a relation B%f,B2,+1=P3B2p+2, Which is
nonzero. Hence fB1B5,+1and B}pB,,+1 are nonzero. Since (2p%+4p)g— 4 and
(2p?+ 5p)q— 6 stems are Z,by Theorem 3.1, we see that these stems are generated
by BiBap+1=1{abtwbo,} and B3P,,+1={bo1(Z)}, respectively. The element
BB2pr1={bt1'(2)}2=<k<p, is nonzero, and generates a summand for k
<p-—1Isince B§*1B,,,1#0. There are relations p§f, =0 for r=2 and B,8,,=0
[24; Th. 5.3, Th. 5.8].

(7) (2p*+3p+1)q—3 stem is generated by a,f,,.;={h;a;G}. For 2p+2
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<r<3p-2, o p= {hokl,,_zp_zag}generates a summand in (rp +r)g— 3 stem.

The element af;B3,-2€{boihoky ,-4a3}is nonzero. There are relations
o,$,8,=0 for r=p, r#—2modp, «,}f=0 for r=p|[I5] and a;f,,-;=0
[12-111].

® (p2+(r+2p+r+1)g—5stem (1 £r<p— 3) is generated by the element
K,={hoky,—1bo2} [12-111]. The element PBix,={bl1hok,-1bo,} (k<p—1 if
r=1, k<p—1 if 2<r=<p—3) is nonzero and, except for B5~2k,, generates a
summand. By Proposition 5.6 in the next section, the element 5~ 2k, also gener-
ates a summand. (2p%+p—1)g— 5 stem is Z,. generated by the element u
€{hoky,,—3bo,} [12-1II]. For 1=<k=p, the eclement Piue{b§ hok, ,—3bo2}
is nonzero, and if k<p this generates a summand in (2p*+kp +p—1)q—2k—5
stem. There are relations g5~ 1k, =0, pik,=0 Q=<r=p-—3) and B5*'1u=0.

9 (p%2+1)g—5 stem is generated by A’ = {hob}1} [12-III]. For 15k
<p, the element B5A'e {b%hob?%,} generates a summand, and there is a relation
Bi A =0.

(10) (2p%2+p)g—3 stem contains an element v={hyx}. Since f,v=
{bo1hox}#0,v generates a summand. By Proposition 5.1 (i) in the next section,
v is equal to the Toda bracket {Bz,-1, %, %;>. For 1=k<p, the element B%v
€ {b%hox} generates a summand in (2p2+kp +p)gq—2k—3 stem. For 0=k
<p—1, the element P%P,v={b% hok, oXx} generates a summand, and B4~ !B,v
is nonzero. There is a relation f5v=0.

(11) (@p%*+p)g— 3 stem is Z,+Z,; one factor is generated by v and other
is generated by an element 7 in {h,bo,} This element is not unique, and Thomas-
Zahler's element y, [20] may possibly represent {h,bq,}. For 1Zk=Zp-—1,
the element %y e {b%h,b¢,} generates a summand. The element o,y = {hoh,bo,}
generates (2p2+ p+1)qg —4 stem. By the relations 5 of [10; Prop. 4.3] and (iii)
of Theorem 1.1, we have ho haboibos="ho hiby1boy=—k;ob?, in H**(A).
Therefore o f,y={k, 0b%,} (up to sign), which generates (2p2+2p+1)¢—6
stem. For 2<k=p- 1, the element a,f%y= {bk71k; ob?,} generates a summand.

(12) (2p%2+p)g— 2 stem is generated by an element, which we call pg,
corresponding to af~'d. For 1Zi<p—1, (2p?+pti)q—2stem contains the
element p,; [14]. We simply write p; instead of p,;. Since this stem is Z,,
the element Pi={g;;-1h,a,}generates this stem. By Proposition 5.1 (i) in
the next section and [14; Th. A], p; =<p;—1, pt, 2;) for 1<i<p—1 and p,_,
=f,,. There is a relation f;p;=0 for1<i<p— 1.

