On the Oscillation Problem of Nonlinear Equations

Athanassios G. KARTSATOS
(Received November 6, 1975)

1. Introduction

In this paper we consider, among others, equations of the form

$$
\begin{equation*}
\left[p(t) x^{(n-1)}\right]^{\prime}+H(t, x(g(t)))=Q(t), \quad n \geqq 2 . \tag{I}
\end{equation*}
$$

Our main purpose here is to present a theorem which considerably improves a corresponding result of Singh [11, Theorem 1]. Our proof is also much simpler than the one given by Singh in a special case of (I). A corollary to our result is also given and improves the corresponding result of Singh. In Theorem 2 we consider a small forcing $Q(t)$, in Theorem 3 a homogeneous equation with damping, and Theorem 4 deals with the case of a damping treated as a small perturbation.

The reader is referred to a survey paper of the author [6] for several results concerning n-th order equations. Equations with damping have been considered also by Kartsatos and Onose [7], Naito [9] and Sficas [10]. Singh's main result in [11] is related to a result of Hammett [3], but the former does not contain the latter because of an integral condition on $p(t)$. For a natural extension of Hammett's result in the n-th order case, and for $p(t)=1$, the reader is referred to Kartsatos [5]. For other extensions to Hammett's results, relative references are those of Atkinson [1] and Grimmer [2]. For oscillation results concerning forced functional equations the reader is also referred to, for example, Kusano and Onose [8], or Staikos and Sficas [12].

In what follows, $R=(-\infty, \infty), R_{+}=[0, \infty), R_{+}^{0}=(0, \infty)$ and $R_{T}=[T, \infty)$ for some fixed finite T. Moreover, $n \geqq 2$, and the functions $p: R_{T} \rightarrow R_{+}^{0}, g: R_{T}$ $\rightarrow R_{+}, Q: R_{T} \rightarrow R, H: R_{T} \times R \rightarrow R$ will be assumed continuous on their respective domains. Furthermore, $H(t, u)$ will be assumed increasing in u and such that $u H(t, u)>0$ for every $u \neq 0$. For the function $g(t)$ we merely assume that $\lim _{t \rightarrow \infty} g(t)$ $=+\infty$. By a solution of (I) we mean any real function which is n times continuously differentiable and satisfies (I) on an infinite subinterval of $[\Gamma, 00$). A solution of (I) is said to be "oscillatory" if it has an unbounded set of zeros in its domain of existence. A solution $x(t)$ of (I) is "bounded" if $|x(t)| \leqq K$ for all t in the domain of $x(t)$, where K is a positive constant,

2. Main results

THEOREM 1. Consider (I) under thefollowing assumptions:

$$
\int_{T}^{\infty}[1 / p(t)] d t<+00, \quad\left|\int_{T}^{\infty} Q(t) d t\right|<+00, \quad \int_{J}^{\infty} H(t, \pm k) d t= \pm 00
$$

for any constant $k>0$. Then if $x(t)$ is a nonoscillatory solution of $(/), x^{(n-2)}(t)$ tends to a finite limit as $t \rightarrow \infty$.

PROOF. Let $x(t)$ be a nonoscillatory solution of (I) and assume that $x(t)>0$ for all large t. Then there exists $t_{1} \geqq T$ such that $x(t)>0, x(g(t))>0$ for all $t \geqq t_{1}$. Now integrating (I) from t_{1} to $t \geqq t_{1}$, we have

$$
\begin{equation*}
p(t) x^{(n-1)}(t)=C-\frac{\int_{t_{1}}}{t} H(s, x(g(s))) d s+{ }_{J_{t_{1}}}^{C t} Q(s) d s \tag{2.1}
\end{equation*}
$$

where C is a constant.
Since $H(t, x(g(t)))>$ Gor $t \geqq t_{1}$, we consider the following two possible cases:
Case 1.

$$
\int_{t_{1}}^{\infty} H(s, x(g(s))) d s=+\infty,
$$

Case 2.

