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Introduction

Let p be an odd prime. Let A denote the Steenrod algebra modp and

πk(Sι p) the p-primary component of the ίcth stable homotopy group of spheres.

J. F. Adams [1] introduced a spectral sequence having H**(A) = Ext*i*(Zp,

Zp) as its E2 term and a bi-graded algebra associated to π*(S; p) as its E^ term.

In his thesis [5], J. P. May constructed another spectral sequence which has

as its EOO term an algebra E°H**(A), i.e., a tri-graded algebra associated to H**(A)9

and he made extensive computations of H**(A).

In [10], we extended May's computations in his techniques, and obtained

complete informations on the module H* *(A) in the range ί — s^(3p2 + 3p + 4)<j

-2, g = 2(p-l). For the case p = 3, we also determined in [11] all differentials

in the Adams spectral sequence Es

r>* in the range t — s^!04, and obtained the

complete group structure of πk(S; 3) for fcg!03. On the other hand, for the

primes p^5, we determined in [12] all differentials in the range ί — s^(2p2+p)q

— 3 from our results on the groups πk(S; p), which were obtained without any in-

formation on H**(A), together with our results on H**(A) [10].

In this paper, we shall always treat the case p^5. We shall determine differ-

entials in the modp Adams spectral sequence by the same techniques as in [11],

and by making use of known results on π*(S p). Our main results on differentials

are Theorems 2. 1 and 2.4, where all differentials dr on Es

r> * for t - s ̂  (2p2 + 4p + \)q

— 6 and some ones for greater t — s will be computed. From these results, we

shall determine the £%' term and the group πk(S; p) for t — s and fc^(2p2 + 4p

+ l)q — 7 in Theorems 3.1 and 4.1, respectively. Several partial results for E^

and π*(S; p) in higher degrees will be also obtained.

In §1, we shall compute several products in the algebra H**(A) which differ

from ones in the algebra E°H**(A) (Theorem 1.1). We shall compute the

differentials in §2 and the E^ term in §3. The group πk(5; p), together with

its generator, will be determined in § 4. In § 5, several Toda bracket formulas in

π*(S', p) will be obtained and the group extension in π(2p2+p+1)ί_3(S; p) will be

determined.
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§ 1. Algebra structure of Ext*[*(Zp, Zp)

Throughout this paper, p will denote a prime integer ̂ 5, and we will set
<? = 2Q?-1) and write H**(A) instead of Ext3*(Zp, Zp) for the cohomology of
the modp Steenrod algebra A.

The algebra H**(A) is naturally isomorphic as a module over Zp to an
associated graded algebra E°H**(A), and the structure of the algebra E°H**(A)
(and of the module H**(A) also) has been computed by A. Liulevicius [4], J.
P. May [5] and the first-named author [10]. We shall use the same notations
for the elements of E°H**(A) (and corresponding ones of H**(A)) as in the
previous paper [10]. Some of these notations differ from May's original ones,
i.e., we write bij9 gίti and kitl in place of his ftj, g\ and /cj, respectively.

Now we first correct errors of our paper [10].

CORRECTIONS TO THEOREMS 3.3 AND 4.4 OF [10]. (i) The relation
11. g) in Theorem 3.3 should be replaced by
11. g). /c1>0w = g2t0x if p = 3,

fcuw=0, O ^ / ^ p - 3 , if p^5.
(ii) The elements 17. h) and 44. c) in Theorem 4.4 should respectively be replaced
by

17. h). Moιfcι,ι*ϊι

44. c). fcu/c2>/e(/ + 5, (2p2 + 3p+ /p + /+l)<2-5), 0 ^ / ^ p-4.

In our computations of H**(A) [10] by May's techniques, the product
obtained from Theorem 3.3 and Proposition 4.3 of [10], which is actually the
product with respect to the algebra structure of E°H**(A), may not be the one
in the algebra H**(A). A product in H**(A) of two elements always contains
as a summand their product in E°H**(A) but may possibly contain also other
terms of the same bi-grading but of lower weight in the sense of J. P. May [5].
The following relations in H**(A) differ from ones in E°H**(A). This list
is by no means complete.

THEOREM 1.1. In the algebra H**(A), p^5, the following relations hold.
( i ) h2-u = ap

0-
1c.

(ϋ) 02,rMo2 = h0kltlbil9 hί g2tίb02 = 2/ι0fe1>1ί?11,

^02 '02,1^02 = 3/Z 0/C l 5 ι&uZ?θ2

(iii) VMo2 = -fci.o&ii
(iv) hί-hίb02 = b0ίc.
(v) h2-hίb02 = -fo1 J Lc~2fe0 1ί/, hί h2b02 = fc
(vi) h2 h2bQ2 = -bnd.
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(vii) /cu Mo2 = -bQίk2)h 0 ̂  / ̂  p-4,

ΛI ' fci ,A>2 = l/(/ + 2)&oιfc2.ι, 0 ^ / ^ p-4.
(viii) fcu *2*o2 = -(/ + 3)/(/ + 2)ί711fc2>/, 0 ̂  / ^ p-4,

h2'k1,lb02 = -l/(/ + 2)611fc2tl, 0 g / ^ p-4.
( i x ) h2'g2tlb02 = 2b0ivh l ^ / ^ p - 3 ,

02,ΓM>02 = &01ϋl> ° = ' = l>-3

( x ) h2 ub02 = -2fe01G.

The results for p = 3 corresponding to the above are seen in Proposition
1.1 of [11]. In particular, (i), (iii), (v) and the second of (ix) also hold for p = 3,
and (iv) and (vi) differ from the case p = 3: h1 hlb02 = blι and h2'h2b02 =
— b0ίb2ί — bίidforp = 3. We obtained the results for p = 3 by computations
in the cobar construction F*(A*)9 but some of the computations are too long
for the case ρ^5. So we shall also make use of May's imbedding method [5]
and matric Massey products [6]; (i) and (ii) in Theorem 1.1 are proved by the
imbedding method, (iii)-(vi) are proved by computations in the cobar construc-
tion, and (vii)-(x) are proved by computations of matric Massey products.

PROOF OF THEOREM 1.1. (i) For any element a in H**(A\ we denote
its dual in H**(A) = Ύoτ£*(Zp9 Zp) by α*. By dimensional and filtrational con-
siderations, we have /ι2 w = ααζ~1c for some αeZp. To determine the co-
efficient α, we compute the comultiplication of the dual (αξ^c)*. By routine
computations, (αξ"1^* is represented in the bar construction B(A) of A by the
element

ξ =

+ Σf=K- i)'(i-

?=8(- Dί+1

{[βι] J+

Here we use the same notations as in [5]; Qt and Pl

}=PR, R=(0,..., 0, p', 0,...)»
are the Milnor basis elements [8] and * denotes the shuffle product in B(A). For
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convenience we use the following abbreviated notations :

M' = [x|H*] (Mimes),

Let D denote the comultiplication of B(A). Then the summand in Dξ having
the left component {Pf } is

Since /if and u* are represented by {Pf} and — {P2}*{βι}p~1 respectively, we
have h2 u = a ζ~ 1 c as desired.

