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Introduction

Co-//-spaces are defined as generalizations of suspended spaces, and, to cer-
tain extent, they have dual properties of//-spaces which are considered as generali-

zations of loop spaces. For //-spaces the so-called Sugawara-Stasheff 's sequence
of fibrations plays an essential role, however, for co-//-spaces we have no such

ones. On the other hand, as Ganea pointed out, the coretraction γ for the evalua-
tion map ε seems to be important for co-//-spaces. The purpose of the present

paper is to define A ^-structures which are formal dual of Stasheff s An-form and
some relevant notions, e. g., ^J,-maps and (weak-) homotopy-coalgebras, and then

to consider how y relates to these notions.
In § 1, we give the preliminary definitions and results concerning co-//-spaces

and the coretraction γ. In §§2-3, we give the definitions of ^-spaces and

v4;Γmaps and some of their properties. In §4, we define a generalized Hopf-

homomorphism //(/) of a map / of A'2-spaces whose vanishing is equivalent to

/ being a <jM'2-map.
Now, our main results are as follows.

THEOREM 5.7. An A'3-cogroup X is an s-A'4-cogroup if and only if the cor-
responding coretraction y is a q-A'3-map.

THEOREM 6.4. // X is a simply-connected coalgebra of finite dimension,

then X has a homotopy-type of a suspended space.

THEOREM 6.20. Let X be an s-A^-cogroup such that the corresponding
y is an A'3-map, then X is a weak homotopy coalgebra of order 3.

Our method is very elementary-homotopical, and the most difficulties arise
from the fact that we must construct the (s-)homotopy of (s-)homotopies.

The author wishes his hearty thanks to Prof. M, Sugawara for his encourage-
ment and valuable comments during the preparation of this paper.

§ 1. Preliminaries

In this section, we shall state preliminary facts which will be necessary in the

subsequent sections. Throughout present paper, if otherwise not mentioned,
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all considerations will be carried out in the category CW* of countable based
C FF-complexes and based continuous maps, therefore, homotopies are based homo-
topies.

NOTATIONS.
Wn(X) = XV •" V X , the wedge product (i.e., the one point union) of n-

n

copies of X,

jn: Wn(X)-+Xn

9 the inclusion map,
Γn: Wn(X)-*X, the folding map, i.e., Fπ(*,..., *,..., *) = x,
A: X-+XxX, the diagonal map, i.e., zJ(x) = (x, x),
i'k\ X-+Wn(X), the inclusion map into the /oth factor,
p'k\ Wn(X)-*X9 the projection onto the /c-th factor,
X*Y, the join of spaces X and Y, whose typical point is tQx®t^y, tQ, ^^0,

f0 + fl = l,

X Λ V, the smash product of spaces X and 7,
Yx, the space of base point free maps/: X^Y (equipped with the base point

*: Jf->*y),
{X; 7}, the space of based maps/: (X, *)->(7, *),
[X\ 7], the set of all based homotopy classes of based maps /: (X, *)-+(Y9

*),
ΩX(A, B), the space of paths in X whose starting points are in A and termi-

nating points are in B9

S, the suspension functor,
Ω, the loop functor,
(categories will be denoted by bold-faced capital letters).

A multiplicative set M is the set with a multiplication μ: M x M->M having
two-sided identity element e. We shall write x<>y for μ(x, y). A map/: M->M'
of multiplicative sets is a homomorphism if it satisfies f(x°y) = f(x)°f(y) for any
x, j;e.M.and/(e) = e'. Multiplicative sets and homomorphisms make up a cate-
gory M. A multiplicative set M is said to admit inverses if there exist two maps
VR and VL of M into M such that x°vR(x) = e and vL(x)ojc = e hold. A loop A
is the multiplicative set satisfying the following conditions: for any a, be A,
there exists a unique xeA such that aoχ = b, and there exists a unique ye A
such that yob = a. Sometimes we shall write a\b and ajb for such x and y.
Loops and homomorphisms make up a category Λ.

A based space (X, *) is a co-H-space if [X; ] is a covariant functor of
TOP* into M, or equivalently, there exists a based map μ': X^X VX such that
F2(l V*)μ'—1 —^2(* V l)μ' hold, or j2μ'^A holds, where ~ means that both
sides are homotopic. μ' is the comultiplication and * is the counit. A co-H-
space is necessarily path-connected, We shall use the traditional notation + in
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[X ] . Then, we have μf ~ i\ + i'2 .

A co-//-space X is said to admit conversions, if there exist two maps v^ and

VL\ X-+X such that F2(l V v^μ'^*^P2(
vL V l)μ' hold. A co-H-space X is

an h-coloop if [X; ] is a covariant functor of TOP* into A.

PROPOSITION 1.1. (cf. [7]). Let (X, μ'x) be a given co-H-space.
(1.1.1) If X is simply connected, X admits coinversions.
(1.1.2) The following two conditions are equivalent:

(i) \_X\ XV X~\ admits a loop-structure with respect to μ'x.
(ii) X admits coinversions.

DEFINITION 1.2. Given a triad (f^. Xi-+B<-X2' /2), define its fibred pro-
duct 7}1>/2 by

x, and w(l) = x2} .

The projections πt : Tfijf2-+Xi9 i= 1, 2, are defined by

πjC*ι, ^2» w) = ^i

LEMMA 1.3. Let Tflf2 be the fibred product of a given triad (/t:

(i) Γ/7^ projections πx αnί/ π2 are fibre maps.
(ii) For αrcy homotopy commutative diagram

there exists a map k: X-*Tj lίf2 such that πlk = gi and π2k = g2 hold.
Moreover, if X is an h-coloop and π2 induces a monomorphism π2 H ί: [X\

Γ/1>/2]-*[Jί; X2~\ (this is the case when the homotopy-fibre of f^ is contractible
in XJ, then k is unique up to homotopy.

With abuse of language, we say that T/lj/2 is a homotopy pull back of ( f ί :

X^B^X2:f2).
Finally, we shall recall Ganea's theorems [3] for the subsequent considera-

tions.

THEOREM 1.4. Consider the h-pull back TAtJ29 then there exists a homotopy-
equivalence Θ: SΩX-+TΔJ2 = T such that the following diagram is homotopy-
commutative:
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SΩX

where ε is the evaluation map, i.e., ε<a, /> = l(a), and Ψ is the map defined by

(l(2a\ *) for 0 g a ̂  1/2,
Ψ<a, l> =

(*, /(20-1)) for 1/2 ̂  α ^ 1.

Moreover, Ψ induces monomorphism of generalized homotopy groups, and
therefore the totality of homotopy classes of comultiplications of X and the

totality of homotopy classes of coretractions of ε, i.e., maps y : X-+SΩX satisfy-

ing εγ~l, are in 1 to 1 correspondence. Finally, the homotopy fibre*) of ε,

i.e., the fibre of ' π ί 9 is ΩX*ΩX.

THEOREM 1.5. Let Φk: Wk_^(SΩX)->Wk(X) be the map defined by

(*,... ,/(2fl),...,*) for O g t f g 1/2,
a, />,..., *) =
'-'* I (*,..., * ,...,/(2-2α)) for

i-th

Then, Φk induces monomorphisms of generalized homotopy groups, and Wk^^

(SΩX) may be considered as the homotopy fibre of Γfc.
THEOREM 1.6. Let (X, μ'x) be an h-coloop, then μ'x is homotopy coassocia

tίve if and only if the corresponding coretraction y is a co-H-map.