$$
\int_{J_{t_{1}}}^{\infty} H(s, x(g(s))) d s<+ \text { oo. }
$$

Case 1 implies $\lim _{t \rightarrow \infty} p(t) x^{(n-1)}(t)=-\infty$ Thus, $x^{(n-1)}(t)<0$ for all large t. Consequently, $x^{\left(n-\frac{t \rightarrow \infty}{2}\right)}(t)$ is monotonic and positive for all large t, otherwise we would obtain the contradiction $\lim _{t \rightarrow \infty} x(t)=-\infty$. It follows that the assertion of the theorem is true in Case 1. In Case 2 we must have $\lim _{t \rightarrow \infty} p(t) x^{(n-1)}(t)=\mu$ exists and is finite. Let $\mu>0$. Then $x^{(n-1)}(t)>0$ eventually. Now there are two possibilities: either $x^{(n-2)}(t)>0$ or $x^{(n-2)}(t)<0$ for all large t. The second possibility proves our assertion. If the first one is true, then we must have $x(t)$ $\rightarrow+\infty$ as $t \rightarrow \infty$. It follows that $x(g(t)) \geqq \lambda>0$ and $H(t, x(g(t))) \geqq H(t, \lambda)>0$ for all $t \geqq($ some $) t_{2} \geqq t_{1}$. The integral condition on H takes us back to Case 1 , a contradiction. A completely analogous situation holds in the case $\mu<0$. Now let $\mu=0$. Then given $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
-\varepsilon<p\left(t^{\prime}\right) x^{(n-1)}\left(t^{\prime}\right)<\varepsilon, \quad\left|\int_{t^{\prime}}^{t^{\prime \prime}}[1 / p(t)] d t\right|<1 \tag{2.2}
\end{equation*}
$$

for every $t^{\prime}, t^{\prime \prime} \geqq \delta(\varepsilon)$. Dividing the first of (2.2) by $p\left(t^{\prime}\right)$ and integrating from t^{\prime} to $t^{\prime \prime}$ we obtain

$$
\begin{equation*}
\mid \lambda x^{(n-2}\left(t t^{\prime}+x^{(n-2)}\left(t^{\prime \prime}\right) \mid<\varepsilon, \quad t_{i^{\prime}}, t_{\iota}^{\prime \prime}>f_{i}\left(b^{\prime}\right)\right. \tag{23}
\end{equation*}
$$

By the Cauchy criterion for functions, we get that $\lim _{\boldsymbol{t} \rightarrow \infty} x^{(n-2)}(t)$ exists and is finite. This completes the proof for $x(t)$ eventually positive. Similarly one can show the assertion for an eventually negative $x(t)$.

Singh considered in [11] the case $H(t, u)=a(t) u, g(t)=t-\tau(t)$, where $\tau(t)$ is bounded above,

$$
\int_{T}^{00}|Q(t)| d t<+ \text { oo, and } \quad \lim _{n \rightarrow \infty} \int_{\int_{n}}^{b_{n}} a(t) d t=+\mathrm{oo}
$$

for any sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}, b_{n} \geqq a_{n} \geqq T$, with $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=+00$, and $\lim _{n \rightarrow \infty}\left(b_{n}\right.$ $\left.-a_{n}\right)=+\infty$.

COROLLARY 1. Let $n=2$ in Theorem 1. Then all nonoscillatory solutions of (I) tend to zero as $t \rightarrow \infty$ if H satisfies the additional assumption

$$
\lim _{t \rightarrow \infty}[1 / p(t)] \int_{T}^{t} H(s, \pm k) d s= \pm \infty
$$

and $p(t) \geqq \lambda>0$ fort $\geqq T$, where λ is constant.
PROOF. Let $x(t)$ be a nonoscillatory solution such that $x(t)>0$ and $x(g(t))$ >0 for $t \geqq t_{1} \geqq T$. From Theorem 1 we obtain that $\lim _{t \rightarrow \infty} x(t)=A$ exists and is finite. Let $A>0$. Then given ε with $0<\varepsilon<A$ there exists $\boldsymbol{t}_{2} \geqq t_{1}$ such that

$$
-\varepsilon<x(g(t))-A<\varepsilon, \quad t \geqq t_{2}
$$

Consequently, $\quad H(t, x(g(t))) \geqq H(t, A-\varepsilon) \geqq 0$ for every $t \geqq t_{2}$. Integrating now (I) from t_{2} to $t \geqq t_{2}$ and dividing by $p(t)$ we obtain
(2.4) $\quad x^{\prime}(t) \leqq-[1 / p(t)]_{t_{2}}^{t^{2}} H(s, A-\varepsilon) d s+(1 / \lambda)_{t_{t_{2}}}^{c t} Q(s) d s\left|+(1 / \lambda) p\left(t_{2}\right)\right| x^{\prime}\left(t_{2}\right) \mid$.