(ii) For dimensional and filtrational reason, we see that in each equality
the element in the left is a multiple of the one in the right. The dual element
(Λofci.i&ii)* is represented in B(A) by

η = -{P?}*{P}}*{P§}*{Pίl(P})p-1}*{β2}

and the summands with the left components -{PiHP zKP D""1} and {P}} in
Dη are, respectively,

and

where A = {P?}*{P§}*{Pίl(Pl)p-1}*{β2}

' = -{P.l}*{P?}*{P?}*{Pll(Pir1}*{fli}

+ {Pl}*{PH}*{[P}>[P2

>]|(Pί)ί'-2}*{β1}
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Since (Mo2)* and Λ? are represented by -{P}}*{P2I(P2)1'-1} and {P}}, we have

Mo2'02,l = A ofcl. l f e l l aild V02.1&02=2ft 0 fcl, l&ll-

Similarly, (/ι0^ι, 1^11^02)* is represented by

C = {P?}*{PiHP2>{Pίl(Pί)p-1}*{P2Ί(P2')p-1}*{<22}

and the summand with the left component -{PlMP zKP z)""1} in Dζ is -{P}}
*{PHI(P5)p- 1}®B, where

β = {p?}*{p§}*{pιi(pί)p-1}*{e2}+{p?}*{p}}*{ps}*{(pί)p-1}*{α2}

for some B'. Hence we have hίb02 '9 2,1^02 = ̂ 0^1,1^ 11^02-
(iii) We consider the cobar construction ([4], [5]) F*(A*). Let 502 be a

cochain

Here ξ's are the Milnor basis elements [8] in the dual Hopf algebra A* of A.
Put

These cochains in F*(^4*) represent bol and fcn, respectively. Then we have

and hence
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- K

where

and

Since the cochains [ξj, (ftιί?02)~ an(l ^1,0 represent /z0, ^^02 an<l ^1,0 respectively,

we have Λ 0 '^ ιbo2= — fei.o^n
(iv) We have

where c=K5|
and c respectively, we have hi

(v) Since we have

and

Since [£?] and c are representatives of

where 3= Kf|ξ5] + 1/2K?** |«] and (Λ2602)- = K?J]502 - Kζ] δt 1 + 1/2K? ̂ ]501

are representatives of d and h2b02 respectively, the desired results h2'hίb02

= —cbίl—2b01d and ht h2b02 = 2cb11+db0i follow.

(vi) This follows from 3{-l/2K?^]502-l/6K?'2]50i} = K?2](Mo2)"

Before proving the rests of the theorem, we prepare some results on matric
Massey products in H**(A). We recall the May spectral sequence (Er, <5Γ)[5]

fSS

and Priddy's one (Er, δr)[16], whose initial and terminal terms are given as

follows :

E2 = H** (E°A), Ex = E°H**(A)

EI = H****(E°E°A), Ex = E°H***(E°A).
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The algebra H****(£°£<M), from which our calculations of H**(A)[ίO] started,
is equal to

JE(KJ|i ̂  0, j ̂  1) ® P(Sft|/c ̂  0) ® P(β}|i ̂  0, j ̂  1),

where E and P denote an exterior and a polynomial algebras, respectively (cf. [10;
pp. 10-11]).

In the above two spectral sequences Er, Er and Adams' one Er9 (matric)
Massey products [6] can be formed, and we make often use of May's convergence

theorem [6; Th. 4.1] for Massey products in Er or Er and Moss' one [9; (1.2)]
in Er. Roughly speaking, these convergence theorems are stated as follows: if

Vi (e Er9 Er or Er) converges to wf (eH***(EQA\ H**(A) or π^S; p)\ l^i ^3,
Massey products υ = (vί9 v2, υ3y and w = <w1, vv2, w3> (in Er, w is a Toda bracket)

are defined, and if some condition ([6; Th. 4.1, (*)] or [9; (1.3)]) on perma-
nent (co)cycles is satisfied, then v converges to w, (cf. [11; Th. 2.6, Th. 2.8]).

CONVENTION. R. M. F. Moss also defined a triple (matric) Massey product
[9; pp. 294-295]. His definition slightly differs from May's one [6]. In this
paper, we adopt Moss' definition for triple products. In particular the usual
triple product <α, b, c> is defined as follows: if ab = Q and fcc = 0, then <α, b, c>
consists of all elements represented by (co)cycles (—l)dega+1aη + ξc, where
ab = δ(ξ) and bc = δ(η) at (co)chain level (δ = δr or dr\ that is,

/ * η c \

ξ b

is a defining system for <α, b, c>. Then the associative law for this triple pro-
duct is given by the formulas [9; (3.4)] and

which also differ from May's ones [6; Th. 3.1, Cor. 3.2].

LEMMA 1.2. The following matric Massey product formulas hold in
H**(A).

( i )

(ii)
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/ / **Λ\(in) < fcu, (hl9 A2), ( ) } = -kitlb029

(iv)

(v)

( vi ) <fcu, A l f (Ai, A2)> = (0, -/c2>ί), 0 g / ^ p-4.

(vii) <A 1 5 fcu, (A l s A2)> = (0, l/(/ + 2)fc2fί), 0 ^ / ^ p-4.

(viii) <fcu, A2, (A!, A2)> = ((/ + 3)/(/ + 2)fc2f/, 0), 0 ^ / ^ p —4.

(ix) <A2, fcu, (A l s A2)> = (l/(/ + 2)fc2fί, 0), 0 ^ / ^ p-4.

( x ) <A2, ^2,«» (Ai, A2)> = (0, 2^), 1 ^ / ^ p-3.

(xi) <flf 2 j /, A2, (A l 5 A2)> = (0, ι;f), 0 ^ / ^ p-3.

(xii) <A2, A0w, (A l 5 A2)> = (0, 2A0G).

PROOF. Since A f = 0 , A j A 2 = 0 and δpb02 = hίblί — h2bQi in the £p term
[10; Th. 3.3, Prop. 4.3], the matric Massey product in (i) is defined and equal
to A 1fe 0 2 in the Ep+ί term by definition. The condition (*) in May's conver-
gence theorem is satisfied for this Massey product in Ep+l9 and hence (i) holds
in H**(A). In the same way, (ii)-(v) are proved. The elements fcu, hi9 A2,
k2)l are represented by RIR%S29R\9 R%9 R2R{R%S*29 respectively, and OR})2

= 0 and <?!#!= -RlR{ in the E^ term [10; Th. 3.3, Prop. 1.3]. So the matric
Massey product </cu, hl9 (A l 9 A2)> is defined and equal to (0, — fc2f/) in the

E2 term. By iterated use of the May convergence theorem, we obtain the
relation (vi) in H**(A). In the same way, (vii)-(xii) are proved. q.e.d.

PROOF OF THEOREM 1.1 (CONTINUED), (vii) By Lemma 1.2 (i), (vi) and
the associativity of the matric Massey products, we have
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= -(o, -fc2>() = -fc2Aι

Similarly we have

i, h2)>

by Lemma 1.2 (iii), (vii).
(viii) Similarly the first and the second formulas follow from Lemma 1.2

(ii), (viii) and (iii), (ix), respectively.
( ix) This follows from Lemma 1.2 (iv), (x), (ii) and (xi).
( x ) By dimensional consideration, h2'ub02 = ccGb0i for some αeZp.

By Lemma 1.2 (v) and (xii), we have h2 - h0ub02 = 2/ι0Gb01 ̂ 0, and hence α= — 2.

q.e.d.

