On the Commutativity of Torsion and Injective Hull

Kanroku Aoyama

(Received May 12, 1976)

Introduction

Throughout this note A denotes a commutative ring with a unit and all modules are unitary A-modules. For any module M, if L is a submodule of M and S is a subset of M, then we put $(L: S) = \{x \in A; xS \subseteq L\}$, in particular O(S) = (0: S). For any filter F of ideals of A, we have an operation upon the lattice of submodules of any A-module M, as follows. If L is a submodule of M, we define $C(L, M) = \{x \in M; (L: x) \in F\}$. Especially we rewrite C(0, M) = T(M);C(M, E(M)) = D(M), where E(M) is an injective hull of M. Our main purpose is to answer the question: With the above notations, let F' be another filter and T', D' be the associated operators relative to F'. Can we have the equalities (1) D'(T(M)) = T(D'(M)), (2) D'(M/T(M)) = D'(M)/D'(T(M)) and

(1) D(Hom(N, M)) = Hom(N, D(M))?

The above equalities have been obtained, in [8], in a special case using the local property.

§1. Notation and Preliminaries

Let F be a filter of ideals of A. When L is a submodule of an A-module M, we put $C(L, M) = \{x \in M; (L: x) \in F\}$. Especially we rewrite C(0, M) = T(M), which is called the F-torsion of M; $C(M, E(M)) = D(M); C(\mathfrak{a}, A) = c(\mathfrak{a})$. It is easy to see that, for any submodule N of M, $C(L, M) \cap N = C(L \cap N, N)$ and C(L, M)/L = T(M/L). We denote the class of A-modules M such that T(M)= M by \mathcal{T} and the class of A-modules M such that T(M) = 0 by \mathcal{F} . The following facts are easy and well-known:

(1) The class \mathscr{T} is closed under submodule, image and direct sum (such class will be called a weak torsion class). Hence a module M belongs to \mathscr{T} if and only if $Ax \in \mathscr{T}$ for any element x in M.

(2) T is a left exact subfunctor. Namely, the functor T satisfies the properties: (i) $T(M) \subseteq M$, (ii) if L is a submodule of M, then $T(L) = T(M) \cap L$, and (iii) for any homomorphism $f: M \to N$, $f(T(M)) \subset T(N)$ (such functor is called a left exact preradical).

(3) The operator c satisfies the properties: (i) $a \subseteq c(a)$, (ii) $c(a \cap b) = c(a) \cap c(b)$ and (iii) (c(a): x) = c(a: x), for any ideals a, b and any element x in A

(such operator c will be called a modular operation).

(4) The class \mathscr{F} is the right annihilator of \mathscr{T} , i. e., an *A*-module *M* belongs to \mathscr{F} if and only if $\operatorname{Hom}_{\mathcal{A}}(N, M) = 0$ for any module *N* in \mathscr{T} (cf. [2], [6]). Hence \mathscr{F} is closed under submodule, group extension and direct product. Further \mathscr{F} is closed under essential extension. And an *A*-module *M* belongs to \mathscr{F} if and only if $Ax \in \mathscr{F}$ for any element x in M.

(5) (Relations among F, T, \mathscr{T} and c) For any ideal \mathfrak{a} of A, the following statements are equivalent: (a) $\mathfrak{a} \in F$, (b) $A/\mathfrak{a} \in \mathscr{T}$, (c) $T(A/\mathfrak{a}) = A/\mathfrak{a}$ and (d) $c(\mathfrak{a}) = A$. Let us note that, for any ideal \mathfrak{a} , $c(\mathfrak{a}) = \mathfrak{a}$ if and only if $A/\mathfrak{a} \in \mathscr{F}$. Further note that $c(\mathfrak{a})$ is the union of ideals (\mathfrak{a} : b), where b runs through F.

The above notations will be fixed throughout this note.

PROPOSITION 1. The following conditions for a filter F are equivalent: (a) For any ideal a, $c(a) = c^2(a)$.

- (b) For any ideals $a, b, if b/a \in \mathcal{T}, b \in F$, then $a \in F$.
- (c) For any ideal \mathfrak{a} , if $c(\mathfrak{a}) \in F$ then $\mathfrak{a} \in F$.
- (d) For any module $M, M/T(M) \in \mathcal{F}$.
- (e) \mathcal{T} is the left annihilator of \mathcal{F} .
- (f) \mathcal{T} is closed under group extension.
- (g) For any submodule L of a module M with $L \in \mathcal{T}$, C(L, M) = T(M).

