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1. Introduction

Let us consider the Cauchy problem for a hyperbolic system
(L) ZEx, 0= T 1A ()40 (0StST, —0<x;<w),
J

(1.2) u(x, 0) = ug(x), ug(x) € L,,

where u(x, t) and uy(x) are N-vectors and A(x) (j=1, 2,..., n) are N x N matrices,
and assume that this problem is well posed. For the numerical solution of this
problem we consider the difference scheme -

(1.3) u(x, t+k) = S,(x, ho(x, t) O=Zt£T, —0 <x; <),
(1.4) ox, 0) = ug(x), k= ih, |

and study the stability of the scheme in the sense of Lax-Richtmyer, where S,(x, h)
is a difference operator and h is a space mesh width.

The stability of schemes for symmetric hyperbolic systems was studied by
Lax [7], Lax and Wendroff [8, 9], Kreiss [5] and Parlett [12] in the case

(15) Sh(x’ h) = Zaca(x7 h)Ti,

where « is a multi-index, ¢, is an N x N matrix and T, is the translation operator.

The stability for nonsymmetric hyperbolic systems was treated first by
Yamaguti and Nogi [20]. They defined a family of bounded linear operators
in L, associated with an N x N matrix k(x, w) which is homogeneous of degree
zero in w, is independent of x for |[x{=R (R>0) and belongs to C®(RZx(R?
—{0})). They studied the properties of the algebra of such families and applied
the results to the investigation of the stability of Friedrichs’ scheme under the
assumption: The system (1.1) is regularly hyperbolic and A(x) (j=1, 2,..., n)
are independent of x for |x|=R and belong to C®. Under the same assump-
tion, Vaillancourt [16, 17] obtained an improved stability condition for Friedrichs’
scheme and a condition for the modified Lax-Wendroff scheme; Kametaka [4]
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treated the regularly hyperbolic systems with nearly constant coefficients.

In this paper we are concerned with the nonsymmetric hyperbolic systems
that satisfy the conditions: Eigenvalues of A(x, &)= 1_14;,(x)¢;/|¢] (£#0)
are all real and their multiplicities are independent of x and &; elementary divisors
of A(x, &) are all linear; there exists a constant >0 such that

V"i(X, é)_)"j(xs 6)' g 6 (i ;&j, i,j = 1, 2,“-, n)’

where A(x, &) (i=1, 2,..., s) are all the distinct eigenvalues of A(x, &).

We consider the case where S,(x, h) is a sum of products of operators of the
form (1.5). Our proof of stability is based on the following result: If S,(x, h)
and S,(x, 0) are the families of bounded linear operators in L, and if there exist

positive constants ¢, and ¢, and a norm || . ||| equivalent to the L,-norm | . || such
that

(1.6) llSu(x, Oull < (1+coh) flull,

a.7 (S, (x, B)—Sp(x, O)ul < c h|ul forall ueL,, h>0,

then the scheme (1.3) is stable.

To construct such a norm ||. ||, after Friedrichs [3] and Kumano-go [6]
we introduce a family of bounded linear operators in L, associated with an N x N
matrix p(x, w) such that

p(x, @) = po(x, ®)+ p(), llim Po(x, ) =0 for each weR"
|x| =

and the Fourier transform of py(x, w) with respect to x satisfies some conditions.
We construct an algebra ¢, of such families and show an analogue of Lax-
Nirenberg Theorem [10] for elements of »¢, in order to obtain sufficient condi-
tions under which (1.6) holds.

Taking the properties of 2", into consideration, in Section 5 we construct an
algebra of difference operators S,(x, h) for which (1.7) holds and in Section 6
the stability of the schemes with elements of this algebra is studied. For instance
Vaillancourt’s result is valid under the assumption:

Aj(x) = AjO(x)+Ajooa |li|r—lulooAj0(x) =0 (j = ], 2;'--a n)

and (0™/0x}) Ajo(x) (j, k=1, 2,..., n; m=0, 1,..., n+3) are bounded, continuous
and integrable.

In Section 7 some examples of the schemes are given. Lemmas and theorems
stated without proof are proved in the last section.
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2. Notations and preliminaries

2.1. Notations

Let C be the field of complex numbers. Let ¢ and c* stand for the con-
jugate and the conjugate transpose of a matrix ¢ respectively. We denote by |al,
|z| and p(a) the spectral norm of an N x N matrix a, the Euclidean norm of an
N-vector z and the spectral radius of a respectively. For any hermitian matrices
a and b we use the notation a=b if a—b is positive semi-definite.

We denote by R" the real n-space and write it as R, R”, etc. to specify its
space variables. Unless otherwise stated, we denote by u(x), ¢(x), etc. the
N-vector functions defined on R".

The space L, (p= 1) consists of all measurable functions u(x) in R" such that
|u(x)|? is integrable, i.e. \|u(x)|?dx < oo, where two functions are identified if they
coincide almost everywhere. The scalar product and the norm in L, are denoted
by (, ) and || .| respectively.

Let &% be the space of all C* functions on R* which, together with all their
derivatives, decrease faster than any negative power of |x| as |[x]—>00. We denote
by 6i(&) (£ € R") the Fourier transform of u(x). For each ¢(x) in &, ¢(&) can be
written as follows:

#(¢) = ng"'-"'ﬁtp(x)dx forall @e,
where

(2.1) K = (2mn)~"/2, x-&=3"_x;¢;

We denote by p(&, w) the Fourier transform of p(x, w) with respect to x and by

axb(x) the convolution \a(x —t)b(t)dt of two measurable functions a(x) and b(x).
For simplicity we make use of the notations

0

R T

5. =0

77 0wy’

D,

We denote by sgp u(x, w) and sup u(x, w) the supremum of u(x, w) on R —{0}
and that on R!,—Z for each ﬁxed x in R" respectively.

Let S*~! be the unit spherical surface in R, and let o' =(w}, w),..., ®,)
denote a point on S"~!. Then we have |w'|=1.