% 2. Differentials in the Adams spectral sequence

From now on, we shall write (Er9 dr) and (Er9 δr) for the modp Adams
spectral sequence and May's, respectively. Since Toda's first nontrivial dif-
ferential on ££'̂ [21-11], the differentials dr have been computed by the several
authors, e.g., A. Liulevicius [4], N. Shimada and T. Yamanoshita [17], H. H.
Gershenson [3], J. P. May [5], R. J. Milgram [7], H. Toda [21, 22, 23, 24], E.
Thomas and R. S. Zahler [19], and S. Oka and H. Toda [15].

In our case p^59 from these works and our results on £2[10] and on π*(S;
p)[12], we have recently determined all differentials dr and elements surviving to
EQO in the range ί — s^(2p2 + p)q — 4 [12-IΠ]. In this section, we shall compute
them and obtain complete information in the range t — s^(2p2+4p+ l)q — Ί.

THEOREM 2.1. In the E2 term of the modp Adams spectral sequence,
p^59 the following equalities are satisfied up to nonzero coefficients. All
nontrivial differentials d2 on E2>* in the range t — s^(2p2+4p + 2)q — % are
given by Theorem 21.1.1 o/[12] and by the following I.

I. (i) ,

(ii) .
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d2(a\)b01d) = al

0

+lbolh2b02, 0 g i ̂  p-3,

<*2(a0Z>oiiO = ao+1i>oiMo2, Q^i^p-4, k ^ 2.

(iii) d2(a{)bllc) = atflh2bolb02, 0 g / g p-3.

(iv) ί/2(»ι) = 0ι,ί+ιΛ2602» O ^ / g p - 3 .

(v) d2(*&i03Ai) = *fci02. i+i&ii&o2» O g / g p - 4 , k ̂  0.

( v i ) rf 2(*S+

1

1β|,A2β2) = βί)+1^V*ιιβ2» O g i g p - 4 , k ^ O .

(vii) rf2(feδι32Λι«2) = ^1>ί+ιH+ι1ίΊια2, O g / ^ p - 4 , k ̂  0.

(viii) ^(αbft^) = atf^b^d+cbu), 0 ^ i ^ p-2.

( i x ) rf 2(βS+ '- 3c6 0 2) = βδ*'-2A,ftg2, 0 ^ / ^ p .

(x) r fa^LjC) = 0w&

(x i ) rf2(/J2w) = βS-1c602-*oιG,

d2(g1,ιh2w)=gl>lbolG, 0 g / g 1.

(xii) rf2(flί,(ί>oιC«2-αowίΌ2)) = ab+1(i>oi''i*o2«2-«o"^02)> 0 g i ^ p-2,

0 g i ̂  p-4, k ̂  1.

(xiii) d2(Λ2fir3,ί) = ίΌιW/+ι, 0 ̂  / ̂  p-4,

II. ( i ) ί/2(α0&11d) = αf )

+ 1ft2bιιίΌ2, 0 g i ^ p-2,

<*2(&διβ{>*ιι<0 = ef>+1^iMiifro2. 0 g i g p-5.

(ii) d2(ί»SιΛι»3,oίΌ2) = &διMι,ι&n&o2» k ^ 0.

(iii) ί/2(ί>0 1^03,002) = ^ιΛofeι,ι&n f l2» ^^°

(iv) ί/2(&Sι7iα2) = iδιΛ0fcι,ι+ι*ιια2, 1 ^ ί ^ P~4, k ^ 0.

(V) d2(ί)*oi^2,ί^l) = ί'θV3l,ί+1^l, O ^ / g p - 5 , k ^ O .

To prove the theorem, we prepare some lemmas.
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LEMMA 2.2. For the same nonzero coefficient α, the identities d2(hί)
= αα0fo01 and d2(h2} = VLaQbll hold.

PROOF. This follows easily from Q = d2(hίh2) = d2(hl)h2 — h1d2(h2) and

olh2 = a0h1blί^0. q.e.d.

The coefficient α above will often appear in the proof of Theorem 2.1 below.

LEMMA 2.3. The following Massey product formulas hold in H**(A).

( i ) <Λ2, -h2,hίy = d.

(ii) <i?01, -αg, dy = bolh2a2.

(iii) <ft0ι, -flo, Mo2>

(iv) <!>„ -f l 0 »*S~ 1 Λι>

(v) <0ι,ιMo2> -tfo> βδ~ 1Λι> = 9ι.ιbolh2a29 0 ̂  ί ^ p-2.

(vi) <flS~1, 6oι» Λ2W> =

(vii) <αg, ft0ι, βS"1c602

PROOF, (i) The elements hί9 h2 and d are represented in the cobar con-

struction F*(A*) by the elements [{?], [ξf ] and 3 = K?a|i5] + (l/2)K^a|«],
(cf. [4]). Since 5K5]=-K?a|ξ?]_and δK?^a]= -2[ξΠ^2], <Λ2, -Λ2, Λ^
contains an element represented by ί/. By dimensional consideration, we obtain

(ii)-(iii) Since δ2p.l(h2a2) = ap

0d in fί^.t [5, Th. II. 6.9], (cf. [10, Th.
4.2]), the Massey product in (ii) is defined and equal to b0ίh2a2 in E2p. By May's
convergence theorem, (ii) holds in H**(A). By using the relation δp(bίίa2) =

a^h2b02 in Ep [10], (iii) is proved similarly.
(iv)-(v) Since HP+1^2P2+2P-1^+P~2(A) is generated by h^x with May's

weight 2p — 2 and a0vp_3 has May's weight p— 1, we have α0t;p_3 = 0 in H**(A),
and hence these Massey products are defined in H**(A). Then, by the relations

δp(^ι)= — «o^ι» Λ0^ = 0 and a0gίιlh2b()2 = 0in £p[10] and by May's convergence
theorem, the desired results are obtained.

(vi)-(vii) These follow from δp(wb02)= —b0ih2w in Ep and δ2p_l(h1bQ2a2)
= 2a0b01G-2ap

0cb02 in ̂ ^[lO; Prop. 4.2]. q.e.d.

PROOF OF THEOREM 2.1. I. (i), (iii), (v), (vii) and II. (v) are easily derived
from Theorem 21.2. 1 of [12-IΠ].

I. (ii) By Moss' Leibnitz formula [9; (1.1)] and Lemmas 2.2, 2.3 (i), we

have
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d2(d) = d2(h29 -h2, Λ j )

J I ~h2 ° \ f hι

The last matric Massey product P has a defining system

(0,0)

\ (αα0£u, ^2)

and so P is defined and equal to

0

OC#0^02

-h2 0

i -A2

02 01

in the Ep+1 term of the May spectral sequence. Hence we have

(2.1) d2(d)=-c

The desired results follow from this and

(2.2) a0 and b0ί are permanent cycles.

I. (iv) By the relations 4. k) and 4. a) of Theorem 3.3 [10],

for O^/^p-3. Then, by (2.1), -flf l ip-3-A(»ι)= -^I
= —<x9ι,P-3-ι'9ι,ι+ 1^2^02- For dimensional reason, we see that
multiple of ^1,^+1^2^02 ( ̂  0). Therefore

(2.3) 2, 0 g / ^ p-3,

as desired.
I. (vi) By Lemma 2.3 (ii), Moss' formula [9; (1.1)], (2.1) and Lemma 2.3

(iii), we have d2(^oι'I2α2) = ααo^oι^ιια2 Then the desired results follow from
(2.2).