PROOF. (a) \Rightarrow (b) \Rightarrow (c) follow from the fact that b/a $\in \mathscr{T}$ if and only if b $\subseteq c(\mathfrak{a})$. (c) \Rightarrow (a): If $x \in c^2(\mathfrak{a})$, then $(c(\mathfrak{a}): x) = c(\mathfrak{a}: x) \in F$, hence $(\mathfrak{a}: x) \in F$ by (c). (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f) \Rightarrow (g) are rather obvious. (g) \Rightarrow (a) follows from the equalities: $c^2(\mathfrak{a})/\mathfrak{a} = C(c(\mathfrak{a})/\mathfrak{a}, A/\mathfrak{a}) = c(\mathfrak{a})/\mathfrak{a}$.

DEFINITION 1. A filter satisfying the above condition is said to be *idem*potent (cf. [1], [3] and [6]). The associated operator c is called a modular closure operator. The associated functor T is called a left exact radical or torsion radical (cf. [4], [7], [9]). And the class \mathcal{T} will be called a torsion class (cf. [2], [9]).

PROPOSITION 2. The following conditions for an A-module M are equivalent:

(a) $M = D(M), i.e. E(M)/M \in \mathcal{F}.$

(b) If $0 \rightarrow L \rightarrow N \rightarrow K \rightarrow 0$ be an exact sequence of modules with $K \in \mathcal{F}$, then any homomorphism $L \rightarrow M$ can be extended to a homomorphism $N \rightarrow M$.

(c) $\operatorname{Ext}_{A}^{1}(L, M) = 0$ for any $L \in \mathscr{T}$.

(d) $\operatorname{Ext}_{A}^{1}(A/\mathfrak{a}, M) = 0$ for any $\mathfrak{a} \in F$.

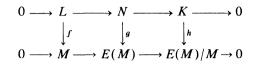
(e) Any exact sequence $0 \rightarrow M \rightarrow N \rightarrow K \rightarrow 0$ with $K \in \mathcal{T}$ is split.

(f) Let $0 \rightarrow M \rightarrow N \rightarrow K \rightarrow 0$ be an exact sequence with $K \in \mathcal{T}$. Then for any element x in K there exists an inverse image y of x in N such that 0(y) = 0(x).

PROOF. (b) \Rightarrow (e) \Rightarrow (f) \Rightarrow (a) and the equivalence of (b), (c) and (d) are obvious

528

(e.g. see [9]). (a) \Rightarrow (b): Under the assumption in (b), we can construct a commutative diagram of modules with exact rows:



Since h=0, $g(N)\subseteq M$, which completes the proof.

DEFINITION 2. An A-module M is said to be F-injective or F-divisible if M satisfies the conditions above. The class of F-injective modules will be denoted by \mathcal{D} .

COROLLARY 1. The class \mathcal{D} is closed under group extension and direct product.

COROLLARY 2. If M is F-injective, then for any module N containing M, an exact sequence $0 \rightarrow M \rightarrow C(M, N) \rightarrow T(N/M) \rightarrow 0$ is split. And C(M, N) = M + T(N), furthermore $0 \rightarrow T(M) \rightarrow T(N) \rightarrow T(N/M) \rightarrow 0$ is exact.

DEFINITION 3. The intersection $\mathcal{D} \cap \mathcal{F}$ will be denoted by \mathcal{F}_d , whose member will be said to be *F*-closed.

COROLLARY 3. Let M be an F-closed module and L its submodule. Then L is F-closed if and only if $M/L \in \mathcal{F}$.

PROOF. Let a be an ideal in F. Since $\operatorname{Hom}_{A}(A/\mathfrak{a}, M) = \operatorname{Ext}_{A}^{1}(A/\mathfrak{a}, M) = 0$, $\operatorname{Hom}_{A}(A/\mathfrak{a}, M/L) \simeq \operatorname{Ext}_{A}^{1}(A/\mathfrak{a}, L)$.