§ 2. ^-spaces

Let (X, μ', *) be a co-//-space. There are various ways of coassociating to

define a map α: X-+Wn(X) using μ' repeatedly. For n = 2, there exists only one

μ'; but for n = 3, there are two ways, (μ' V l)μ' and (1 Vμ')μ' for n = 4, there are
5 ways,... . Moreover, different ways of coassociating may define the same map,

for example, (μf V 1 V 1)(1 V μ'}μ' = (\ V 1 V μ')(μr V l)μ' ( = (μ' V μ')μ'): ̂ ^

For each α: ί̂-> Wn(X) we shall define a sequence σα of (n — 1) increasing inte-

gers by the following way.

For n — 2, σμ> = { 1 } . Assume that we have defined for n ( ̂  2). Let

*) In general, for a given map f:X-*Y, consider the following fibre space: Ef={(x, W)
ς=Xx Y'\ w(0) =/(*)}, and the map pf:Ef-*Y defined by pf(x, W} = w(\}\ defining j: X
-*Ef byj(x)=(x, *f(X)) and r: Ef-*Xby r(x, w)=x, we shall have ry'=l, yr~l, pfj=fsind
fr~pf. We call the fibre Ef of pf the homotopy fibre of /. Notice that: Ef = Tf f,

wherep: PY-+Y is the well known path-space fibering (terminating at the base point).
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« = ( 1 V - V μ' V-V\)a':X—^Wn(X) - > W Λ + l ( X )
k~ιh

be a coassociating presentation of α, and σα, = {Γ1,..., i'n-ι}. Put

/ v = IV for v < Jc,

(2.1) '* = «i-ι + 'ί 0"o = 0 and f; =

/v = 2/;,_1 for v > k.

(Thus, σα corresponds to a process of taking successive midpoints in the interval
[0, 2"].) As easily seen, α's and σα's are in 1 to 1 correspondence.

Now, let dk(n + l — s, s) be the parenthesizing xr (xk xk+s-ι) xw of n-
letters word x^ V For each σΛ = {iί9...9 in-ι}9 we shall define a set of (n — 2)-
parenthesizings dk.(n 4- 1 — si9 sf) by the followings :

(2.2.a) If ίΛ-ϊ k-ι = ik + ι-ϊ k = 2 v ( v = Q, l,...,or 2»~2) and 2v |ίk but 2 V + 1 ^/ / C ,

then we say that {ik-l9 ik9 ik + ι} defines δk(n — l, 2).

(2.2.b) Tf {/*.„..., !*+,_!} defines δ k(n-s+l, s), ι j k + β.1-ik-1=2^, 2*|ί k+ s_ 1

but 2"+1K+s-ι, or if {'*»-•» ''*+*} defines δk+..1(n-s+l, s), / f c + s -/ f c = ik-ik-ι
= 2", 2"|/k but 2^+1 |/k, then we say that { / k _ l 9 ιk,..., i'k+s} defines dk(n-s, s + 1).

(2.2.c) If {/k-ι,..., ί fc+s-i) defines δk(n-s+l, s) and {ik + s_ l f..., ι f c + s +r-ι}
defines 3k+s(n-i + l, ί) and i k + s + ί _ 1 -ι k + s _ 1 = ί k + s _ 1 -ί k _ 1 =2^, 2"|ik + s_1 but

2" + 1 -fί k + s _ l s then we say that {ιk-1?..., / k + s _ l 5 . . . , / k + s + f _ι} defines dk(n-s-t,
s + t).

Thus, to each α, we have defined the unique set of (n — 2)-parenthesizings of
the π-letters word, and then applying these (n — 2)-parenthesizings we have a

"complete" parenthesizing. On the other hand, these complete parenthesizings

and vertices of Stasheίf 's complex Kn are in 1 to 1 correspondence.

Therefore, the totality of α's and the vertices set of Kn are in 1 to 1 correspondence.

Here, we recall the definition of Kn [10].

Kn = {(tl9...9 ίn-2)e/"-2 |Vj, 2^-0 ^ 1}, n ̂  2,

dKn = Ln = {(ίlf..., tn-2)εKn\ 3;, 2'V"0 = 1 or tj = 1}.

There exist face maps <9k(r, s) : Kr x Ks-*Kn, r + s = n + l, 1^/c^r, and degeneracy

maps Sj'. Kn-^Kn,1, Ig j^n, n^3, and these maps are subject to the following
commutation laws :

(2.3.a) a/

(2.3.b)
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= dk(r + t-\, s)(dj(r9 O x 1)(1 x T), j > k,

where T: KsxKt^>Ktx Ks is the switching map;

(2.3.c) Sj sk = sksj +l for k ^ 7

(2.3.d) s,A(r, 5)

= ^-^(r — 1, s)(SjX 1) for j < k and r > 2,

= dk(r, s — 1)(1 xSj-k+ί) for s > 2, k ^j < fc-f s,

= dfcO-1, s)(s/- s + 1xl) for k + s£jι

(2.3.e) S;dfc(n-l, 2) = π1 for 1 ̂  j = k < n, 1 < j = k + 1 ̂  n,

5^2(2, n-1) = snδ1(2, n-1) = π2,

where πi and π2 are projections onto the first and the second factors.
Since Kn is a convex cell complex which is homeomorphic to In~2

9 starting

with sί9 s2, s3: X3->X2

 = {*} an(i using (2.3.d~e), we may define Sj by induction
on n.

Now, we define the vertices transformations

for 1^/cgr and r + 5 = n + l by the following way:

(2.4) 3h(r, s) (ξ, ηYX-T* Wr(X) -^ Wn(X) ,

for any ξeKr and ηeKs, where ιy(fe) = l V V η V Vl. If £ = {£,,..., ̂ .J
Λ - r Λ

and t/ = {>/ι,. .j ^s-ι}> tnen we nave

(2.5) f/(/c) = {2-^1,...,2-1ί,_1, ̂ l + ft,...,αf?s.1 + fc,

2-'{t>...,2 - ' f r _ 1 },

where α = ξk — ξk-1 and b = 2 s~1ξk_1.

LEMMA 2.6. 5fc(r, s)'s satisfy the commutation laws (2.3.a) and (2.3.b).

Therefore, we may regard Kn as the cell complex defined by coassociatings.
Fig. I shows K2, K3 and K4.
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Fig. I

595

K2 o{*}

{1,2} {2,3}

32 (2, 2)

{2,4,6} θ3(3, 2)

, 2)

{4,6,7}

32 (2, 3)

{4, 5, 6}

32(3, 2)

o {2,3,4}

DEFINITION 2.7. A based space (X, *) is said to admit an A'n-structure,
if there exist maps Mi: X x K,-> Wt(X), 2sΞi^n, satisfying the following condi-
tions :

(2.7.1) μ': X-+XVX, denned by μ'(x) = M'2(x, {!}) for all xeX, is a comulti-
plication, and * is a counit

(2.7.2) for any (p, σ)eK,xKs, r + s=i + \, it holds

MR dk(r, s)(p, a)) = M's( σ)(k)°M't( p),

where M .̂( σ)(fe)=l V VM;( ; σ ) V V l ;

(2.7.3) for j£3, it holds Af',_,*( Ί s^π^pjM'^ τ), where p, = Γ20 -!>*(/)

= F20>*0).
If X admits an ^-structure, we call X an A'n-space. If X admits an A'n-

structure for every n, we say that X admits an A'^-structure.