I. (viii) d2(hίd) = aa0bQίd+^aQh1 h2b02 = 2oί(aQbQίd + aQcbίl) by Lemma
2.2 and Theorem 1.1 (v).

I. (ix)-(x) By [10; Th. 3.3] and Lemma 2.3 (iv), 0uG
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-α0, αΓ'fciX Then we have d2(g1JG) = ugltιbolh2a2 for /^ l by [9; (1.1)],
(2.3) and Lemma 2.3 (v). By the relation 14 of [10; Prop. 4.1], a0bolG =
ap

3cb02 in H**(A) and so

Then we have

9ι,P-2d2(9ι,oG) = *9i)P-2'9i,ob0ih2a2 = αα^"2/*^ ^ 0,

agd2K"3^o2) = -αα^-2/*!^ ̂  0.

By dimensional consideration, we obtain

We have also a0rf2(b01G) = J2(ufgcfe02)= -ααg+^ift^ and so d2(b0ίG) =

I. (xi) We have —h0 d2(h2w) = h2 d2(hQw) = h2 hQub02 = 2hQbQίG^Q by
Theorem 1.1 (x). Since a%-lcb02-bolG is the only </2-cycle in EP

2

+3^2P2+3P^+P~1

9

we obtain d2(/ι2w) = 2(αζ-1cfe02-b01G). Since α0^ι ,j = 0, d2(gίίlh2w) = 2g1jbolG
for 0^ ίgl.

I. (xii) By Lemma 2.3 (vi)-(vii), we have d2(apj\vbo2) = (l/2)apιub2

}2. By
dimensional consideration and by (2.2), we obtain (xii).

I. (xiii) d2(h2g3)l) = h2 g2il+ίb029 which is equal to 2b0ίvl+ί by Theorem
1.1 (iv).

II. (i) This follows immediately from I. (ii) and (2.2).
II. (ii) By Theorem 1.1 (ii), d2(g^^hlbQ2}= g2ίίbQ2 'hlbQ2 = 3h0kί^bίlb02.
II. (iϋ)-(iv) By Theorem 3.3 of [10], we have /-.//= -b§ιj/α2, f'h^ =

aoub0ιb02-bZ1h1a2 and f'hobίί = -h0b
2

}ίblίa2 for f=b
Since d2(blljla2)= -fd^j^^bl^k^^^b^a^ we have d20'ia2) =
and (iv) follows. By Theorem 1.1 (ii), b2

)ίhίa2 g2ίιb02= -f hι g2tlb02 =
2/ϊ0ί?g1/cMb11α2, and so bQίhίa2'g2tίb02 = 2h0bolkίtίbίίa2. Then b01

and (iii) follows. q.e.d.

The first unknown differential d2 after Theorem 2.1 is

£9,(2p2+ 4p+2)«+i5 where h0kί)0bl2 and 60ιfeι.ι6ιι generate
= ZP and £9,(2p2+4p+2)β+ι==^5 respectively, and the determination of this

d2 is equivalent to determine the product Λ0 /ι0^ι,o^o 2? which is a multiple of

&0 1^203,0-

THEOREM 2.4. Jn theEr terms, r^3, o/ ί/ίβmodp Adams spectral sequence,
5, the following equalities are satisfied up to nonzero coefficients, and all

nontrivial differentials dr, r^3, on Es

r>* in the range t — s^(2p2+4p+l)q — 6
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are given by Theorem 21.1. II, III and Proposition 21.4 of [12] and by the
following I.

I. (i)

(ii)

(iii)

(iv)

(v) dp(bk

01klt0x) = a'0-
3bk

0\
2h2a2, k^O.

( vi ) d2p(a0h2w) = bp

olklt0a2.

(vii) Vι(fc*oι02,o*) = W^Vci.o^, fc^O.

(viii) dp+l(bk

olkίι0bllb02) = bk

0\
2h<)bίίa2, k ̂  0.

(ix)

II. (i)

where (Z) =

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

PROOF. I. (i) By III. (i) of [12; Th. 21.2], we have dp+1(k1^4.kί>0b02)
= kltp-4.b01e1 = h0b

2

)1kltp^4a2^0 in Ep+1. Hence kl>p.4 k1>0b02^0 and

&ι,p-4 fcι,o^θ2 =02^-4^11 UP to a nonzero coefficient. Then we have the
result.

I. (ii) By 7. e) and 11. a) of [10; Th. 3.3], we have hί k1>p.3= -0i>p-3&M

and fcι.0*ι,,-3 = l/2ί2.,-3frιι By HI. (iii) of [12; Th. 12.1], we have d2p_1

I. (iii) By III.(ii) of [12; Th. 21.1], d2p-1(g2tp_3bll)=d2p-1(2k1.,-3

I. (iv) By [12; Th. 21.2], the element /eH*%4) survives to En and
corresponds to the element β1βp+1eπ^(S; p). By [24; Th. 5.8], βp

1βp+1=0,



Some Differentials in the mod;? Adams Spectral Sequence (p ;>5) 319

and hence the permanent cycle b^fis killed by some differential. For dimen-
sional reason, there is only one possible differential d2p+l(h1x) = bζ~1

ίf.
I. (v) By Proposition 21.4 of [12] and Theorem 3.3, 11. a) of [10], dp(kίf0x)

I. (vi) By [12; Th. 21.2], the element kΐf0a2 survives to E^ and corresponds
to βp+2επ*(S;p). By the relation β*[βp+2 = Q [24; Th. 5.8], bp

0ίkί>0a2 is
killed by some differential. Hence we have (vi).

I.(viii) By IΠ.(i)-(ii) of [12; Th. 21.2], dp+ί(bίί)=0 and dp+1(kίt0b02)

= ί?01e1 = h0fc§1α2. Hence ί/p+ι(/c1}0b11b02) = /z 0bg 1fo 1 1α 2 .

I. (vii) and II. (iii) The survivor /io^ι,/^o2» 0^/^p — 4, corresponds to the
element κl+l eπ*(S; p)9 by Theorem 21.2 of [12]. We have

βϊκι+ί = <βιβp+ι+ι,*ι,«ι>βpι by [12; (19.1)]

= -J8ι/Wι<αι> « ls β?> = -βp+l+ίs' by [12; (6.2)]

= (/ + l)/(I + 3)ft+3£p-1ε' by [24; (5.7)]

= 0 by [12; (23.8)].

Hence b^lh0kltlbQ29 0^/gp — 4, is killed by some differential, and so dp+l

(boιg2,ox) = bpoιhQkli0b02 and d2p.1(k1jbίlb02) = bp

oίh0klίlb02 for l^/^p-4.
By dimensional consideration, dp+ί(g2fQx) = bp

d~l

ίh0kliQb02.