We say that [(y, w) is absolutely continuous with respect to w, if it is so on
any finite closed interval for each fixed y and w; (j=1, 2,..., n; j#k). We say
that a scalar function c(x, w) satisfies conditions imposed on matrix functions, if
c(x, w)I does.
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2.2. The difference approximations

We consider a mesh imposed on (x, f)-space with a spacing of h in each x;-
direction (j=1, 2,..., n) and a spacing of k in the t-direction. The ratio A=k/h
is to be kept constant as h varies. We approximate (1.1) and (1.2) by the differ-
ence scheme of the form:

2.2) o(x, t+k) = Sy(x, bo(x, )  (0St<T),
(2.3) o(x, 0) = uo(x),

where

(2.4) Sy(x, h) = Tl The1Co (X, by T), m = (my, myy..., my),
@2.5) Con X 1y T) = yam (6 TGy & = (o3, Azyeees %),

(2'6) Tﬁ = Tall‘hT%“‘T:ﬂ’ 7Tihu('x) = u(xlr--a xj—l’ xj+hs xj+1"--9 xn)’

m; (m;=0; j=0, 1,...,v) and «; (j=1, 2,..., n) are integers and c,, (X, h)’s are
N x N matrices.

We approximate the partial differential operator hD; (1< j<n) by the differ-
ence operator 4, of the form

2.7) 4 = X, b (Th,—T3))2,

where the summation is over a finite set of [ (I=0) and b,’s are real constants.
We put

(2.8) si(w) = ¥, bysinlw; (=1,2,.,n),
s(@) = (s4(@), s2(w),..., (@),
and assume that for some positive integer r s;(w) can be written as follows:
(2.9) 5{0) = 0;+0(a™) (o £ ).
From (2.9) it follows that for all ue &
Ajpu(x) = hDju(x)+O(h™+1) as h-0 (j=1,2,.,n).
For example the following difference operators are well known:
(2.10) Fy(x) = C,+ AP,
(2.11) M (x) = I+ AP,(C,+ AP,[2),
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where
(2.12) Py =014, Cp= (/M) X5 (Tj+T3)/2,
A= (Ty—=T31)2 (j=12,..,n).

The schemes (2.2) with operators (2.10) and (2.11) are called Friedrichs’ scheme
and the modified Lax-Wendroff scheme respectively.

We say that the difference scheme (2.2) approximates (1.1) with accuracy of
order p [13, 15] if all smooth solutions u of (2.1) satisfy

(2.13) lu(x, t+k)— S,(x, Wu(x, t)] = O(hr*1) (h—0).

In the sequel we consider only the schemes with p=1.
The difference scheme is said to be stable in the sense of Lax-Richtmyer if
for any T >0 there exists a constant M(T) such that

(2.14) ISkull = M(T) [lu]

for all u e L, and for all h>0 and integers v =0 satisfying 0<vk < T, where M(T)
is a function of T but is independent of h. Since S, is a family of bounded linear
operators in L, depending on h, we have to investigate the boundedness of powers
of such families of operators.

Let o#, be the set of all families of bounded linear operators H, that maps
L, into itself and depends on a parameter h>0 and such that

(2.15) |Huull < c(h)|lul forall ueL,, h>0,

where ¢(u) is a continuous function on [0, c0).
For two families K, and L, of s#, we use the notation K,= L, if there exists
a constant ¢ such that

(2.16) I(Kp—Lyu| = chllu] forall ueL,, h>0.
Then we have the following

THEOREM 2.1. Let L,e€s#, and suppose there exist a constant c, and a
norm || . || equivalent to the L,-norm such that

(2.17) NLpull < (1 +coh) lull forall ueL,, h>0.
Then for any T >0 there exists a constant M(T) such that
(2.18) ILyull < M(T) ||lul forall ueL,, 0Zvk=<T

Proor. By the assumption there exist positive constants ¢, and c, such that
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(2.19) collull = flull = collull  forall uelL,.
From (2.17) it follows that
Lyull < (1+coh)flull  forall ueL,, h>0,
so that by (2.19) we have
e Liull = Lyull = csllull £ caesllul,
where c;=exp(c,T/A). From this (2.18) follows with M =c,c;/c;.

COROLLARY 2.1. Forany S,e€ s, let L,€ #, be a family such that L,=S,
and which satisfies the assumption of the theorem. Then for any T>O0 there
exists a constant M(T) such that

(2.20) IShull < M(T) |lu| forall uelL,, 0=<vk<T.
Proor. Since for some constant ¢,
I(Ly—Spull < cihlull forall uelL,, h>0,
by (2.17) and (2.19) we have
Swell = M Lyeelll + NCSy— Lydull
= Lyl +cocqhllull
= (T+esh)llull,

where c¢5=cy+c,c,/c;. Hence (2.17) is satisfied and (2.20) follows from the
theorem.

By Theorem 2.1 and its corollary, in proving the stability of the scheme (2.2),
the problem is to find a norm ||| . || and a family L, € 5#, such that L,,_S,,(x h)
in order to establish (2.17).

Now we study the algebraic structure of s#,. For A4,, B,es#, and aeC
let A,+ B,, A,B, and a4, be defined by

(Ay+Bu = Au+Byu, (ABu=ABu), (ad)u=a(Au).

Then s#, is an algebra over € with unit element I,. Since the adjoint A} of a
family 4, also belongs to 5#,, the operation * is an involution in 4, and £, is
an algebra with involution [2].
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3. One-parameter families of operators

3.1. Definitions

We introduce the set ¢ consisting of all N x N matrix functions p(x, w)
defined on R x R with the properties:
1) p(x, w) can be written as

p(x’ w) = pO(x’ w)+poc(w)’
where py(x, w) and p,(w) are bounded and measurable on R x R and on R!
respectively, and lim py(x, w)=0 for each w e R";
Jx] o0

2) po(x, w) is integrable as a function of x for each w € R";
3) The Fourier transform po(x, w) of py(x, w) is integrable as a function of
x for each we R" and ess ;sup |po(x, )| is integrable.