DEFINITION 2.7'. A based space (X, *) is said to admit a w-A'n-structure,
if in the above Definition 2.7, the condition (2.7.2) is replaced by:
(2.7.2') there exist maps Sk(r, s)=* 1 x dk(r, s): X x KrxKS-+X xK{, r + s = i +1,
and it holds

Λf'A(r, s)(x; (p, σ)) = Afi( <r)(fc>M;(x; p)
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for any (x (p, σ)) e X x Kr x Ks.

REMARK 2.8. If X is homotopically non-trivial, then X cannot be strictly

coassociative, i.e., (μ' V l)μ' = (l V μ')μ' does not hold. On the contrary, assume
that μ' is strictly coassociative. Put X. =μ'~l(Xx {*}), X+=μ'-1({*} xX)

and X0 = X _ Γ \ X + . Since X is homotopically non-trivial, we have X_— X0

τ^0 and X+-X0^0. Let x be an element of X+-X0. Then, (1 V μ')μ'(x) is

of the form (*, *, x'). Thus, we have

and

MP3(μ' V l)μ' ^ *.

On the other hand, since * is the counit, we have

which contradicts to non-triviality.

2.9. We recall the definition of y4M-form [10] before we give Theorem 2.10.
A based space (X, e) is said to admit an An-form if there exist maps M, : X1

x Ki~+X for 2^ ϊ^n satisfying the following conditions:
(2.9.1) M2(e, x; {!}) = M2(x, e; {!}) = x for all x e X ;
(2.9.2) for any (p, σ)eKrxKs, r + s = i, we have

Λf,(x !,..., xf; δk(r, s)(p, σ))

= M/XJ,..., xjk.j, Ms(xk,..., Xfc+β-t; σ), xfc+s,..., xr ; p);

(2.9.3) for τ e K( , i > 2, we have

MjCx!,..., x,.-!, ,̂ xι/+1,...,xί; τ)

= M^^X!,...,̂ !̂, xy+1,..., x,; s/τ)).

THEOREM 2.10. L^ί X be a finite CW-complex, then the following two con-

ditions are equivalent:

(2.10.1) X admits an A'n-structure.

(2.10.2) For any based CW-complex B9 the mapping space [X\ B} admits a

natural (i.e.9functorial) An-form.

PROOF. (2.10.1) implies (2.10.2). Suppose (X, *) has an A -structure {M;},

2^i^n. For any B, define M f: {X\ B} ^{X; B} by

(2.11) [Mf(Wl,..., ii,; τ)](x) = Γχ!ι1 V - V ιι,)Mί(x; τ) ,
for any (M!,..., w f ; T)6{X; B}f x^. Let e: X-**, then we have M2(w, e; {!})
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M2(e,u\ {!}), but since we work in C.W, we may assume that M2(u, e\

) = ιι = M2(e, w ; {!}). Let (p, σ)e/C r xK s , r + s = / + l , then (2.7.2) implies
(2.9.2) as in the diagram below:

v^, V ^ V Λf f ( ι i ι , . . . , t t i ; f l ic(r t s)(p,σ)) DΛ X A r X A s > 1>

•̂  l ;j;,,
A f ; ( f c ) |

I F.(fc)

Similarly, (2.7.3) implies (2.9.3).

(2.10.2) implies (2.10.1). Put μ' = ί\ + i'2 e{X\ X V*}, then we have jμ'

= ϊ\ 4- ϊ2 — ̂ » where il and i2 are the inclusion maps of X into the first and the sec-
ond factors. Thus, μ' is a comultiplication, i.e., (2.7.1) is satisfied.

Define M'v : X x Kv-> HφO by

Then, for any (p, σ)eKrxKs, r + s = v 4- 1 , we have

/;,..., iVi, Aίs(/ί,..., / fc + s _! σ), /Us,..., i'v;

= M'S( ;σ)(k)oAϊ;(x;p);

Thus, we have (2.7.2). Similarly, we have (2.7.3).

PROPOSITION 2.12. SX admits an A'^-structure.

PROOF. For any vertex α = {/1,..., ίn_l}eKn and <ί, x> εSX, put

M;(<ί, x> α) = (*,..., <(2n-ίt-ik.l)l(ik-ίk.ίl x>,..., *),

for ik,ί^t2n'"1^ik9 fe = l, 2,..., n.
Since J^n may be regarded as a convex polyhedron which is a cone over Ln,

it can be triangulated adding suitable vertices; then M'n\ SX-+Wn(SX) can be de-
fined as a linear extension of M'n.

§ 3. ^-maps and Mapping Cones

At first we shall fix a notation. Let F: Xx 7->Y be a homotopy satisfying

F(χ, 0)=/0(x) and F(x, l)=Λ(x). Then, we shall denote F by #(/0,/ι).
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DEFINITION 3.1. A map /: X-*Y of A^-spaces is a homomorphism if

'Xtt = M'Yti(fx 1) holds for any i£n.

For example, Sf: SX-+SY is a homomorphism (with respect to μ'0) for any

DEFINITION 3.2. A map/: X->7of A^-spaces is an A'n-maps, provided that
there exist homotopies

H\ = H(W{f)M'Xti, M'y,i(/x 1)): * x K, x / - > W{Y), 2 £ i ̂  n,

which are subject to the following conditions :

(3.2.1) for any dk(r, 5), r + s = / + l , there exists a homeomorphism dk(r, s) of

KrxKsxI into KI x / which preserves level and satisfies

*i.r(*; P)
for 0 ̂  t ̂

Λf'y..( σ)(/c)o//;((χ; p), ((l-i-l^+l-^-1)/^-1-^-1))

for (2s"1

for any (p, σ)eKrx KS9 i ^ 3

(3.2.2) there exist homotopies

where £^>R = //(1Λ, pt^x) and EXtL = H(lX9 p$μx) and dotted plus 4- implies
addition with respect to homotopy parameter;

(3.2.3) there exist homotopies

H(p,Hί4 Λ'y f,.//x 1), W

XxKtxIxI - > ^.,(7),

where D'XtitJ = H(pίMχth Mj f ί i_1(l xs^)) an<^ so on

REMARK 3.3. 1) Homeomorphisms 8k(r, s)'s are very complicated. For
/ = 4, 5^3, 2) is given in the following Fig. 2.
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{4,5,6! 12,3,4!

14,6,7! 11,2,41

3ι(3,2)
Fig. 2

12, 4, 61

2) Define D'x = H(AJμ'x) by Dfa, t) = (E'XtL(x, t), E'x,R(x9 t))9 then (3.2.2)
is equivalent to
(3.2.2;) there exists a homotopy F = H((f xf)Dx+jγ°H'2, D'γf\ which is also

equivalent to
(3.2.2//) there exists a homotopy G: X x I xI-+YxY satisfying the following con-

ditions

G(x, ί, 0) = (fxf)D'x(x, 0, G(*, ί, 1) = Λy(/W, 0,

G(x, 1, s) = jyH'2(x, s) and G(x, 0, s) =

DEFINITION 3.2'. A map f:X-+Y of A^-spaces is an quasi-A'n-map
(abb. g-A^-map) if homotopies f f f satisfy only the condition (3.2.1).

LEMMA 3.4. If X is an h-coloop, then v'R and v'L are homotopy equivalences.

PROOF. Since 1 + v^0, we have v'L + v^v^O; then by the cancellation law
we have v^v^^ 1. Similarly, we have v'RVL^\.

LEMMA 3.5. Letf: X->Ybe an A'2-map of h-coloops, then v'γf^fvx.

PROOF. We shall obtain

Then, by the cancellation law, we have v'YiRf~fμXtR.

NOTATIONS 3.6. (i) N'R(f) = H(v'YtRfJv'XtR).