REMARK 1. If F is an idempotent filter, then D(M) is F-injective for any module M. D(M) is the only submodule D of E(M) so that $D/M \in \mathcal{F}$ and $E(M)/D \in \mathcal{F}$. Consequently we can say that D(M) is an F-injective hull of an A-module M.

NOTICE. For each filter F the class \mathcal{T} is a Serre subcategory if and only if F is idempotent. See [10] for the terminology. Further we can say that F is idempotent if and only if \mathcal{T} is a localizing subcategory. Recently an idempotent filter is called a Gabriel topology by Bo Stenström.

§2. Splitting filters

THEOREM 1. The following conditions for a filter F are equivalent:

(a) For any module M, if $M \notin \mathcal{T}$, then there exists a non-zero submodule L of M with $L \in \mathcal{F}$.

Kanroku Аоуама

(b) \mathcal{T} is closed under essential extension.

(c) For any module M, E(T(M)) = T(E(M)).

(d) If an A-module M is injective, then so is T(M).

(e) For any ideal a of A, there exists b in F such that $a = c(a) \cap b$.

(f) For any ideal a with $a \notin F$, there exists $a \in A - c(a)$ such that (a: a) = c(a: a).

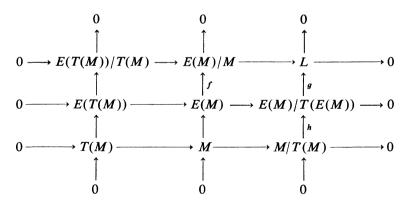
PROOF. This can be obtained by a modification of the proof of [8, Theorem 2]. So we shall omit the proof.

NOTICE. A part of Theorem 1 has already been known (see [3] and [9]). Recently S. Itoh, in [5], has shown the equivalence of (a)–(d) in Theorem 1 when \mathcal{T} is a localizing subcategory.

DEFINITION 4. A filter F is called a *splitting filter* if F satisfies the condition above. Note that if F is a splitting filter, then it is idempotent by the condition (e).

PROPOSITION 3. If F is a splitting filter, then E(M/T(M)) = E(M)/E(T(M))and $E(M) = E(T(M)) \oplus E(M/T(M))$ for any A-module M.

PROOF. First consider a canonical commutative diagram of modules with exact rows and columns:



Since E(M)/T(E(M)) is injective, it suffices to show that homomorphism h in the diagram is essential. If h is not essential then, by virtue of the next Lemma 1, there exists a non-zero element x of E(M)/T(E(M)) such that O(x)=O(g(x)). And there exists an inverse image y of x in E(M) such that O(x)=O(y). Hence O(y)=O(f(y)), which contradicts the fact that E(M) is essential over M.

LEMMA 1. Let L be a submodule of an A-module M. Then L is not essential in M if and only if there exists a non-zero element x of M such that $O(x)=O(\bar{x})$,

530

where \bar{x} is the canonical image of x in M/L.

PROOF. Clear.

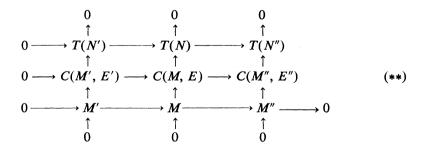
PROPOSITION 4. Suppose that F be a splitting filter and let F' be another filter of ideals of A. Then, for any A-module M, T(D'(M)) = D'(T(M)), in which $D'(M) = \{x \in E(M); (M : x) \in F'\}.$

PROOF. For any submodule L of M, we denote by C'(L, M) the set of elements x in M such that $(L: x) \in F'$. Our assertion follows from the equalities for any module $M: TD'(M) = D'(M) \cap T(E(M)) = C'(M, E(M)) \cap E(T(M)) = C'(M \cap E(T(M))) = C'(T(M)) = C'(T(M)) = D'(T(M)).$

Now, with the same notations and assumptions in Prop. 4, can we see that $D'(M/T(M)) \simeq D'(M)/D'(T(M))$? The rest of this section will be devoted to examine into conditions for this equality.

