On Higher Coassociativity

Shiroshi Saito
(Received May 18, 1976)

Introduction

$\mathrm{Co}-\mathrm{H}$-spaces are defined as generalizations of suspended spaces, and, to certain extent, they have dual properties of H-spaces which are considered as generalizations of loop spaces. For H-spaces the so-called Sugawara-Stasheff's sequence of fibrations plays an essential rôle, however, for co- H-spaces we have no such ones. On the other hand, as Ganea pointed out, the coretraction γ for the evaluation map ε seems to be important for co- H-spaces. The purpose of the present paper is to define A_{n}^{\prime}-structures which are formal dual of Stasheff's A_{n}-form and some relevant notions, e.g., A_{n}^{\prime}-maps and (weak-) homotopy-coalgebras, and then to consider how γ relates to these notions.

In §1, we give the preliminary definitions and results concerning co- H-spaces and the coretraction γ. In $\S \S 2-3$, we give the definitions of A_{n}^{\prime}-spaces and A_{n}^{\prime}-maps and some of their properties. In $\S 4$, we define a generalized Hopfhomomorphism $H(f)$ of a map f of A_{2}^{\prime}-spaces whose vanishing is equivalent to f being a $q-A_{2}^{\prime}$-map.

Now, our main results are as follows.
Theorem 5.7. An A_{3}^{\prime}-cogroup X is an s - A_{4}^{\prime}-cogroup if and only if the corresponding coretraction γ is a $q-A_{3}^{\prime}$-map.

Theorem 6.4. If X is a simply-connected coalgebra of finite dimension, then X has a homotopy-type of a suspended space.

Theorem 6.20. Let X be an s- A_{4}^{\prime}-cogroup such that the corresponding γ is an $A_{3}^{\prime}-m a p$, then X is a weak homotopy coalgebra of order 3.

Our method is very elementary-homotopical, and the most difficulties arise from the fact that we must construct the (s-)homotopy of (s-)homotopies.

The author wishes his hearty thanks to Prof. M. Sugawara for his encouragement and valuable comments during the preparation of this paper.

§ 1. Preliminaries

In this section, we shall state preliminary facts which will be necessary in the subsequent sections. Throughout present paper, if otherwise not mentioned,
all considerations will be carried out in the category $C W_{*}$ of countable based CW-complexes and based continuous maps, therefore, homotopies are based homotopies.

Notations.

$W_{n}(X)=X \underbrace{\vee \vee \vee}_{n} X$, the wedge product (i.e., the one point union) of n copies of X,
$j_{n}: W_{n}(X) \rightarrow X^{n}$, the inclusion map,
$\nabla_{n}: W_{n}(X) \rightarrow X$, the folding map, i. e., $\nabla_{n}(*, \ldots, x, \ldots, *)=x$,
$\Delta: X \rightarrow X \times X$, the diagonal map, i.e., $\Delta(x)=(x, x)$,
$i_{k}^{\prime}: X \rightarrow W_{n}(X)$, the inclusion map into the k-th factor,
$p_{k}^{\prime}: W_{n}(X) \rightarrow X$, the projection onto the k-th factor,
$X * Y$, the join of spaces X and Y, whose typical point is $t_{0} x \oplus t_{1} y, t_{0}, t_{1} \geqq 0$, $t_{0}+t_{1}=1$,
$X \wedge Y$, the smash product of spaces X and Y,
Y^{X}, the space of base point free maps $f: X \rightarrow Y$ (equipped with the base point $*: X \rightarrow *_{Y}$),
$\{X ; Y\}$, the space of based maps $f:(X, *) \rightarrow(Y, *)$,
[$X ; Y$], the set of all based homotopy classes of based maps $f:(X, *) \rightarrow(Y$, *),
$\Omega_{X}(A, B)$, the space of paths in X whose starting points are in A and terminating points are in B,
S, the suspension functor,
Ω, the loop functor,
(categories will be denoted by bold-faced capital letters).
A multiplicative set M is the set with a multiplication $\mu: M \times M \rightarrow M$ having two-sided identity element e. We shall write $x \circ y$ for $\mu(x, y)$. A map $f: M \rightarrow M^{\prime}$ of multiplicative sets is a homomorphism if it satisfies $f(x \circ y)=f(x) \circ f(y)$ for any $x, y \in M$ and $f(e)=e^{\prime}$. Multiplicative sets and homomorphisms make up a category M. A multiplicative set M is said to admit inverses if there exist two maps v_{R} and v_{L} of M into M such that $x \circ v_{R}(x)=e$ and $v_{L}(x) \circ x=e$ hold. A loop Λ is the multiplicative set satisfying the following conditions: for any $a, b \in \Lambda$, there exists a unique $x \in \Lambda$ such that $a \circ x=b$, and there exists a unique $y \in \Lambda$ such that $y \circ b=a$. Sometimes we shall write $a \backslash b$ and a / b for such x and y. Loops and homomorphisms make up a category $\boldsymbol{\Lambda}$.

A based space $(X, *)$ is a co- H-space if $[X ;]$ is a covariant functor of $\boldsymbol{T O P}_{*}$ into \boldsymbol{M}, or equivalently, there exists a based map $\mu^{\prime}: X \rightarrow X \vee X$ such that $\nabla_{2}(1 \vee *) \mu^{\prime} \simeq 1 \simeq \nabla_{2}(* \vee 1) \mu^{\prime}$ hold, or $j_{2} \mu^{\prime} \simeq \Delta$ holds, where \simeq means that both sides are homotopic. μ^{\prime} is the comultiplication and $*$ is the counit. A co- $\mathrm{H}-$ space is necessarily path-connected. We shall use the traditional notation + in
[X;]. Then, we have $\mu^{\prime} \simeq i_{1}^{\prime}+i_{2}^{\prime}$.
A co- H-space X is said to admit coinversions, if there exist two maps v_{R}^{\prime} and $v_{L}^{\prime}: X \rightarrow X$ such that $\nabla_{2}\left(1 \vee v_{R}^{\prime}\right) \mu^{\prime} \simeq * \simeq \nabla_{2}\left(v_{L}^{\prime} \vee 1\right) \mu^{\prime}$ hold. A co- H-space X is an h-coloop if $[X ;]$ is a covariant functor of $\boldsymbol{T O P}_{*}$ into $\boldsymbol{\Lambda}$.

Proposition 1.1. (cf. [7]). Let $\left(X, \mu_{x}^{\prime}\right)$ be a given co-H-space.
(1.1.1) If X is simply connected, X admits coinversions.
(1.1.2) The following two conditions are equivalent:
(i) $[X ; X \vee X]$ admits a loop-structure with respect to μ_{x}^{\prime}.
(ii) X admits coinversions.

Definition 1.2. Given a triad ($f_{1}: X_{1} \rightarrow B \leftarrow X_{2}: f_{2}$), define its fibred product $T_{f_{1}, f_{2}}$ by

$$
T_{f_{1}, f_{2}}=\left\{\left(x_{1}, x_{2}, w\right) \in X_{1} \times X_{2} \times B^{\prime} \mid w(0)=x_{1} \quad \text { and } \quad w(1)=x_{2}\right\} .
$$

The projections $\pi_{i}: T_{f_{1}, f_{2}} \rightarrow X_{i}, i=1,2$, are defined by

$$
\pi_{i}\left(x_{1}, x_{2}, w\right)=x_{i}
$$

Lemma 1.3. Let $T_{f_{1}, f_{2}}$ be the fibred product of a given triad $\left(f_{1}: X_{1} \rightarrow B\right.$ $\leftarrow X_{2}: f_{2}$).
(i) The projections π_{1} and π_{2} are fibre maps.
(ii) For any homotopy commutative diagram

there exists a map $k: X \rightarrow T_{f_{1}, f_{2}}$ such that $\pi_{1} k=g_{1}$ and $\pi_{2} k=g_{2}$ hold.
Moreover, if X is an h-coloop and π_{2} induces a monomorphism $\pi_{2 *}:[X$; $\left.T_{f_{1}, f_{2}}\right] \rightarrow\left[X ; X_{2}\right]$ (this is the case when the homotopy-fibre of f_{1} is contractible in X_{1}), then k is unique up to homotopy.

With abuse of language, we say that $T_{f_{1}, f_{2}}$ is a homotopy pull back of (f_{1} : $X_{1} \rightarrow B \leftarrow X_{2}: f_{2}$).

Finally, we shall recall Ganea's theorems [3] for the subsequent considerations.

Theorem 1.4. Consider the h-pull back $T_{\Delta, j_{2}}$, then there exists a homotopyequivalence $\theta: S \Omega X \rightarrow T_{\Delta, j_{2}}=T$ such that the following diagram is homotopycommutative:

where ε is the evaluation map, i.e., $\varepsilon<a, l>=l(a)$, and Ψ is the map defined by

$$
\Psi<a, l>=\left\{\begin{array}{lll}
(l(2 a), *) & \text { for } & 0 \leqq a \leqq 1 / 2 \\
(*, l(2 a-1)) & \text { for } & 1 / 2 \leqq a \leqq 1
\end{array}\right.
$$

Moreover, Ψ induces monomorphism of generalized homotopy groups, and therefore the totality of homotopy classes of comultiplications of X and the totality of homotopy classes of coretractions of ε, i.e., maps $\gamma: X \rightarrow S \Omega X$ satisfying $\varepsilon \gamma \simeq 1$, are in 1 to 1 correspondence. Finally, the homotopy fibre*) of ε, i. e., the fibre of π_{1}, is $\Omega X * \Omega X$.

Theorem 1.5. Let $\Phi_{k}: W_{k-1}(\mathrm{~S} \Omega X) \rightarrow W_{k}(X)$ be the map defined by

$$
\Phi_{k}(*, \ldots,<\underset{i-t h}{a, l>}, \ldots, *)= \begin{cases}(*, \ldots, l(2 a), \ldots, *) & \text { for } 0 \leqq a \leqq 1 / 2 \\ (*, \ldots, \underset{i-t h}{*}, \ldots, l(2-2 a)) & \text { for } 1 / 2 \leqq a \leqq 1\end{cases}
$$

Then, Φ_{k} induces monomorphisms of generalized homotopy groups, and W_{k-1} ($\mathrm{S} \Omega X$) may be considered as the homotopy fibre of ∇_{k}.

Theorem 1.6. Let $\left(X, \mu_{X}^{\prime}\right)$ be an h-coloop, then μ_{X}^{\prime} is homotopy coassociative if and only if the corresponding coretraction γ is a co-H-map.

§2. $\boldsymbol{A}_{\boldsymbol{n}}^{\prime}$-spaces

Let $\left(X, \mu^{\prime}, *\right)$ be a co- H-space. There are various ways of coassociating to define a map $\alpha: X \rightarrow W_{n}(X)$ using μ^{\prime} repeatedly. For $n=2$, there exists only one μ^{\prime}; but for $n=3$, there are two ways, $\left(\mu^{\prime} \vee 1\right) \mu^{\prime}$ and $\left(1 \vee \mu^{\prime}\right) \mu^{\prime}$; for $n=4$, there are 5 ways,... Moreover, different ways of coassociating may define the same map, for example, $\left(\mu^{\prime} \vee 1 \vee 1\right)\left(1 \vee \mu^{\prime}\right) \mu^{\prime}=\left(1 \vee 1 \vee \mu^{\prime}\right)\left(\mu^{\prime} \vee 1\right) \mu^{\prime}\left(=\left(\mu^{\prime} \vee \mu^{\prime}\right) \mu^{\prime}\right): X \rightarrow W_{4}(X)$.

For each $\alpha: X \rightarrow W_{n}(X)$ we shall define a sequence σ_{α} of $(n-1)$ increasing integers by the following way.

For $n=2, \sigma_{\mu^{\prime}}=\{1\}$. Assume that we have defined for $n(\geqq 2)$. Let

[^0]$$
\alpha=\left(1 \vee \cdots \vee \underset{k-t h}{\mu^{\prime}} \vee \cdots \vee 1\right) \alpha^{\prime}: X \longrightarrow W_{n}(X) \longrightarrow W_{n+1}(X)
$$
be a coassociating presentation of α, and $\sigma_{\alpha^{\prime}}=\left\{i_{1}^{\prime}, \ldots, i_{n-1}^{\prime}\right\}$. Put
\[

$$
\begin{cases}i_{v}=2 i^{\prime} & \text { for } v<k \tag{2.1}\\ i_{k}=i_{k-1}^{\prime}+i_{k}^{\prime} & \left(i_{0}^{\prime}=0 \text { and } i_{n}^{\prime}=2^{n-1}\right) \\ i_{v}=2 i_{v-1}^{\prime} & \text { for } v>k\end{cases}
$$
\]

(Thus, σ_{α} corresponds to a process of taking successive midpoints in the interval [$\left.0,2^{n}\right]$.) As easily seen, α 's and σ_{α} 's are in 1 to 1 correspondence.

Now, let $\partial_{k}(n+1-s, s)$ be the parenthesizing $x_{1} \cdots\left(x_{k} \cdots x_{k+s-1}\right) \cdots x_{n}$ of n letters word $x_{1} x_{2} \cdots x_{n}$. For each $\sigma_{\alpha}=\left\{i_{1}, \ldots, i_{n-1}\right\}$, we shall define a set of $(n-2)$ parenthesizings $\partial_{k_{i}}\left(n+1-s_{i}, s_{i}\right)$ by the followings:
(2.2.a) If $i_{k}-i_{k-1}=i_{k+1}-i_{k}=2^{v}\left(v=0,1, \ldots\right.$, or $\left.2^{n-2}\right)$ and $2^{v} \mid i_{k}$ but $2^{v+1} \nmid i_{k}$, then we say that $\left\{i_{k-1}, i_{k}, i_{k+1}\right\}$ defines $\partial_{k}(n-1,2)$.
(2.2.b) If $\left\{i_{k-1}, \ldots, i_{k+s-1}\right\}$ defines $\partial_{k}(n-s+1, s), i_{k+s-1}-i_{k-1}=2^{\mu}, 2^{\mu} \mid i_{k+s-1}$ but $2^{\mu+1}+i_{k+s-1}$, or if $\left\{i_{k}, \ldots, i_{k+s}\right\}$ defines $\partial_{k+1}(n-s+1, s), i_{k+s}-i_{k}=i_{k}-i_{k-1}$ $=2^{\mu}, 2^{\mu} \mid i_{k}$ but $2^{\mu+1}+i_{k}$, then we say that $\left\{i_{k-1}, i_{k}, \ldots, i_{k+s}\right\}$ defines $\partial_{k}(n-s, s+1)$. (2.2.c) If $\left\{i_{k-1}, \ldots, i_{k+s-1}\right\}$ defines $\partial_{k}(n-s+1, s)$ and $\left\{i_{k+s-1}, \ldots, i_{k+s+t-1}\right\}$ defines $\partial_{k+s}(n-t+1, t)$ and $i_{k+s+t-1}-i_{k+s-1}=i_{k+s-1}-i_{k-1}=2^{\mu}, 2^{\mu} \mid i_{k+s-1}$ but $2^{\mu+1}+i_{k+s-1}$, then we say that $\left\{i_{k-1}, \ldots, i_{k+s-1}, \ldots, i_{k+s+t-1}\right\}$ defines $\partial_{k}(n-s-t$, $s+t$).