(Two elements of ¢ are identified if they coincide almost everywhere.)
The element p(x, w) of o has the Fourier transform p(x, w) in the sense of
distributions, which can be written as follows:

3.1 p(x, @) = po(x, @)+ (X)p,(w),

where 0(x) is the delta function. We define || p|| by

(3.2) 181 = {ess, sup1oCx, @l +ess ; sup p()].

In the following for simplicity we often omit x, w and x from p(x, w), p(x, w),
u(x), u(w), etc., when no confusion can arise.

We introduce into J#° matrix addition, matrix multiplication, scalar multi-
plication and conjugate transposition. Then we have

LemMmA 3.1. If p, qe ¥ and aeC, then p+q, pq, ap, p*€ X and

T~ R AN R N

(3.3 Ip+ale = 1Ble+1dlr  loaplle=lal Bl 1P*IF = 1Blle
P

(3.4 Ipallr = 1B1FIQ1E.

Proor. It suffices to show that pge.” and (3.4) holds. Put d=pgq.
Then d can be written as d=dy+d,,, where

do = Podo+ Podw+ Psdos Qoo = Pecec
By definition d satisfies conditions 1) and 2) of o, and dy(x, w) can be written as

(3.5) do(2ts @) = Po*do+ Podw+ Poodo-
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Since

(3.6) do(x, )| = [po*dol+1hol 190l +1Pool 10,

integrating (3.6) with respect to y and applying Young’s Theorem, we have

f1a00 @Mdx = (1po0e, o)ldx 120 wld

+14..@)| 190 Mdz+ 12 (@) {1000 @l

Hence d,(x, ) is integrable as a function of y for each w.
Taking the essential suprema of both sides of (3.6) over R” and integrating
them with respect to y, we have

Idollr < Il Bollrl @0|!F+(essu-,sup 39)) ”ﬁo”F'i"(eSS&,SUP [Po]) 1dollE-

Therefore d, satisfies condition 3) of o#" and the proof is complete.
By this lemma " forms an algebra with involution over C.
To define a family of operators associated with pe 2#", we show the follow-
ing
LEmMMA 3.2. Let pe X andue. Then
3.7 |§pe—g hera@rae | < 1plal  for n>o,
and for almost all x
(3.8) Lim. x-lge-'#-égﬁ(c—é', hE)a(E)dE e

- x‘lge"’"gp(x, hOBEOdE  for h>0.

Proor. For simplicity put

rO(X) = CSS;DSl.lp 'ﬁO(Xa CU)I, Fw = CSS‘;SUp Ipao(w)l ’

u(¢, h) = Sﬁ(é—é’, héHag)de .
Then for almost all &

(3.9) [, W] = rela(d)l +Sro(§—€')lﬂ(€’)ld€’-
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Integrating (3.9) with respect to £ and changing the order of integration, we have

(3.10) Slv(é, hldé = Ilﬁllpgla(f)ld«f for h>0.

Since by Young’s Theorem »

frac-en1aeiae| < frecoaan,

from (3.9) it follows that

loll = rmllﬁll+gro(x)dxllﬁll = lplelal,

which shows (3.7).

By (3.7) and (3.10) v(¢, h) belongs to L, and to L, as a function of & for each
fixed h>0. Therefore the inverse Fourier transform of v(&, h) in L, and that in
L, coincide almost everywhere on R”? and

l.i.m.x‘lgei"‘fv(é, hydE = x-lge-‘x'év(é, hyde
for almost all x. By the change of order of integration we have for almost all x
K“Se""'gv(f, h)d¢ = x“ge""ﬁp(x, h&A(E)dE.

Thus (3.8) holds and the proof is complete.

With each pe " we associate a one-parameter family of operators P, by the
formula:

3.11) Pou(x) = 1.i.m.x-1ge-'x-¢§ﬁ(5—c', hEY(E)dE dE
forall ues, h>0.

Then by (3.7) P, is a family of bounded linear operators from & into L,. Hence
it can be extended to the closure & =L, with preservation of norm and the exten-
sion is unique. Denoting this extension of P, again by P,, we call P, the family
(of operators) associated with p and denote this mapping by ¢ i.e. P,=¢(p).
Unless otherwise stated, we denote by Q,, L,, W,, etc. the families associated with
g, I, w™1, etc. respectively.

We note that by (3.8) P,u (u € &) can be rewritten as follows:

(3.12)  Pu(x) = x-lgewp(x, hOB(EdE  forall ues, h>0.

Let o ,=¢(o¢"). Then we have
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LemMA 3.3. The mapping ¢ is one-to-one.
ProOF. Suppose for some pe ¥
Pp=0 forall ves.

Then by (3.12) for almost all x
Se"x-ép(x, hONEAE=0  forall ves, h>0.

Since for each w(¢) e & the inverse Fourier transform of w(§) belongs to &, it
follows that for almost all x

Se""'fp(x, h&W(E)dE =0 forall wes, h>0.
Put r(&)=[T4=,(1+¢%)"!. Then for almost all x
Se"“5 p(x, hOHEUEE=0  forall ues,

because r(&)u(é)e&. Since p(x, w) is bounded, p(x, h&)r(£) belongs to L, as a
function of & for almost all x. Hence for almost all (x, &)
p(x, h&) =0 for h>0,
so that p(x, w)=0 a.e., which completes the proof.
For ¢(p), ¢(q) e ¢, and aeC let
o(p)+(q) = ¢(p+q), H(p)d(q) = d(pg),
o(p)* = d(p*), ag(p) = ¢(ap).

Then ", forms a unitary algebra over C with respect to the operations + and o,
and the operation ¥ is an involution in 2¢",. It is readily seen that ¢, is an al-
gebra with involution and the mappings ¢ and ¢~! are morphisms [1].

3.2. Products and adjoints

To study the relations between the products P,Q, and P,°Q, we introduce the
following two conditions.

ConpITION I. 1) pex;

2) Po(x, w) and p,(w) are absolutely continuous with respect to w; (j=1,
2,..., n) and 0;po(x, w) and 0;p.,(w) are measurable in R} x R}, and in R}, respec-
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tively;

3) ess,sup|d;po(x, @)l (j=1, 2,..., n) are integrable and ess.sup |0;p.(w)|
(j=1, 2,..., n) are finite.