(13) (@p%*+p+ 1g—3stem is Z,+Z,by Proposition 5.6 in the next section;
one factor is generated by 572k, and other by p} € {hob;1a,}. (p%+p+i)g—3
stem (2Zi<p-—2) is generated by p;={g,,;-1b11a,}. By Proposition 5.1 (iii),
the last element p,-, is equal to the Toda bracket {B, p¢, B2p—1>. There are
relations B%p’y=0and B,p =0 for 2Zi<p-2.

(14) (2p%+2p)q—4 stem contains a summand generated by an element p”
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={bg,by1a,}, since B,p"={bd,b,,a,}#0. For 1=k=<p-—1, the element f%p”
={b%i'b,,a,} generates a summand. (2p%?+2p+1)g— 5 stem is generated
by a;p=p,p1={bo1hobi1a,}. There is a relation o,f,p"=p%p,=0.

(15) (2p?+2p)g—4 stem is Z,+Z, and generated by p” and an element in
{by1c+bo1d}.

(16) (2p%+2p)q— 3 stem is Z,2generated by an element @, € {ah™3bo h,a,}.
This is the third element of order p? in CokerJ = Kere [2]; the first and the
second ones are @ [12-1] and u [12-III] in (p2+ p)g—3 and (2p2+p—1)q—>5
stems, respectively. By Proposition 5.1 (iv) in the next section, ¢@,€<{p,_,,
oy, ay».  Since hy gy,-2ha,=—af 2ho hya, in H**(A), there is a relation
PPr=—0a1p,_1. Also, B1¢,=0 holds.

(17) (2p?*+2p +2)q—S5 stem is generated by {boivo}. For 1=k=<p-2,
B4{bo1vo} € {b%%'vo} generates a summand, and i {bo,vo}#0. By Proposi-
tion 5.2, the element {by;vo} 1s given by the Toda bracket <y, a5, B;).

(18) Since g3,,-3by a,=— fe, fc, ,a, by the relation 11.a) of [10;
Th. 3.3], (2p%+3p—1)q—4stem is generated by B2B2,-1 = {92,,-3b11a,}. For
1=k=<p—2,B%B:P2,—1={b1"'g, ,-3b;,a,} generates a summand. The element
By B2B2p-1=1{b%1'92,p-3b11a,} is nonzero.

(190 (@p*>+3p+1)q—5 stem is Z,+Z,, generated by v and {by;k; 0}
The element f,y may possibly represent {b;ik; 0} (2p2+3p+2)g—6 stem is
Z, generated by {k; cb?,}. In this stem, o;{b;k, 0} may possibly be nonzero.

(20) (2p%+rp+2p +r)g—4 stem (1 =r= p— 3) contains a summand generat-
ed by {ky,—1by1a,}. The following problem seems very difficult.

PROBLEM. Is Bk, oby a5} trivial?

For the composition f;{k, by a,},1=I<p— 35, the same problem can be
considered. But we see that the element f,{k, ,_4b,,a,} is nontrivial.

(21) (3p%?+ 1)g—7 stem contains an element {hob3;}, which is equal to
A, B%, ay)> by Proposition 5.2. f,<{A’, BY, &> is also nonzero.

(22) (3p2+i)g—6 stem (1=Zi<p-4) contains a nonzero element similar
to the elements g and 4. (3p2+p+i)g5 and (3p2tp+i)g—4 stems (1Zi
=< p-—3) contain nonzero elements similar to p} and p;, respectively.

From the above discussions, we have obtained the following results.

THEOREM 4.1. The group m(S; p), Qp2+p)q—3=<k=Z(Qp*+4p+1)q-17,
=5, g=2(p— 1), is the direct sum of the cyclic groups generated by the follow-
ing elements of degree k:

@ (2p*+tp+l/ =r=2p*+4p—1,r ¢ 0 modp),

%y (pH =r=2p+4), BY 2pt2 S k=2p+4),
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BiB, (p+2=r=2p+1,r#2p,0=fc<p-—1,2p<fc+r £2p+2),
% Bap+1> BaBap-15 BiB2B2p-1s
Bk, (1 £r<p-3,0=fcsp-1=2k+r=sp+1,(kr) #(@-1,1),
BiA 1 =k=4), pip (1 =ks3), Biv(0sk=3),
v O=k=3), opfiy (0=fc<3), B, BiBav,
p (O=isp-1), pi 12isp=-2), Bipy (=uyp"),
Bip” (0=fc= 2), Bi<n, a5 B> O=Sk=2), o,
{byic+boyd}, {byik,0}, {kyobyias}, {ky,.b%,}.