Thus, to each α, we have defined the unique set of ($n-2$)-parenthesizings of the n-letters word, and then applying these ($n-2$)-parenthesizings we have a "complete" parenthesizing. On the other hand, these complete parenthesizings and vertices of Stasheff's complex K_{n} are in 1 to 1 correspondence.
Therefore, the totality of α 's and the vertices set of K_{n} are in 1 to 1 correspondence.
Here, we recall the definition of $K_{n}[10]$.

$$
\begin{aligned}
& K_{n}=\left\{\left(t_{1}, \ldots, t_{n-2}\right) \in I^{n-2} \mid \forall j, 2^{j} t_{1} \cdots t_{j} \geqq 1\right\}, n \geqq 2, \\
& \partial K_{n}=L_{n}=\left\{\left(t_{1}, \cdots, t_{n-2}\right) \in K_{n} \mid \exists j, 2^{j} t_{1} \cdots t_{j}=1 \text { or } t_{j}=1\right\} .
\end{aligned}
$$

There exist face maps $\partial_{k}(r, s): K_{r} \times K_{s} \rightarrow K_{n}, r+s=n+1,1 \leqq k \leqq r$, and degeneracy maps $s_{j}: K_{n} \rightarrow K_{n-1}, 1 \leqq j \leqq n, n \geqq 3$, and these maps are subject to the following commutation laws:

$$
\begin{align*}
& \partial_{j}(r, s+t-1)\left(1 \times \partial_{k}(s, t)\right) \tag{2.3.a}\\
& \quad=\partial_{j+k-1}(r+s-1, t)\left(\partial_{j}(r, s) \times 1\right)
\end{align*}
$$

$$
\begin{equation*}
\partial_{j+s-1}(r+s-1, t)\left(\partial_{k}(r, s) \times 1\right) \tag{2.3.b}
\end{equation*}
$$

$$
=\partial_{k}(r+t-1, s)\left(\partial_{j}(r, t) \times 1\right)(1 \times T), \quad j>k,
$$

where $T: K_{s} \times K_{t} \rightarrow K_{t} \times K_{s}$ is the switching map;

$$
\begin{equation*}
s_{j} s_{k}=s_{k} s_{j+1} \quad \text { for } \quad k \leqq j ; \tag{2.3.c}
\end{equation*}
$$

$$
\begin{align*}
& s_{j} \partial_{k}(r, s) \tag{2.3.d}\\
& \quad=\partial_{k-1}(r-1, s)\left(s_{j} \times 1\right) \quad \text { for } j<k \text { and } r>2, \\
& \quad=\partial_{k}(r, s-1)\left(1 \times s_{j-k+1}\right) \\
& \quad \text { for } s>2, k \leqq j<k+s, \\
& \quad=\partial_{k}(r-1, s)\left(s_{j-s+1} \times 1\right) \tag{2.3.e}\\
& s_{j} \partial_{k}(n-1,2)=\pi_{1} \quad \text { for } \quad k+s \leqq j \\
& s_{1} \partial_{2}(2, n-1)=s_{n} \partial_{1}(2, n-1)=\pi_{2},
\end{align*}
$$

where π_{1} and π_{2} are projections onto the first and the second factors.
Since K_{n} is a convex cell complex which is homeomorphic to I^{n-2}, starting with $s_{1}, s_{2}, s_{3}: K_{3} \rightarrow K_{2}=\{*\}$ and using (2.3.d $\sim \mathrm{e}$), we may define s_{j} by induction on n.

Now, we define the vertices transformations

$$
\bar{\partial}_{k}(r, s): K_{r} \times K_{s} \longrightarrow K_{n},
$$

for $1 \leqq k \leqq r$ and $r+s=n+1$ by the following way:

$$
\begin{equation*}
\bar{\partial}_{k}(r, s)(\xi, \eta): X \xrightarrow{\rightrightarrows} W_{r}(X) \underset{\eta(k)}{\longrightarrow} W_{n}(X), \tag{2.4}
\end{equation*}
$$

for any $\xi \in K_{r}$ and $\eta \in K_{s}$, where $\eta(k)=1 \vee \cdots \vee \eta_{k-t h} \vee \cdots \vee 1$. If $\xi=\left\{\xi_{1}, \ldots, \xi_{r-1}\right\}$ and $\eta=\left\{\eta_{1}, \ldots, \eta_{s-1}\right\}$, then we have

$$
\begin{align*}
\eta(k)= & \left\{2^{s-1} \xi_{1}, \ldots, 2^{s-1} \xi_{k-1}, a \eta_{1}+b, \ldots, a \eta_{s-1}+b,\right. \tag{2.5}\\
& \left.2^{s-1} \xi_{k}, \ldots, 2^{s-1} \xi_{r-1}\right\}
\end{align*}
$$

where $a=\xi_{k}-\xi_{k-1}$ and $b=2^{s-1} \xi_{k-1}$.
Lemma 2.6. $\quad \bar{\partial}_{k}(r, s)$'s satisfy the commutation laws (2.3.a) and (2.3.b).
Therefore, we may regard K_{n} as the cell complex defined by coassociatings. Fig. I shows K_{2}, K_{3} and K_{4}.

Fig. 1

Definition 2.7. A based space ($X, *$) is said to admit an A_{n}^{\prime}-structure, if there exist maps $M_{i}^{\prime}: X \times K_{i} \rightarrow W_{i}(X), 2 \leqq i \leqq n$, satisfying the following conditions:
(2.7.1) $\mu^{\prime}: X \rightarrow X \vee X$, defined by $\mu^{\prime}(x)=M_{2}^{\prime}(x,\{1\})$ for all $x \in X$, is a comultiplication, and $*$ is a counit;
(2.7.2) for any $(\rho, \sigma) \in K_{r} \times K_{s}, r+s=i+1$, it holds

$$
M_{i}^{\prime}\left(; \partial_{k}(r, s)(\rho, \sigma)\right)=M_{s}^{\prime}(; \sigma)(k) \circ M_{r}^{\prime}(; \rho),
$$

where $M_{s}^{\prime}(; \sigma)(k)=1 \vee \cdots \vee M_{s}^{\prime}(\underset{k-t h}{;} ; \sigma) \vee \cdots \vee 1$;
(2.7.3) for $i \geqq 3$, it holds $M_{i-1}^{\prime}\left(; s_{j}(\pi)\right) \simeq p_{j} M_{i}^{\prime}(; \tau)$, where $p_{j}=\nabla_{2}(j-1) \circ *(j)$ $=\nabla_{2}(j) \circ *(j)$.

If X admits an A_{n}^{\prime}-structure, we call X an A_{n}^{\prime}-space. If X admits an $A_{n}^{\prime}-$ structure for every n, we say that X admits an A_{∞}^{\prime}-structure.

Definition 2.7'. A based space $(X, *)$ is said to admit a w - A_{n}^{\prime}-structure, if in the above Definition 2.7, the condition (2.7.2) is replaced by:
(2.7.2') there exist maps $\bar{\partial}_{k}(r, s) \simeq 1 \times \partial_{k}(r, s): X \times K_{r} \times K_{s} \rightarrow X \times K_{i}, r+s=i+1$, and it holds

$$
M_{i}^{\prime}\left(\bar{\partial}_{k}(r, s)(x ;(\rho, \sigma))=M_{s}^{\prime}(; \sigma)(k) \circ M_{r}^{\prime}(x ; \rho)\right.
$$

for any $(x ;(\rho, \sigma)) \in X \times K_{r} \times K_{s}$.
Remark 2.8. If X is homotopically non-trivial, then X cannot be strictly coassociative, i.e., $\left(\mu^{\prime} \vee 1\right) \mu^{\prime}=\left(1 \vee \mu^{\prime}\right) \mu^{\prime}$ does not hold. On the contrary, assume that μ^{\prime} is strictly coassociative. Put $X_{-}=\mu^{\prime-1}(X \times\{*\}), X_{+}=\mu^{\prime-1}(\{*\} \times X)$ and $X_{0}=X_{-} \cap X_{+}$. Since X is homotopically non-trivial, we have $X_{-}-X_{0}$ $\neq \varnothing$ and $X_{+}-X_{0} \neq \varnothing$. Let x be an element of $X_{+}-X_{0}$. Then, $\left(1 \vee \mu^{\prime}\right) \mu^{\prime}(x)$ is of the form ($*, *, x^{\prime}$). Thus, we have

$$
\left(\mu^{\prime} \vee 1\right) \mu^{\prime}\left(X_{+}\right) \subset\{*\} \times\{*\} \times X,
$$

and

$$
p_{\hat{1}} p_{\hat{3}}\left(\mu^{\prime} \vee 1\right) \mu^{\prime} \simeq * .
$$

On the other hand, since $*$ is the counit, we have

$$
p_{\hat{\imath}} p_{\hat{3}}\left(\mu^{\prime} \vee 1\right) \mu^{\prime} \simeq 1,
$$

which contradicts to non-triviality.
2.9. We recall the definition of A_{n}-form [10] before we give Theorem 2.10.

A based space (X, e) is said to admit an A_{n}-form if there exist maps $M_{i}: X^{i}$ $\times K_{i} \rightarrow X$ for $2 \leqq i \leqq n$ satisfying the following conditions:
(2.9.1) $\quad M_{2}(e, x ;\{1\})=M_{2}(x, e ;\{1\})=x \quad$ for all $\quad x \in X$;
(2.9.2) for any $(\rho, \sigma) \in K_{r} \times K_{s}, r+s=i$, we have

$$
\begin{aligned}
& M_{i}\left(x_{1}, \ldots, x_{i} ; \partial_{k}(r, s)(\rho, \sigma)\right) \\
& \quad=M_{r}\left(x_{1}, \ldots, x_{k-1}, M_{s}\left(x_{k}, \ldots, x_{k+s-1} ; \sigma\right), x_{k+s}, \ldots, x_{i} ; \rho\right)
\end{aligned}
$$

(2.9.3) for $\tau \in K_{i}, i>2$, we have

$$
\begin{aligned}
& M_{i}\left(x_{1}, \ldots, x_{j-1}, e, x_{j+1}, \ldots, x_{i} ; \tau\right) \\
& \quad=M_{i-1}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{i} ; s_{j}(\tau)\right)
\end{aligned}
$$

Theorem 2.10. Let X be a finite $C W$-complex, then the following two conditions are equivalent:
(2.10.1) X admits an A_{n}^{\prime}-structure.
(2.10.2) For any based CW-complex B, the mapping space $\{X ; B\}$ admits a natural (i.e., functorial) A_{n}-form.

Proof. (2.10.1) implies (2.10.2). Suppose ($X, *$) has an A_{n}^{\prime}-structure $\left\{M_{i}^{\prime}\right\}$, $2 \leqq i \leqq n$. For any B, define $M_{i}:\{X ; B\} \rightarrow\{X ; B\}$ by
$\left[M_{i}\left(u_{1}, \ldots, u_{i} ; \tau\right)\right](x)=\nabla_{i}\left(u_{1} \vee \cdots \vee u_{i}\right) M_{i}^{\prime}(x ; \tau)$, for any $\left(u_{1}, \ldots, u_{i} ; \tau\right) \in\{X ; B\}^{i} \times K_{i}$. Let $e: X \rightarrow *$, then we have $M_{2}(u, e ;\{1\})$
$\simeq u \simeq M_{2}(e, u ;\{1\})$, but since we work in $C W$, we may assume that $M_{2}(u, e$; $\{1\})=u=M_{2}(e, u ;\{1\})$. Let $(\rho, \sigma) \in K_{r} \times K_{s}, r+s=i+1$, then (2.7.2) implies (2.9.2) as in the diagram below:

Similarly, (2.7.3) implies (2.9.3).
(2.10.2) implies (2.10.1). Put $\mu^{\prime}=i_{1}^{\prime}+i_{2}^{\prime} \in\{X ; X \vee X\}$, then we have $j \mu^{\prime}$ $=i_{1}+i_{2} \simeq \Delta$, where i_{1} and i_{2} are the inclusion maps of X into the first and the second factors. Thus, μ^{\prime} is a comultiplication, i.e., (2.7.1) is satisfied.