(ii) N'R(f)
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where NXtR = H(Γ(l Vv'XtR)μ'X9 *) and so on.

PROPOSITION 3.7. Let/: X-*Y be an A'n-map of A'n-spaces9 then the map-
ping cone Cj- has a canonical w-A'n-structure> i.e., the inclusion map i: Y—>Cf

is a homomorphism.

PROOF. Let {M'XJ }2$izn

 and {^γ,i}2^i^n

 be ^-structures of X and 7,
respectively. Define M\: Cf x Kt-> W£Cf) by

M'i(yi τ) = M'Yti(y9 τ) for (y; τ) e Yx Ki9

(2l~lt9 M'itX(x; τ)) for (ί, x)eCX, 0 ̂  t £ 1/2-1,

1/2'-! g ί ̂  1.

Next, define D'\Cfx I-+Cf x Cf by

, (2ί/(2-s), Di(x, s)) for 0 g r g (2-s)/2,
y((ί, x), s) =

G(x, 5, (It 4- s - 2)/2) for (2 - s)/2 g ί g 1,

where D's and G in the right hand sides are homotopies defined in 3.2 and 3.3.
Then, we shall have D' = H(A9 j μ ' ) f o r μ' = M'2 thus μ' is a comultiplication, i.e.,
(2.7.1) is satisfied.

To examine the condition (2.7.2'), we shall define the maps Sk(r, s): Cfx

Kr x Ks > Cf x Kί9 r + s = i -f 1, by

dk(r, s)(y; (p, σ)) = (y\ dk(r, s)(p9 σ)) for (y9 (p, σ))e Yx Kr x KS9

((t, x); dk(r9 s)(p, σ)) if i g 3 or ί ̂  1/2'"J,

(x; 3k(r, 5)(p, a), 0 if i^4 and ί^ 1/2-1.

As easily seen, (2.7.2') holds for any (y9 (p, σ)) and ((ί, x); (p, σ)), O^ί^l/21"1.
If ί^l/21'-1, put ί' = (2I'-1ί-l)/(2ί-1-l), then we have

(2ί-1-iχ/(2'-1-l) = (2ί-1ί-l)/(2s-1-l) for 1/2-x ^ t g 1/2^S

((2ί-1-iχ-f-l-2s-1)/(2ί-1~2s-1) = (2'-1ί~l)/(2'-1-l) for

Thus (2.7.2') is a direct consequence of (3.2.1). The remaining conditions may
be obtained easily.
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REMARK 3.8. For n^3, Cf admits an ^-structure. Moreover the projec-

tion p: Cf-+SX is an A'n-map.

PROPOSITION 3.9. Let f: X-+Y be an A'3-map of A'3-cogroups, then Cf

is also an A'3~cogroup.

PROOF. It is sufficient to show that Cf admits a coin version v'. Let v'x
and v'y be coinversions of X and 7, respectively. Define v': Cf-+Cf by

v'00 = v'yOO,

(It, v'x(x)) for (ί, x) e CX and 0 ^ t ^ 1/2,
v'(ί, x) = ,

N'(/)(x, 2 f - l ) for (f, x)eCY and 1/2 ^ ί g 1.

Then, F(l Vv')μ' : Cf-*Cf is homotopic to the map v' of the following form:

v'|{(ί, x)|0 ^ ί ̂  1/4} = (4ί, F(l V vi)μi(x)),

^ ί < 1/2} = N'(

Since N\f) + P(lV Vγ)H'2~fN'x^N'γf~*, we obtain v'-*.

§ 4. Some Invariants

Given a map/: X-»T.of A'n-spaces, it will be the first problem to determine

whether or not / is an A '2-map, i. e., /satisfies

(4.1)

and then

(4.2) (

If both X and 7 are suspended spaces, say X = SA and 7= SB, then so called

Hopf-homomorphisms Hk: ISA; S5]-»[5^4; S(Λ#)] are useful to show (4.1),

especially if both X and Y are spheres, only H2 and # 3 are necessary (cf. [4]).

LEMMA 4.3. Let X be an h-coloop, then for any space Y, we have the follow-

ing exact sequence of loops :

o — > [cx, x\ rx y, y v y] -̂  [̂  * v r] -7̂  [*; Y* YJ —* Q.
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PROOF. Let μ'x be the comultiplication of X, then μ'(t, x) = (ί, μ*(x)) *}

gives an ,4'2-structure of CX. Then, proof may be carried out by the routine way
as in homotopy groups.

Now, let/: X-+Ybe a given map of /i-coloops, and X be a finite CFF-com-
plex, then (4.1) is equivalent to

Obviously, ;*[α(/)] = 0; therefore we have the unique element \_g~\e[CX, X;
Yx y, yv y] such that r*[0] = [«(/)] holds. Moreover, we have isomorphisms
(cf. [3])

tcx, x YxY, yv y] « \x\ ίW*, yv y)]

« IX I QY*QY].

DEFINITION 4.4. Let H(f) be the image of [#] under the composition of
the above isomorphisms.

If y= SB, then //(/) e [X ΩSB^ΩSB'] = [X S(ΩSB Λ O5J5)] w [X 5(5^

A #oo)l > where B^ denotes the reduced product of B. Thus, we may consider
//(/) as a modification of generalized Hopf homomorphisms.

By definition, we have

PROPOSITION 4.5. /satisfies (4.1) if and only if #(/) = 0.

REMARK 4.6. Being/ an /4'2-map, /has to satisfy the condition (4.2). Gen-
erally, for a qΆ'2-mapfof an /i-coloop X to an ^-space y, we may define functions
ΎL andTΛ of Ker. H into [SX; y], and their vanishing is equivalent to the con-
dition (4.2). Moreover, we may show that any q-A^-map f defined on a sus-

pended space is an A'2-map, (cf. [9]).

REMARK 4.7. Define H*(f)e[X', SΩY] by #*(/) = [SO/oyx-yyo/], then

we shall have Ψ*H*(f) = i'*H(f), where <F: S&y-*yv y and f :Ωy*Ωy-»yvy
are maps defined in § 1 and Ψ* and i* are monomorphisms.

DEFINITION 4.8. A co-H-space (X, μ'x) is said to be homotopy-cocommuta-
tive if it holds Tμ'x~μ'x\ X^XvX.

PROPOSITION 4.9. Let (A, μ'A) and (B, μ'B) be co-H-spaces, and X be the
smash product of them, then we have

0 A*Ί = V'A Λ IB and μ'2 = ̂ A^^B are comultiplications of X,

*) More generally, if X is a co//-space with comultiplication μ'τ, then for any space

is a co-//-space with comultiplication //^
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ii) μ\ is homotopic to μ'2\ therefore they define a unique comultiplication

of X, and finally,

iii) μ'x is homotopy-cocommutatiυe.

PROOF, i) E'AtR/\ 1B gives a homotopy from ΐx to F(lV*)μΊ and N'AtR

Λ 1B gives a homotopy from F(l V v'1}J?)μΊ to *, where v'1}R = v ^ j R Λ 1B. Notice
that * : X-**x is the common counit of μ\ and μ'2.

ii) As easily seen, it holds

Then applying (F V F) (I V * V * V 1) by the left-hand side, we have μ\^μ'2.

iii) Since μ'x=i\ + i'2, we shall obtain

1 . 2 1

THEOREM 4. 10. // X is α homotopy cocommutative h-cogroup, i.e.,

space with coinversion, then

//: [X; 7] - > [

/5 α homomorphism.

PROOF. It is sufficient to show that

is a group-homomorphism.

At first, we shall mention that

μ'rF = F y V y(μ ;

y Vμy).