ConpITION II. g€ and ess. sup (Ixl14o(x, w)]) is integrable.
We have

THEOREM 3.1. Let p satisfy Condition 1 and q satisfy Condition 11. Then
(3.13) PyQy = PyoQ,.

Proor. By continuity of the L,-norm it suffices to prove the theorem in
the case ue &. From the definition of P,Q, it follows that

P0ui(®) = PO (©)
= [{pote—n, imaotn -2, herarag an

+ Spm(hé)qo(f — &, hENRENE + W),

where
w(é) = gﬁo(é =&, h&)q . (h)a(E)dE" + po(h)q o (hE)A(E) -
Changing the order of integration and setting t=n— &', we have

(3.14) PO = || polx—t, o+ h)(t, )¢ )drde

+{pul@+ 1000 @AEME +w(0),

where y=¢—-¢', o=h¢'.
Since P,oQ, is a family associated with pq,

(3.15) ProQui®) = || pox—1, )ao(t, 0)a@)drae

+ {pu@on 0)a@)aE +wd),

where y=¢(—¢', o=h&'. Comparison of (3.14) and (3.15) shows that the proof
is complete by the first part of Lemma 3.2, if

(3.16)  {esssup (o1, @+ h1)= poC—1, @)} o0, @dtldy = O(h),
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(3.17) S €ss . sup [{po(@+ hy) — po(@)} o(x, w)ldy = O(h).

Since po(x, w) is absolutely continuous with respect to w;, we have
{Po(x—1, w+ht)— po(x—1, w)}qo(t, ®)|
= I27=1{ﬁ0(x—t’ W00 wj-la w1+6;’ wj+1 +0j+1""’ w"‘+‘9")

_ﬁO(X—t’ Dyy..ny wja c0j+1'*'0j+1,-“1 wn+0n)}qo(t’ (J))|

o _ .
=X, So 0;po(X—1t, @g,..., Wj_ 1, @+, @41 +0;44,..,

wn + en)deQO(t’ (.O)l ’

where 0;=ht;. Taking the essential suprema of both sides over R and integrat-
ing them with respect to y, we have

[ ess. sup tpota—1, o+ h)— pox—1, )}, )ldxdr

< {230 ess,sup (12,800 —1, @)Dt ess sup 120(t, )t

Hence (3.16) follows by I-3) and II.1> Similarly we have (3.17).
From the proof of this theorem we have
CoRrOLLARY 3.1. If a(x), b(w), p(x, w)e X", then
(3.18) AP, = AP,
3.19) P,B, = P,°B,.
To study the relations between the adjoint P} of P, and the family P§ we introduce

ConpITION III. 1) pex;

2) po(x, w) is absolutely continuous with respect to w; (j=1, 2,..., n) and
0;po(x, ®) (j=1, 2,..., n) are measurable in R} x R%;

3) ess‘;’sup(]le [0;00(x, ®)]) (j=1, 2,..., n) are integrable.

THEOREM 3.2. Let pet’. Then

(3.20) Pru(x) = Lim. x-lgeix-cg,?-(c—g', hEY(E)dE dE
forall ues, h>0.

1) The term Condition is often omitted when no confusion can arise.
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If p satisfies Condition 111, then
(3.21) P}

Pi.

PROOF. Since pH(¢—&', hE)=pX(E—&, h&'+h(E—¢"), by the same argu-
ment as in the proof of Lemma 3.2 we have for we &

(3.22) (-2 hoyweerae| < 171191

Foru,we &

(u, Piw) = (Pyu, w) = Py, W)
= [{{ae-e, neracenae} wo
= [{ar@rpre—¢. nermoaza

= Sga*(c')?*(é'—é, hEYW(E)EdE'.

From this (3.20) follows by (3.22).
It suffices to prove (3.21) in the case ue . From (3.20) and the definition
of P} it follows that

oS oS A N\ , ,
(323 Pru®-P© = (e o+ ho- e o}z,
where y=¢—¢&" and w=h¢'. By I11-2) we have
e N
|p§(x, @+ hy)—p8(x, w)I
6; P
= |27=1S0 ajPS(X, Wy Wiy, (Dj‘f'Cj, wj+1+0j+h---’ wn""gn)dC,‘I s

where 0;=hy;. Taking the essential suprema of both sides over R and integrat-
ing them with respect to x, we find ’

ey A\ N\
S ess . sup |p§(x, @+ hy)— pd(x, w)ldy = hZ}- 1S ess . sup (|x,110;p5(x, w)dy.

Hence (3.21) holds by III-3) and Lemma 3.2.
From (3.23) we have

COROLLARY 3.2. If k(w)e X, then
(3.24) K¥ = Ki.
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3.3. Construction of a new norm

We construct a norm which is equivalent to the L,-norm and is useful for
establishing (2.17).

Let ¢ and R (R=¢) be positive numbers and let S(R, &)={x||x|<R+s¢}.
Let x (i=1, 2,...,s) be all the lattice-points (en,, &n,,..., &,) contained in
S(R, &) (n;=m;[\/n; m;=0, +1, +2,...; j=1, 2,..., n) and let

Vo ={x||x| >R}, Vi={x||x—xP|<e} (i=1,2,..,5).
Then we can construct a partition of unity {a?(x)};=0,1,... s With the properties:
1) o(x) =0, afx) e C®, suppa(x)cV; (i =0, 1,..., 5);
2) Xioxt(¥)=1;

3) oap(x) and all its partial derivatives are bounded uniformly with respect
to R for each e.
We introduce the following

ConpITION N. 1) ge " and Dg(x, w) (j=1, 2,..., n) are bounded on R}
x R% and continuous on R} for each w; Djg(x, w) (j=1, 2,..., n) are integrable

. /\ . .
as functions of x for each w; D;g(y, w) (j=1, 2,..., n) are integrable as functions

of x for each w and ess“-)supIng(x, w)| (j=1, 2,..., n) are integrable;

L
2) ‘ll_{?o"aOQ()“F = 0.
We have

THEOREM 3.3. Suppose

1) g(x, w) satisfies Condition N;

2) g(x, w) = el for some constant e >0.
Then for sufficiently large R and small ¢ there exist positive constants d, and d,
such that

(3.25) dilul? = Xi-oRe(Guuu, au) < di|u|?
forall uelL,, h>0,
where d; (j=1, 2) are independent of u and h.
This theorem enables us to introduce the norm

(3.26) ”u"Gh = {z€=0 Re (Ghdiu, aiu)} 1/2 for all ue L2,
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and by (3.25) we have
(3.27) dillull £ lullg, £ dallull.