Define $M_{v}^{\prime}: X \times K_{v} \rightarrow W_{v}(X)$ by

$$
M_{v}^{\prime}(x ; \tau)=\left[M_{v}\left(i_{1}^{\prime}, \ldots, i_{v}^{\prime} ; \tau\right)\right](x) .
$$

Then, for any $(\rho, \sigma) \in K_{r} \times K_{s}, r+s=v+1$, we have

$$
\begin{aligned}
M_{v}^{\prime}(x ; & \left.\partial_{k}(r, s)(\rho, \sigma)\right) \\
& =\left[M_{r}\left(i_{1}^{\prime}, \ldots, i_{k-1}^{\prime}, M_{s}\left(i_{k}^{\prime}, \ldots, i_{k+s-1}^{\prime} ; \sigma\right), i_{k+s}^{\prime}, \ldots, i_{v}^{\prime} ; \rho\right)\right](x) \\
& =M_{s}^{\prime}(; \sigma)(k) \circ M_{r}^{\prime}(x ; \rho) .
\end{aligned}
$$

Thus, we have (2.7.2). Similarly, we have (2.7.3).
Proposition 2.12. $\quad S X$ admits an A_{∞}^{\prime}-structure.
Proof. For any vertex $\alpha=\left\{i_{1}, \ldots, i_{n-1}\right\} \in K_{n}$ and $\langle t, x\rangle \in S X$, put

$$
\tilde{M}_{n}^{\prime}(<t, x>; \alpha)=\left(*, \ldots,<\left(2^{n-1} t-i_{k-1}\right) /\left(i_{k}-i_{k-1}\right), x>, \ldots, *\right),
$$

for $i_{k-1} \leqq t 2^{n-1} \leqq i_{k}, k=1,2, \ldots, n$.
Since K_{n} may be regarded as a convex polyhedron which is a cone over L_{n}, it can be triangulated adding suitable vertices; then $M_{n}^{\prime}: S X \rightarrow W_{n}(S X)$ can be defined as a linear extension of \tilde{M}_{n}^{\prime}.

§3. $\boldsymbol{A}_{\boldsymbol{n}}^{\prime}$-maps and Mapping Cones

At first we shall fix a notation. Let $F: X \times I \rightarrow Y$ be a homotopy satisfying $F(x, 0)=f_{0}(x)$ and $F(x, 1)=f_{1}(x)$. Then, we shall denote F by $H\left(f_{0}, f_{1}\right)$.

Definition 3.1. A map $f: X \rightarrow Y$ of A_{n}^{\prime}-spaces is a homomorphism if $W_{i}(f) M_{X, i}^{\prime}=M_{Y, i}^{\prime}(f \times 1)$ holds for any $i \leqq n$.

For example, $S f: S X \rightarrow S Y$ is a homomorphism (with respect to μ_{0}^{\prime}) for any $\operatorname{map} f: X \rightarrow Y$.

Definition 3.2. A map $f: X \rightarrow Y$ of A_{n}^{\prime}-spaces is an A_{n}^{\prime}-maps, provided that there exist homotopies

$$
H_{i}^{\prime}=H\left(W_{i}(f) M_{X, i}^{\prime}, M_{Y, i}^{\prime}(f \times 1)\right): X \times K_{i} \times I \longrightarrow W_{i}(Y), \quad 2 \leqq i \leqq n,
$$

which are subject to the following conditions:
(3.2.1) for any $\partial_{k}(r, s), r+s=i+1$, there exists a homeomorphism $\tilde{\partial}_{k}(r, s)$ of $K_{r} \times K_{s} \times I$ into $K_{i} \times I$ which preserves level and satisfies

$$
\begin{aligned}
& H_{i}^{\prime}\left(\partial_{k}(r, s)((x ;(\rho, \sigma)), t)=\right. \\
& \left\{\begin{array}{l}
H_{s}^{\prime}\left((; \sigma),\left(\left(2^{i-1}-1\right) t\right) /\left(2^{s-1}-1\right)\right)(k) \circ M_{X, r}^{\prime}(x ; \rho) \\
\text { for } 0 \leqq t \leqq\left(2^{s-1}-1\right) /\left(2^{i-1}-1\right), \\
M_{Y, s}^{\prime}(; \sigma)(k) \circ H_{r}^{\prime}\left((x ; \rho),\left(\left(2^{i-1}-1\right) t+1-2^{s-1}\right) /\left(2^{i-1}-2^{s-1}\right)\right) \\
\text { for }\left(2^{s-1}-1\right) /\left(2^{i-1}-1\right) \leqq t \leqq 1,
\end{array}\right.
\end{aligned}
$$

for any $(\rho, \sigma) \in K_{r} \times K_{s}, i \geqq 3$;
(3.2.2) there exist homotopies

$$
\begin{aligned}
& F_{R}^{\prime}=H\left(f E_{X, R}^{\prime}+p_{\hat{1}} H_{2}^{\prime}, E_{Y, R}^{\prime} f\right), \\
& F_{L}^{\prime}=H\left(f E_{X, L}^{\prime}+p_{\hat{2}} H_{2}^{\prime}, E_{Y, L}^{\prime} f\right),
\end{aligned}
$$

where $E_{X, R}^{\prime}=H\left(1_{X}, p_{\hat{1}} \mu_{X}^{\prime}\right)$ and $E_{X, L}^{\prime}=H\left(1_{X}, p_{\hat{2}} \mu_{X}^{\prime}\right)$ and dotted plus $\dot{+}$ implies addition with respect to homotopy parameter;
(3.2.3) there exist homotopies

$$
\begin{aligned}
& H\left(p_{j} H_{i}^{\prime}+D_{Y, i, j}^{\prime}(f \times 1), W_{i-1}(f) D_{X, i, j}^{\prime}+H_{i-1}^{\prime}\left(1 \times s_{j}\right)\right): \\
& \quad X \times K_{i} \times I \times I \longrightarrow W_{i-1}(Y),
\end{aligned}
$$

where $D_{X, i, j}^{\prime}=H\left(p_{j} M_{X, i}^{\prime}, M_{X, i-1}^{\prime}\left(1 \times s_{j}\right)\right)$ and so on.
Remark 3.3. 1) Homeomorphisms $\tilde{\partial}_{k}(r, s)$'s are very complicated. For $i=4, \tilde{\partial}_{1}(3,2)$ is given in the following Fig. 2.

Fig. 2
2) Define $D_{X}^{\prime}=H\left(\Delta, j \mu_{X}^{\prime}\right)$ by $D_{X}^{\prime}(x, t)=\left(E_{X, L}^{\prime}(x, t), E_{X, R}^{\prime}(x, t)\right)$, then (3.2.2) is equivalent to
(3.2.2') there exists a homotopy $F=H\left((f \times f) D_{X}^{\prime}+j_{Y} \circ H_{2}^{\prime}, D_{Y}^{\prime} f\right)$, which is also equivalent to
(3.2.2") there exists a homotopy $G: X \times I \times I \rightarrow Y \times Y$ satisfying the following conditions

$$
\begin{aligned}
& G(x, t, 0)=(f \times f) D_{X}^{\prime}(x, t), G(x, t, 1)=D_{Y}^{\prime}(f(x), t) \\
& G(x, 1, s)=j_{Y} H_{2}^{\prime}(x, s) \quad \text { and } \quad G(x, 0, s)=\Delta_{Y} f(x)
\end{aligned}
$$

Definition 3.2'. A map $f: X \rightarrow Y$ of A_{n}^{\prime}-spaces is an quasi- A_{n}^{\prime}-map (abb. $q-A_{n}^{\prime}$-map) if homotopies H_{i} satisfy only the condition (3.2.1).

Lemma 3.4. If X is an h-coloop, then v_{R}^{\prime} and v_{L}^{\prime} are homotopy equivalences.
Proof. Since $1+v_{R}^{\prime} \simeq 0$, we have $v_{L}^{\prime}+v_{L}^{\prime} \nu_{R}^{\prime} \simeq 0$; then by the cancellation law we have $v_{L}^{\prime} v_{R}^{\prime} \simeq 1$. Similarly, we have $v_{R}^{\prime} v_{L}^{\prime} \simeq 1$.

Lemma 3.5. Let $f: X \rightarrow Y$ be an A_{2}^{\prime}-map of h-coloops, then $v_{Y}^{\prime} f \simeq f v_{X}^{\prime}$.
Proof. We shall obtain

$$
\begin{aligned}
& f+v_{Y, R}^{\prime} f \simeq \nabla\left(1 \vee v_{Y, R}^{\prime}\right) \mu_{Y}^{\prime} f \simeq 0 \\
& f+f v_{X, R}^{\prime}=f \nabla\left(1 \vee v_{X, R}^{\prime}\right) \mu_{X}^{\prime} \simeq 0
\end{aligned}
$$

Then, by the cancellation law, we have $v_{Y, R}^{\prime} f \simeq f \mu_{X, R}^{\prime}$.
Notations 3.6. (i) $N_{R}^{\prime}(f)=H\left(v_{Y, R}^{\prime} f, f v_{X, R}^{\prime}\right)$.
(ii) $\quad \bar{N}_{R}^{\prime}(f)=H\left(f+f v_{X, R}^{\prime}, f+v_{Y, R}^{\prime} f\right)$

$$
=f N_{X, R}^{\prime} \doteq N_{Y, R}^{\prime} f \doteq\left(1 \vee v_{Y, R}^{\prime}\right) H_{2}^{\prime},
$$

where $N_{X, R}^{\prime}=H\left(\nabla\left(1 \vee v_{X, R}^{\prime}\right) \mu_{X}^{\prime}, *\right)$ and so on.
Proposition 3.7. Let $f: X \rightarrow Y$ be an A_{n}^{\prime}-map of A_{n}^{\prime}-spaces, then the mapping cone C_{f} has a canonical w - A_{n}^{\prime}-structure, i.e., the inclusion map $i: Y \rightarrow C_{f}$ is a homomorphism.

Proof. Let $\left\{M_{X, i}^{\prime}\right\}_{2 \leqq i \leqq n}$ and $\left\{M_{Y, i}^{\prime}\right\}_{2 \leqq i \leqq n}$ be A_{n}^{\prime}-structures of X and Y, respectively. Define $M_{i}^{\prime}: C_{f} \times K_{i} \rightarrow W_{i}\left(C_{f}\right)$ by

$$
\begin{gathered}
M_{i}^{\prime}(y ; \tau)=M_{Y, i}^{\prime}(y ; \tau) \text { for }(y ; \tau) \in Y \times K_{i}, \\
M_{i}^{\prime}((t, x) ; \tau)= \begin{cases}\left(2^{i-1} t, M_{i, X}^{\prime}(x ; \tau)\right) \text { for }(t, x) \in C X, 0 \leqq t \leqq 1 / 2^{i-1}, \\
H_{i}^{\prime}\left((x ; \tau),\left(2^{i-1} t-1\right) /\left(2^{i-1}-1\right)\right. & \text { for }(t, x) \in C X, \\
1 / 2^{i-1} \leqq t \leqq 1 .\end{cases}
\end{gathered}
$$

Next, define $D^{\prime}: C_{f} \times I \rightarrow C_{f} \times C_{f}$ by

$$
\begin{gathered}
D^{\prime}(y, s)=D_{Y}^{\prime}(y, s), \\
D^{\prime}((t, x), s)=\left\{\begin{array}{lll}
\left(2 t /(2-s), D_{X}^{\prime}(x, s)\right) & \text { for } & 0 \leqq t \leqq(2-s) / 2, \\
G(x, s,(2 t+s-2) / 2) & \text { for } & (2-s) / 2 \leqq t \leqq 1,
\end{array}\right.
\end{gathered}
$$

where D 's and G in the right hand sides are homotopies defined in 3.2 and 3.3. Then, we shall have $D^{\prime}=H\left(\Delta, j \mu^{\prime}\right)$ for $\mu^{\prime}=M_{2}^{\prime}$; thus μ^{\prime} is a comultiplication, i.e., (2.7.1) is satisfied.

To examine the condition (2.7.2'), we shall define the maps $\bar{\delta}_{k}(r, s): C_{f} \times$

$$
\begin{aligned}
& K_{r} \times K_{s} \longrightarrow C_{f} \times K_{i}, r+s=i+1, \text { by } \\
& \quad \bar{\partial}_{k}(r, s)(y ;(\rho, \sigma))=\left(y ; \partial_{k}(r, s)(\rho, \sigma)\right) \text { for }(y ;(\rho, \sigma)) \in Y \times K_{r} \times K_{s}, \\
& \bar{\partial}_{k}(r, s)((t, x) ;(\rho, \sigma))=\left\{\begin{array}{l}
\left((t, x) ; \partial_{k}(r, s)(\rho, \sigma)\right) \quad \text { if } i \leqq 3 \text { or } t \leqq 1 / 2^{i-1}, \\
\left(x ; \tilde{\partial}_{k}(r, s)(\rho, \sigma), t\right) \quad \text { if } i \geqq 4 \text { and } t \geqq 1 / 2^{i-1} .
\end{array}\right.
\end{aligned}
$$

As easily seen, (2.7.2') holds for any $(y ;(\rho, \sigma))$ and $((t, x) ;(\rho, \sigma)), 0 \leqq t \leqq 1 / 2^{i-1}$. If $t \geqq 1 / 2^{i-1}$, put $t^{\prime}=\left(2^{i-1} t-1\right) /\left(2^{i-1}-1\right)$, then we have

$$
\begin{aligned}
& \left(2^{i-1}-1\right) t^{\prime} /\left(2^{s-1}-1\right)=\left(2^{i-1} t-1\right) /\left(2^{s-1}-1\right) \text { for } 1 / 2^{i-1} \leqq t \leqq 1 / 2^{r-1} \\
& \left(\left(2^{i-1}-1\right) t^{\prime}+1-2^{s-1}\right) /\left(2^{i-1}-2^{s-1}\right)=\left(2^{r-1} t-1\right) /\left(2^{r-1}-1\right) \text { for }
\end{aligned}
$$

$$
1 / 2^{r-1} \leqq t \leqq 1
$$

Thus (2.7.2') is a direct consequence of (3.2.1). The remaining conditions may be obtained easily.

Remark 3.8. For $n \leqq 3, C_{f}$ admits an A_{n}^{\prime}-structure. Moreover the projection $p: C_{f} \rightarrow S X$ is an A_{n}^{\prime}-map.

Proposition 3.9. Let $f: X \rightarrow Y$ be an A_{3}^{\prime}-map of A_{3}^{\prime}-cogroups, then C_{f} is also an A_{3}^{\prime}-cogroup.