Then, we have

/2) = Γy vyO*r/ι V μ'

Using homotopy-coassociativity and -cocommutativity, we shall have

^ Fy vy((/ι VΛ) V (/2 V/i)) (μi V μi)μi-

On the other hand, since it holds



604 Shiroshi SAITO

we have

'yΛ) V (α(

Therefore, we shall obtain

EXAMPLES 4.10. Our invariant //(/) is not necessarily easy to determine
its vanishing, however, in some cases we can do it.

(4.10.1) If αeπ6(S3) is an element of order 3, //(/) belongs to π6(Ω53*
ί2S3)«π6(S5)»Z2, then we have //(α) = 0 by Theorem 4.9.

(4.10.2) I f/? e π15(S5) is an element of order 9, then H(β) belongs to π15(ΩS5*
ΩS5)&π{5(S9 U e13). Since there exists an exact sequence

π15(S9) — * π15(S9 U e13) - > π15(S13)

and π15(S9)«Z2 wπ t 5(Sl 3), we shall obtain #(j8) = 0.
(4.10.3) Let £ be the non-zero element of [S3 U Λ.e

7 \ S5]«π7(S5)«Z2,
then //({) belongs to [S3 U Λe

Ί \ βS5*ΩS5] [S3 U Λe
Ί \ 59] = 0; therefore we have

H(ξ) = 0. The same argument holds for ξ' e [S3 U Λe
Ί S6].

(4.10.4) Let ξ be the non-zero element of [S3 U α e 7 ; S5 U βe
16]ππΊ(S5}

^Z2, then H(ί) belongs to [S3 U Λe
Ί \ Ω(S5 U ^16)*ί2(S5 U "/ ϊe

1 6)]wπ7(S9) = 0;
therefore we have H(ξ) = Q.

§ 5. ^4 4 -spaces and q-^4 3-maps

Theorem 1.4 says that the homotopy classes of comultiplications of X are
in 1 to 1 correspondence with the homotopy classes of coretractions. Therefore
we may give guess that the coretraction γ: X-+SΩX may characterize ^-structure

ofX.
At first we shall make a remark : let X be an y4'3-cogroup with the y4'3-structure

{μ'x, Mr

Xt3}9 then by Theorem 1.6, the corresponding coretraction y is an q~A'2-
map, which defines a new ,4 3-structure {μ'Xί M'x>3}, but we have no guarantee
that Mf

x>3 and M'Xt3 are homotopic relative X x K3.

DEFINITION 5.1. An /44-cogroup X is said to be an s-A'4-cogroup9 provided

that ^ 4 ( β ) ( l Λ v Ό V l V v ' 0 ) ( l V l V μ Ό ) M Ό f 3 o ( y χ l ) i s homotopic t o ( I V v ' V l
V v ' ) (1 V 1 V μ')M'Xt 3 relative to X x K3, i, e., the homotopy satisfies the condition
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induced from (3.2.1).

As easily seen, any suspended space is an s-^-cogroup with respect to its
natural ^'4-structure.

PROPOSITION 5.2. Let X be an A'3 cogroup such that the corresponding
contraction γ is an q-A'^-map, then X is an s-A'4-cogroup.

PROOF. Let {M'0$ί} be the natural ^-structure of SΩX. Define H4: X
x K4 x {1} U X x L4 x /-» W4(X) by the followings :

H'4\Xxdk(K3xK2xI) =

W4(ε) H'2( ; for 0 ^ t g 1/7,

f o r l / 7 g ί g l ,
= 1 , 2 , 3 ;

W4(ε)H'3( for 0 ̂  ί ^ 3/7,
fe = 1, 2.

*2( ;(7ί.-3)/4) for 3/7 ̂  ί ̂  1,

The remaining part of L4 x I is the tetragon T=P0P\P3P\ in the Fig. 3.

1 1 4 , 6 , 7 } !2,4,6ί !l,2,4ί

3/7-

1/7

n

a3(3, 2)

/
θι(3, 2)

\

p. <^ J>P,
^̂ -̂ _x-̂ ^̂

Fig. 3

On the edge of T, H'4 is of the following forms :

/?'4|P0P', = W4(ε) (H'2( 70 V y V y) (1 V μ'x)μ'x

H\\P\P3 = W4(β)(μ'0 V 1 V l)(y V fl'2( (7ί-

W'4 |P0Pΐ = ^4(e)(y V y V //'2( 7ί)(//'Λ V

for 0 g t g 1 /7

'x

for 1/7 g t ̂  3/7;

for 0 g ί g 1/7;

H'4|P'iP3 = V 1 V//Ό)(H' 2 ( (It- l)/2) Vy)μ'x
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for 1 / 7 ^ * ^ 3 / 7 .

Now, put

flilΛΛ = W4(ε)(H'2( 7f/3)/f'2( 7ί/3))μi for 0 £ ί g 3/7.

Then, we shall have H'4\P0P3^Hf

4\P0P
f

ΐP2 and //4|P0P3~#4|PoP'ίP3. In fact,
put

H'2( 7f/(3-2s)) for 0 ̂  ί g (3-2s)/7,

μ'o-7 for (3-2s)/7^ί^ 1;

(yVy)μ* for 0^ ί^s/7,

//'2( (7f-s)/(3-s)) for 5/7 ^ ί g 1

F( ί, 5) = W4(β)(fl'2fL( ί, 5)VH' 2 > Λ( ί, 5)K.

Then, F is a homotopy from //4|P0P3 to H\\PQP4P3. Similarly, we may define
a homotopy F' from //'4|P0P3 to //|';P0P'4P3. These homotopies define H4\T.

Let M 4 be the extension of H'4 over XxK4xI, and put M^ 4 = M4|Jί x K4

x {0}, then M'XΛ : X x X4-^ W4(X) together with [μ'x, M'Xt3} gives an A4-structure
on X.

The following homotopy-commutative diagram shows that X is an s-A'4-

cogroup :

SΩXxK, -?±L+ WZ(SΩX)

y x l | //'3 ^ 3(y) « 2 ( 3 ) ^4(r) / V ' ( y ) ( 2 , 4 )

To prove the converse of Proposition 5.2, we shall need certain computative
lemmas.

LEMMA 5.3. Let X be an A'2-cogroup, and define p: W6(X)-+W4(X) by the

composition p = (l V V V 1 V 1)(1 V TV 1 V 1)(1 V V V 1 V 1 V 1), then we have

Φ4(l V vΌ V v'0) = (1 V 1 V T)p(Φ2 V Φ2 V Φ2) .

PROOF. Put Φ2 = Φ2v'0 : SΩX-+X V X, then we shall have

Φ3 = ( 1 V T ) ( 1 V F V 1 ) ( Φ 2 V Φ 2 ) ,

Φ4 = (1 v 1 V T)(l V 1 V V V 1)(Φ3 V Φ2).

Therefore, we have
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Φ4 = (1 V 1 V T)(l V 1 V Γ V 1)(Φ3 V Φ2)

= (1 V 1 V T)(l V 1 V V V !)((! V Γ)(l V Γ V 1)(Φ2 V Φ2)) V Φ2)

= (1 V 1 V 7>(Φ2 V Φ2 V Φ2)(l V vΌ V v'0) .

Since (v'0)
2 = 1 , we have the desired result.

LEMMA 5.4. Let X be an A'4-cogroup9 then we have

(5.4.1) ρ(μxVμχVμχ)MXt3*(lVvxVlVvxKlVlVμx)MXt39

where μf

x = (\ V vx)μx.