I. (ix) Since b01(bQίhΐb02a2-aQubl2) = -hlb02'f, bg ̂ kl>0a2 = -/c1>0 '/

By dimensional consideration, we obtain (ix).
II. (i), (ii) and (v) In a manner similar to the above, we have dp+ ^(bfi ίklί0

fb()ίeί=-h()bZί(Z\ d2p(b§1/c2>/α2)= -d2p(k2tlf) =
Og/^p-4, and dp(b2

olklflb02a2)= -dp(kub02 •/)
= -h0b0ίkίfl.ίa2'f=h0bl1k^l.ίal l^/^p-4, by III of [12; Th. 21.1].
Therefore the desired results follow from dimensional considerations.

II. (iv) This follows immediately form III. (ii) of [12; Th. 21.1].
II. (vii) By Theorem 1.1 (iii) and III. (ii) of [12; Th. 21.1], we have

d2p-ι(h2b1ιb02) = h0b
p

0ί h2b02 = h0b
p

0-1

ί 'Mc^i^ -froΊ^i.o&ii
II. (vi) By the discussions in [12; §21] and I. (ii) of Theorem 2.1, we

see that the element h0xeEp

2

+1>(2P2+P^+P-2 survives to £«,. By Moss' con-

vergence theorem [9; (1.2)], we also see that the Toda bracket v = <jβ2p-ι, α l 9

α x> is defined (in π*(S; p)) and corresponds to h0x (cf. Proposition 5.1 in the
below). An argument similar to I. (vii) and II. (iii) shows the relation βp

1

+ίv = Q.
Then ftgy^o* is killed by some differential, and we have the result. q.e.d.

The first unknown differential after Theorems 2.1 and 2.4 is dp+1(fc2j0b02),

which is a multiple of fc0ι
fcι,obιιβ2 Here k2iQb02eEρ^

2P2+4P+1^=Zp and
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°=Zp. We shall propose in (20) of the next
section a problem equivalent to the above.

§3. £<„ term of the Adams spectral sequence

We now immediately obtain information on the E^ term from Theorems
2.1 and 2.4. In [12; Th. 21.2 and Prop. 21.3] we listed all elements of £%' for
ί—s^(2p 2 +p)q—4. So, in the following results, we shall omit almost all
survivors in this range.

THEOREM 3.1. In the modp Adams spectral sequence, p^5, the following
elements survive to the E^ term, and give, at least in the range (2p2-\-p)q — 3
^f-s^(2p2-f 4p+l)q-l, g=20-l), a Zp-basis for E& (Following [5] and
[10], we write simply αe(s, t— s) instead of aeEs^).

(1) 9ι,ιa{e(jp+l + l,(jp+l+l)q-l), 0 ^ / ^ p-2, j ^ 0.

(2) afciu e((j+l)p+i, (j+2)^-l),

(3) ai

0alP-3ua2e(2p2-p + i, 3p2q-ϊ)9

(4) bk

01e(2k,kpq-2k), k

(5) bk

0ίkίtla2e(2k+l+p+2, (

(6) aίG-2ap

0^

ap

0

+ίwb02ε(2p + 3, (2p2+4p)q-4),

bk

oί(Z)e(2p + 2k+4, (2p2 + kp + 4p)q-2k-4), l^k^ p-2.

(7) h0aiGe(2p+2,(2p2 + 3p + 1)^-3),

-3), 0 ^ / g p-4,

(8) h0b
k

olkίtlb02e(2k+l + 5, (

Q^k^p-2 if / = 0, O ^ k ^ p - 1 if 1 ^ / ^ p-4,
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(9) fc06fcι*ίιe(2fc + 5, (2p2 + kp+ί)q-2k-5), O g f c g p - 1 .

(10) bk

01h0xe(2k + p + ί, (2p2 + kp+p)q-2k-3), O^k^p-ί,

bk

01h0klt0xe(2k+p+3, (2p2 + kp+3p+ί)q-2k-5l 0 ^ k g p-L

(11) bk

01h2b02e(2k + 3, (2p2 + kp+p)q-2k-3), O έ f c g p - 1 ,

h0h2b02e(4, (2p2+p+l)q-4),

bk

01klt0b
2

11e(2k + 6, (2p2 + kp+2p+ί)q-2k-6), 0 g fc ̂  p-2.

(12) αp

0-
1

ί/e(p + l,(2p2+p)g-2),

9ι,ιh2a2e(p+l + 2, (2p2+p+l+ί)q-2), 0 g / g p-2.

(13) ^!Λι«2e(p + / + 3, (2p2+p + / + 1)^-3), 0 ̂  ί g p-3.

(14) fe0ι/ioίΊι«2e(P+5, (2p2 + 2p+l)g-5),

HιίΊια2e(p + 2fe + 2, (2p2+kp + p)q-2k-2), 1 g fc g p.

(15) fellC+Vrfe(4,(2P

2+2p)g-4).

(16) αbί»oιM2e(p + ί + 3,(2p2+2p)q-3), ί = p-3, p-2.

(17) ^^0^(2^ + 3, (2p2 + kp + p + 2)q-2k-3), ί ̂  k ̂  p.

(18)

(19)

(20) fc1>ibuα2e(p + /+4,(2p2 + /p+3p+/+l)g-4), 0 g / g p-4,

bo1kί>p-4bίla2e(2p+2,(3p2+P-3)q-6).

REMARK 3.2. All indecomposable elements of Ex listed above except
for (1) and (2) are of total degree less than 3p2q. We can also obtain several
partial informations in the range ί— s^3p2q. For example, we obtain the
following survivors.

(21) h0b*01blle(2k+7,(3p2 + kp+l)q-2k-7l k = 0, 1.

(22) glιlb
2

lίh2e(l+6,(3P

2 + l+ί)q-6), O ^ / ^ p - 5 ,

9ι,ιb2

11a2e(p+l + 5, (3p2+p+l + ί)q-5), 0^1 ^p-4,

g1,lb11h2a2e(p+l+4,(3P

2+p+l+l)q-4), 0 ^ / g p-4.
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§ 4. Generators for πk(S;p)

In this section we shall determine the group nk(Sι p), (2
(2p2+4p+l)q-l, and its generator. Partial results for k>(2p2+ 4p+l)q-l
and several relations on compositions will be also obtained. We shall discuss
them in order of (1),..., (20) in Theorem 3.1. All elements are of order p and
all summands and groups are Zp, unless explicitly stated otherwise. For any
survivor aeE5^, we denote by {a} the coset of πt-.s(S'9 p) which is mapped to
a. If {a} consists of a single element α, we write simply α = {a} instead of α e {a}.

(1) rq — 1 stem (rφQmodp, r^l) contains a summand ImJ, generated by

the element αr = {0ιXι} for r=jp + l+l, O^/^p-2 ([2], [13; §4]).
(2) rpq — 1 stem (r φ 0 mod p, r ̂  1) contains a summand Im J = Zp2, generat-

ed by the element a'rp ([2], [13; §4]), which corresponds to ap

Q~lar{~2u for

(3) rp2q — l stem (r^O mod/?, r^l) contains a summand ImJ = Zp3,
generated by afp2 ([2], [13; §4]), and α'̂ 2 6 {a^p~2al^ua2}.