Here the elements a,, and @, are of order p?, and the others are of order p.
The group Tzp2+4p+1)9-6(Ss p) is Z,or 0, and generated by Bi{k, ob(1a,}.

PROPOSITION 4.2. (i) For ¢=a, (r=22), o,,(r21), oy,. (r21), o8, (p+1

Sr=2p-3or 2p +1=r=3p-3),¢ (1Sisp-1), 4 (1Sisp-2), p; (1Si=p
—1),p; QZi<p-2) and @,, the composition B¢ is trivial.

(ii) For g= Bz, 2. and a f;,_,, B;£#0 and p3¢=0.
(iii) pi~2%k,;#0 and B5~ 1k, =0.
(1V) For é=d1, Br (2§r§2p+ 1; r$0 mOdp)3 alﬁr (2§"§P—1), ﬂZﬁp-—l,

@ B2Bp-1> BaB2p-1> & s K, QSr=p-3), v and B,v, the element Bi~'¢ is non-
trivial but P8¢ is trivial.

(v) Foré=¢ and p, p5E+#0 and B5+1E=0.

§5. Toda brackets and group extensions in 7,(S; p)

In this section we shall represent some generators of 7, (S; p) by making use
of Toda brackets, and prove that the group extension in 724 p+1yg-3(S; p) is
trivial.

We recall the elements v, pg, p1, Pp-2, Pp—2 and @, of m,(S; p), which cor-
respond to the survivors hox, ab~'d, hohyas, g4 ,-3b11a2,9,,,-3h2a, and
ab3by,h,a,respectively.

PROPOSITION 5.1.  The following Toda bracket formulas hold, up to non-
zero coefficients.

(i) v= <ﬁ2p—1’ Oy, Oy



326 Osamu NAKAMURA and Shichir6 OKA

(i1) py=<po;pe; 01>
(111) p;—Z = <ﬂ15 Y48 ﬂZp—1> .

(IV) (p26<pp—2,a1’ a1>

PrOOF. (i) This is the mod p version of [11; Lemma 3.11]. Since d,(x)
=hok, ,—3a, [12; Prop. 21.4] and hyhg =0 in the E, term of the Adams spectral
sequence, the Massey product <k; ,_3a,, ho, ho) is defined and equal to hox in
the E . term. The element fc, .a, and hy converge to B,,-; and ay, respec-
tively, and there are relations «;8,,_;=0 [12; Cor. 21.5] and a;a;=0. Hence
the Toda bracket in (i) is defined. By Moss’ convergence theorem, we obtain
the desired result.

(ii) and (iii) These are proved in the same way as Lemmas 3.14 and 3.13
of [11] respectively®.

(iv) In the same way as Lemma 2.3 (ii), we have g, ,-3h,a,=<g1 -3
ab, d> in H**(A). Then gy g1,,-3h202€<g1,191,p-3, a6, d>=1/2{a§ by,
ab, d>s1/2a% 2by hyaby Lemma 2.3 (ii). Since these Massey products have
trivial indeterminancy, we obtain

() g1,1°91,p-3h2a, = —1/2a%72bg hya, in H**(A).

Consider the Massey product <gi,,-3h2az, ho, hy) 1 H**¥(4). By dimen-
sional consideration, we can put <{g; ,—3h,a,,h, ho> =aal~3by h,a, for some
w€Z, Then aaf 2bgihya,= —g,,_3ha,<{ho,ho, o) = g1,,-3h20; "g1,1= -
1/2a%2bg h,a,by (*¥). Hence a= —1/2, and we get

<gl,p—3h2a25 ho, ho) = —1/2a873bg hya, in H**(4).