Proof. It is sufficient to show that C_{f} admits a coinversion v^{\prime}. Let v_{X}^{\prime} and v_{Y}^{\prime} be coinversions of X and Y, respectively. Define $v^{\prime}: C_{f} \rightarrow C_{f}$ by

$$
\begin{aligned}
& v^{\prime}(y)=v_{Y}^{\prime}(y), \\
& v^{\prime}(t, x)=\left\{\begin{array}{llll}
\left(2 t, v_{X}^{\prime}(x)\right) & \text { for }(t, x) \in C X & \text { and } & 0 \leqq t \leqq 1 / 2, \\
N^{\prime}(f)(x, 2 t-1) & \text { for }(t, x) \in C X & \text { and } & 1 / 2 \leqq t \leqq 1 .
\end{array}\right.
\end{aligned}
$$

Then, $\boldsymbol{F}\left(1 \vee v^{\prime}\right) \mu^{\prime}: C_{f} \rightarrow C_{f}$ is homotopic to the map \tilde{v}^{\prime} of the following form:

$$
\begin{aligned}
& \tilde{v}^{\prime} \mid\{(t, x) \mid 0 \leqq t \leqq 1 / 4\}=\left(4 t, \nabla\left(1 \vee v_{X}^{\prime}\right) \mu_{X}^{\prime}(x)\right), \\
& \tilde{v}^{\prime} \mid\{(t, x) \mid 1 / 4 \leqq t \leqq 1 / 2\}=\bar{N}^{\prime}(f)(x, 4 t-1), \\
& \tilde{v}^{\prime} \mid\{(t, x) \mid 1 / 2 \leqq t \leqq 1\}=\nabla\left(1 \vee \mu_{Y}^{\prime}\right) H_{2}^{\prime}(x, 2 t-1), \\
& \tilde{v}^{\prime} \mid Y=\nabla\left(1 \vee v_{Y}^{\prime}\right) \mu_{Y}^{\prime} .
\end{aligned}
$$

Since $\bar{N}^{\prime}(f)+\boldsymbol{V}\left(1 \vee v_{Y}^{\prime}\right) H_{2}^{\prime} \simeq f N_{X}^{\prime} \doteq N_{Y}^{\prime} f \simeq *$, we obtain $\tilde{v}^{\prime} \simeq *$.

§4. Some Invariants

Given a map $f: X \rightarrow Y$ of A_{n}^{\prime}-spaces, it will be the first problem to determine whether or not f is an A_{2}^{\prime}-map, i.e., f satisfies

$$
\begin{equation*}
(f \vee f) \mu_{X}^{\prime} \simeq \mu_{Y}^{\prime} f \tag{4.1}
\end{equation*}
$$

and then

$$
\begin{equation*}
(f \times f) D_{X}^{\prime}+j_{Y} H_{2}^{\prime} \simeq D_{Y}^{\prime} f . \tag{4.2}
\end{equation*}
$$

If both X and Y are suspended spaces, say $X=S A$ and $Y=S B$, then so called Hopf-homomorphisms $H_{k}:[S A ; S B] \rightarrow[S A ; S(\stackrel{k}{\wedge} B)]$ are useful to show (4.1), especially if both X and Y are spheres, only H_{2} and H_{3} are necessary (cf. [4]).

Lemma 4.3. Let X be an h-coloop, then for any space Y, we have the following exact sequence of loops:

$$
0 \longrightarrow[C X, X ; Y \times Y, Y \vee Y] \underset{r *}{\longrightarrow}[X ; Y \vee Y] \underset{j_{*}}{\longrightarrow}[X ; Y \times Y] \longrightarrow 0
$$

Proof. Let μ_{X}^{\prime} be the comultiplication of X, then $\mu^{\prime}(t, x)=\left(t, \mu_{x}^{\prime}(x)\right)^{*)}$ gives an A_{2}^{\prime}-structure of $C X$. Then, proof may be carried out by the routine way as in homotopy groups.

Now, let $f: X \rightarrow Y$ be a given map of h-coloops, and X be a finite $C W$-complex, then (4.1) is equivalent to

$$
\alpha(f)=(f \vee f) \mu_{X}^{\prime}-\mu_{Y}^{\prime} f \simeq * .
$$

Obviously, $j_{*}[\alpha(f)]=0$; therefore we have the unique element $[g] \in[C X, X$; $Y \times Y, Y \vee Y]$ such that $r_{*}[g]=[\alpha(f)]$ holds. Moreover, we have isomorphisms (cf. [3])

$$
\begin{aligned}
{[C X, X ; Y \times Y, Y \vee Y] } & \approx\left[X ; \Omega_{Y \times Y}(*, Y \vee Y)\right] \\
& \approx[X ; \Omega Y * \Omega Y]
\end{aligned}
$$

Definition 4.4. Let $H(f)$ be the image of $[g]$ under the composition of the above isomorphisms.

If $Y=S B$, then $H(f) \in[X ; \Omega S B * \Omega S B]=[X ; S(\Omega S B \wedge \Omega S B)] \approx\left[X ; S\left(B_{\infty}\right.\right.$ $\left.\left.\wedge B_{\infty}\right)\right]$, where B_{∞} denotes the reduced product of B. Thus, we may consider $H(f)$ as a modification of generalized Hopf homomorphisms.

By definition, we have
Proposition 4.5. f satisfies (4.1) if and only if $H(f)=0$.
Remark 4.6. Being f an A_{2}^{\prime}-map, f has to satisfy the condition (4.2). Generally, for a $q-A_{2}^{\prime}$-map f of an h-coloop X to an A_{2}^{\prime}-space Y, we may define functions Y_{L} and Y_{R} of Ker. H into [$S X ; Y$], and their vanishing is equivalent to the condition (4.2). Moreover, we may show that any $q-A_{2}^{\prime}$-map f defined on a suspended space is an A_{2}^{\prime}-map, (cf. [9]).

Remark 4.7. Define $H_{*}(f) \in[X ; S \Omega Y]$ by $H_{*}(f)=\left[S \Omega f \circ \gamma_{X}-\gamma_{Y} \circ f\right]$, then we shall have $\Psi_{*} H_{*}(f)=i_{*}^{\prime} H(f)$, where $\Psi: S \Omega Y \rightarrow Y \vee Y$ and $i^{\prime}: \Omega Y * \Omega Y \rightarrow Y \vee Y$ are maps defined in $\S 1$ and Ψ^{*} and i_{*}^{\prime} are monomorphisms.

Definition 4.8. A co- H-space (X, μ_{X}^{\prime}) is said to be homotopy-cocommutative if it holds $T \mu_{x}^{\prime} \simeq \mu_{X}^{\prime}: X \rightarrow X \vee X$.

Proposition 4.9. Let $\left(A, \mu_{A}^{\prime}\right)$ and $\left(B, \mu_{B}^{\prime}\right)$ be co- H-spaces, and X be the smash product of them, then we have
i) $\mu_{1}^{\prime}=\mu_{A}^{\prime} \wedge 1_{B}$ and $\mu_{2}^{\prime}=1_{A} \wedge \mu_{B}^{\prime}$ are comultiplications of X,

[^1]ii) μ_{1}^{\prime} is homotopic to μ_{2}^{\prime}; therefore they define a unique comultiplication of X, and finally,
iii) μ_{x}^{\prime} is homotopy-cocommutative.

Proof. i) $E_{A, R}^{\prime} \wedge 1_{B}$ gives a homotopy from 1_{X} to $\nabla(1 \vee *) \mu_{1}^{\prime}$ and $N_{A, R}^{\prime}$ $\wedge 1_{B}$ gives a homotopy from $\nabla\left(1 \vee v_{1, R}^{\prime}\right) \mu_{1}^{\prime}$ to $*$, where $v_{1, R}^{\prime}=v_{A, R}^{\prime} \wedge 1_{B}$. Notice that $*: X \rightarrow *_{X}$ is the common counit of μ_{1}^{\prime} and μ_{2}^{\prime}.
ii) As easily seen, it holds

$$
\left(\mu_{2}^{\prime} \vee \mu_{2}^{\prime}\right) \mu_{1}^{\prime}=(1 \vee T \vee 1)\left(\mu_{1}^{\prime} \vee \mu_{1}^{\prime}\right) \mu_{2}^{\prime}
$$

Then applying $(\nabla \vee \nabla)(1 \vee * \vee * \vee 1)$ by the left-hand side, we have $\mu_{1}^{\prime} \simeq \mu_{2}^{\prime}$.
iii) Since $\mu_{X}^{\prime}=i_{1}^{\prime}+i_{2}^{\prime}$, we shall obtain

$$
\mu_{X}^{\prime} \simeq\left(* \underset{1}{+} i_{1}^{\prime}\right)+\left(i_{2}^{\prime}+*\right) \simeq i_{2}^{\prime}+\underset{2}{+} i_{1}^{\prime}=T \mu_{X}^{\prime} .
$$

Theorem 4.10. If X is a homotopy cocommutative h-cogroup, i.e., $A_{3}^{\prime}-$ space with coinversion, then

$$
H:[X ; Y] \longrightarrow[X ; \Omega Y * \Omega Y]
$$

is a homomorphism.
Proof. It is sufficient to show that

$$
[X ; Y] \ni[f] \longrightarrow[\alpha(f)] \in[X ; Y \vee Y]
$$

is a group-homomorphism.
At first, we shall mention that

$$
\mu_{Y}^{\prime} \nabla=\nabla_{Y \vee Y}\left(\mu_{Y}^{\prime} \vee \mu_{Y}^{\prime}\right)
$$

Then, we have

$$
\begin{aligned}
\mu_{Y}^{\prime}\left(f_{1}+f_{2}\right) & =\nabla_{Y \vee Y}\left(\mu_{Y}^{\prime} f_{1} \vee \mu_{Y}^{\prime} f_{2}\right) \mu_{X}^{\prime} \\
& =\mu_{Y}^{\prime} f_{1}+\mu_{Y}^{\prime} f_{2} .
\end{aligned}
$$

Using homotopy-coassociativity and -cocommutativity, we shall have

$$
\begin{aligned}
& \left(\left(f_{1}+f_{2}\right) \vee\left(f_{1}+f_{2}\right)\right) \mu_{X}^{\prime} \\
& \quad \simeq \nabla_{Y \vee Y}\left(\left(f_{1} \vee f_{1}\right) \vee\left(f_{2} \vee f_{2}\right)\right)\left(\mu_{X}^{\prime} \vee \mu_{X}^{\prime}\right) \mu_{X}^{\prime}
\end{aligned}
$$

On the other hand, since it holds

$$
\left(f_{i} \vee f_{i}\right) \mu_{X}^{\prime} \simeq \alpha\left(f_{i}\right)+\mu_{Y}^{\prime} f_{i}, \quad i=1,2,
$$

we have

$$
\begin{aligned}
& \left(\left(f_{1}+f_{2}\right) \vee\left(f_{1}+f_{2}\right)\right) \mu_{X}^{\prime} \\
& \quad \simeq \nabla_{Y \vee Y}\left(\left(\alpha\left(f_{1}\right)+\mu_{Y}^{\prime} f_{1}\right) \vee\left(\alpha\left(f_{2}\right)+\mu_{Y}^{\prime} f_{2}\right)\right) \mu_{X}^{\prime} \\
& \simeq \simeq \nabla_{Y \vee Y}\left(\nabla_{Y \vee Y} \vee \nabla_{Y \vee Y}\right)\left(\alpha\left(f_{1}\right) \vee \alpha\left(f_{2}\right) \vee \mu_{Y}^{\prime} f_{1} \vee \mu_{Y}^{\prime} f_{2}\right)\left(\mu_{X}^{\prime} \vee \mu_{X}^{\prime}\right) \mu_{X}^{\prime} \\
& \quad=\left(\alpha\left(f_{1}\right)+\alpha\left(f_{2}\right)\right)+\mu_{Y}^{\prime}\left(f_{1}+f_{2}\right) .
\end{aligned}
$$

Therefore, we shall obtain

$$
\alpha\left(f_{1}+f_{2}\right) \simeq \alpha\left(f_{1}\right)+\alpha\left(f_{2}\right)
$$

Examples 4.10. Our invariant $H(f)$ is not necessarily easy to determine its vanishing, however, in some cases we can do it.
(4.10.1) If $\alpha \in \pi_{6}\left(S^{3}\right)$ is an element of order $3, H(f)$ belongs to $\pi_{6}\left(\Omega S^{3} *\right.$ $\left.\Omega S^{3}\right) \approx \pi_{6}\left(S^{5}\right) \approx \mathbf{Z}_{2}$, then we have $H(\alpha)=0$ by Theorem 4.9.
(4.10.2) If $\beta \in \pi_{15}\left(S^{5}\right)$ is an element of order 9 , then $H(\beta)$ belongs to $\pi_{15}\left(\Omega S^{5} *\right.$ $\left.\Omega S^{5}\right) \approx \pi_{15}\left(S^{9} \cup e^{13}\right)$. Since there exists an exact sequence

$$
\pi_{15}\left(S^{9}\right) \longrightarrow \pi_{15}\left(S^{9} \cup e^{13}\right) \longrightarrow \pi_{15}\left(S^{13}\right)
$$

and $\pi_{15}\left(S^{9}\right) \approx Z_{2} \approx \pi_{15}\left(S^{13}\right)$, we shall obtain $H(\beta)=0$.
(4.10.3) Let ξ be the non-zero element of $\left[S^{3} U_{\alpha} e^{7} ; S^{5}\right] \approx \pi_{7}\left(S^{5}\right) \approx \mathbf{Z}_{2}$, then $H(\xi)$ belongs to [$\left.S^{3} \cup_{\alpha} e^{7} ; \Omega S^{5} * \Omega S^{5}\right]\left[S^{3} \cup_{\alpha} e^{7} ; S^{9}\right]=0$; therefore we have $H(\xi)=0$. The same argument holds for $\xi^{\prime} \in\left[S^{3} \cup_{\alpha} e^{7} ; S^{6}\right]$.
(4.10.4) Let ξ be the non-zero element of $\left[S^{3} \cup_{\alpha} e^{7} ; S^{5} U_{\beta} e^{16}\right] \approx \pi_{7}\left(S^{5}\right)$ $\approx Z_{2}$, then $H(\xi)$ belongs to $\left[S^{3} \cup_{\alpha} e^{7} ; \Omega\left(S^{5} \cup_{\beta} e^{16}\right) * \Omega\left(S^{5} \cup_{\beta} e^{16}\right)\right] \approx \pi_{7}\left(S^{9}\right)=0$; therefore we have $H(\xi)=0$.