Let E be an A-module and M, E' its submodules. Then we have a commutative diagram of modules with exact rows and columns:

in which $M' = E' \cap M$, and morphisms and modules are all canonical. From this diagram (*), we can construct directly another commutative diagram of modules with exact rows and columns except the middle row:



But, by consideration of the homology group at each module in the diagram (**), we have the following commutative diagram of modules with exact rows:

Kanroku Aoyama

Hence we have

LEMMA 2. With the same notations as above, if F is idempotent and N' $\in \mathcal{T}$, then $C(M'', E') \simeq C(M, E)/C(M', E')$.

More generally, using the notion of the right derived functors $R^n T(n \ge 0)$ of T, we have

LEMMA 3. With the same notations as above, if $R^{1}T(N')=0$, then $C(M'', E'') \simeq C(M, E)/C(M', E')$.

As a special case, we have

THEOREM 2. Let F be a splitting filter and M an A-module. Then D(T(M)) = T(D(M)) = E(T(M)) and $D(M) \simeq D(T(M)) \oplus D(M/T(M))$.

PROOF. Apply Lemma 2, putting E' = T(E(M)). Then our assertion follows directly since D(T(M)) = E(T(M)) is injective.

LEMMA 4. Let F be a splitting filter and M an A-module. Then

- (a) If $M \in \mathcal{T}$, then $R^n T(M) = 0$ for $n \ge 1$.
- (b) $R^n T(M) = R^n T(D(M)) = R^n T(D(M/T(M)))$ for $n \ge 2$.

PROOF. (a) comes from (b) in Theorem 1. (b) follows from long exact sequences derived from R^nT 's, using (a) and Theorem 2.

PROPOSITION 5. Let F_t be a splitting filter with the associated left exact functor t, and let F be another splitting filter. Suppose that $R^2T(M)=0$ for any A-module M such that t(M)=M and $M \in \mathcal{F}_d$. Then, for any module M, $D(M/t(M)) \simeq DM)/D(t(M))$.

PROOF. Apply Lemma 3, putting E' = t(E(M)). Since $R^2 T(t(M)) = R^1 T(E(t(M))/t(M))$, it suffices to show that $R^2 T(t(M)) = 0$. This last equality follows directly from our assumption and Lemma 4.

§3. Divisorial lattices

A lattice C(A) of ideals of A will be said to be divisorial if it is closed under intersection and, for any ideal a in C(A) and any element x in A, (a: x) lies also in C(A). Let F be an idempotent filter of ideals of A. Then we say that an ideal

532

a of A is F-closed if c(a) = a. The set of F-closed ideals of A forms a divisorial lattice $C_F(A)$. Note that the closure c(a) of any ideal a relative to F is the smallest F-closed ideal containing it.

Conversely, for each divisorial lattice C(A) of ideals of A, we have a closure operation upon the lattice of ideals of A, defining the closure \tilde{a} of an ideal a by the smallest ideal in C(A) containing a.

PROPOSITION 6. With the same notations as above, the set F of ideals a of A such that $\tilde{a} = A$ forms an idempotent filter.

PROOF. First of all we show that F is a filter. Since $a \subseteq \tilde{a}$, and $\tilde{a} \subseteq \tilde{b}$ if $a \subseteq b$, it suffices to show that if a and b are in F, then so is $a \cdot b$. Suppose that $a \cdot b \notin F$. Then there exists a proper ideal c in C(A) containing $a \cdot b$. Since $a \not\equiv c$, (c: a) is a proper ideal in C(A) containing b, contrary to the hypothesis.

The fact that F is idempotent follows from the next

LEMMA 5. With the same notations as above, let a be an ideal of A. Then $c(a) \subseteq \tilde{a}$. Thus, $c(a) \in F$ if and only if $\tilde{a} = A$.

PROOF. It suffices to show that, for any ideal \mathfrak{a} and element x in A, if $(\mathfrak{a}: x) \in F$, then $x \in \tilde{\mathfrak{a}}$. If $x \notin \tilde{\mathfrak{a}}$, then $(\tilde{\mathfrak{a}}: x)$ is a proper ideal in C(A) containing $(\mathfrak{a}: x)$, which shows that $(\mathfrak{a}: x) \notin F$.

PROPOSITION 7. Let C(A) be a divisorial lattice of ideals of A and F an associated idempotent filter as above. Then the following conditions for C(A) are equivalent:

- (a) $C(A) = C_F(A)$.
- (b) For any ideal \mathfrak{a} of A, $c(\mathfrak{a}) = \tilde{\mathfrak{a}}$.
- (c) For any ideal a and element x in A, $(\tilde{a}: x) = (\tilde{a}: x)$.