PROOF. ρ(μ'x V μ'x V μ'χ)M'X)2>

~ p(\ V vi V I V v^ V 1 V v'x)(l V μ* V 1 V 1 V l)(μx V 1 V 1 V \)(μ'x V 1 V 1)(-M^3)

(by A'3 and A'49 (-M^3)(x, 0 = M^3(x, 1-r))

- (1 V 1 V Γ V 1)(1 V T V 1 V 1)(1 V * V v'x V 1 W'x)(μ'x V 1 V 1 V l)(μ'x V 1 V 1)

- ( 1 V l V Γ V l ) ( l W 5 f V * V l Wi) ( 1 V μ ^ V l V l ) ( l V ^ V l ) " ( - M i i 3 )

LEMMA 5.5. Le/ X be an A'4-cogroup. Define Πx: X x K3->W4(X) by
(l V v ^ V 1 Vv^)( l V

(5.5.1) Φ4d V v'0 V V0)W3(γ)M'Xt3 * (1 V 1 V T)ΠX rel. X x X3,

(5.5.2) Φ 4 ( l V v ' 0 V v ' 0 ) M ' 0 > 3 - ( l V l V Γ ) ^ 4 ( ε ) / 7 0 rel. X x K3.

PROOF. (5.5.1) Define the homotopy H2: XxI^SΩX V SΩX from (y

V y) /Zi to μ'0 y by

f ( lVN'(y)( ;2ί))μi for 0 g ί ̂  1/2,
H'2(x;0 =

I (1 W'o)H'2(x; 2ί-l) for 1/2 ^ ί g 1.

Then, we shall have

= ( lVlVT)KΦ 2 VΦ 2 VΦ 2 )^ 3 (y)Mi, 3 (by (5.3))

^ (1 V 1 V T)p W6(ε) W6(y) (μ'x V μ'x V μ'^M'x, 3 (by H2 V # 2 V H'2)
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*(lVlVT)p(μ'xVμ'xVμ'x)M'x,3

* (1 V 1 V T)(l V vi V 1 V vi)(l V 1 Vμ'x)M'x_3 (by (5.4)).

(5.5.2) may be shown similarly using Lemmas (5.3) and (5.4).

PROPOSITION 5.6. Let X be an s-AA-cogroup, then y is a qΆ'3-map.

PROOF. Consider the following diagram:

SΩX ' 3 > Ws(SΩX) > W3(SΩX) -̂ -» W4(X).

1^3(7)

By Lemma 5.5, we have

Φ4(l V v'0 V v'0)WJ(y)M i§ 3 * (1 V 1 V Γ)/7X,

Φ40 V v'0 V v'0)Λί'0i3(y x 1) ̂  (1 V 1 V T)^3(ε)/70(y x 1) .

On the other hand, since X is an s-v4'4-cogroup, (I V 1 V T)ΠX is homotopic to

(1 V 1 V T)W3(ε)Π0(γ x 1) thus we have

Φ4(l V v'0 V V0)^3(y)M^ι3 - Φ4(l V v'0 V v'0)MΌ i 3(y x 1)

relative X x K3. Since Φ4 is a homotopy-monomorphism, and v'0 is a homotopy-

equivalence, we shall obtain the desired result.

Combining Propositions 5.2 and 5.6, we have

THEOREM 5.7. Let X be an A'^ cogroup, then y is an q~A'$~map if and only
if X is an s-A'4-cogroup.

§6. Homotopy-Coalgebras and Suspensions

In this section, we consider from a little different point of view. We begin

with the special case.

DEFINITION 6.1. An ^4'3-cogroup X is a coalgebra if there exists a coretrac-

tion 7 satisfying the following condition (Γ^)

7o7 = SΩy y.

REMARK 6.2. If X is a suspended space, then X is a coalgebra with respect

to its canonical -coret faction.
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REMARK 6.3. Obviously, y is a g-yΓ2-homomorphism, i.e., (yVy)μ* = μΌy
for μ'x = Ψγ.

THEOREM 6.4. // ̂  is a simply-connected coalgebra of finite dimension,
then X has a homotopy-ΐype of a suspended space.

To prove this theorem, we need some preparations.

Given a triad (f: X-+B+-Y: g), define its topological pull-back Pfg by

Pf. .= {(*> y ) e X x Y ; f ( x ) = g(y)}. Define θ': SPfιβ-+'PsfftSg by <9'<α, (*,'>>)>
= (<α, x>, <α, >>>), then <9' is a homeomorphism. Next, define Θ\STfg

-+TSftSg by <9<α, (x, y, w)> = (<α, x>, <α, y>, «α, w»), where «α, w»
is the path of SB defined by «α, w» (ί)= <α, w(ί)>, and define iftg: Pf,g-+Tfig

by if,g(x> y) = (χ.> y> wb)> where wb is the path of B defined by wfc(ί) = b =/(x) =
Then, we have the following (strictly) commutative diagram:

(6.5)

PROPOSITION 6.6. Lei X be α coalgebra, then starting with D±

and 7ι=y, we have a sequence of maps yk: X-*SDk such that the following
diagram is homotopy-commutative:

(6.1)k

vv/zere ί k : Dk-+ΩSDk is the natural inclusion defined by ck(δ(k^(t)= <ί, <5(fc)>
/or any δ^εDk and tεl.

PROOF. If γ(x)&*9 put γ(x)= <ax, lx>9 then we have 5^ y(x)= <αx,

(s-><s, ίx>)> and Sί2y y(x) = < α^, (s-^<αx>s, /jc,s>)>> where <ax>s9 lx>s>
= y(lx(s)) and (s-»<αs, /s>) denotes the loop of SΩX which sends s to <αs,
/s>. Then the condition (Γ^) implies that

(6.8) aXtS = s and lx>s = lx for all se/.

Therefore, we may define a homotopy Γ: Xx I-^SΩDί by
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( <αx, (s - ><s, /,>)> if
Γ(x, u) =

I * if γ(x) = *,

and κl: X-^Wl by κl(x) = (y(x\y(x\w(x)\ where w(x) is the path in SΩDί

defined by w(x)(w) = Γ(x, w), and finally γ2: X^>SD2 by

!„(/„ 7,, ω<ι>)> if y(x)**,

if y(x) = *,

where ωx

1} is the path in ΩSD1 such that «flx, ωx°» = w(x) holds. Then the

diagram (6.7)! is homotopy-commutative. Put y2(x) = <«*, <5(2)(x)> for x

φΣ = {xeX 9γ(x) = *}. Then, we obtain 5ί2 y2(x)= <ax, (r-κr, ^(2)(x)>)>
and SΩy2 y(x)= <αx, y2o/ x> = <αjc,(r-^<r, ^ί2>(x)>)> by (6.8). Define

^-I->ί2SD2 and ^3):^-I-^D3 by ^<2)(x)(r)= <r, <5<2>(x)> and

= (^<2>(x), /„ ω^2>(x)), where ω^2>(x) is the path of Ω5D2 defined by ω<2>(x)(w)
( 2 ) (x) fora l lwe/ .