Thus, $x^{\prime}(t) \rightarrow-\infty$ as $t \rightarrow \infty$, a contradiction to the positiveness of $x(t)$. It follows that $\lim _{t \rightarrow \infty} x(t)=0$ for $x(t)$ eventually positive, and an analogous proof covers the case for $x(t)$ eventually negative.

Singh obtained the conclusion of the above corollary in [11] from Theorem 1 there without any additional assumptions. Singh's Theorem 1 only ensures that $p(t) x^{\prime}(t)$ tends to - oo as $t \rightarrow \infty$, but this fact is not enough to imply $\lim _{t \rightarrow \infty} x(t)=0$. Consequently, Singh needs additional assumptions to conclude Case 1 of Theorem 2 in [11].

THEOREM 2. Consider (I) with the following assumptions:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}[1 / p(t)] \int_{T}^{t} H(s,+k) d s= \pm \infty, \quad p(t) \geqq \lambda>0, \\
& \lim _{t \rightarrow \infty} \int_{J T J u_{n}}^{t} \int_{j u_{3}}^{\infty} \ldots \int_{u_{3}}^{\infty}\left[1 / p\left(u_{2}\right)\right] \int_{J u_{2}}^{\infty} Q\left(u_{1}\right) d u_{1} d u_{2} d u_{3} \cdots d u_{n}
\end{aligned}
$$ exists and is finite,

where k is an arbitrary positive constant. Then every nonoscillatory solution of (1)tends to zero as $t \rightarrow \infty$.

PROOF. Let $x(t)$ be an eventually positive solution of (I) and assume that $\liminf _{t \rightarrow \infty} x(t)>0$. Then there exists a constant $K>0$ such that $x(g(t))>K$ for every ${ }^{\boldsymbol{t}(\text { say })} \geq t_{1} \geqq T$. Consequently, $H(t, x(g(t))) \geqq H(t, K)>0$ for fet $t_{l 9}$ and, by integration of (I) from t_{1} to $t \geqq t_{1}$, we get
(2.5) $\quad x^{(n-1)}(t)$

$$
\leqq-[1 / p(t)] \int_{t_{1}}^{t} H(s, K) d s+(1 / \lambda)_{\mid J_{t_{1}}}^{\mid\ulcorner t} Q(s) d s\left|+(1 / \lambda) p\left(t_{1}\right)\right| x^{(n-1)}\left(t_{1}\right) \mid .
$$

Thus, we obtain a contradiction by taking the limits of both sides as $t \rightarrow \infty$. It follows that $\liminf _{t \rightarrow \infty} x(t)=0$. Now let

$$
P(t)=\int_{t}^{\infty} \int_{u_{n}}^{\infty} \ldots \int_{u_{3}}^{\infty}\left[1 / p\left(u_{2}\right)\right] \int_{J u_{2}}^{\infty} Q\left(u_{1}\right) d u_{1} d u_{2} d u_{3} \ldots d u_{n}
$$

for all $t \geqq t_{1}$, with t_{1} chosen so that $x(t)>0, x(g(t))>0, t \geqq t_{1}$. Then letting $w(t)$ $=x(t)-P(t)$ we get

$$
\begin{equation*}
\left[p(t) w^{(n-1)}(t)\right]^{\prime}+H(t, w(g(t))+P(g(t)))=0 . \tag{2.6}
\end{equation*}
$$

Since $x(g(t))=w(g(t))+P(g(t))>0$ for $t \geqq t_{1}$, it follows that $p(t) w^{(n-1)}(t)$ is decreasing for $t \geqq t_{1}$. This implies that $w^{(n-1)}(t)$ is of fixed sign for all large t. Thus, $w(t)$ is monotonic for all large t. Since $x(t)=w(t)+P(t)$ and $\lim _{t \rightarrow \infty} P(t)=0$, if follows that $\lim _{t \rightarrow \infty} x(t)=L$ exists and must equal zero because $\liminf _{t \rightarrow \infty} x(t)=0$. A similar proof covers the case of an eventually negative $x(t)$.