PROOF. (a) \Leftrightarrow (b) \Leftrightarrow (c): Clear.

REMARK 2. With the above notations, consider the condition (d): $\tilde{a} \cap b = \widetilde{a \cap b}$ for any ideals a, b of A. It is easy to see that the condition in Prop. 7 implies (d). But the converse is not true. For example, let C(A) be the set of ideals a of A such that $a = \sqrt{a}$. Then C(A) is a divisorial lattice with the condition (d) since $\tilde{a} = \sqrt{a}$ for any ideal a of A. However c(a) = a for any ideal a of A. Thus, unless A is regular in the sense of von-Neumann, C(A) does not satisfy the condition in Prop. 7.

REMARK 3. With the above notations, suppose that A is an integral domain and C(A) satisfies the conditions (d) and (e): $x \cdot \tilde{a} = \tilde{x} \tilde{a}$ for any ideal a and element x in A. Then C(A) satisfies the condition in Prop. 7. In fact, for any aand x, $x(a: x) = xA \cap a$. Therefore $x(a: x) = xA \cap \tilde{a} = x(\tilde{a}: x)$ since xA = xA. EXAMPLE. Let A be an integral domain. Consider the set of ideals of A which are divisorial in the usual sense. Then it is a divisorial lattice with the condition (e). The associated filter consists of all ideals \mathfrak{a} of A such that $\mathfrak{a}^{-1} = A$. Let \mathfrak{a} be a non-zero ideal of A and K the fractional field of A. Then, since $K/A \in \mathscr{F}$ and thus $T(A/\mathfrak{a}) = T(K/\mathfrak{a})$, $c(\mathfrak{a}) = D(\mathfrak{a})$ with respect to the above filter.

In [8], the following proposition is proved. We shall prove it again rather easily.

PROPOSITION 8. With the same situation in the above example, assume that A is completely integrally closed. Then, for any ideal \mathfrak{a} of A, $c(\mathfrak{a}) = \tilde{\mathfrak{a}}$.

PROOF. Suppose that $x \in \tilde{a}$, namely that $x \cdot a^{-1} \in A$, then $x \cdot a \cdot a^{-1} \subseteq a$, thus $a \cdot a^{-1} \subseteq (a: x)$. By our assumption, $a \cdot a^{-1} = A$, hence $x \in c(a)$.

REMARK 4. To avoid the trivial case we assume that A is not a field. Let F be the filter in the above example. Then the associated (hereditary) torsion theory $(\mathcal{T}, \mathcal{F})$ is cogenerated by E(K/A). That is, an A-module M belongs to \mathcal{T} if and only if $\operatorname{Hom}_A(M, E(K/A))=0$ (cf. [6], [9] and [8, Prop. 5]). In fact, "only if" part is easy to see, so we shall show "if" part. If $\operatorname{Hom}_A(M, E(K/A))$ =0, then $\operatorname{Hom}_A(Ax, K/A)=0$ for any element x of M. Hence it suffices to show that if $\operatorname{Hom}_A(A/\mathfrak{a}, K/A)=0$, then $\mathfrak{a} \in F$. Suppose that an ideal \mathfrak{a} is not in F, then $\tilde{\mathfrak{a}} \neq A$ by Lemma 5. Hence we can take an element x of $\mathfrak{a}^{-1} - A$. Define $f: A \to K/A$ so that f(a)=ax modulo A. Then $f(\mathfrak{a})=0$ and $f \neq 0$, which completes the proof.

§4. Relations with \otimes and Hom

As before, we fix a filter F of ideals of A.

LEMMA 6. Let M be an A-module. Then (a) If M is in \mathcal{T} , then so are $\operatorname{Tor}_n^A(M, N)$ for any module N. (b) If M is in \mathcal{F} , then so is $\operatorname{Hom}_A(N, M)$ for any module N.

PROOF. Clear.

PROPOSITION 9. If an A-module M is F-closed, then so is $\text{Hom}_A(N, M)$ for any module N.