(4) pq-2 stem is generated by the element βί = {bol} [21-IV]. For

the element βΐ = {boι} generates a summand in kpq — 2k stem, since

(5) (rp + r— l)q — 2 stem contains the element βr of L. Smith [18] and H.
Toda [24]. For 2^r^3p— 1, this stem is Zp by Theorem 3.1, and hence we

have

A = { fc ι . r - 2 } for2^r^p- l , βp = {glίp.2h2}9 βp+ι = {a'<Γlc}9

βp + r = {fcl,r-2*2} for 2 ̂  Γ g p- 1, j?2p = {^1^-2^2} *

)S2p+r = {fc l fΓ.2αl} for 2 ̂  r ̂  p-L

Let /c and r satisfy 0^fc<p, p + 2^r^3p-l, r^2p, 2p + l and
Then the element β\βr( = {b^lkltr.p.2a2}foτ p + 2^rg>2p-l, ={bk

olkί>r.2p.2

al] for 2p + 2^r^3p-l) generates a summand in ((k + ήp + r-l)q-2k-2
stem.

(6) By [24; Th. 5.3], there is a relation β?j?2β2p+1=β?β2p+2, which is
nonzero. Hence βίβ2p+ι and β2β2p+ι are nonzero. Since (2p2 + 4p)q — 4 and
(2p2 + 5jp)g — 6 stems are Zp by Theorem 3.1, we see that these stems are generated
by βιβ2P+ι = {ao+ίwb02} and β2β2p+ι = {bQ1(Z)}9 respectively. The element

βlϊβ2P+ι=={bo~ι1(Z)}> 2^k<p, is nonzero, and generates a summand for k
<p-ΐ since M+1j52p+i^O. There are relations j8?βr = 0 for r^2 and βιβrp = $
[24; Th. 5.3, Th. 5.8].

(7) (2/?2 + 3/? +!)<?- 3 stem is generated by α1j52p+1 = {/ι1α1G}. For 2p + 2
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^r^3p — 2, ccίβr = {h0kίir,2p-2a2} generates a summand in (rp + r)q — 3 stem.
The element ^ίβίβ3p-2e{bolhQkίtp.4a

2

i} is nonzero. There are relations
Xiβiβ^Q for r^p, rφ-2modp, ^βlβr = 0 for r^p [15] and α1jβ2p_1=0
[12-ΠI].

(8) (p2 + (r + 2)p + r +1)<? - 5 stem (1 ̂  r ̂  p - 3) is generated by the element

Kr={Mi.r-i&o2}[12-ni]. The element M*V={&oiM:i,r-i&o2} (fc<p-l if
r=l, k^p — 1 if 2^r^p — 3) is nonzero and, except for β*~2κi9 generates a
summand. By Proposition 5.6 in the next section, the element βp~2κί also gener-
ates a summand. (2p2 + p — l)q — 5 stem is Zp2 generated by the element μ
e {^0^1^-3^02} [12-IΠ]. For l^fcgp, the element /?ΐμe{ί>o 1^0^1,0-3^02}
is nonzero, and if k<p this generates a summand in (2p2 + kp + p—l)q — 2k — 5

stem. There are relations j8Γ1^ι=0, βlκr = Q (2^r^p-3) and β?+1μ=0.

(9) (2p2 + l)4-5 stem is generated by λ' = {ft06ι 1} [12-IΠ]. For 1^/c
<p, the element β\λ' e {^01^0^11} generates a summand, and there is a relation
βμ'=o.

(10) (2p2+p)<2-3 stem contains an element v = {/ι0x}. Since β^ =
{b0ιh0x}^0, v generates a summand. By Proposition 5.1 (i) in the next section,

v is equal to the Toda bracket </?2p_ι, «ι> <*!>. For l^/c<Jp, the element jSξv
£{b\hQx} generates a summand in (2p2 + kp + p)q — 2k — 3 stem. For O^fc

<p — 1, the element βϊ/^^froi^oki.o*} generates a summand, and βpΓίβ2v
is nonzero. There is a relation /?*[v = 0.

(11) (2p2+p)q — 3 stem is Zp+Zp; one factor is generated by v and other

is generated by an element 7 in {h2bQ2} This element is not unique, and Thomas-

Zahler's element y2 [20] may possibly represent {^2^02}- For l^fcrgp—1,

the element β\y e {b£ ιh 2b 0 2} generates a summand. The element α1y = {/ι0ft2^o2}
generates (2p2 + p+1)^ — 4 stem. By the relations 5 of [10; Prop. 4.3] and (Hi)

of Theorem 1.1, we have Λ0 '^2^01^02 = ^0'^1^11^02= —fci.o&ίi ^n ^**(^4).
Therefore oc1βίγ = {kίt0b

2

Lx} (up to sign), which generates (2p2 + 2p+ΐ)q — 6

stem. For 2^/c^p — 1, the element α1jS57 = {&^1/c1>0&ιι} generates a summand.
(12) (2p2+p)q — 2 stem is generated by an element, which we call p0,

corresponding to ap

0~
1d. For l^i^p-1, (2p2+p + ί)q-2 stem contains the

element p2jί [14]. We simply write ρt instead of p2jί. Since this stem is Zp,
the element Pi = {gί)i-ιh2a2} generates this stem. By Proposition 5.1 (ii) in
the next section and [14; Th. A], p. = <p._1 ? p,, α x> for l^i^p-1 and pp.ί

= β2p. There is a relation /^p^O for l^i^jp— 1.
(13) (2p2 + p + l)q-3 stem is Zp + Zp by Proposition 5.6 in the next section;

one factor is generated by βp

ί~
2κί and other by p\ e {h0blla2}. (2p2 + p + ι)q — 3

stem (2^ί^p —2) is generated by p'i = {#ιsί-ι&ιι02}. By Proposition 5.1 (iii),
the last element p^_2 is equal to the Toda bracket </?l5 pi, j?2p_ι>. There are
relations βfpΊ=0 and J?!P = 0 for 2<^p-2.

(14) (2p2+2p)^f —4 stem contains a summand generated by an element p"
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= {bolbίla2}9 since βίρ" = {bliblίa2}^Q. For l^fc^p-1, the element β\p"
= {bo\ίbίίa2} generates a summand. (2p2 + 2p+l)q — 5 stem is generated
by ^ίpff = βιpΊ={b0ίhQbίίa2}. There is a relation &ιβ\ρ"=ιβlp\=Q.

(15) (2p2+2p)q — 4 stem is Zp + Zp and generated by p" and an element in

(16) (2p2 + 2p)q — 3 stem is Zp2 generated by an element φ2 e {a%~3bQίh2a2}.
This is the third element of order p2 in Coker J = Kere [2]; the first and the
second ones are φ [12-1] and μ [12-IΠ] in (p2 + p)<?-3 and (2p2 + p-l)q-5
stems, respectively. By Proposition 5.1 (iv) in the next section, <p2e<pp_2,
α l 5 o^). Since h0 gl>p-2h2a2= —aζ~2h0ίh2a2 in #*%4), there is a relation
pφ2=—u1ρp-ί. Also, ^^2 = 0 holds.

(17) (2p2 + 2p + 2)q-5 stem is generated by {feoi^o}- For l^ k^p-2,

^ϊί^oi^o} 6 {^δV^o) generates a summand, and βPΓί{boίv0}¥:Q. By Proposi-
tion 5.2, the element {boi^o) *s given by the Toda bracket <y, α2, β^.