Applying Moss’ convergence theorem to this Massey product, we obtain
the desired result. g e.d.

PROPOSITION 5.2. The elements bovy and hob3{ converge, up to non-
zero coefficients,to the Toda brackets {y, oy, B> and (X', B%, a,>, respectively.
Here y and A' are the generators corresponding to the survivors h,by, and
hob?,.

PROOF. Let a € Z,be the nonzero coefficient in the equality d,(h,)=aagbo;.
Then we have d,(vg)=0gy,1h,bo, by (2.3) and d,(g;,0)=—0gy 1bo;. The
Massey product {h,bg2, 91,1, bo1) is defined and equal to —(1/)bg1vo—(1/0)h,bg,
*g2,0=—2/0)bo10o in the Esterm. By Moss’convergence theorem, — (2/0)bo,00
converges to <y, &, B;>. Similarly we have hob3; = Chob%,b5 1, hoy in E,,,
which converges to (', B4, oy ). q.e. rf.

x) In the statement of [11 Lemma 3.13], there is a misprint: «, should be read ;.
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Now we shall consider the ring & (M) studied in [13]. Put M*=S8""1\ ,e"
and let

Sn—1 i Mr = Sn

be the cofibering for M®. Define & (M)by the limit group lim [M"**, M"],
where [X, 7] denotes the set of homotopy classes of maps from X to 7, and the
limit is taken over the suspension. The direct sum o/ (M)= ", (M) forms a
(graded) algebra over Z,. We introduced in [13] a linear map

D: o (M) — o4 (M)

having the following properties:
(5.1) [13; (1.7)] DEM=D(E)n+(—1)*<8*ED(n).
(5.2) [13; (1.8)] D?*(¢)=0.
(5.3) [13; Lemma 3.2] For any element yen(S;p) of order p, there exists
an element [y] € o (M) such that D[y] =0 and n[y]i=1y.
5.4 [13; (1.9)] Let 6=inesl _(M). Then D(O)=1,, the identity class
of M".
(5.5 [13; (1.11)] The subaigebra KerD of of (M) is commutative, i.e.,
En=(—1)tessdeen{ for ¢, neKerD.

We also introduced in [13] and [14; Th. B, (7.4)] the following elements
in KerD:

a€ L (M) with mai=

Bre L pir—1ya- 1M, r = 1, with 7nf,i=p, and af, =pnx =0,
PO E L (prr—1yp+ 1yg-1(M), t 21, with a?=2p(t)= p()aP~2= B,

o() €L ypri-1)p+1)g-2(M), t 21, with a?~3a(t) = a()aP~3 = B1)Bp-1)-

LEMMA 5.3. Let N=Q2p?+p)q—1. Then there exists uniquely an ele-
ment pesty(M)such that api=pe, D(p)=0 and poaP~!=ar~1p =xp,, for
some x#0modp. For k=N and N+q, a Z,basisfor £ (M)is given by,
respectively,

(b, 038485, 4287160, (B1,0) By 0}
and
{po= ap, a2p>*Tp+15 o2p*+p5qy}

PROOF. By Theorem 4.1, 7my_(S; p)=2Z,, ny(S; p) =Z,: and 7wy, ((S; p)
=Z, are generated by po, %2524, and P52, ,, respectively. Therefore, by
[13; Th. 3.5, discussions in pp. 648-649 and (5.11)], we obtain the result
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on (M) for an element p= [py] satisfying mpi=p, and D(p)=0. Such
p is determined up to Zy(M)n Kern,i* n KerD = Z,, generated by = a2p**p§
— 2P+ 15q,

By Theorem 4.1 and Proposition 5.1 (i), 7ty4,—(S; p) and ny . (S;p) are
Z, generated by p; =<{pg, pt, %) and %y,24 54 respectively, and 7y, 44 1(S;p)=0.
Then we can take [p;]=pax=ap by [13; Prop. 39], and hence the result on
oy + (M) follows similarly. In particular, &y, (M) KerD is Z,+ Z,, generated
by pa and Eo = aé.