§5. $\boldsymbol{A}_{4}^{\prime}$-spaces and q - $\boldsymbol{A}_{\mathbf{3}}^{\prime}$-maps

Theorem 1.4 says that the homotopy classes of comultiplications of X are in 1 to 1 correspondence with the homotopy classes of coretractions. Therefore we may give guess that the coretraction $\gamma: X \rightarrow S \Omega X$ may characterize A_{n}^{\prime}-structure of X.

At first we shall make a remark: let X be an A_{3}^{\prime}-cogroup with the A_{3}^{\prime}-structure $\left\{\mu_{X}^{\prime}, M_{X, 3}^{\prime}\right\}$, then by Theorem 1.6, the corresponding coretraction γ is an $q-A_{2}^{\prime}-$ map, which defines a new A_{3}-structure $\left\{\mu_{x}^{\prime}, M_{X, 3}^{\prime}\right\}$, but we have no guarantee that $M_{X, 3}^{\prime}$ and $M_{X, 3}^{\prime \prime}$ are homotopic relative $X \times \dot{K}_{3}$.

Definition 5.1. An A_{4}^{\prime}-cogroup X is said to be an s - A_{4}^{\prime}-cogroup, provided that $W_{4}(\varepsilon)\left(1 \wedge v_{0}^{\prime} \vee 1 \vee v_{0}^{\prime}\right)\left(1 \vee 1 \vee \mu_{0}^{\prime}\right) M_{0,3^{\circ}}^{\prime}(\gamma \times 1)$ is homotopic to $\left(1 \vee v^{\prime} \vee 1\right.$ $\left.\vee v^{\prime}\right)\left(1 \vee 1 \vee \mu^{\prime}\right) M_{X, 3}^{\prime}$ relative to $X \times \dot{K}_{3}$, i. e., the homotopy satisfies the condition
induced from (3.2.1).
As easily seen, any suspended space is an s - A_{4}^{\prime}-cogroup with respect to its natural A_{4}^{\prime}-structure.

Proposition 5.2. Let X be an A_{3}^{\prime}-cogroup such that the corresponding coretraction γ is an q - A_{3}^{\prime}-map, then X is an $s-A_{4}^{\prime}$-cogroup.

Proof. Let $\left\{M_{0, i}^{\prime}\right\}$ be the natural A_{4}^{\prime}-structure of $S \Omega X$. Define $H_{4}^{\prime}: X$ $\times K_{4} \times\{1\} \cup X \times L_{4} \times I \rightarrow W_{4}(X)$ by the followings:

$$
\begin{aligned}
& \tilde{H}_{4}^{\prime} \mid X \times K_{4} \times\{1\}=W_{4}(\varepsilon) \cdot M_{0,4}^{\prime}(\gamma \times 1) ; \\
& \tilde{H}_{4}^{\prime} \mid X \times \bar{o}_{k}\left(K_{3} \times K_{2} \times I\right)= \\
& \begin{cases}W_{4}(\varepsilon) \cdot H_{2}^{\prime}(; 7 t)(k) \cdot M_{X, 3}^{\prime} & \text { for } \quad 0 \leqq t \leqq 1 / 7, \quad k=1,2,3 ; \\
W_{4}(\varepsilon) \cdot \mu_{0}^{\prime}(k) \cdot H_{3}^{\prime}(;(7 t-1) / 6) & \text { for } \quad 1 / 7 \leqq t \leqq 1,\end{cases} \\
& H_{4}^{\prime} \mid X \times \bar{o}_{k}\left(K_{2} \times K_{3} \times I\right)= \\
& \begin{cases}W_{4}(\varepsilon) H_{3}^{\prime}(; 7 t / 3)(k) M_{X, 2}^{\prime} & \text { for } \quad 0 \leqq t \leqq 3 / 7, \\
W_{4}(\varepsilon) \mu_{0}^{\prime}(k) H_{2}^{\prime}(;(7 t-3) / 4) & \text { for } \quad 3 / 7 \leqq t \leqq 1,\end{cases}
\end{aligned}
$$

The remaining part of $L_{4} \times I$ is the tetragon $T=P_{0} P_{1}^{\prime} P_{3} P_{1}^{\prime \prime}$ in the Fig. 3.

Fig. 3

On the edge of $T, \tilde{H}_{4}^{\prime}$ is of the following forms:

$$
\begin{aligned}
& \tilde{H}_{4}^{\prime} \mid P_{0} P_{1}^{\prime}=W_{4}(\varepsilon)\left(H_{2}^{\prime}(; 7 t) \vee \gamma \vee \gamma\right)\left(1 \vee \mu_{X}^{\prime}\right) \mu_{X}^{\prime} \quad \text { for } \quad 0 \leqq t \leqq 1 / 7 ; \\
& \tilde{H}_{4}^{\prime} \mid P_{1}^{\prime} P_{3}=W_{4}(\varepsilon)\left(\mu_{0}^{\prime} \vee 1 \vee 1\right)\left(\gamma \vee H_{2}^{\prime}(;(7 t-1) / 2) \mu_{X}^{\prime}\right. \\
& \\
& \tilde{H}_{4}^{\prime} \mid P_{0} P_{1}^{\prime \prime}=W_{4}(\varepsilon)\left(\gamma \vee \gamma \vee H_{2}^{\prime}(; 7 t)\left(\mu_{X}^{\prime} \vee 1\right) \mu_{X}^{\prime} \quad \text { for } \quad 1 / 7 \leqq t \leqq 3 / 7 ;\right. \\
& H_{4}^{\prime} \mid P_{1}^{\prime \prime} P_{3}=W_{4}(\varepsilon)\left(1 \vee 1 \vee \mu_{0}^{\prime}\right)\left(H_{2}^{\prime}(;(7 t-1) / 2) \vee \gamma\right) \mu_{X}^{\prime}
\end{aligned}
$$

$$
\text { for } \quad 1 / 7 \leqq t \leqq 3 / 7
$$

Now, put

$$
\tilde{H}_{4}^{\prime} \mid P_{0} P_{3}=W_{4}(\varepsilon)\left(H_{2}^{\prime}(; 7 t / 3) H_{2}^{\prime}(; 7 t / 3)\right) \mu_{X}^{\prime} \quad \text { for } \quad 0 \leqq t \leqq 3 / 7
$$

Then, we shall have $\tilde{H}_{4}^{\prime}\left|P_{0} P_{3} \simeq \tilde{H}_{4}^{\prime}\right| P_{0} P_{1}^{\prime} P_{3}$ and $\tilde{H}_{4}^{\prime}\left|P_{0} P_{3} \simeq \tilde{H}_{4}^{\prime}\right| P_{0} P_{1}^{\prime \prime} P_{3} . \quad$ In fact, put

$$
\begin{aligned}
& H_{2, L}^{\prime}(; t, s)= \begin{cases}H_{2}^{\prime}(; 7 t /(3-2 s)) & \text { for } 0 \leqq t \leqq(3-2 s) / 7, \\
\mu_{0}^{\prime} \cdot \gamma & \text { for }(3-2 s) / 7 \leqq t \leqq 1 ;\end{cases} \\
& H_{2, R}^{\prime}(; t, s)=\left\{\begin{array}{lll}
(\gamma \vee \gamma) \mu_{x}^{\prime} & \text { for } 0 \leqq t \leqq s / 7, \\
H_{2}^{\prime}(;(7 t-s) /(3-s)) & \text { for } s / 7 \leqq t \leqq 1 ;
\end{array}\right. \\
& F(; t, s)=W_{4}(\varepsilon)\left(H_{2, L}^{\prime}(; t, s) \vee H_{2, R}^{\prime}(; t, s)\right) \mu_{4}^{\prime} .
\end{aligned}
$$

Then, F is a homotopy from $H_{4}^{\prime} \mid P_{0} P_{3}$ to $H_{1}^{\prime} \mid P_{0} P_{4}^{\prime} P_{3}$. Similarly, we may define a homotopy F^{\prime} from $H_{4}^{\prime} \mid P_{0} P_{3}$ to $\left.H\right|_{1} ^{\prime \prime} P_{0} P_{4}^{\prime} P_{3}$. These homotopies define $H_{4}^{\prime} \mid T$.

Let M_{4}^{\prime} be the extension of H_{4}^{\prime} over $X \times K_{4} \times I$, and put $M_{X, 4}^{\prime}=M_{4}^{\prime} \mid X \times K_{4}$ $\times\{0\}$, then $M_{X, 4}^{\prime}: X \times K_{4} \rightarrow W_{4}(X)$ together with $\left\{\mu_{X}^{\prime}, M_{X, 3}^{\prime}\right\}$ gives an A_{4}^{\prime}-structure on X.

The following homotopy-commutative diagram shows that X is an $s-A_{4}^{\prime}{ }^{-}$ cogroup:

To prove the converse of Proposition 5.2, we shall need certain computative lemmas.

Lemma 5.3. Let X be an A_{2}^{\prime}-cogroup, and define $\rho: W_{6}(X) \rightarrow W_{4}(X)$ by the composition $\rho=(1 \vee \nabla \vee 1 \vee 1)(1 \vee T \vee 1 \vee 1)(1 \vee \nabla \vee 1 \vee 1 \vee 1)$, then we have

$$
\Phi_{4}\left(1 \vee v_{0}^{\prime} \vee v_{0}^{\prime}\right)=(1 \vee 1 \vee T) \rho\left(\Phi_{2} \vee \Phi_{2} \vee \Phi_{2}\right)
$$

Proof. Put $\tilde{\Phi}_{2}=\Phi_{2} v_{0}^{\prime}: S \Omega X \rightarrow X \vee X$, then we shall have

$$
\begin{aligned}
& \Phi_{3}=(1 \vee T)(1 \vee \nabla \vee 1)\left(\Phi_{2} \vee \widetilde{\Phi}_{2}\right) \\
& \Phi_{4}=(1 \vee 1 \vee T)(1 \vee 1 \vee \nabla \vee 1)\left(\Phi_{3} \vee \tilde{\Phi}_{2}\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\Phi_{4} & =(1 \vee 1 \vee T)(1 \vee 1 \vee \nabla \vee 1)\left(\Phi_{3} \vee \tilde{\Phi}_{2}\right) \\
& \left.=(1 \vee 1 \vee T)(1 \vee 1 \vee \nabla \vee 1)\left((1 \vee T)(1 \vee \nabla \vee 1)\left(\Phi_{2} \vee \tilde{\Phi}_{2}\right)\right) \vee \tilde{\Phi}_{2}\right) \\
& =(1 \vee 1 \vee T) \rho\left(\Phi_{2} \vee \Phi_{2} \vee \Phi_{2}\right)\left(1 \vee v_{0}^{\prime} \vee v_{0}^{\prime}\right) .
\end{aligned}
$$

Since $\left(v_{0}^{\prime}\right)^{2}=1$, we have the desired result.
Lemma 5.4. Let X be an A_{4}^{\prime}-cogroup, then we have
(5.4.1) $\quad \rho\left(\bar{\mu}_{X}^{\prime} \vee \bar{\mu}_{X}^{\prime} \vee \bar{\mu}_{X}^{\prime}\right) M_{X, 3}^{\prime} \simeq\left(1 \vee v_{X}^{\prime} \vee 1 \vee v_{X}^{\prime}\right)\left(1 \vee 1 \vee \mu_{X}^{\prime}\right) M_{X, 3}^{\prime}$, where $\bar{\mu}_{x}^{\prime}=\left(1 \vee v_{x}^{\prime}\right) \mu_{x}^{\prime}$.

Proof. $\quad \rho\left(\bar{\mu}_{X}^{\prime} \vee \bar{\mu}_{X}^{\prime} \vee \bar{\mu}_{X}^{\prime}\right) M_{X, 3}^{\prime}$
$\simeq \rho\left(1 \vee v_{x}^{\prime} \vee 1 \vee v_{x}^{\prime} \vee 1 \vee v_{x}^{\prime}\right)\left(1 \vee \mu_{x}^{\prime} \vee 1 \vee 1 \vee 1\right)\left(\mu_{x}^{\prime} \vee 1 \vee 1 \vee 1\right)\left(\mu_{x}^{\prime} \vee 1 \vee 1\right)\left(-M_{x, 3}^{\prime}\right)$
(by A_{3}^{\prime} and $A_{4}^{\prime},\left(-M_{x, 3}^{\prime}\right)(x, t)=M_{x, 3}^{\prime}(x, 1-t)$)
$\simeq(1 \vee 1 \vee \nabla \vee 1)(1 \vee T \vee 1 \vee 1)\left(1 \vee * \vee v_{x}^{\prime} \vee 1 \vee v_{x}^{\prime}\right)\left(\mu_{x}^{\prime} \vee 1 \vee 1 \vee 1\right)\left(\mu_{x}^{\prime} \vee 1 \vee 1\right)$

$$
\circ\left(-M_{X, 3}^{\prime}\right)
$$

$\simeq(1 \vee 1 \vee \nabla \vee 1)\left(1 \vee v_{x}^{\prime} \vee * \vee 1 \vee v_{X}^{\prime}\right)\left(1 \vee \mu_{x}^{\prime} \vee 1 \vee 1\right)\left(1 \vee \mu_{x}^{\prime} \vee 1\right)\left(-M_{x, 3}^{\prime}\right)$
$\simeq\left(1 \vee v_{X}^{\prime} \vee 1 \vee v_{X}^{\prime}\right)\left(1 \vee \mu_{X}^{\prime} \vee 1\right)\left(-M_{X, 3}^{\prime}\right)$
$\simeq\left(1 \vee v_{X}^{\prime} \vee 1 \vee v_{X}\right) M_{X, 3}^{\prime}$.
Lemma 5.5. Let X be an A_{4}^{\prime}-cogroup. Define $\Pi_{X}: X \times K_{3} \rightarrow W_{4}(X)$ by $\Pi_{X}=\left(1 \vee v_{X}^{\prime} \vee 1 \vee v_{X}^{\prime}\right)\left(1 \vee 1 \vee \mu_{X}^{\prime}\right) M_{X, 3}^{\prime}$, then we shall have

$$
\begin{array}{lll}
\Phi_{4}\left(1 \vee v_{0}^{\prime} \vee v_{0}^{\prime}\right) W_{3}(\gamma) M_{X, 3}^{\prime} \simeq(1 \vee 1 \vee T) \Pi_{X} & \text { rel. } & X \times \dot{K}_{3}, \\
\Phi_{4}\left(1 \vee v_{0}^{\prime} \vee v_{0}^{\prime}\right) M_{0,3}^{\prime} \simeq(1 \vee 1 \vee T) W_{4}(\varepsilon) \Pi_{0} & \text { rel. } & X \times \dot{K}_{3} . \tag{5.5.2}
\end{array}
$$