PROOF. Let a be an ideal in F and N an A-module. It suffices to show that $\operatorname{Hom}_A(A, \operatorname{Hom}_A(N, M)) \simeq \operatorname{Hom}_A(\mathfrak{a}, \operatorname{Hom}_A(N, M))$. Consider two exact sequences:

 $0 \longrightarrow \operatorname{Tor}_{1}^{4}(A/\mathfrak{a}, N) \longrightarrow \mathfrak{a} \otimes_{A} N \longrightarrow \mathfrak{a} N \longrightarrow 0,$ $0 \longrightarrow \mathfrak{a} N \longrightarrow N \longrightarrow N/\mathfrak{a} N \longrightarrow 0$

Since $\operatorname{Tor}_{1}^{4}(A/\mathfrak{a}, N)$ is in \mathscr{T} , $\operatorname{Hom}_{A}(\mathfrak{a} N, M) \simeq \operatorname{Hom}_{A}(\mathfrak{a} \otimes_{A} N, M) \simeq \operatorname{Hom}_{A}(\mathfrak{a}, \operatorname{Hom}_{A}(N, M))$. Again since $N/\mathfrak{a} N$ is in \mathscr{T} and M is F-injective, $\operatorname{Hom}_{A}(\mathfrak{a} N, M) \simeq \operatorname{Hom}_{A}(\mathfrak{n}, M) \simeq \operatorname{Hom}_{A}(N, M)$. These isomorphisms are all natural, and hence the proof is complete.

PROPOSITION 10. Let M and N be A-modules. If M is F-injective and if $\operatorname{Tor}_{A}^{A}(A|\mathfrak{a}, N) = 0$ for any ideal \mathfrak{a} in F, then $\operatorname{Hom}_{A}(N, M)$ is F-injective.

PROOF. Let \mathfrak{a} be an ideal in F. Then we have a commutative diagram of modules with exact columns:

In fact, since M is in \mathcal{F} , the columns are exact. And the isomorphism *i* can be obtained by our assumption for N. This diagram shows that p is epimorphic, which proves our assertion.

LEMMA 7. Let M and N be A-modules. If M is F-closed, then $\operatorname{Hom}_{A}(D(N), M) = \operatorname{Hom}_{A}(N, M)$.

PROOF. Clear.

COROLLARY 1. Let N and M be A-modules. Assume that F is idempotent and that M is in \mathcal{F} . Then $\operatorname{Hom}_{A}(D(N), D(M)) = \operatorname{Hom}_{A}(N, D(M))$.

PROOF. Since D(M) is F-closed by Remark 1, our assertion follows directly from Lemma 7.

COROLLARY 2. With the same assumptions as in Cor. 1, assume further that $\operatorname{Hom}_{A}(N, D(M)/M) \in \mathcal{T}$. Then $\operatorname{Hom}_{A}(N, D(M))$ is an F-injective hull of $\operatorname{Hom}_{A}(N, M)$.

PROOF. By our assumption, $\text{Hom}_A(N, M)$ is essential in $\text{Hom}_A(N, D(M))$. Since the latter is *F*-injective, our assertion follows from the min-max property of an *F*-injective hull.

Let us now inquire into an A-module N such that $\operatorname{Hom}_A(N, L)$ belongs to \mathscr{T} for any module L in \mathscr{T} . We shall say that such a module N is of F-finite type. It is easy to see that each module of finite type is always of F-finite type.

PROPOSITION 11. If F is a splitting filter, then every submodule of an A-

module of F-finite type is of F-finite type.

PROOF. Let N be an A-module of F-finite type and M its submodule. Then, for any module L in \mathcal{T} , Hom_A(M, L) is a submodule of Hom_A(M, E(L)), which is a homomorphic image of Hom_A(N, E(L)). The last module is in \mathcal{T} , since E(L)

is in \mathcal{T} by our assumption. Thus M is of F-finite type because of the closedness of the class \mathcal{T} .

The above result generalizes Prop. 32 in [8]. But we can have more generalization as follows. At first, note that the class of modules of F-finite type is closed under image and group extension.