LemMA 3.4. If p and q satisfy Condition N, so also do p+q, pq and p*.

Proor. It suffices to prove the lemma in the case of pg. Put d=pq.
Then d satisfies Condition N-1). Since

do = Poqo+ P09+ Psos

it follows that

S S
todolts ®) = Saopo(x—t, ®)4ot, w)dt

S S
+0oPo(Xy ©)q (@) + Po(@)oqo(x, @).

Taking the essential suprema of both sides over R” and integrating them with
respect to x, we have by Young’s Theorem

A~ o~ A~ o~
loodollr < llotoPollFll ol + %o PollFll ol 4+ I Pl 200l s

N
the right side of which tends to zero as R—oo by N-2). Hence |agdyl—0
as R— o0 and pq satisfies Condition N-2).

3.4. Lax-Nirenberg Theorem

We have the following analogue of Lax-Nirenberg Theorem [10] which plays
an important role in establishing (2.17).

THEOREM 3.4. Suppose p € 4 satisfies the conditions:

1) 0;p0(x, ) and 0;p(w) (j=1, 2,..., n) are continuous on R}, for each x
and absolutely continuous with respect to w, (k=1, 2,..., n);

2) 0,0;po(x, @) and 0,0;p,(w) (j, k=1,2,...,n) are measurable in RZ
xR® and in R respectively; essésup(|6k6jﬁo(x, o)) (J, k=1, 2,...,n) are
integrable and ess‘;sup(lakéjpw(w)l) (j, k=1, 2,..., n) are finite;

3) ess&’sup(lelﬁo(x, w))) is integrable;

4) p(x, w) = 0.

Then there exists a positive constant c independent of u and h such that

(3.28) Re(P,u, u) = —ch|u|? forall ueL,, h>0.
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4. Powers of families of operators

~ 4.1. The family of operators 4,

In this section s(w) denotes a real-valued vector function with the properties:

1) s(w), d;s(w) and 6,0;5(w) (j, k, I=1, 2,..., n) are bounded and con-
tinuous on R";

2) Zeros of |s(w)| are isolated points.
(The function s(w) given in 2.2 has these properties.)

Let Z={w||s(w)|=0}. Then R?—Z is an open set by continuity of |s(w)|
and by properties 1) and 2) |s(w)| satisfies Condition I. Let A, be the family
associated with |s(w)|I. Then by Corollary 3.2 we have

Ah = Az = A:.

Let p(x, w) be an element of x° such that p(x, w)/|s(w)| is bounded on R”
x (R?—Z). Then we seek sufficient conditions under which P, can be written as
P,=Q;0A, for some Q, € ¢",. For any constant « let

p(x, w)/|s(w)| for weR"-2Z,
qa(x’ CD) = {

al for weZ,

and suppose q,(x, w)e#". Then
A~ S~ ~ ~
0@~ Cpi@)l = | (@2 -, hE) -3~ heNaEHde

= |9a(hE) —qpo(hON 0] forall ues,

where Q,, and Qg, are the families associated with g, and g, (B#a) respectively.
Since Z is a set of measure zero, for all u € & we have for almost all &

19ac0(h) — 5o (RO 18(E)] = O.

Hence Q,, and Qy, can be identified. In the following we identify g,(x, w) and
q4(x, ) and denote them by p(x, w)/|s(w)|. Then we have P,=P,,cA,, where P,
is the family associated with p/|s|.

When e(w) is a scalar function with isolated zeros such that e(w)I € )", we
can define p(x, w)/e(w) similarly by replacing |s(w)| by e(w).

In particular let r(w) be a scalar function such that r(w)I € #" and for some
constant ¢,

[r(w)| < cols(w)| forall weR".

Then r(w)/|s(w)] € # and R,=R,,cA,, where R, and R,, are the families associ-
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ated with rI and (r/|s|)I respectively.
To study the relation between P,Q,A4, and P,cQ,°A, and that between (P,4,)*
and Pj-A,, we introduce the following conditions:

ConpIiTION I'. 1) pex’;

2) Po(x, w) is bounded on R x (R%—Z);

3) 0ly(x, w) and 0;l,(w) (j=1,2,...,n) are bounded on R!x(R:—2Z)
and continuous on R —Z for each y, where ly(x, @)= polsl, l(®0)=Dplsl;

4) ess. sup 10,l] (j=1, 2,..., n) are integrable.

ConpitioN III'. 1), 2) the same as I’—1), I’ -2) respectively;

3) 0;ly(x, w) (j=1, 2,..., n) are bounded on Rjx(R%—Z) and continuous
on R —Z for each y;

4) ess‘.usup(lle 10;lo(x, @) (j=1, 2,..., n) are integrable.

We have

LemmMA 4.1. (i) If p satisfies Condition I, then p|s| satisfies Condition 1.
(ii) If p satisfies Condition 111', then p|s| satisfies Condition I11.
Next we prove

LemMA 4.2. (i) If p satisfies Condition I’ and q Satisﬁes Cbnditibh 11,
then '

4.1) Py 0yAy = PyeQyedy,.
(ii) If p satisfies Condition 11I', then
4.2) (P,A,)* = PioA,.

