Integrability of Nonoscillatory Solutions of a Delay Differential Equation

Tsai-Sheng LIU (Received December 16, 1975)

The purpose of this note is to extend Dahiya and Singh's result [1, Theorem 4] to *n*-th order equations and give a straightforward proof of the theorem. Examples for n = 2 which are not covered by Theorem 4 [1] will also be given.

We are concerned with the *n*-th order delay equation

(1)
$$(r(t)y^{(n-1)}(t))' + (b(t)y(t))' + a(t)y(g(t)) = f(t), \quad n > 2,$$

where the functions r(t), fo(0 > g(t) and/(O arecontinuous on the whole real line.

A nontrivial solution of (1) which exists on $[t_0, \infty)$ is said to be *oscillatory* if it has arbitrarily large zeros. Otherwise, it is said to be *nonoscillatory*.

THEOREM. Assume that (i) $a(t) \ge Mon [t_0, \infty)$ for some constant M > 0, (ii) $fe(0>0 \le m [t_0, \infty)$, (iii) $g(t) \to \infty$ as $t \to \infty$ and $0 \le g'(t) \le 1on [t_0, \infty)$, (iv) r(t) > 0 on $[t_0, \infty)$ and $\int_{t_0}^{\infty} \frac{1}{r(t)} dt = \infty$, (v) $\int_{t_0}^{\infty} |f(t)| |t_0| = 0$

and

$$(\mathbf{V}) \quad \int_{\mathbf{i}\mathbf{0}}^{\infty} |f(t)| dt < \infty.$$

Then every nonoscillatory solution of (1) on $[t_0, 00)$ is integrable.

PROOF. Let y(t) be a nonoscillatory solution of (1). Without loss of generality, we may assume that there is a $T_0 > t_0$ such that y(t) > 0 for $t > T_0$. Since $g(t) \rightarrow \infty$ as $t \rightarrow \infty$, there is a $T_1 > T_0$ such that y(g(t)) > 0 for $t > T_1$.

Integrating (1) from T_1 to $t > T_1$, we obtain

(2)
$$r(t)y^{(n-1)}(t) - r(T_1)y^{(n-1)}(T_1) + b(t)y(t) - b(T_1)y(T_1) + \int_{T_1}^t a(s)y(g(s))ds$$
$$\leq \int_{T_1}^t |f(s)|ds.$$

The lefthand side of (2) remains bounded as $t \rightarrow \infty$.

Suppose $\int_{T_1}^{\infty} y(g(t))dt = \infty$. Then $r(t)y^{(n-1)}(t) \to -\infty$ as $t \to \infty$. Condition

(iv) implies that $y^{(n-2)}(t) \rightarrow -\infty$ as $t \rightarrow \infty$. Then y(t) would be negative eventually, a contradiction. Therefore we have

$$\int_{T_1}^{\infty} y(g(s)) ds \leq \infty.$$

By (iii) and change of variable, we get

$$\int_{T_1}^{\infty} y(g(s))ds > \int_{T_1}^{\infty} g'(s) y(g(s))ds = \int_{g(T_1)}^{\infty} y(t)dt.$$

This completes the proof.

Remark. For the case n=2, r(t)=1 and b(t)=0, the equation (1) is studied by Dahiya and Singh in [1]. In the assumptions of the theorem, we do not require the condition $a(t)a''(t) \le 2(a'(t))^2$ and the boundedness of the delay $\tau(t) = t - g(t)$ which are assumed in Theorem 4 [1].

EXAMPLE 1. Let us consider the equation

(3)
$$y''(t) + \left(\frac{t^3}{6} + t^2 + \left(\frac{t^2}{4} - \frac{1}{8}\right)\sin 2t + \frac{t}{4}\cos 2t\right)y(t) \\ = \left(\frac{t^3}{6} + t^2 + 1 + \left(\frac{t^2}{4} - \frac{1}{8}\right)\sin 2t + \frac{t}{4}\cos 2t\right)e^{-t}.$$

The functions $a(t) = \int_{0}^{t^{3}} t^{2} + \int_{0}^{t^{2}} - \int_{0}^{t} \sin 2t t + \int_{0}^{t} \cos 2t$, g(t) = t and $f(t) = \int_{0}^{t^{3}} t^{2} + t^{2} + 1 + \left(\frac{t^{2}}{4} - \frac{1}{8}\right) \sin 2t + \frac{t}{4} \cos 2t$ e^{-t} satisfy the assumptions of the theorem. Then all nonoscillatory solutions of (3) are integrable. For instance, $y(t) = e^{-t}$ is a nonoscillatory solution of (3) which is integrable. We also observe that the inequality $a(t)a''(t) \le 2(a'(t))$ foes not always hold. In fact, for each $\alpha > 0$, there is a positive integer n such that $\beta = \left(n + \frac{1}{4}\right)\pi > \alpha$ and $a(\beta)a''(\beta) > 2(a'(\beta))^{2}$. Dahiya and Singh's Theorem 4 [1] thus does not cover this example.

EXAMPLE 2. If we consider the delay equation

(4)
$$y''(t) + t^k y\left(\frac{t}{2}\right) = e^{-t} + t^k e^{-\frac{t}{2}}, \quad k \ge 0,$$

then all conditions of the theorem are satisfied with an unbounded delay $\tau(t) = t - g(t) = \frac{t}{2}$ This equation has a nonoscillatory solution $y(t) = e^{-t}$ which is integrable on $[t_0, \infty)$.

Acknowledgement. The author wishes to thank the referee for his valuable suggestions.

Reference

 R. S. Dahiya and B. Singh, Certain results on nonoscillatory and asymptotic nature of delay equations, Hiroshima Math. J. 5 (1975), 7-15.

> Department of Mathematics University of Oklahoma Norman, Oklahoma