Consider the element p(2) € &y, (M). Since D(p(2)) =0, we can put p(2)
=xpa+yéa for some x, yeZ,. Then xp; =np(2)i, which is equal to the non-
zero element p,,; by [l14; Th. A]. Hence x#0. Replacing p by p—(y/x)¢,
the equality p(2) =xpoa holds for a unique p. By [14; Th. B], pa?~1=ar"1p
=(1/x)aP~2p(2) = (1/x)B 2, as desired. g.e.d.

We consider the group mpe4p41),-3(S; p). By Theorem 3.1, this con-
sists of p? elements and one of the following two cases occurs:

(1) Taposps 1a-3(S: D)= Z,+ Z,, generated by p'; and B2k

(D) m2p24p41)g-3(S5 P)= Z2, generated by p'y, and pp'y = Bi~ k.
Here p} € {hobyia,} up to anonzero coefficient and pi 2k {bh12hok, obo,}.

LEMMA 54.  There exists uniquely an element Ky in & (y243p+2yq-4(M)
such that nky)i=ix; and D(i)=0. This element satisfies oKy=x =0
and Bykay=KwBuy=0.

PROOF. By [13; Th. 35] and the results on 7 (S; p), we see that
A (pr+3p+2)q-4(M) N Ker D =Z, generated by k(;) =[x;] and that & ,2 4 35+3)4-4
(M)nKerD and & (,2 4 4p+2)g-5(M) are trivial. Therefore the desired relations
on kg hold. g.e.d.

LEMMA 5.5. Let N'=Qp*+p+1)q—2. Ifthe case (1) is valid, then there
is an element p € £ y(M) satisfying npi=p"y and D(p)=0, and then a Z,-basis
for Zy(M)n KerD is given by {p, (B1y0)?"2Kk1ypad +0pa}. The element
p is determined up to pad + épa. If the case (II) is valid, then a Z,-basisfor
o y(M) n Ker D is given by {(B(1)0)"~ %k 1,pad + dpa}.

PROOF. From the results on m(S;p), k=N'—1, N, N'+1, and Lemmas
53-54, L y(M) is easily computed by [13; Th. 3.5], and we have the results.
g.e.d.

PROPOSITION 5.6. The case (Il) is not valid, that is, the group extension
inTop 4 pe1)g-3(Ss p) is trivial.

PROOF. Consider the element 6(2) € (3p24p+1)g-2(M) [14; (7.4)]. This
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satisfies D(a(2))=0 and o(QuP~3=ar"36(2) =P 1)f2p-1y- If the case (II) is
valid, we can put a(2)=x(f,0)?" 2k y+ y(pad+dpa) for some x, yeZ, by
Lemma 5.5. Since 6(2)aP~2=p1,f2p-1)%=0, k1) 2x=0 and pa? =pf,,x=0, we
have ypadaP~! =0. Since ada?~!'= — aP~15a+2u0Pd [13; (4.4)], we have padar~!
=—par~1da=—P,,0aand so ya,f,,=—ynpadaP~'i=0. The element a,f,,
is nonzero, and hence y=0. Therefore 6(2)=x(B1)0)P %k, and B1)B2p-1)
=0(2)ap~3=0. This implies {4, pt, B2p-1> =7B1yB2p-1)i=0, which con-
tradicts Proposition 5.1 (iii). Thus, the case (II) is negative. g.ed.

REMARK. From a similar discussion, we see that no(2)i is nontrivial and
not a multiple of Bi72ky,ie., Tp24p+1)-3(S; P) =Z,+Z, is generated by
na(2)i and B5~2k;. Furthermore one of the authors has proved in Part I of
[14] (this journal 331-342) the following result: the element no(2)ai~1i,2<j
Sp—2, is nontrivial and generates T p2 4 p4 jyg-3(SP), and the relations p ;o
=kap'j;, (mod pi~ 2k, if jrk=1),j=0, fc"l, hold, where p’; =na(2ai~1i for
15jSp—2, =0forjzp— 1 flttd the coefficient a€Z, is independent ofj and k.
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