PrROOF. The assertion (ii) follows from Lemma 4.1 and Theorem 3.2. By
Theorem 3.1 and its corollary

A0y = M40 OnAy = Qpodys Py = Prody,.
As A0Q,=QpoA,, we have Q,4,=A4,0,, so that
POy = PyAyQp = (PyoAy)Q.
Since p|s| satisfies Condition I by Lemma 4.1, by Theorem 3.1 we have

(Ph°Ah)Qh = (Pyodp)oQy,.

Hence
P,QpAy = PyodAyeQy = PyoQped,

and the proof is complete.
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Now we introduce the following conditions:

ConpiTioN IV, pe s and ess(.nsup(lx|2| Po(x, w)]) is integrable.

ConbpITION V. 1) p satisfies Condition I';

2) Oymjo(x, w) and oym;, (@) (j, k=1, 2,..., n) are bounded on R} x(Rj
—Z) and continuous on R}, —Z for each x, where m;o(x, @)=(9;lo)Isl, m;(®)
=(0,l5)Isl, lo=Pols| and I, =pyls|;

3) essé)sup(lé‘kmjo(x, o)) (j, k=1, 2,..., n) are integrable.

Condition IV implies Condition II and we have

LEMMA 4.3. If p satisfies Conditions IV and V, then p(x, w)|s(w)|?
satisfies conditions 1), 2) and 3) of Theorem 3.4.

4.2. Subalgebras .# and & of ¥

Let .# be the set of all elements of ¢ that satisfy Conditions I’, II and III’
and let the set % consist of all elements of .# that satisfy Conditions IV and V.
(# and ¢ depend on s(w).) For instance [s(w)|I and (s (w)/|s(w)DI (j=1, 2,...,
n) belong to .# and #.

LemMA 4.4. (i) If p and q satisfy Condition 11, so also do p+q, pq and
p*.

(ii) If p, qe#, then p+gq, pq, p*€ 4.

(iii) If p, qe &, then p+q, pq, p*e€ &.

We show

LeMMA 4.5. Let g(x, w) satisfy Conditions 1' and 11, and let
(4.3) I(x, @) = (@) +4q(x, w)|s(w)],
where q(x, w)e .# and c(w) is a scalar function satisfying Condition 1. Then
4.4) L¥G,L, = L}oG)oL,.

PrROOF. L, can be written as L,=C,+ Q,o4,, where C,=¢(cI). By Co-
rollary 3.2 and Lemma 4.2 we have

Cx =Cj, (QreAn)* = QfoA,.
Therefore L} =L}, and
4.5) L¥G,L, = L{G,L,.

By Corollary 3.1 and Lemma 4.2 we have
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GC = GyoCys GuQuAy = GyeQpo Ay
Hence G,L,=G,°L, and by (4.5)
(4.6) L¥G,L, = L{(G,°L,).

Since gl satisfies Condition II by Lemma 4.4 and [* satisfies Condition I,
by Theorem 3.1, we have

4.7) Li(GyeL,) = L{o(GyeL,).
Hence (4.4) follows from (4.6) and (4.7).
CoROLLARY 4.1. Under the assumption of Lemma 4.5 let
g(x, w) = w¥(x, w)w(x, w),
where w, w™le X". Then
4.8) Gy—LGyLy = Gy—LiGyoLy, = Wie(l,— LyoLy)oW,,
(4.9) g—l*gl = w*I—T"hw, T=wiw 1.
Proor. Since
WyoW, = Wio Wi =1, G, = WioW,
we have from (4.4)
L¥G,L, = L}oGyoL, = WicWioLioWioW,oL,oWyoW,
= WioLjoLoW,.

Hence (4.8) holds and we have (4.9) by matrix calculation.

4.3. Integrability of Fourier transforms

Our next step is to obtain sufficient conditions under which an N x N matrix
function p(x, w) belongs to ", # or #. To this end we introduce

ConpiITioN VI. 1) p(x, w) can be written as

P(x, @) = po(x, ®)+ p(w),
where po(x, w) and p.(w) are bounded and measurable on R?x R? and on RZ
respectively, and hm po(x, w)=0 for each w e R";

2) Drpo(x, w) (1—1 2,..,n;m=0, 1,...,n+3) are continuous on RZ
x (R? —Z) and continuous on R? for each weZ; stl)p(ID;"po(x, o)) (I=1,2,...,
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n; m=0, 1,..., n+3) are bounded and integrable;

3) D{d;po(x, w) and 9;p,() (j, I=1,2,...,n;9=0,1,.,n+2) are con-
tinuous on R x (R? —2);

4) sup(ID“GJpo(x, )| s(w))) (j, I=1, 2,..., n; ¢q=0, 1,..., n+2) are bound-

ed and 1ntegrable Slip(la Po(0)] [s(w))) (j=1, 2,..., n) are finite;

5) Dioy0;po(x, w) and 6,‘6]1)00(0)) (U, k, I=1,2,...,n; r=0, 1,..., n+1) are
continuous on R% x (R% —Z);
6) SL;p(ID'(?,ﬁ,po(x )| |s(w)}?) (j, k, I=1,2,...,n;r=0,1,...,n+ 1) are

bounded and integrable; sup([@ka,pw(w)l [s(w)]?) (j, =1, 2,..., n) are finite.
o¢Z

We have the following results.

LemmA 4.6. (i) If p satisfies Conditions VI-1) and VI-2), then p satisfies
Conditions 11 and 1V.

(ii) If p satisfies Conditions VI-1)-VI-4), then pe .#.

(iii) If p satisfies Condition VI, then pe &.

COROLLARY 4.2. Let a(x) be an N x N matrix such that
a(x) = ao(x)+aq,

where lim ao(x)=0. Suppose Dray(x)(I=1,2,...,n; m=0, 1,...,n+1+p; p=
|x] =0 oo ;

0, 1, 2) are bounded and continuous on R™ and are integrable. Then |x|P|a,()|

(p=0, 1, 2) are integrable.

LeEmMMA 4.7. If g(x, w) satisfies Conditions VI-1) and VI-2), then it
satisfies Condition N.