DEFINITION 5. Let F be a filter of ideals of A. We say that F is a completely multiplicative filter if it satisfies the conditions:

- (i) For any ideals a and b in F; $a \cdot b$ belongs to F.
- (ii) For any ideal a, (a: c(a)) belongs to F, or equivalently,
- (ii)' For any ideal \mathfrak{a} , there exists an ideal \mathfrak{b} in F such that $(\mathfrak{a}: \mathfrak{b}) = c(\mathfrak{a})$.

REMARK 5. In the above, the equivalence of (ii) and (ii)' follows from the statement (5) in 1.

PROPOSITION 12. Let M be an A-module of finite type and suppose that F is a completely multiplicative filter. Then every submodule of M is of F-finite type.

PROOF. We prove the assertion by induction on the number of generators of M. If M is cyclic, then its submodule is of the form $\mathfrak{a}/\mathfrak{b}$ where \mathfrak{a} and \mathfrak{b} are ideals of A. It suffices to show that each ideal \mathfrak{a} is of F-finite type. Let f be a homomorphism from an ideal \mathfrak{a} into an A-module L in \mathcal{T} . Then $f(\mathfrak{a}) \simeq \mathfrak{a}/\mathfrak{b}$ and $\mathfrak{b} \subseteq \mathfrak{a}$ $\subseteq c(\mathfrak{b})$. By our assumption there exists an ideal \mathfrak{c} in F such that $\mathfrak{ca} \subseteq \mathfrak{b}$, i.e., $\mathfrak{c}f=0$, which shows that $\operatorname{Hom}_{A}(\mathfrak{a}, L) \in \mathcal{T}$ if L is in \mathcal{T} .

If *M* is not cyclic, then we can write $M = M_1 + M_2$, where M_1 and M_2 are generated by less elements than *M* is. Let *N* be a submodule of *M*. Then $N \cap M_1$ and $N/N \cap M_1 = N + M_1/M_1$ are of *F*-finite type, by induction hypothesis, hence so is *N*, which completes the proof.

REMARK 6. Let F be a filter of ideals of A. It is easy to see that if F is completely multiplicative, then it is idempotent. Further, if F is of splitting type, then it is completely multiplicative, by the condition (e) in Theorem 1.

As a summary of the above results, we have

THEOREM 3. Let M be an A-module with $M \in \mathcal{F}$ and N a submodule of an A-module of finite type. If F is a completely multiplicative filter, then $\operatorname{Hom}_{A}(N, \mathbb{F})$

D(M)) is an F-injective hull of Hom_A(N, M).

EXAMPLE (continued). Let A be a completely integrally closed domain and F the set of ideals a of A such that $a^{-1} = A$. Then F is completely multiplicative. In fact, for any non-zero ideal a of A, $a \cdot a^{-1} \in F$ by our assumption on A. On the other hand since $a^{-1} = c(a)^{-1}$, $a \cdot a^{-1} \subseteq (a : c(a))$, which shows our assertion.

By Theorem 3, for any A-lattices N and M, $D(\operatorname{Hom}_A(N, M)) = \operatorname{Hom}_A(N, D(M)) = \operatorname{Hom}_A(D(N), D(M)).$

References

- [1] N. BOURBAKI, Algèbre Commutative, Chap. 1 and 2 (1961), 156-165.
- [2] S. E. DICKSON, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235.
- [3] P. GABRIEL, Des categories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- [4] O. GOLDMAN, Rings and modules of quotients, J. Algebra 13 (1969), 10-47.
- [5] S. ITOH, Divisorial Objects in Abelian Categories, this issue.
- [6] J. LAMBEK, Torsion theories, additive semantics, and rings of quotients, Lecture Notes in Math., Vol. 177, Springer-Verlag, Berlin and New York, 1971.
- [7] J.-M. MARANDA, Injective structures, Trans. Amer. Math. Soc. 110 (1964), 98-135.
- [8] M. NISHI and M. SHINAGAWA, Codivisorial and divisorial modules over comletely integrally closed domains (I), (II), Hiroshima Math. J., 5, 6 (1975).
- [9] B. STENSTRÖM, Rings and Modules of Quotients, Lecture Notes in Math., Vol. 237, Springer-Verlag, Berlin and New York, 1971.
- [10] R. G. SWAN, Algebraic K-Theory, Lecture Notes in Math., Vol. 76, Springer-Verlag, Berlin and New York, 1968.

Faculty of Education, Kumamoto University