Then, we may define κ2: X-*W2 and y3: X-+SD3 by κ:2(x) = (y2(x), y(x),
), and

<ax, δ^(x)> for x#Σ,

* for xeΓ,

and it holds <92y3 = κ;2.
Now, assume that we have defined maps γt: X^SDh ί = l, 2,..., /c (fe^3),

such that it holds

> for xφΣ,

for xeΓ,

where δW(x) = (δ«-»(x)9 /x, ω^'-^ίx)) and ω*1"^*) is the path of

defined by [ωί'-1>(x)(ιι)](0 = <ί, 5( ί"1)(x)>, moreover it holds δ«

Then, we obtain

Therefore, we may define δ<k+1>: X-Σ-+Dk+ί by δ<*+1>(x) = (<5<*>(x), /„
ω(k>(x)), where ω(k>(x) is the path of ΩSD* defined by [ω<*>(x) (u)] (ί) = < ί,

for x^Γ,

for x el1,
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and κk: X-+Wk by κk(x) = (γk(x), y(x), «ax, ω(fc)(x)»). Obviously, it holds
Θk γk+1 =κk and y k + 1 , δ(k+l)(x) satisfy the required conditions.

Now, let X be an (n — \ )-connected coalgebra and consider the following
homotopy-commutative diagram:

Since conn.γ*) = 2n — 2 and conr\.ΩX — n — 2, using Lemmas 3.1 and 3.2 in [3],

we obtain

(6.9.1) conn.y fc =

(6.9.2) conn. θk = (k + 3) (n - 2) + 3,

(6.9.3) conn. (ε°πk>2) = (fc + 2) (n - 2) + 3,

(7.9.4) conn.Dfc = n-2.

PROOF OF THEOREM 6.4. For a sufficiently large fc, we have dimX^(k + 2)

(n-2) + 3. Fix such a fc, and put ΛΓ = (fc + 2)(n-2) + 3. Since conn. (ε°πkj2°

<9Λ) = (/c + 2)(n-2) + 3, by J. H. C. Whitehead's theorem, (β°πkf2°®fcV HN(SDk+ί)
-+HN(X) is an epimorphism. On the other hand, since dimX^N, HN(X) is
free, using Berstein-Hilton's homology decomposition (Theorem 6.1 in [2]) we
obtain a Ct^-complex Y and a map/ 7 : Y->Dk+ί satisfying the following condi-

tions:

(6.10.1) /;: Hq(Y) - >Hq(Dk+}) is an isomorphism for q < ΛΓ-1.

(6.10.2) (ε°πfcj2

0^oS/')* HN(^Y) - > HN(X) is an isomorphism.

(6.10.3) Hq(Y) = 0 for ^ > N.

Since //^(X) = 0 for q>N,f=ε°πk)2°Θk°Sf': SY->X is a homotopy equivalence.

LEMMA 6. 11. For the homotopy equivalence f in Theorem 6.2, /=/°y is
homotopic to a suspended map.

PROOF. By definitions, we have the followings:

*) For a based map /: X-* Y, we denote conn. f=n if JΓi(/)=0 for i ^«, which is equivalent
to say that /*: π<(ΛΓ)-»πi(y) is an isomorphism for ι</ι, and /#: πn(JΓ)-»τrn(F) is an
epimorphism.
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for 1 ̂  ί g fc;

f°r 1 = ' = ^~

for 1 g z ^ /c;

where ε0>t : SΩSDi-+SDi is the map defined by

e0i,<fl, (r - > <ί>r, a<'>>)

Then, we obtain

yof ~ yo£°7l lf2
0®loy2o£oπ2,20®2oy30'

COROLLARY 6.12. 77ιe homotopy equivalence f in Theorem 6.2 is α ^-v4;

2-

map.

PROOF. Let y'0 be the canonical coretraction of 57, then we have y0°7°/
~SΩγ°SΩf°γ'θ9 and then applying ε0 by the left we obtain yof~SΩ(ε°y)°SΩfoy'Q.

Therefore /is a q-A'2-ma.p.

Being X a coalgebra is a sufficient condition for X to be a homotopy-sus-
pended space, however, this characterization is not homotopically invariant, and
then we attempt to put it in the homotopy-version.

Define maps ε,: SD^X, /^2, by e f<ii, (δ^~1^ /, ω^-}))> =l(a).

DEFINITION 6.13. i) A space X is a homotopy-coalgebra of order 1 (abbr.
HCAL-ΐ), if it admits a coretraction 7, i.e., X is an A 2 -space. A map/: ^Γ
->7 of HCAL-Γs is an HCAL-l-map if there exists a homotopy Γ 1 ( f } = H(γγo

f , SΩfoyx).
ίi) An HCAL-1 X is a homotopy-coalgebra of order 2 (abbr. HCAL-2)

if it admits a coretraction y2 f°r ε2» i e » ^ holds £2°y2 — 1. An HCAL-l-map
/: JT->y of HCAL-2's is an HCAL-2-map if there exists a homotopy Γ2(/)

REMARK 6.14. i) Let X be an HCAL-1 with a coretraction γ,f: X-+Ybε a
homotopy-equivalence with a homotopy-inverse ^f, then y' = SΩf°yog is a coretrac-

tion of Y and /and # are HCAL-1-maρs with respect to these coretractions.
ii) Let X be an HCAL-2, and /: X-+Y be a homotopy-equivalence with a

homotopy-inverse g. Since / and g are HCAL-1-maρs, we may define D2(/):
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D2(X)->D2(Y) and D2(g):.D2(Y)-+D2(X) such that we have D2(g)°D2(f)*l9

D2(/)°D2(0)^1, τr1 > 1oD2(/) = Ω/oπ1 a and π1)2oD2(/) = Ω/oπ1>2 and so on. Simi-
larly, we may define SD2(f): SD2(X)->SD2(Y), W^f): W^X^W^Y), SD2(g)

and W}(g) satisfying the similar conditions as above, and moreover, we have the
following homotopy-commutative diagram:

SD2(X) -J*±>L+ Wλ(X) -π-̂ -ί_> SΩX Eχ > X

Π l ΐ IT
HΊ(0) S«/|S«» / I N

7^ WiW) -^Ί^ SΩY-Ί7-^Y

Notice that D2(g)°D2(f) ~ 1 is shown by the fact that the exact presentations of
homotopies Γj(/) and Γ^g) are given by the aid of F = H(gof9 1). The essential

part is shown in the following Figure 4, where the thick arrows represent altogether

the third component ω* of D2(g)°D2(f)(l'9 /", ω).

1 o

ΩSΩ(g»f)otl(l') ΩSΩ(g°f)°Ωγx(l")

ΩSΩF(ω(2u), l-v)
/ΩSΩF(Ωyx(D,l-v)

ΩSF(Ωγχ.ΩF(I",2-2u ), l-v)

ω(2u)
Fig. 4

Ωyχ.Ω(g*f)(D

Define γ2J: Y-*SD2(Y) by y2,γ — SD2(f)°y2,x°9>trιen 72,y is a coretraction for
ε2,y = εy°π2,ι°^ι,y and / and g are HCAL-2-maps with respect to y2)X and γ2,y

Fix a map/: X->SYand set/(x)= <aχ9 yftX>. Let {X; SY}(/) be the to-
tality of maps g: X-+SY such that we have g(x)— <ax, yg,x>. Then two maps
g0 and g± of {X; SY} (/) are said to be s-homotopίc if there exists an s-homotopy
G = sH(g0, g^)'. X x/->SΎ, i.e., G has the presentation G(x, u)= <ax, yx>u>

in notation, #0-0ι
5

PROPOSITION 6.15. ^4n HCAL-l is an HCAL-2 if and only if there exists

a coretraction γ for which we can find an s-homotopy Γ = sH(Sί^y9 SΏyoy).