4.4. Powers of families of operators

To prove the boundedness of L} (0<vk<T), in view of Theorem 2.1, it
suffices to show that L, satisfies (2.17). . We show first the following

THEOREM 4.1. Let g(x, w)e ¥ satisfy conditions of Theorem 3.3 and let
(4.10) I(x, ) = (@) +q(x, ) |s(w)] +r(x, w)|s(w)|?,

where q, r€ & and c(w) is a real-valued scalar function which is bounded and
continuous together with the first and second partial derivatives. Suppose

1) q*9+99=0  forall weR"-Z;
2) 1-c*(o) = |s(w)|*a(w) + b(w);
3) g-I*gl 2 byg;
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4) b(w) = T 1b}(w),

where a(w) and bj(w) (j=1, 2,..., m) are real-valued scalar functions such that
bjw) (j=1, 2,..., m) satisfy Condition 1 and a(w)l € &. Then for some co20

(4.11) ILullg, < (14+coh)|ullg,  forall ueL,, h>0,
where || . ||g, is the norm given by (3.26).

ProorF. By Lemma 4.5 we have
4.12) L¥G,L, = L{-GoL,.
By conditions 1) and 2)
(4.13) g—1I*gl = (ag—p)Is|* + by,
where

p = (g*gq+r*gc+cgr)+(a*gr+r*gq)ls|+r*gris|>.

From condition 3) it follows: that
(4.14) (ag—p)lsl> 2 0.
Since ag—pe ¥, by Lemma 4.3 and Theorem 3.4 we have for some ¢, =0
(4.15) Re((AyeGy— Py)oARu, u) = —c h|ul|? forall ueL,, h>0,

where A,=¢(al).

Let {®?(x)}i=0,1....s be the partition of unity given in 3.3 and let Q={x|
|[x|>R+¢e}. Then ag(x)=1o0n Q, so that By(x)=0ae(x)—1=00n Q. Since fy(x)
and a;(x) (j=1, 2,..., s) are smooth functions with compact supports, |¢|¥| Bo(0)
and |xl*|&j(x)| (k=0, 1;j=1,2,...,s) are integrable. Hence a(x) (i=0,1,...,
s) satisfy Condition II.

Let B, = ¢(bl), Bj=¢(b;I) (j=1,2,...,m) and o=¢(]) (i=0, 1,...,s).
Then by Theorem 3.1 o;B;,=Ba; and G,B;,=B;,G, Since B}, =B by Co-
rollary 3.2, for some c,, ¢;=0 we have

Re ((GyoBy)ou, ou) = Re Z'}'=1(thGthh°‘t“s au)—cohlul?
= Re X 71(G,Bjou, Bjau)—cyhllul?
= Re X7 (Gy;Bjju, a;Bju)—cshllul?.

Hence

(4.16) 2 i=0 Re((GyeBy)aju, o)
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2 X 25=0 Re(GyoyBju, a;Bju)—cyhlull?
2 Z'}'=1df“th“”2 —cshlull? = —c4hlul?,

where d, is given by (3.25) and ¢, =(s+1)c;.
Since L,a;=a;L, by Theorem 3.1, we have for some c5=0

(4.17)  |(Gpo;Lyu, o;Lyu) —(G,Lyou, Lyou))
< (GyloyLy— Ly, oLyu)| + (G Ly, (aiLy— Lyot)u)| < cshlluf?.
From (4.12) for some ¢z =0
(4.18) [(G,Lyu, Lyu)—(LoGyoLyu, u)| < cohllull?.
Since by definition
ILulld, = X3=0 Re(GyoyLyu, o;Lyu),
by (4.17) and (4.18) there is a constant ¢, =0 such that
(4.19) |Lyulld, < X3=0 Re((LioGyoLy)ou, o) +c4hllull?.
By (4.13) we have
(4.20) (Gy— LieGpoLyp)u = (AyoGy— Pp)oAfu+ ByoGpu.
Hence by (4.15), (4.16), (4.19) and (4.20)

(4.21)  flullg, - 1Lwulié, 2 -0 Re((Gy—Li-GyoLy)ou, au) —cqhllu]?

1\%

—cghllul?,

where cy=c,+c4+c,;. By (3.27) we have (4.11) with co=c,/d? and the proof
is complete.

We note that the theorem remains valid even if condition 4) is replaced by the
condition

> 5.0 Re((GyeB,)u, au) = —chju|? forall ueL,, h>0,
where c is a non-negative constant.
THEOREM 4.2. Let g(x, )€ .# satisfy conditions of Theorem 3.3 and let
(4.22) I(x, w) = c(w) +q(x, w)|s(w)],
(4.23) g(x, w)—I*(x, w)g(x, w)l(x, w) = |e(w)|?*r(x, w),

where qe # and c(w) and e(w) are scalar functions satisfying Condition 1.



Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems 331

Suppose
1) r(x, w) satisfies Conditions Il and N;
2) r(x,w)=pl  forsome B>0.
Then for some c,=0

(4.24)  |LulZ, S (+coh) [uld, forall ueL, h>0.

Proor. By Theorem 3.3 there exist positive constants d;, &; (j=1, 2), &
and R such that

(4.25) dillull?* £ Xi-o Re(Gyou, au) < d3|ul?,
(4.26) etllull? = ¥i-o Re(Ryou, ayu) < e3flull?.
By Lemma 4.5 we have

(4.27) L¥G,L, = LioGyoL,.

By the same argument as in the proof of Theorem 4.1 there is a constant ¢; 20
such that

(4.28) [Lyulé, £ X3=0 Re((LioGyeLyau, o)+ c hlju|.
By Corollary 3.2 for E,= ¢(el) we have
(4.29) E¥ = E}
and by Theorem 3.1 and its corollary
(4.30) EjcE,oR, = (EfoR,)°E, = (E}-R,)E, = E{R,E,.
Since by (4.23)
Gy— LioGyoLy = E}oE,oR,y,
by (4.29) and (4.30) we have
(4.31) G,— L§<G,oL, = E}R,E,.
Hence by (4.28) and (4.31) for some ¢, >0
lullg, — ILaullg, = i-0 Re((Gy— LieGpeLyayu, au)—cyhfjul?
2 2i=o0 Re(EFR,Eyaju, ou)—cohlul?
= 3i=0 Re(RyE,iu, Eqiu) —cyh|u?.
Since E,x;=o;E,, we have for some ¢; =0

lelld, — I Lwullg, 2 Zi=0 Re(RytEpu, aiEpu) - chflu]|? —chjju| 2,
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so that by (4.26) with c,=c,+c¢;

lulld, = I Lyulld, = et Eul® —cshlul® 2 —cahlul?.