It should be noted here that the integral condition on the function $Q(t)$ can be replaced by the condition that $P(t)$ be a solution of the equation

$$
\left[p(t) u^{(n-1)}(t)\right]^{\prime}=Q(t), \quad t \geqq T
$$

such that $\lim _{t \rightarrow \infty} P(t)=0$, and ${ }_{\mid}^{\prime \prime} \int_{T}^{t} Q(s) d s$ not contain, for $n=3$, Theorem 3 in Singh's paper. However, it does contain a
special case of that theorem; namely, when the integral condition on the forcing term $Q(t)$ as above holds. No integrability assumption was made here on the function $1 / p(t)$

In the following theorem we consider the equation

$$
\begin{equation*}
x^{(n)}+q(t) x^{(n-1)}+H(t, x(g(t)))=0 \tag{II}
\end{equation*}
$$

with $q(t) \leqq$. This equation was studied by Kartsatos and Onose [7] with $g(t)=t$, and by Naito [9] and Sficas [10]. None of the results of these papers contains the following because of the assumptions on $q(t)$.

Theorem 3. Consider (II) with $q: R_{T} \rightarrow(-\infty, 0]$ and continuous. Then every bounded solution of (II) is oscillatoryfor n even, and oscillatory or tending monotonically to zero as $t \rightarrow \infty$ for n odd, if

$$
q(t) \geqq-M / t, \quad \int_{T}^{\infty} t^{n-1} H(t, \pm \lambda) d t= \pm \infty
$$

for some constant $M>0$, any constant $\lambda>0$, and every $t \geqq T$.
PROOF. Let $x(t)$ be such that $x(t)>0, x(g(t))>0$ for all fet T, and bounded. Then it follows from the Lemma in [7] (cf. also Naito [9]) that $x^{(n-1)}(t)>0$ for $t \geqq t_{1}$. Now let n be even. Then $x^{\prime}(t)>0$ for $t \geqq t_{1}$. Let $t_{2} \geqq t_{1}$ be such that $x(g(t))>K>0$ for $t \geqq t_{2}$, and some constant K. Now consider the function $t^{n-1} x^{(n-1)}(t), t \geqq t_{2}$. Differentiation of this function, and then integration from t_{2} to t, taking into consideration (II), yields

$$
\begin{align*}
& t^{n-1} x^{(n-1)}(t)-(n-1) \int_{t_{2}}^{t} s^{n-2} x^{(n-1)}(s) d s \tag{2.7}\\
& \quad+\int_{t_{2}}^{t} s^{n-1} q(s) x^{(n-1)}(s) d s \\
& \quad \leqq t_{2}^{n-1} x^{(n-1)}\left(t_{2}\right)-\int_{t_{t_{2}}}^{c t} s^{n-1} H(s, K) d s .
\end{align*}
$$

The first member of this equation is bounded below by

$$
\begin{equation*}
-(n-1+M) \int_{t_{2}}^{t} s^{n-2} x^{(n-1)}(s) d s \tag{2.8}
\end{equation*}
$$

Taking limits as $t \rightarrow \infty$ in (2.7), we get

$$
\lim _{t \rightarrow \infty} \int_{t_{2}}^{t} s^{n-2} x^{(n-1)}(s) d s=+00
$$

The rest of the proof for n even follows now as in Theorem 1 in [4]. Similar arguments cover the case n odd and negative solutions.

This theorem can be extended to cover larger classes of functions H; for example, functions of the forms considered in [4]. It can be easily shown now that the conclusion of the above theorem holds for all solutions of (II), if $q(t) \geqq-k$ (for some positive constant k), $t \geqq T$, and

$$
\int_{\Gamma}^{\infty} H(s, \pm \lambda) d s= \pm 00
$$

for every constant $\lambda>0$.
In the following result, the damping $q(t) x^{(n-1)}(t)$ is treated as a "small" perturbation.

THEOREM 4. Assume that $q: R_{T} \rightarrow(-\infty, 0]$ is continuous. Moreover, let

$$
-\int_{T}^{\infty} t^{n-1} q(t) d t<+00
$$

Furthermore, assume that all solutions of

$$
\begin{equation*}
x^{(n)}+H(t, x(g(t)))=0, \quad n \text { even }, \tag{III}
\end{equation*}
$$

oscillate. Then for every nonoscillatory solution $x(t)$ of (II) we have $\lim _{t \rightarrow \infty} x(t)=0$.
PROOF. Let $\quad x(t), x(g(t))>0, t \geqq t_{1} \geqq T$. Let $\quad H(t, x(g(t)))=f(t), x^{(n-1)}(t)$ $=y(t), t \geqq t_{1}$. Then we have