(18) Since 92,P-3blίa2= — fe1>0 fc1}j,_3α2 by the relation 11. a) of [10;

Th. 3.3], (2p2 + 3p-l)q-4 stem is generated by jβ2^2p-ι = {^2,p-3feιια2}- For

ip-.3bίla2} generates a summand. The element
is nonzero.

(19) (2p2 + 3^+1)4 -5 stem is Zp + Zp, generated by β2v and {fcnfc2,0}.
The element β2γ may possibly represent {fcιιfc2,0} (2p2 + 3p + 2)q — 6 stem is
Zp generated by {kli0b

2

Lί}. In this stem, cc1{bllk2>Q} may possibly be nonzero.
(20) (2p2 + rp + 2p + r)q — 4 stem (l^r^p — 3) contains a summand generat-

ed by {fc1 > Γ_1fcnα2}. The following problem seems very difficult.

PROBLEM. Is βι{/clj0ί>ιι02} trivial!

For the composition βι{kίίιblla2}9 l^l^p — 5, the same problem can be
considered. But we see that the element jSι{fc1>j,_4&11α2} is nontrivial.

(21) (3/?2 + !)#-- 7 stem contains an element {fto^iiK which is equal to
<Λ/, /??, αj) by Proposition 5.2. /?!<A', j8ξ, α A > is also nonzero.

(22) (3]?2 + i)#~6 stem (l^i^p— 4) contains a nonzero element similar
to the elements εf and λt. (3p2+p+ί)q — 5 and (3p2 + p + ί)q — 4 stems (l^i
^p—3) contain nonzero elements similar to ρ\ and ρi9 respectively.

From the above discussions, we have obtained the following results.

THEOREM 4.1. The group πfc(5; p\ (2p2+p)q-3^k<*(2p2+4p+l)q-l,
P = 5, q = 2(p— 1), is the direct sum of the cyclic groups generated by the follow-
ing elements of degree k:

αr (2p2 + p+l ^ r^2p2+4p-l, r φ Omodp),

α;p (2p+ί ^ r g 2p + 4), β\ (2p + 2 ^k^
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β\βr (P + 2 ̂  r ̂  2j+l, r 96 2p, 0 ̂  fc £ p-1, 2p ̂  fc + r

β\κr (1 £ r £ p-3, 0 :g fc ̂  p-1 ^ /c + r ̂  p + 1, (fe, r) * Q>-1, 1)),

0 U ' ( l g f c r g 4 ) , jδΐμ (1 ^ Jfc ^ 3), β\v(Q£k£3),

β\y (0^fc^3), odfly (0 ^ fc £ 3), β2v,

" (0 fi fc ̂  2), PKy.α^^XO^fc^Σ), φ2,

JF/ere ί/ie elements a'rp and φ2 are of order p2, and the others are of order p.
The group π(2p2+4p+1)ί_6(5; p) is Zp or 0, and generated by βi{kίi0bίla2}.

PROPOSITION 4.2. (i) For ξ = αr (r^2), a'rp (r^l), α?p2 (r^l), a^r (p+1
^r^2p-3 or 2p + l^r^3p-3\ εt (lgi^p-1), ^ (lgι^p-2), p, (Igί^p
— l),p'f (l^ί^p — 2) anrf φ2? ^

e composition β±ξ is trivial.

(ii) For ξ = ̂ β2p-2, P'ι

(iii) jSΓ2^ι^O and β^-^K^Q.

(iv) For ξ = a ι,/J r(2^r^2p + l, r^Omodp),
ai/?2/?p-i> βiβip-i* ε' > λ'9 κr (2^r^p — 3), v and jS2

vJ *Λe element βpΓ1ζ is non-
trivial but β^ξ is trivial.

(v)

§5. Toda brackets and group extensions in π^C^; p)

In this section we shall represent some generators of π^S; p) by making use
of Toda brackets, and prove that the group extension in π(2p2+p+1)9_3(S; p) is
trivial.

We recall the elements v, p0, px, pp_2, pp_2 and φ2 of π*(S; p), which cor-
respond to the survivors h0x, aP

0~
ίd9 h0h2a29 gί>p_3bίίa2, gΐίp.3h2a2 and

a%-3b0ίh2a2, respectively.

PROPOSITION 5.1. The following Toda bracket formulas hold, up to non-
zero coefficients.

( i ) v = <β2l,-ι, «ι, α x >.
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(ii) P! = <p0, pt, oq).

(iii) p;_2 = <βi9pt9β2p-ι>.

(iv) (p2e<PP-2> «ι, «ι>

PROOF, (i) This is the modp version of [11; Lemma 3.11]. Since dp(x)
= h0kltp-3a2 [12; Prop. 21.4] and h0h0 = Q in the Ep term of the Adams spectral

sequence, the Massey product </c1}p_3α2, hθ9 /z0> is defined and equal to h0x in

the Ep+ί term. The element fcljp_3α2 and hQ converge to β2p-ι and α l 5 respec-
tively, and there are relations α1^2p-ι=0 [12; Cor. 21.5] and α1α1=0. Hence

the Toda bracket in (i) is defined. By Moss' convergence theorem, we obtain
the desired result.

(ii) and (iii) These are proved in the same way as Lemmas 3.14 and 3.13

of [11] respectively*).

(iv) In the same way as Lemma 2.3 (ii), we have 0ι,p
αg, dy in H**(A). Then g^ gί,p-3h2a2e(gί>i glιp.3, ap

0, dy =
αζ, dy3l/2ap

0~
2b0ίh2a2 by Lemma 2.3 (ii). Since these Massey products have

trivial indeterminancy, we obtain

Consider the Massey product <#ι,p-3fr202, V ^o> *n H**(A). By dimen-
sional consideration, we can put (gι)p-3h2a2, Λ0, /Z0> = ααζ~3f?01/z2α2 for some

αeZp. Then <xap

0-
2boih2a2 = -gιίp-3h2a2<,hQ9 hθ9 α0> = 01^-3^2 '9ι,ι = -

l/2a1Q~2b0ίh2a2 by (*). Hence α= —1/2, and we get

<0ι,P-3M2, /t0, A0> = -l/2ap

0-*boίh2a2 in Jf**(4).

Applying Moss' convergence theorem to this Massey product, we obtain
the desired result. q. e. d.

PROPOSITION 5.2. The elements b01v0 and /ι0&ιι converge, up to non-

zero coefficients, to the Toda brackets <y, α2, βι> and <A', jβ^, α^, respectively.
Here y and λ' are the generators corresponding to the survivors h2b02 and

PROOF. Let α eZp be the nonzero coefficient in the equality d2(hί)

Then we have d2(v0) = (xgίiίh2b02 by (2.3) and d2(g2i0)= -a^ l s lfo01. The

Massey product </z2b02, glίί9 ί?01> is defined and equal to -(l/α)fo0ι^o-(l/α)^2^o2

'^2,0= "(2/^)^01^0 in tne £3 term. By Moss' convergence theorem, — (2/α)fc01tf0

converges to <y, α2, jS^. Similarly we have hQbl1 = ̂ h0b
2

iί, b
p

0ί, h0y in £p+1,
which converges to </l', βp

ί9 α^. ^r. .̂ rf.