Proof. (5.5.1) Define the homotopy $\bar{H}_{2}^{\prime}: X \times I \rightarrow S \Omega X \vee S \Omega X$ from (γ $\vee \gamma) \cdot \bar{\mu}_{x}^{\prime}$ to $\bar{\mu}_{0}^{\prime} \cdot \gamma$ by

$$
\bar{H}_{2}^{\prime}(x ; t)=\left\{\begin{array}{lll}
\left(1 \vee N^{\prime}(\gamma)(; 2 t)\right) \mu_{X}^{\prime} & \text { for } & 0 \leqq t \leqq 1 / 2, \\
\left(1 \vee v_{0}^{\prime}\right) H_{2}^{\prime}(x ; 2 t-1) & \text { for } & 1 / 2 \leqq t \leqq 1 .
\end{array}\right.
$$

Then, we shall have

$$
\begin{array}{rlrl}
\Phi_{4}\left(1 \vee v_{0}^{\prime} \vee 1 \vee v_{0}^{\prime}\right) W_{3}(\gamma) M_{X, 3}^{\prime} & & \\
& =(1 \vee 1 \vee T) \rho\left(\Phi_{2} \vee \Phi_{2} \vee \Phi_{2}\right) W_{3}(\gamma) M_{X, 3}^{\prime} & & (\text { by }(5.3)) \tag{5.3}\\
& \simeq(1 \vee 1 \vee T) \rho W_{6}(\varepsilon) W_{6}(\gamma)\left(\bar{\mu}_{X}^{\prime} \vee \bar{\mu}_{X}^{\prime} \vee \bar{\mu}_{X}^{\prime}\right) M_{X, 3}^{\prime} & & \left(\text { by } \bar{H}_{2}^{\prime} \vee \bar{H}_{2}^{\prime} \vee \bar{H}_{2}^{\prime}\right)
\end{array}
$$

$$
\begin{aligned}
& \simeq(1 \vee 1 \vee T) \rho\left(\bar{\mu}_{X}^{\prime} \vee \bar{\mu}_{X}^{\prime} \vee \bar{\mu}_{X}^{\prime}\right) M_{X, 3}^{\prime} \\
& \simeq(1 \vee 1 \vee T)\left(1 \vee v_{X}^{\prime} \vee 1 \vee v_{X}^{\prime}\right)\left(1 \vee 1 \vee \mu_{X}^{\prime}\right) M_{X, 3}^{\prime} \quad(\text { by }(5.4))
\end{aligned}
$$

(5.5.2) may be shown similarly using Lemmas (5.3) and (5.4).

Proposition 5.6. Let X be an $s-A_{A}^{\prime}$-cogroup, then γ is a $q-A_{3}^{\prime}$-map.
Proof. Consider the following diagram:

By Lemma 5.5, we have

$$
\begin{aligned}
& \Phi_{4}\left(1 \vee v_{0}^{\prime} \vee v_{0}^{\prime}\right) W_{3}(\gamma) M_{X, 3}^{\prime} \simeq(1 \vee 1 \vee T) \Pi_{X}, \\
& \Phi_{4}\left(1 \vee v_{0}^{\prime} \vee v_{0}^{\prime}\right) M_{0,3}^{\prime}(\gamma \times 1) \simeq(1 \vee 1 \vee T) W_{3}(\varepsilon) \Pi_{0}(\gamma \times 1)
\end{aligned}
$$

On the other hand, since X is an $s-A_{4}^{\prime}$-cogroup, $(1 \vee 1 \vee T) \Pi_{X}$ is homotopic to $(1 \vee 1 \vee T) W_{3}(\varepsilon) \Pi_{0}(\gamma \times 1)$; thus we have

$$
\Phi_{4}\left(1 \vee v_{0}^{\prime} \vee v_{0}^{\prime}\right) W_{3}(\gamma) M_{X, 3}^{\prime} \simeq \Phi_{4}\left(1 \vee v_{0}^{\prime} \vee v_{0}^{\prime}\right) M_{0,3}^{\prime}(\gamma \times 1)
$$

relative $X \times \dot{K}_{3}$. Since Φ_{4} is a homotopy-monomorphism, and v_{0}^{\prime} is a homotopyequivalence, we shall obtain the desired result.

Combining Propositions 5.2 and 5.6, we have
THEOREM 5.7. Let X be an A_{3}^{\prime}-cogroup, then γ is an $q-A_{3}^{\prime}$-map if and only if X is an $s-A_{4}^{\prime}$-cogroup.

§6. Homotopy-Coalgebras and Suspensions

In this section, we consider from a little different point of view. We begin with the special case.

Definition 6.1. An A_{3}^{\prime}-cogroup X is a coalgebra if there exists a coretraction γ satisfying the following condition $\left(\Gamma_{\infty}\right)$

$$
\gamma_{0} \gamma=S \Omega \gamma \cdot \gamma
$$

Remark 6.2. If X is a suspended space, then X is a coalgebra with respect to its canonical coretraction.

Remark 6.3. Obviously, γ is a q - A_{2}^{\prime}-homomorphism, i.e., $(\gamma \vee \gamma) \mu_{X}^{\prime}=\mu_{0}^{\prime} \gamma$ for $\mu_{X}^{\prime}=\Psi \gamma$.

ThEOREM 6.4. If X is a simply-connected coalgebra of finite dimension, then X has a homotopy-type of a suspended space.

To prove this theorem, we need some preparations.
Given a triad $(f: X \rightarrow B \leftarrow Y: g)$, define its topological pull-back $P_{f, g}$ by $P_{f, g}=\{(x, y) \in X \times Y ; f(x)=g(y)\}$. Define $\Theta^{\prime}: S P_{f, g} \rightarrow P_{S f, S g}$ by $\Theta^{\prime}<a,(x, y)>$ $=(<a, x\rangle,<a, y>)$, then Θ^{\prime} is a homeomorphism. Next, define $\Theta: S T_{f, g}$ $\rightarrow T_{S f, S g}$ by $\left.\left.\Theta<a,(x, y, w)\right\rangle=(<a, x\rangle,\langle a, y\rangle, \ll a, w \gg\right)$, where $\ll a, w \gg$ is the path of $S B$ defined by $<a, w \gg(t)=<a, w(t)>$, and define $i_{f, g}: P_{f, g} \rightarrow T_{f, g}$ by $i_{f, g}(x, y)=\left(x, y, w_{b}\right)$, where w_{b} is the path of B defined by $w_{b}(t)=b=f(x)=$ $g(y)$. Then, we have the following (strictly) commutative diagram:

Proposition 6.6. Let X be a coalgebra, then starting with $D_{1}=\Omega X$ and $\gamma_{1}=\gamma$, we have a sequence of maps $\gamma_{k}: X \rightarrow S D_{k}$ such that the following diagram is homotopy-commutative:

where $\iota_{k}: D_{k} \rightarrow \Omega S D_{k}$ is the natural inclusion defined by $\iota_{k}\left(\delta^{(k)}\right)(t)=<t, \delta^{(k)}>$ for any $\delta^{(k)} \in D_{k}$ and $t \in I$.

Proof. If $\gamma(x) \neq *$, put $\gamma(x)=<a_{x}, l_{x}>$, then we have $S_{\ell_{1}} \cdot \gamma(x)=<a_{x}$, $\left(s \rightarrow<s, l_{x}>\right)>$ and $S \Omega \gamma \cdot \gamma(x)=<a_{x},\left(s \rightarrow<a_{x, s}, l_{x, s}>\right)>$, where $<a_{x, s}, l_{x, s}>$ $=\gamma\left(l_{x}(s)\right)$ and $\left(s \rightarrow<a_{s}, l_{s}>\right)$ denotes the loop of $S \Omega X$ which sends s to $<a_{s}$, $l_{s}>$. Then the condition $\left(\Gamma_{\infty}\right)$ implies that

$$
\begin{equation*}
a_{x, s}=s \quad \text { and } \quad l_{x, s}=l_{x} \quad \text { for all } \quad s \in I \tag{6.8}
\end{equation*}
$$

Therefore, we may define a homotopy $\Gamma: X \times I \rightarrow S \Omega D_{1}$ by

$$
\Gamma(x, u)= \begin{cases}<a_{x},\left(s \longrightarrow<s, l_{x}>\right)> & \text { if } \gamma(x) \neq * \\ * & \text { if } \gamma(x)=*\end{cases}
$$

and $\kappa_{1}: X \rightarrow W_{1}$ by $\kappa_{1}(x)=(\gamma(x), \gamma(x), w(x))$, where $w(x)$ is the path in $S \Omega D_{1}$ defined by $w(x)(u)=\Gamma(x, u)$, and finally $\gamma_{2}: X \rightarrow S D_{2}$ by

$$
\gamma_{2}(x)= \begin{cases}\left.<a_{x},\left(l_{x}, l_{x}, \omega_{x}^{(1)}\right)\right\rangle & \text { if } \gamma(x) \neq * \\ * & \text { if } \gamma(x)=*\end{cases}
$$

where $\omega_{x}^{(1)}$ is the path in $\Omega S D_{1}$ such that $\left\langle a_{x}, \omega_{x}^{(1)} \gg=w(x)\right.$ holds. Then the diagram (6.7) $)_{1}$ is homotopy-commutative. Put $\gamma_{2}(x)=<a_{x}, \delta^{(2)}(x)>$ for x $\notin \Sigma=\{x \in X ; \gamma(x)=*\}$. Then, we obtain $S_{\iota_{2}} \cdot \gamma_{2}(x)=<a_{x},\left(r \rightarrow<r, \delta^{(2)}(x)>\right)>$ and $S \Omega \gamma_{2} \cdot \gamma(x)=<a_{x}, \gamma_{2} \circ l_{x}>=<a_{x},\left(r \rightarrow<r, \delta^{(2)}(x)>\right)>$ by (6.8). Define $\lambda^{(2)}$: $X-\Sigma \rightarrow \Omega S D_{2}$ and $\delta^{(3)}: X-\Sigma \rightarrow D_{3}$ by $\lambda^{(2)}(x)(r)=<r, \delta^{(2)}(x)>$ and $\delta^{(3)}(x)$ $=\left(\delta^{(2)}(x), l_{x}, \omega^{(2)}(x)\right)$, where $\omega^{(2)}(x)$ is the path of $\Omega S D_{2}$ defined by $\omega^{(2)}(x)(u)$ $=\lambda^{(2)}(x)$ for all $u \in I$.

Then, we may define $\kappa_{2}: X \rightarrow W_{2}$ and $\gamma_{3}: X \rightarrow S D_{3}$ by $\kappa_{2}(x)=\left(\gamma_{2}(x), \gamma(x)\right.$, $\left.\ll a_{x}, \omega^{(2)}(x) \gg\right)$, and

$$
\gamma_{3}(x)= \begin{cases}<a_{x}, \delta^{(3)}(x)> & \text { for } x \notin \Sigma \\ * & \text { for } x \in \Sigma\end{cases}
$$

and it holds $\Theta_{2} \gamma_{3}=\kappa_{2}$.
Now, assume that we have defined maps $\gamma_{i}: X \rightarrow S D_{i}, i=1,2, \ldots, k(k \geqq 3)$, such that it holds

$$
\gamma_{i}(x)= \begin{cases}<a_{x}, \delta^{(i)}(x)> & \text { for } x \notin \Sigma \\ * & \text { for } x \in \Sigma\end{cases}
$$

where $\delta^{(i)}(x)=\left(\delta^{(i-1)}(x), l_{x}, \omega^{(i-1)}(x)\right)$ and $\omega^{(i-1)}(x)$ is the path of $\Omega S D_{i-1}$ defined by $\left[\omega^{(i-1)}(x)(u)\right](t)=<t, \delta^{(i-1)}(x)>$, moreover it holds $\delta^{(i-1)}\left(l_{x}(t)\right)$ $=\delta^{(i-1)}(x)$ for all $t \in I$.

Then, we obtain

$$
S_{\iota_{k}} \cdot \gamma_{k}(x)=<a_{x},\left(t \rightarrow<t, \delta^{(k)}(x)>\right)>=S \Omega \gamma_{k} \cdot \gamma(x)
$$

Therefore, we may define $\delta^{(k+1)}: X-\Sigma \rightarrow D_{k+1} \quad$ by $\quad \delta^{(k+1)}(x)=\left(\delta^{(k)}(x), l_{x}\right.$, $\left.\omega^{(k)}(x)\right)$, where $\omega^{(k)}(x)$ is the path of $\Omega S D_{k}$ defined by $\left[\omega^{(k)}(x)(u)\right](t)=<t$, $\delta^{(k)}(x)>$, and $\gamma_{k+1}: X \rightarrow S D_{k+1}$ by

$$
\gamma_{k+1}(x)= \begin{cases}<a_{x}, \delta^{(k+1)}(x)> & \text { for } x \notin \Sigma \\ * & \text { for } x \in \Sigma\end{cases}
$$

and $\kappa_{k}: X \rightarrow W_{k}$ by $\kappa_{k}(x)=\left(\gamma_{k}(x), \gamma(x), \ll a_{x}, \omega^{(k)}(x) \gg\right)$. Obviously, it holds $\Theta_{k} \cdot \gamma_{k+1}=\kappa_{k}$ and $\gamma_{k+1}, \delta^{(k+1)}(x)$ satisfy the required conditions.

