# Integrability of Nonoscillatory Solutions of a Delay Differential Equation 

Tsai-Sheng Liu<br>(Received December 16, 1975)

The purpose of this note is to extend Dahiya and Singh's result [1, Theorem 4] to $n$-th order equations and give a straightforward proof of the theorem. Examples for $n=2$ which are not covered by Theorem 4 [1] will also be given.

We are concerned with the $n$-th order delay equation

$$
\begin{equation*}
\left(r(t) y^{(n-1)}(t)\right)^{\prime}+(b(t) y(t))^{\prime}+a(t) y(g(t))=f(t), \quad n>2 \tag{1}
\end{equation*}
$$

where the functions $r(t)$, fo $\left(0>^{n}(0>g(t)\right.$ and $/(\mathrm{O}$ arecontinuous on the whole real line.

A nontrivial solution of (1) which exists on $\left[t_{0}, \infty\right)$ is said to be oscillatory if it has arbitrarily large zeros. Otherwise, it is said to be nonoscillatory.

THEOREM. Assume that
(i) $a(t) \geq M o n\left[t_{0}, \infty\right)$ for some constant $M>0$,
(ii) fe $\left(0>0<\mathrm{m}\left[t_{0}, o o\right)\right.$,
(iii) $g(t) \rightarrow \infty$ as $t \rightarrow \infty$ and $0 \leq g^{\prime}(t) \leq 1$ on $\left[t_{0}, \infty\right)$,
(iv) $r(t)>0$ on $\left[t_{0}\right.$, oo) and $\int_{\int_{t_{0}}}^{\infty_{0}} \frac{1}{r(t)} d t=\infty$,
and
(v) $\int_{i 0}^{\infty}|f(t)| d t<\infty$.

Then every nonoscillatory solution of $(1)$ on $\left[t_{0}, o o\right)$ is integrable.
PROOF. Let $y(t)$ be a nonoscillatory solution of (1). Without loss of generality, we may assume that there is a $T_{0}>t_{0}$ such that $y(t)>0$ for $t>T_{0}$. Since $g(t) \rightarrow \infty$ as $t \rightarrow \infty$, there is a $T_{1}>T_{0}$ such that $y(g(t))>0$ for $t>T_{1}$.

Integrating (1) from $T_{1}$ to $t>T_{1}$, we obtain

$$
\begin{align*}
& r(t) y^{(n-1)}(t)-r\left(T_{1}\right) y^{(n-1)}\left(T_{1}\right)+b(t) y(t)-b\left(T_{1}\right) y\left(T_{1}\right)+\int_{T_{1}}^{t} a(s) y(g(s)) d s  \tag{2}\\
& \leq \int_{T_{1}}^{t}|f(s)| d s
\end{align*}
$$

The lefthand side of (2) remains bounded as $t \rightarrow \infty$.
Suppose $\int_{T_{1}}^{\infty} y(g(t)) d t=\infty$. Then $r(t) y^{(n-1)}(t) \rightarrow-\infty$ as $t \rightarrow \infty$. Condition
(iv) implies that $y^{(n-2)}(t) \rightarrow-$ oo as $t \rightarrow \infty$. Then $y(t)$ would be negative eventually, a contradiction. Therefore we have

$$
\int_{T_{1}}^{\infty} y(g(s)) d s<\infty .
$$

By (iii) and change of variable, we get

$$
\int_{T_{1}}^{\infty} y(g(s)) d s>\int_{T_{1}}^{\infty} g^{\prime}(s) y(g(s)) d s=\int_{J_{g\left(T_{1}\right)}}^{\infty} y(t) d t .
$$

This completes the proof.
Remark. For the case $n=2, r(t)=1$ and $b(t)=0$, the equation (1) is studied by Dahiya and Singh in [1]. In the assumptions of the theorem, we do not require the condition $a(t) a^{\prime \prime}(t) \leq 2\left(a^{\prime}(t)\right)^{2}$ and the boundedness of the delay $\tau(t)$ $=t-g(t)$ which are assumed in Theorem 4 [1].

EXAMPLE 1. Let us consider the equation

$$
\begin{align*}
y^{\prime \prime}(t)+ & \left(\frac{t^{3}}{6}+t^{2}+\left(\frac{t^{2}}{4}-\frac{1}{8}\right) \sin 2 t+\frac{t}{4} \cos 2 t\right) y(t)  \tag{3}\\
& =\left(\frac{t^{3}}{6}+t^{2}+1+\left(\frac{t^{2}}{4}-\frac{1}{8}\right) \sin 2 t+\frac{t}{4} \cos 2 t\right) e^{-t} .
\end{align*}
$$

 $\left.t^{2}+1+\left(\frac{t^{2}}{4}-\frac{1}{8}\right) \sin 2 t+\frac{t}{4} \cos 2 t\right) e^{-t}$ satisfy the assumptions of the theorem. Then all nonoscillatory solutions of (3) are integrable. For instance, $y(t)=e^{-t}$ is a nonoscillatory solution of (3) which is integrable. We also observe that the inequality $a(t) a^{\prime \prime}(t) \leq 2\left(a^{\prime}(t) \nmid\right.$ Rees not always hold. In fact, for each $\alpha>0$, there is a positive integer $n$ such that $\beta=\left(n \frac{1}{+} \frac{\overline{4}}{4}\right) \pi>\alpha$ and $a(\beta) a^{\prime \prime}(\beta)>2\left(a^{\prime}(\beta)\right)^{2}$. Dahiya and Singh's Theorem 4 [1] thus does not cover this example.

EXAMPLE 2. If we consider the delay equation

$$
\begin{equation*}
y^{\prime \prime}(t)+t^{k} y\left(\frac{t}{2}\right)=e^{-t}+t^{k} e^{-\frac{t}{2}}, \quad k \geq 0 \tag{4}
\end{equation*}
$$

then all conditions of the theorem are satisfied with an unbounded delay $\tau(t)$ $=t-g(t)=\frac{t}{2} \quad$ This equation has a nonoscillatory solution $y(t)=e^{-t}$ which is integrable on $\left[t_{0}\right.$, oo).

Acknowledgement. The author wishes to thank the referee for his valuable suggestions.

## Reference

[ 1] R. S. Dahiya and B. Singh, Certain results on nonoscillatory and asymptotic nature of delay equations, Hiroshima Math. J. 5 (1975), 7-15.

Department of Mathematics
University of Oklahoma
Norman, Oklahoma