*) In the statement of [11 Lemma 3.13], there is a misprint: al should be read βt.
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Now we shall consider the ring ̂ (M) studied in [13], Put M " = Sn~l \Jple
n

and let

Sn-ί _!_+ Mn -i-> S*

be the cofibering for Mn. Define 3#k(M) by the limit group lim [Mn+fc, Mw],
where [Jf, 7] denotes the set of homotopy classes of maps from X to 7, and the
limit is taken over the suspension. The direct sunu/Hc(M)=Σfcj/k(M) forms a
(graded) algebra over Zp. We introduced in [13] a linear map

having the following properties:
(5.1) [13; (1.7)]
(5.2) [13; (1.8)]
(5.3) [13; Lemma 3.2] For any element yeπk(S; p) of order p, there exists
an element [y] ej/fc+1(M) SMC/I ί/iαί D[y] = 0 and π[y]i = y.
(5.4) [13; (1.9)] Let δ = iπe^_ί(M). Then D(<5) = 1M, f f ie identity class
ofM".
(5.5) [13; (1.11)] The subalgebra KerD o/ jf+(M) is commutative, i.e.,

We also introduced in [13] and [14; Th. B, (7.4)] the following elements
in KerD:

with παi = α1?

]S(r) e J*(r|,+r- ι)β- ι(M), r ̂  1, with π)8(r)i = j?r and αj8(Γ) = jS(r)α = 0,

), t ̂  1, with *p-2p(t) = p(t)tf-2 = β(tp},

), t ̂  1, with α*>-3σ(ί) = σ(ί)αp-3 = β(ί)β(tp-^

LEMMA 5.3. Let N = (2p2 + p)q — l. Then there exists uniquely an ele-
ment pej/N(M) such that πpi = p0, D(p) = 0 and pup~ί=ap~1ρ = xβ(2p) for
some x^Omodp. For k = N and N + q9 a Zp-basis for <tfk(M) is given by,
respectively,

{p, x2?2+Pδ9 α^^P-^α, δ(β(ί)δγ~ 2β(p+2}δ}

and

{pot = α

PROOF. By Theorem 4.1, ^_A(S; p) = Zp, πN(S; p) = Zp2 and
= ZP are generated by p0, α2p2+p and βPΓ2βP+2> respectively. Therefore, by
[13; Th. 3.5, discussions in pp. 648-649 and (5.11)], we obtain the result
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on jtfN(M) for an element p = [p0] satisfying πpi = pQ and D(p) = 0. Such
p is determined up to £#N(M) n Kerπ^i* n KerD = Zp, generated by ξ = a2p2+pδ
_α2p2+p_1(5α

By Theorem 4.1 and Proposition 5.1 (ii), ^+g_i(S; p) and πN+q(S', p) are

Zp generated by Pι = <ρ0, P'» αι> and α2p2+p+1 respectively, and πN+q+i(S; /?) = 0.
Then we can take [Pι] = pα = αp by [13; Prop. 3.9], and hence the result on
j#N+q(M) follows similarly. In particular, jtfN+q(M) n KerD is Zp + Zp, generated
by pα and <^α = αξ.

Consider the element p(2)e^/N+q(M). Since D(p(2)) = 0, we can put p(2)
= xpα + jξα for some x, }>eZp. Then xp1 = πp(2)/, which is equal to the non-
zero element p2>1 by [14; Th. A]. Hence x^O. Replacing p by p — (y/x)ξ,
the equality p(2) = xpα holds for a unique p. By [14; Th. B], pαp~1=α ί?~1p

(l/x)^(2p) as desired. q. e. d.

We consider the group 7r(2p2+p+1)^_3(S'; p). By Theorem 3.1, this con-

sists of p2 elements and one of the following two cases occurs:

(I) π(2p2+J,+ 1)β-3(S; p) = Zp + Zp, generated by p\ and βp{~2κ^
(II) π(2p2+p+1)9_3(S; Jp) = Zp2, generated by p\, and pp\ =βp

l~
2κi.

Here pΊ e{/206u«2} UP to a nonzero coefficient and βpΓ2κi = {bp^l2h0kίί0bQ2}.

LEMMA 5.4. There exists uniquely an element jc(1) in
such that πκ(ί)i = κί and D(/<;(1)) = 0. This element satisfies ακ:(1) = κ;(1)α = 0

and βwκw = κwβw = Q.

PROOF. By [13; Th. 3.5] and the results on π*(S; p), we see that
^(p2+3p+2)q_4(M)nKerZ) = Zp generated by κw = [κ1] and that j^(p2 + 3p+3)g_4

(M)nKerD and j2/(p2 + 4p+2)g_5(M) are trivial. Therefore the desired relations

on τc(1) hold. q.e.d.

LEMMA 5.5. Let N' = (2p2+p+l)q-2. If the case (I) is valid, then there
is an element pej^V(M) satisfying npi = p\ and D(p) = 0, and then a Zp-basis
for ^N>(M) n KerD is given by {p, (β(i)δ)p~2κ(1^ paδ + δpot}. The element
p is determined up to potδ + δpa. If the case (II) is valid, then a Zp-basis for

n KerD is given by {(β(i)δ)p~2κ(ί^ pα<5 + <5pα}.

PROOF. From the results on πfc(S; p\ k = N'-l, N', JV' + l, and Lemmas
5.3-5.4, $#W(M) is easily computed by [13; Th. 3.5], and we have the results.

q. e. d.

PROPOSITION 5.6. The case (II) is not valid, that is, the group extension

in π(2p2+p+1)β-3(S; p) is trivial.

PROOF. Consider the element σ(2)e j/(2p2+p+1)ί/_2(M) [14; (7.4)]. This
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satisfies D(σ(2)) = 0 and σ(2)α*-3=α*-χ2) = j8(1)j8(2p_1). If the case (II) is
valid, we can put σ(2) = x(β(l}δy~2κ(l) + y(paδ + δptt) for some x, yeZp, by
Lemma 5.5. Since σ(2)αp~2=^(1)^(2p-i)α = 0, κ(1)α = 0 and pαp = /?(2p)α = 0, we
have ypαδα^"1 =0. Since α^α*7"1 = — αp~ J (5α -f 2αp(5 [13; (4.4)], we have pαία^"1

= —pap~lδa=—β(2p)δ(x and so yuίβ2p= —yπp<xδap~li = Q. The element αj/^p
is nonzero, and hence y = Q. Therefore σ(2) = x(/?(1)(5)p~2κ;(1) and β(i)β(2p-i)
= σ(2)αp~3=0. This implies </?1? ,̂ j52p_1>=πj5(1)jS(2;7-i)i = 0, which con-
tradicts Proposition 5.1 (iii). Thus, the case (II) is negative. q.e.d.

REMARK. From a similar discussion, we see that πσ(2)i is nontrivial and
not a multiple of βpΓ2κί9 i.e., π(2p2+p+1M_3(S; p) = Zp + Zp is generated by
πσ(2)i and βpι~2κί. Furthermore one of the authors has proved in Part II of
[14] (this journal 331-342) the following result: the element πσ(2)α /~
^p — 2, is nontrivial and generates π(2p2+p+j)q-3(S', p), and the relations
= kaρ'J+k(moάβp

ί-
2κ1 ifj + k = l), j^O, fc^l, hold, where p} = πσ(2)α '~1i /or

l^ jrgp — 2, =0 for j^p— 1 flttd ί/ίβ coefficient aeZp is independent of j and k.
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