Now, let X be an $(n-1)$-connected coalgebra and consider the following homotopy-commutative diagram:

Since conn. $\gamma^{*}=2 n-2$ and conn. $\Omega X=n-2$, using Lemmas 3.1 and 3.2 in [3], we obtain

$$
\begin{align*}
& \text { conn. } \gamma_{k}=(k+1)(n-2)+2, \tag{6.9.1}\\
& \text { conn. } \Theta_{k}=(k+3)(n-2)+3, \tag{6.9.2}\\
& \operatorname{conn} .\left(\varepsilon \circ \pi_{k, 2}\right)=(k+2)(n-2)+3, \tag{6.9.3}\\
& \text { conn. } D_{k}=n-2 \tag{7.9.4}
\end{align*}
$$

Proof of Theorem 6.4. For a sufficiently large k, we have $\operatorname{dim} X \leqq(k+2)$ $(n-2)+3$. Fix such a k, and put $N=(k+2)(n-2)+3$. Since conn. $\left(\varepsilon \circ \pi_{k, 2}{ }^{\circ}\right.$ $\left.\Theta_{k}\right)=(k+2)(n-2)+3$, by J. H. C. Whitehead's theorem, $\left(\varepsilon \circ \pi_{k, 2} \circ \Theta_{k}\right)_{*}: H_{N}\left(S D_{k+1}\right)$ $\rightarrow H_{N}(X)$ is an epimorphism. On the other hand, since $\operatorname{dim} X \leqq N, H_{N}(X)$ is free, using Berstein-Hilton's homology decomposition (Theorem 6.1 in [2]) we obtain a $C W$-complex Y and a map $f^{\prime}: Y \rightarrow D_{k+1}$ satisfying the following conditions:
(6.10.1) $f_{*}^{\prime}: H_{q}(Y) \longrightarrow H_{q}\left(D_{k+1}\right)$ is an isomorphism for $q<N-1$.
(6.10.2) $\left(\varepsilon \circ \pi_{k, 2^{\circ}} \Theta_{k^{\circ}} S f^{\prime}\right)_{*}: H_{N}(S Y) \longrightarrow H_{N}(X)$ is an isomorphism.
(6.10.3) $H_{q}(Y)=0 \quad$ for $\quad q>N$.

Since $H_{q}(X)=0$ for $q>N, f=\varepsilon \circ \pi_{k, 2}{ }^{\circ} \Theta_{k} \circ S f^{\prime}: S Y \rightarrow X$ is a homotopy equivalence.
Lemma 6.11. For the homotopy equivalence f in Theorem 6.2, $\tilde{f}=f \circ \gamma$ is homotopic to a suspended map.

Proof. By definitions, we have the followings:

[^2]\[

$$
\begin{array}{lll}
\pi_{i, 1}{ }^{\circ} \Theta_{i}=S p_{i, 1} & \text { for } & 1 \leqq i \leqq k ; \\
\pi_{i, 2^{\circ}} \Theta_{i} \gamma_{i+1} \simeq \gamma & \text { for } & 1 \leqq i \leqq k-1 ; \\
\gamma_{i} \circ \varepsilon=\varepsilon_{0, i} \circ S \gamma_{i} & \text { for } & 1 \leqq i \leqq k ; \\
\varepsilon_{0, i}{ }^{\circ} S \iota=1_{S D_{i}} ; & &
\end{array}
$$
\]

where $\varepsilon_{0, i}: S \Omega S D_{i} \rightarrow S D_{i}$ is the map defined by

$$
\varepsilon_{0, i}<a,\left(r \longrightarrow<b_{r}, \delta_{r}^{(i)}>\right)>=\left\langle b_{a}, \delta_{a}^{(i)}\right\rangle .
$$

Then, we obtain

$$
\begin{aligned}
\gamma \circ f & \simeq \gamma \circ \varepsilon \circ \pi_{1,2} \circ \Theta_{1} \circ \gamma_{2} \circ \varepsilon \circ \pi_{2,2^{\circ}} \Theta_{2} \circ \gamma_{3} \circ \cdots \circ \gamma_{k} \circ \varepsilon \circ \pi_{k, 2^{\circ}} \Theta_{k} \circ S f^{\prime} \\
& \simeq \varepsilon_{0} \circ S \epsilon_{1} \circ S p_{1,1^{\circ}} \circ \varepsilon_{0,2} \circ S \epsilon_{2^{2}} S p_{2,1^{\circ}} \cdots \circ \varepsilon_{0, k} \circ \iota_{\epsilon_{k}} \circ p_{k, i} \circ S f^{\prime} \\
& =S\left(p_{1,1} \circ \cdots \circ p_{k, 1} \circ f^{\prime}\right) .
\end{aligned}
$$

Corollary 6.12. The homotopy equivalence f in Theorem 6.2 is a $q-A_{2}^{\prime}-$ map.

Proof. Let γ_{0}^{\prime} be the canonical coretraction of $S Y$, then we have $\gamma_{0} \gamma_{\circ} f$ $\simeq S \Omega \gamma \circ S \Omega f \circ \gamma_{0}^{\prime}$, and then applying ε_{0} by the left we obtain $\gamma \circ f \simeq S \Omega(\varepsilon \circ \gamma) \circ S \Omega f \circ \gamma_{0}^{\prime}$. Therefore f is a $q-A_{2}^{\prime}$-map.

Being X a coalgebra is a sufficient condition for X to be a homotopy-suspended space, however, this characterization is not homotopically invariant, and then we attempt to put it in the homotopy-version.

Define maps $\varepsilon_{i}: S D_{i} \rightarrow X, i \geqq 2$, by $\left.\varepsilon_{i}<a,\left(\delta^{(i-1)}, l, \omega^{(i-1)}\right)\right\rangle=l(a)$.
Definition 6.13. i) A space X is a homotopy-coalgebra of order 1 (abbr. $H C A L-1$), if it admits a coretraction γ, i.e., X is an A_{2}^{\prime}-space. A map $f: X$ $\rightarrow Y$ of HCAL-1's is an HCAL-1-map if there exists a homotopy $\Gamma_{1}(f)=H\left(\gamma_{Y^{\circ}}\right.$ $f, S \Omega f \circ \gamma_{X}$).
ii) An HCAL-1 X is a homotopy-coalgebra of order 2 (abbr. HCAL-2) if it admits a coretraction γ_{2} for ε_{2}, i.e., it holds $\varepsilon_{2} \circ \gamma_{2} \simeq 1$. An HCAL-1-map $f: X \rightarrow Y$ of HCAL-2's is an HCAL-2-map if there exists a homotopy $\Gamma_{2}(f)$ $=H\left(\gamma_{2, \mathrm{Y}} \circ f, S D_{2}(f) \circ \gamma_{2, x}\right)$.

Remark 6.14. i) Let X be an HCAL-1 with a coretraction $\gamma, f: X \rightarrow Y$ be a homotopy-equivalence with a homotopy-inverse g, then $\gamma^{\prime}=S \Omega f \circ \gamma \circ g$ is a coretraction of Y and f and g are HCAL-1-maps with respect to these coretractions.
ii) Let X be an HCAL-2, and $f: X \rightarrow Y$ be a homotopy-equivalence with a homotopy-inverse g. Since f and g are HCAL-1-maps, we may define $D_{2}(f)$:
$D_{2}(X) \rightarrow D_{2}(Y)$ and $D_{2}(g): D_{2}(Y) \rightarrow D_{2}(X)$ such that we have $D_{2}(g) \circ D_{2}(f) \simeq 1$, $D_{2}(f) \circ D_{2}(g) \simeq 1, \pi_{1,1} \circ D_{2}(f)=\Omega f \circ \pi_{1,1}$ and $\pi_{1,2} \circ D_{2}(f)=\Omega f \circ \pi_{1,2}$ and so on. Similarly, we may define $S D_{2}(f): S D_{2}(X) \rightarrow S D_{2}(Y), W_{1}(f): W_{1}(X) \rightarrow W_{1}(Y), S D_{2}(g)$ and $W_{1}(g)$ satisfying the similar conditions as above, and moreover, we have the following homotopy-commutative diagram:

$$
\begin{aligned}
& S D_{2}(Y) \xrightarrow[\theta_{1, Y}]{ } W_{1}(Y) \xrightarrow[\pi_{2,1}]{ } S \Omega Y \xrightarrow[\varepsilon_{Y}]{ } Y
\end{aligned}
$$

Notice that $D_{2}(g) \circ D_{2}(f) \simeq 1$ is shown by the fact that the exact presentations of homotopies $\Gamma_{1}(f)$ and $\Gamma_{1}(g)$ are given by the aid of $F=H(g \circ f, 1)$. The essential part is shown in the following Figure 4, where the thick arrows represent altogether the third component ω^{*} of $D_{2}(g) \circ D_{2}(f)\left(l^{\prime}, l^{\prime \prime}, \omega\right)$.

Fig. 4
Define $\gamma_{2, Y}: Y \rightarrow S D_{2}(Y)$ by $\gamma_{2, Y}=S D_{2}(f) \circ \gamma_{2, X^{\circ}} g$, then $\gamma_{2, Y}$ is a coretraction for $\varepsilon_{2, Y}=\varepsilon_{Y} \circ \pi_{2,1} \circ \Theta_{1, Y}$ and f and g are HCAL-2-maps with respect to $\gamma_{2, X}$ and $\gamma_{2, Y}$.

Fix a map $f: X \rightarrow S Y$ and set $f(x)=\left\langle a_{x}, y_{f . x}\right\rangle$. Let $\{X ; S Y\}(f)$ be the totality of maps $g: X \rightarrow S Y$ such that we have $g(x)=\left\langle a_{x}, y_{g, x}\right\rangle$. Then two maps g_{0} and g_{1} of $\{X ; S Y\}(f)$ are said to be s-homotopic if there exists an s-homotopy $G={ }^{s} H\left(g_{0}, g_{1}\right): X \times I \rightarrow S Y$, i.e., G has the presentation $\left.G(x, u)=<a_{x}, y_{x, u}\right\rangle$; in notation, $g_{0} \underset{s}{\simeq} g_{1}$.

Proposition 6.15. An HCAL-1 is an HCAL-2 if and only if there exists a coretraction γ for which we can find an s-homotopy $\tilde{\Gamma}={ }^{s} H\left(S_{c_{1}} \circ \gamma, S \Omega \gamma \gamma\right)$. Therefore, an HCAL-2 X is an A_{3}^{\prime}-cogroup. Further if an HCAL-2 X is ($n-1$)connected and of dimension $\leqq 4 n-5$, then X has the HCAL-1 homotopy-type of a suspended space.

Proof. Sufficiency is easily seen, and we show necessity. Put $\Xi=H(\varepsilon \circ \gamma$, 1), $\Xi_{2}=H\left(\varepsilon_{2} \circ \gamma_{2}, 1\right), \kappa_{1}^{\prime}=\Theta_{1} \circ \gamma_{2}, \gamma^{\prime}=\pi_{1,1} \circ \kappa_{1}^{\prime}, \gamma^{\prime \prime}=\pi_{1,2} \circ \kappa_{1}^{\prime}$ and $\gamma_{2}(x)=<a_{x},\left(l_{x}^{\prime}, l_{x}^{\prime}\right.$, $\left.\omega_{x}\right)>$. Define an s-homotopy $\tilde{\Gamma}^{\prime}={ }^{s} H\left(S_{\iota_{1}} \circ \gamma^{\prime}, S \Omega \gamma \circ \gamma^{\prime \prime}\right)$ by $\tilde{\Gamma}^{\prime}(x, u)=\ll \tilde{a}_{x}$, $\omega_{x} \gg(u)$. Then, we have $\Gamma_{0}^{\prime}=H\left(\gamma^{\prime}, \gamma\right)=\varepsilon_{0} \circ \tilde{\Gamma}^{\prime}+\gamma_{0} \Xi_{2}, \Gamma_{0}^{\prime \prime \prime}={ }^{s} H\left(\gamma^{\prime}, \gamma^{\prime \prime}\right)=S \Omega \varepsilon \circ \widetilde{\Gamma}^{\prime}$ $+\operatorname{S} \Omega \Xi_{0}\left(\gamma^{\prime \prime} \times 1\right)$ and $\Gamma_{0}^{\prime \prime}=H\left(\gamma^{\prime \prime}, \gamma\right)=\dot{-} \Gamma_{0}^{\prime \prime \prime}+\Gamma_{0}^{\prime}$. Therefore, we may define $\tilde{\Gamma}^{\prime \prime}$ $={ }^{s} H\left(S \iota_{1} \circ \gamma^{\prime \prime}, S \Omega \gamma^{\prime \prime}, \gamma^{\prime \prime}\right)$ by $\tilde{\Gamma}^{\prime \prime}=-S{c_{1}} \Gamma_{0}^{\prime \prime \prime}+\widetilde{\Gamma}^{\prime}+S \Omega \Gamma_{0}^{\prime \prime} \circ\left(\gamma^{\prime \prime} \times 1\right)$. Thus we have obtained the first assertion. The remainders are easily obtained (cf. the proof of Theorem 6.2).

Definition 6.16. An HCAL-2 X is an $H C A L-3$ if there exists a coretraction $\gamma_{3}: X \rightarrow S D_{3}$ for ε_{3}. An HCAL-2-map $f: X \rightarrow Y$ of HCAL-3's is an HCAL-3-map if there exists a homotopy $\Gamma_{3}(f)=H\left(\gamma_{3, \mathrm{Y}^{\circ}} f, S D_{3}(f) \circ \gamma_{3, X}\right)$.

By the same argument as in Proposition 6.15, we obtain
Proposition 6.17. If X is an HCAL-3, then we have a homotopy $H\left(S \epsilon_{2}{ }^{\circ}\right.$ $\left.\gamma_{2}, S \Omega \gamma_{2} \circ \gamma\right)$, and then γ_{2} is a $q-A_{2}^{\prime}$-map. Moreover, we can define a map κ_{2} : $X \rightarrow W_{2}$ such that it holds $\Theta_{2} \circ \gamma_{3} \simeq \kappa_{2}$. Obviously, an $(n-1)$-connected HCAL-3 of dimension $\leqq 5 n-7$ has the homotopy type of a suspended space.

By the similar argument as in Remarks 6.14 (ii), we see that being an HCAL-3 is a homotopy-invariant.