Therefore, an HCAL-2 X is an A'3-cogroup. Further if an HCAL-2 X is (n-1)-

connected and of dimension^4n — 5, then X has the HCAL-l homotopy-type

of a suspended space.
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PROOF. Sufficiency is easily seen, and we show necessity. Put Ξ = H(ε°γ9

1), Ξ2 = H(ε2°y2, 1), κ\=Θ1oγ29 γ' = πίtί°κ\, y" = πlt2°κ\ and y2(χ)=<aχ9 (Γx, Γx,
cox)>. Define an s-homotopy Γ f = sH(Se1oγf, SΩy°y") by Γ'(x,u)=«aχ9

ωx»(u). Then, we have Γ0 = H(yf, γ) = e0of' + yo£2, Γ'S = sH(y', γ") = SΩe<>Γ'
+ SΩSo(/'χl) and Γ"0 = H(f, y) = ^Γ'£ + Γ'0. Therefore, we - may define f"
= sH(Scloy\ SΩy", y") by f" = ^S^oΓJ' + f ' + SΩ/>(/' x 1). Thus we have
obtained the first assertion. The remainders are easily obtained (cf. the proof of
Theorem 6.2).

DEFINITION 6.16. An HCAL-2 X is an HCAL-3 if there exists a coretrac-
tion 73 : X->SD3 for ε3. An HCAL-2-map /: X-> Y of HCAL-3's is an HCAL-
3-map if there exists a homotopy Γ3(f) = H(y3Jof, SD3(f)°y3fX).

By the same argument as in Proposition 6.15, we obtain

PROPOSITION 6.17. If X is an HCAL-3, then we have a homotopy H(Sί2°
y2, SΩy2°y), and then y2 is a q-A'2-map. Moreover, we can define a map κ2:
X-*W2 such that it holds Θ2°y3~κ2. Obviously, an (n—\)-connected HCAL-3
of dimension ̂ 5n — l has the homotopy type of a suspended space.

By the similar argument as in Remarks 6.14 (ii), we see that being an HCAL-3
is a homotopy-in variant.

We conclude this section by considering the relation between HCAL-3's
and 5-^4-sρaces. We begin with

PROPOSITION 6.18. Let X be an HCAL-2 satisfying the following condi-

tion [ss-f2(y)]:
There exists a homotopy Γ2(y): X xl xI-+SΩSΩSΩX such that we have

Γ2(y)(x, ii, 0) =

Γ2(γ)(x, u, 1) = SΩSΩyoΓ(x, ιι),

Γ2(y)(x9 u, v) = <ax, (r-><Bx>v,r, (s-+< , >)>)> for (u9 u)e(0, 1),

where Γ(x, u) = sH(Sfloy9 SΩyoy)(χ, w)= <ax, (s^<Sx>M>s, /x,tt,s>)> for the pres-
entation γ(x)= <aχ9 lx>.

Then,X is an HCAL-3.

PROOF. Notice that we have

S,2oy2(x) = <ax, (r - > <r, (1X9 1X9

= <aχ9(r - > <
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SΩy2oy(x) = <aχ9 (r > <ax>r, (lXtf, l X t f 9 ωXtf)>)> ,

where «aX9 ωx» (w) = f(x, ι/) and <aXtr, lXtf> =y(lx(r)). Then,, we may de-

fine a homotopy f 2: X x I->SΩSD2 by

f 2(x, i?) = <aχ9 (r —> £<JC,I7fΓ, (/*,„,,., 7 ,̂,,,, ωjc>yjr)>)> ,

where ωX)Vίt. is the path of ΩSΩX such that it holds

Then, it holds Γ2 =
 sH(Se2oy2, SΩy2oy), and we obtain a lift y3: X-*SD3 by

where ω(2)(x) is the path of ΩSD2 such that we have «ax, ω
(2)(x)» (u) = f2(x,

ί;). Obviously, we obtain ε3oy3 = 807^1 and ®2

oy3 = κ:2.

DEFINITION 6.19. We call an A3-cogroup a weak-homotopy-coalgebra of

order 2 (abbr. WHCAL-2) in the sense that there exists a homotopy

A WHCAL-2 X is a WHCAL-1 if there exists a homotopy Γ2(y): Xxlxl

+SΩSΩSΩX satisfying the first four conditions of [ss — Γ2(y)] with respect to

THEOREM 6.20. Let X be an s-A'4-cogroup such that the corresponding y

is an A'3-map, then X is a WHCAL-3.

To prove this theorem, we make some preparations.

Given an v43-cogroup A, a finite CflK-complex Z and any space Y, let {AxZ;

Y}1 be the space of all maps /: (A x Z, *x x Z)->(7, *) and [X x Z; Y]j be the cor-

responding homotopy set. Then, we have

LEMMA 6.21. (i) {AxZ; Y}t is an A3-group under the multiplication in-

duced by μ'A.

(ii) ΦkϊN : [A x Z; Wk__ ^SΩX^^A x Z; Wk(X)~\t and Ψ*:[AxZ', SΩX]t

V [ A x Z ; X-^X^ are monomorphisms.

Using Lemma 6.21 (ii), we obtain

LEMMA 6.22. For a q-A'2-map f: X-+Y of A'3-cogroups, the following two

conditions are equivalent:

[WHCAL-2] There exists a homotopy Γ 2(/): XxIxI-*SΩSΩY satisfy-

ing the following conditions:
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, u> 0) = SΩSΩfoΓx(x, M),

Γ2(/)(x, u, l) = fy(/(x), ι/),

x), 2t?) for 0 ̂  t? g 1/2,
f 2(/Xχ, 0, t;) = ,

SΩyγ°Γ(f) (x, 2v - 1) for 1 /2 g t; g 1,

SΩSΩfoγ0)Xγx = y0fY°SΩfoγx for 0 ̂  i; g 1/2,

for 1/2 g i? ^ 1,

where Γx = H(SΩγχoγX) y0,*°7x) «wd Γ(f) = H(SΩfoγx, yγ0f).

[WHCAL-2'] T/z^r^ βxisίsα homotopy Γ2(f): X x I x I -+ SΩYv SΩY
satisfying the following conditions:

Γ2(f)(x, u, 0) = (SΩfV SΩf)oΓ'x(x9 ιι),

(f (/) ( , 2ι>) V Γ( , 2v))oμ'x(χ) for 0 ^ t; ̂  1/2,

(yYVyY)oH'2(f)(x-2v-l) for 1/2 g υ ̂  1,

(SΩfvSΩf)oμ^χ7χ(x) = μ'0.ySO/°yχ(x) '/or 0 g i; g 1/2,

-l) /or 1/2 ^ t> £ 1,

'x, μΌx γJ and ///

2(/)

As easily seen, an ^3-cogroup is a WHCAL-3 if and only if the coretrac-
tion satisfies the condition [WHCAL-2].

PROPOSITION 6.23. Let f: X-+SY be an A'3-map of A'3-cogroups. If

fvf is a homotopy-monomorphism, then f satisfies the condition [WHCAL-2].

PROOF. Recall the Ganea's proof of [3 : Theorem 2.2], where the homotopy
H((yVy)oμ'9 γ'Qoy) is constructed via homotopies N = H(P(v' V l)μ', *), Γ = H(Φ2°

γ, μ'\ E = H(P(1 V *)oμ7, 1) and Z = H((μf V /ι>μ', (1 V μ' V 1>(1 V μ'^μ'). Since
/is an /l3-map,/is compatible with Z, N and E. Moreover, since/V/is a homo-

topy-monomorphism, / is compatible with Γ. Therefore, we may construct the

desired homotopy Γ2(/).

PROOF OF THEOREM 6.20. As easily seen, 7 V y is a homotopy-monomor-
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phism, then we can obtain the result by Proposition 6.23 and Lemma 6.22.
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