$$
\begin{equation*}
y^{\prime}+q(t) y+f(t)=0 . \tag{2.9}
\end{equation*}
$$

Solving this equation we obtain

$$
\begin{align*}
& \left.y(t)=\exp _{L} \int_{J_{t_{1}}}-\int^{t} q(s) d s\right]\left[y\left(t_{1_{1}}\right)_{t_{1}}-\int_{-}^{t} f(u) \exp _{\left\llcorner J_{t_{1}}\right.}\left[\int^{u} q(s) d s\right] d u\right. \tag{2.10}\\
& \leqq y\left(t_{1}\right) \exp \left[-\int_{t_{1}}^{t} q(s) d s\right] \leqq y\left(t_{1}\right) \exp \left[-\int_{t_{1}}^{\infty} q(t) d t\right]
\end{align*}
$$

Since, again by the Lemma in [7], $x^{(n-1)}(t)>0$, it follows that $x^{(n-1)}(t)$ is bounded. Thus, the equation

$$
u^{(n)}(t)=-q(t) x^{(n-1)}(t)
$$

has a solution $u(t)$ with $\lim _{t \rightarrow \infty} u(t)=0$. In fact, this solution is the function

$$
u_{0}(t) \equiv \int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!} q(s) x^{(n-1)}(s) d s
$$

Now we can consider the transformation $w(t)=x(t)-u_{0}(t)$, which takes (II) into

$$
\begin{equation*}
w^{(n)}+H\left(t, w(g(t))+u_{0}(g(t))\right)=。 \tag{2.11}
\end{equation*}
$$

It is easy to show now (cf. Kartsatos [6]) that the existence of a positive solution of (2.11) implies the existence of a positive solution to (III) for all large t, a contradiction to our assumption. Similarly for a negative solution $x(t)$. Consequently, if $x(t)$ is positive (negative), $w(t)=x(t)-u_{0}(t)$ is negative (positive) for all large t. This implies in both cases: $\lim _{t \rightarrow \infty} x(t)=0$.

The above theorem remains true for all bounded solutions of (II), if we assume, in addition to the integral condition on $q(t)$, that all bounded solutions of (III) are oscillatory. This last result improves Theorem 1 in [7].

References

[1] F. V. Atkinson, On second-order differential inequalities, Proc. Royal Soc. Edinburgh, 72 (1972/3), 109-127.
[2] R. G. Grimmer, On nonoscillatory solutions of a nonlinear differential equation, Proc. Amer. Math. Soc., 34 (1972), 118-120.
[3] M. E. Hammett, Nonoscillation properties of a nonlinear differential equation, Proc. Amer. Math. Soc., 30 (1971), 92-96.
[4] A. G. Kartsatos, On oscillation of solutions of even order nonlinear differential equations, J. Differential Equations, 6 (1969), 232-237.
[5] A. G. Kartsatos, Positive solutions of perturbed nonlinear differential equations, J. Math. Anal. Appl., 47 (1974), 58-68.
[6] A. G. Kartsatos, Recent results on oscillation of solutions of forced and perturbed nonlinear differential equations of even order, NSF-CBMS Reg. Conference, Mississippi State Univ., 1975, to appear.
[7] A. G. Kartsatos and H. Onose, On the maintenance of oscillations under the effect of a small nonlinear damping, Bull. Fac. Sci. Ibaraki Univ., 4 (1972), 3-11.
[8] T. Kusano and H. Onose, Oscillations of functional differential equations with retarded arguments, J. Differential Equations, 15 (1974), 269-277.
[9] M. Naito, Oscillation theorems for a damped nonlinear differential equation, Proc. Japan Acad., 50 (1974), 104-108.
[10] Y. G. Sficas, On the oscillatory and asymptotic behaviour of damped differential equations with retarded argument, Univ. of Ioannina, Greece, Tech. Report No. 41, 1975.
[11] B. Singh, Asymptotic nature of nonoscillatory solutions of n-th order retarded differential equations, SIAM J. Math. Anal., 6 (1975), 384-395.
[12] V. Staikos and Y. G. Sficas, Forced oscillations for differential equations of arbitrary order, J. Differential Equations, 17 (1975), 1-11.

> Department of Mathematics, University of South Florida, Tampa, Florida, USA