We conclude this section by considering the relation between HCAL-3's and $s-A_{4}^{\prime}$-spaces. We begin with

Proposition 6.18. Let X be an HCAL-2 satisfying the following condition $\left[s s-\tilde{\Gamma}_{2}(\gamma)\right]$:

There exists a homotopy $\tilde{\Gamma}_{2}(\gamma): X \times I \times I \rightarrow S \Omega S \Omega S \Omega X$ such that we have

$$
\begin{aligned}
& \tilde{\Gamma}_{2}(\gamma)(x, u, 0)=S \Omega \gamma_{0} \circ \tilde{\Gamma}(x, u) \\
& \tilde{\Gamma}_{2}(\gamma)(x, u, 1)=S \Omega S \Omega \gamma \circ \tilde{\Gamma}(x, u) \\
& \tilde{\Gamma}_{2}(\gamma)(x, 0, v)=\gamma_{00} \circ \tilde{\Gamma}(x, v) \\
& \tilde{\Gamma}_{2}(\gamma)(x, 1, v)=S \Omega \tilde{\Gamma}(\gamma(x), v) \\
& \tilde{\Gamma}_{2}(\gamma)(x, u, v)=<a_{x},\left(r \rightarrow<\tilde{b}_{x, v, r},(s \rightarrow<,>)>\right)>\quad \text { for }(u, v) \in(0,1),
\end{aligned}
$$

where $\tilde{\Gamma}(x, u)={ }^{s} H\left(S \epsilon_{1} \circ \gamma, S \Omega \gamma \circ \gamma\right)(x, u)=<a_{x},\left(s \rightarrow<\tilde{b}_{x, u, s}, \tilde{l}_{x, u, s}>\right)>$ for the presentation $\left.\gamma(x)=<a_{x}, l_{x}\right\rangle$.

Then, X is an HCAL-3.
Proof. Notice that we have

$$
\begin{aligned}
S \iota_{2} \circ \gamma_{2}(x) & \left.=<a_{x},\left(r \longrightarrow<r,\left(l_{x}, l_{x}, \omega_{x}\right)>\right)\right\rangle \\
& =<a_{x},\left(r \longrightarrow<r, \delta^{(2)}(x)>\right)>,
\end{aligned}
$$

$$
S \Omega \gamma_{2} \circ \gamma(x)=<a_{x},\left(r \longrightarrow<a_{x, r},\left(l_{x, r}, l_{x, r}, \omega_{x, r}\right)>\right)>
$$

where $<a_{x}, \omega_{x} \gg(u)=\tilde{\Gamma}(x, u)$ and $\left.<a_{x, r}, l_{x, r}\right\rangle=\gamma\left(l_{x}(r)\right)$. Then,, we may define a homotopy $\tilde{\Gamma}_{2}: X \times I \rightarrow S \Omega S D_{2}$ by

$$
\left.\left.\tilde{\Gamma}_{2}(x, v)=<a_{x},\left(r \longrightarrow \tilde{b}<_{x, v, r},\left(\tilde{l}_{x, v, r}, l_{x, v, r}, \omega_{x, v, r}\right)\right\rangle\right)\right\rangle
$$

where $\omega_{x, v, r}$ is the path of $\Omega S \Omega X$ such that it holds

$$
\tilde{\Gamma}_{2}(\gamma)(x, u, v)=<a_{x},\left(r \longrightarrow<\tilde{b}_{x, v, r}, \omega_{x, v, r}>(u)>\right.
$$

Then, it holds $\tilde{\Gamma}_{2}={ }^{s} H\left(S \iota_{2} \circ \gamma_{2}, S \Omega \gamma_{2}{ }^{\circ} \gamma\right)$, and we obtain a lift $\gamma_{3}: X \rightarrow S D_{3}$ by

$$
\gamma_{3}(x)=<a_{x},\left(\delta^{(2)}(x), l_{x}, \omega^{(2)}(x)\right)>,
$$

where $\omega^{(2)}(x)$ is the path of $\Omega S D_{2}$ such that we have $<a_{x}, \omega^{(2)}(x) \gg(v)=\tilde{\Gamma}_{2}(x$, v). Obviously, we obtain $\varepsilon_{3} \circ \gamma_{3}=\varepsilon \circ \gamma \simeq 1$ and $\Theta_{2} \circ \gamma_{3}=\kappa_{2}$.

Definition 6.19. We call an A_{3}^{\prime}-cogroup a weak-homotopy-coalgebra of order 2 (abbr. WHCAL-2) in the sense that there exists a homotopy $\bar{\Gamma}(\gamma)=H\left(S_{t_{1}}\right.$ 。 $\gamma, S \Omega \gamma \circ \gamma)$.

A WHCAL-2 X is a $W H C A L-3$ if there exists a homotopy $\bar{\Gamma}_{2}(\gamma): X \times I \times I$ $\rightarrow S \Omega S \Omega S \Omega X$ satisfying the first four conditions of $\left[s s-\widetilde{\Gamma}_{2}(\gamma)\right]$ with respect to $\bar{\Gamma}(\gamma)$.

Theorem 6.20. Let X be an s- A_{4}^{\prime}-cogroup such that the corresponding γ is an A_{3}^{\prime}-map, then X is a WHCAL-3.

To prove this theorem, we make some preparations.
Given an A_{3}^{\prime}-cogroup A, a finite $C W$-complex Z and any space Y, let $\{A \times Z$; $Y\}_{l}$ be the space of all maps $f:\left(A \times Z, *_{X} \times Z\right) \rightarrow(Y, *)$ and $[A \times Z ; Y]_{l}$ be the corresponding homotopy set. Then, we have

Lemma 6.21. (i) $\{A \times Z ; Y\}_{l}$ is an A_{3}-group under the multiplication induced by μ_{A}^{\prime}.
(ii) $\Phi_{k *}:\left[A \times Z ; W_{k-1}(S \Omega X)\right]_{l} \rightarrow\left[A \times Z ; W_{k}(X)\right]_{l}$ and $\Psi_{*}:[A \times Z ; S \Omega X]_{l}$ $\vee[A \times Z ; X \rightarrow X]_{l}$ are monomorphisms.

Using Lemma 6.21 (ii), we obtain
Lemma 6.22. For a q - A_{2}^{\prime}-map $f: X \rightarrow Y$ of A_{3}^{\prime}-cogroups, the following two conditions are equivalent:
[WHCAL-2] There exists a homotopy $\bar{\Gamma}_{2}(f): X \times I \times I \rightarrow S \Omega S \Omega Y$ satisfying the following conditions:

$$
\begin{aligned}
& \bar{\Gamma}_{2}(f)(x, u, 0)=S \Omega S \Omega f \circ \bar{\Gamma}_{X}(x, u), \\
& \bar{\Gamma}_{2}(f)(x, u, 1)=\bar{\Gamma}_{Y}(f(x), u), \\
& \bar{\Gamma}_{2}(f)(x, 0, v)= \begin{cases}S \Omega \bar{\Gamma}(f)\left(\gamma_{X}(x), 2 v\right) & \text { for } \\
S \Omega \gamma_{Y^{\circ}} \bar{\Gamma}(f)(x, 2 v-1) & \text { for } \\
1 / 2 \leqq v \leqq 1 / 2,\end{cases} \\
& \bar{\Gamma}_{2}(f)(x, 1, v)=\left\{\begin{array}{lr}
S \Omega S \Omega f \circ \gamma_{0, x} \gamma_{X}=\gamma_{0, Y^{\circ}} S \Omega f \circ \gamma_{X} & \text { for } 0 \leqq v \leqq 1 / 2, \\
\gamma_{0, Y^{\circ}} \circ \bar{\Gamma}(f)(x-2 v-1) & \text { for } 1 / 2 \leqq v \leqq 1,
\end{array}\right.
\end{aligned}
$$

where $\bar{\Gamma}_{X}=H\left(S \Omega \gamma_{X}{ }^{\circ} \gamma_{X}, \gamma_{0, X^{\circ}} \gamma_{X}\right)$ and $\bar{\Gamma}(f)=H\left(S \Omega f^{\circ} \gamma_{X}, \gamma_{Y} \circ f\right)$.
[WHCAL-2'] There existsa homotopy $\Gamma_{2}^{\prime}(f): X \times I \times I \rightarrow S \Omega Y \vee S \Omega Y$ satisfying the following conditions:

$$
\begin{aligned}
& \Gamma_{2}^{\prime}(f)(x, u, 0)=(S \Omega f \vee S \Omega f) \circ \Gamma_{X}^{\prime}(x, u), \\
& \Gamma_{2}^{\prime}(f)(x, u, 1)=\Gamma_{Y}^{\prime}(f(x), u), \\
& \Gamma_{2}^{\prime}(f)(x, 0, v)= \\
& \begin{cases}(\bar{\Gamma}(f)(,, 2 v) \vee \bar{\Gamma}(, 2 v)) \circ \mu_{X}^{\prime}(x) & \text { for } \quad 0 \leqq v \leqq 1 / 2, \\
\left(\gamma_{Y} \vee \gamma_{Y}\right) \circ H_{2}^{\prime}(f)(x-2 v-1) & \text { for } \\
1 / 2 \leqq v \leqq 1,\end{cases} \\
& \Gamma_{2}^{\prime}(f)(x, 1, v)= \\
& \begin{cases}(S \Omega f \vee S \Omega f) \circ \mu_{0, x}^{\prime} \gamma_{X}(x)=\mu_{0, Y}^{\prime} S \Omega f \circ \gamma_{X}(x) & \text { for } \\
\mu_{0, Y}^{\prime} \circ \bar{\Gamma}(f)(x, 2 v-1) & \text { for } \\
1 / 2 \leqq v \leqq 1 / 2,\end{cases}
\end{aligned}
$$

where $\Gamma_{x}^{\prime}=H\left(\left(\gamma_{X} \vee \gamma_{X}\right) \circ \mu_{x}^{\prime}, \mu_{0, x^{\circ} \gamma_{X}}^{\prime}\right)$ and $H_{2}^{\prime}(f)=H\left((f \vee f) \circ \mu_{x}^{\prime}, \mu_{Y}^{\prime} f\right)$.
As easily seen, an A_{3}^{\prime}-cogroup is a WHCAL-3 if and only if the coretraction satisfies the condition [WHCAL-2].

Proposition 6.23. Let $f: X \rightarrow S Y$ be an A_{3}^{\prime}-map of A_{3}^{\prime}-cogroups. If $f \vee f$ is a homotopy-monomorphism, then f satisfies the condition [WHCAL-2].

Proof. Recall the Ganea's proof of [3: Theorem 2.2], where the homotopy $H\left((\gamma \vee \gamma) \circ \mu^{\prime}, \gamma_{0}^{\prime} \circ \gamma\right)$ is constructed via homotopies $N=H\left(\nabla\left(v^{\prime} \vee 1\right) \mu^{\prime}, *\right), \Gamma=H\left(\Phi_{2} \circ\right.$ $\left.\bar{\gamma}, \bar{\mu}^{\prime}\right), E=H\left(\nabla(1 \vee *) \circ \mu^{\prime}, 1\right)$ and $Z=H\left(\left(\mu^{\prime} \vee \mu^{\prime}\right) \circ \mu^{\prime},\left(1 \vee \mu^{\prime} \vee 1\right) \circ\left(1 \vee \mu^{\prime}\right) \circ \mu^{\prime}\right)$. Since f is an A_{3}^{\prime}-map, f is compatible with Z, N and E. Moreover, since $f \vee f$ is a homo-topy-monomorphism, f is compatible with Γ. Therefore, we may construct the desired homotopy $\Gamma_{2}(f)$.

Proof of Theorem 6.20. As easily seen, $\gamma \vee \gamma$ is a homotopy-monomor-
phism, then we can obtain the result by Proposition 6.23 and Lemma 6.22.

References

[1] I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois J. Math. 4 (1960), 437-451.
[2] I. Berstein and P. J. Hilton, On suspensions and comultiplications, Topology 2 (1963), 73-82.
[3] T. Ganea, Cogroups and suspensions, Inventiones Math. 9 (1970), 185-197.
[4] P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172.
[5] P. J. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1965.
[6] J. W. Rutter, Fibred joins of fibrations and maps-II, J. London Math. Soc. 8 (1974), 453-459.
[7] J. W. Rutter, The suspension of the loops on a space with comultiplication, Math. Ann. 209 (1974), 69-82.
[8] S. Saito, Note on co-H-spaces, J. Fac. Sci. Shinshu Univ. 6 (1971), 101-106.
[9] S. Saito, Note on A_{n}^{\prime}-maps, ibid., to appear.
[10] J. D. Stasheff, Homotopy associativity of H-spaces-I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
[11] J. D. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Math. 161 (1970), Springer, Berlin.
[12] M. Sugawara, A condition that a space is an H-space, Math. J. of Okayama Univ. 6 (1957), 109-129.

Department of Mathematics,
Faculty of Science,
Shinshu University

[^0]: *) In general, for a given map $f: X \rightarrow Y$, consider the following fibre space: $E_{f}=\{(x, W)$ $\left.\in X \times Y^{I} \mid w(0)=f(x)\right\}$, and the map $p_{f}: E_{f} \rightarrow Y$ defined by $p_{f}(x, W)=w(1)$; defining $j: X$ $\rightarrow E_{f}$ by $j(x)=\left(x, *_{f(x)}\right)$ and $r: E_{f} \rightarrow X$ by $r(x, w)=x$, we shall have $r j=1, j r \simeq 1, p_{f} j=f$ and $f r \simeq p_{f}$. We call the fibre E_{f} of p_{f} the homotopy fibre of f. Notice that: $E_{f}=T_{\bar{p}, f}$, where $\bar{p}: \bar{P} Y \rightarrow Y$ is the well known path-space fibering (terminating at the base point).

[^1]: *) More generally, if X is a co- H-space with comultiplication μ_{X}^{\prime}, then for any space $Y, X \wedge Y$ is a co- H-space with comultiplication $\mu_{X}^{\prime} \wedge 1_{Y}$.

[^2]: *) For a based map $f: X \rightarrow Y$, we denote conn. $f=n$ if $\pi_{i}(f)=0$ for $i \leqq n$, which is equivalent to say that $f_{*}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is an isomorphism for $i<n$, and $f_{*}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ is an epimorphism.