Thus (4.24) holds by (4.25) with ¢y =c,/d3.

5. Two algebras of difference operators

5.1. Algebra #,

Let o7, be the set of all N x N matrix functions a(x) defined on R with
the properties:
1) a(x) can be written as

a(x) = ag(x)+d.,

where li|m ag(x)=0;
|x|—o0

2) ay(x) is bounded and integrable:

3) |xlrlao(0l (p=0, 1, 2) are integrable.
(Two elements of & are identified if they coincide almost everywhere.)

We denote by a an n-tuple (a4, a,,..., a,) of integers, i.e. a=(a,, a5,..., &,).
Let & be the set of all matrices a(x, w) such that a(x, )= Y ,a,(x)e'* @, where
a, € o/, and the summation is over a finite set of . It is clear that a(x, w) satisfies
Conditions I, IT and III. Let

G0 a(x, w) = ¥,a,x)e'*?, b(x, w) = 3 zby(x)e’? .

Then we have

(5.2) a(x, w)+ b(x, w) = Zy(ay(x)+by(x))ei7’“’,
(5.3) a(x, 0)b(x, ®) = ¥ (T4t p=y@u(X)b4(x))ei?",
G4) a*(x, w) = ¥ ,a¥(x)e i,

Hence & is a subalgebra of »#° with involution.
By (2.6) T% is a family of bounded linear operators mapping L, into itself.
Since for a(x) e &

la(x)Tu(x)|| = (ess . sup |a(x)]) [lull,
the family a(x)T¢ belongs to s#,. We define a mapping ¥ from & into 5, by
Y(Xaa(x)e’* ?) = X ,a,(x)TF,
and let o, =y().



Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems 333
For Y ,a(x)ei*ceof let A,=¢(3a,(x)ei*©). Then for ues

Kfer e oa,0Tucdx
= [ Sutole— et H 4ENE + T apei=H0()

PaN , . , , N
= Szaaa(f—é Yelx b’ R(ENdE = Au(é) a.e.,
so that for u € & we have in L,

(5-5) 2t () Thu(x) = Ayu(x).

By the uniqueness of the extension of operators (5.5) holds for all u € L,, so that
> a(x)T% and A, can be identified. Hence V¥ is the restriction of ¢ to « and is
a one-to-one mapping from & onto «/,. We call ¥ .a,(x)e’*'® the symbol of
> .a(x)T¢. Let A,, B,e o, and let

Ah = Zuaa(X)Tz’ Bh = Zﬂbﬂ(x)Tﬁ‘

Then their symbols a(x, w) and b(x, w) are given by (5.1). Since &, X", A,
+ B,, A,0B, and A} can be defined in 2", and they are the families associated with
a+b, ab and a* respectively. By (5.2)-(5.4) we have

(5.6) Ay+ By = 2(a,(x)+ b, ()T},
(5.7 ApeBy = 2 (X ot p=y3a(X)bp(x)) T},
(5.8 Af = Zaaf()T5*.

Hence &, is a subalgebra of »#°, with involution and it follows that y and ¢!
are morphisms.

LEMMA 5.1. Let Fest, (j=1,2,..., 1) and let
Fy = FyFayy--Fo, Ly = FyyoF e oF .
Then F,=L,.
Proor. We have
Fy—Ly, = 352 (Fop - Fj— 1)) {F ja(Fj s 14 +oF )
—Fpo(FipqperoFp)}  (Fop=14).

The symbol fi(x, w) of Fj, satisfies Conditions I and II, because f;e«/. By
Lemma 4.4 f;,,(x, ®)f;;(x, @)-f(x, w) (j=1, 2,..., r—1) satisfy Condition II.
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Hence by Theorem 3.1
Fp(FjyqperoFp) = Fpo(FjppeeeoF ) (I=j<n
and so we have F,=L,, which completes the proof.

Let &, be the subalgebra of 5, generated by «,. Then F, e &, can be ex-
pressed as

F,=3,FFg)--.Fn (FR est)).
Corresponding to this we put
L, = Y ,F§)oF$)o-oF"),
I(x, w) = 3, fOLPf0,

where f{(x, w) is the symbol of F%). Then L,es), F,=L, and I(x, w) is
the symbol of L,. In the following we call /(x, ) a symbol belonging to F,.

5.2. Algebra ¢,

We consider the case where coefficient matrices of T¢ depend not only on

x but also on h.
Let &, be the set of all N x N matrix functions b(x, u) defined on R? x [0, o0)

with the properties:
1) b(x, 0)ey;
2) b(x, u) can be written as

b(x’ ,'t) = bO(x7 M)+boo(”)’

where lim by(x, u)=0 for each u;

1%|
3) Foreach u by(x, u) is bounded on R and integrable;
4) by(x, p) is integrable for each u;
5) For some ¢=0

{1800t 1= Bota, 01y < e,
[be(W)—be(0)] = cp forall p=0.
For instance 4;,a(x) (j=1, 2,..., n) belong to &, for a(x) e .

LemMMA 5.2. Let b(x, u)€ B, and let B, be the family associated with
b(x, O)et**«, Then b(x, h)T% € 5, and

(5.9) b(x, h)T§ = B,
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Proor. Let u(x)e%. Then since
IbCx, MTjull? < (ess.sup [b(x, M) |ul?,

b(x, h)T%u(x) belongs to L, for each fixed h and its Fourier transform can be
written as follows:

Li.m. xge--'x-éb(x, ) Tau(x)dx

= 550(5-5', h)eis b 4(EVdE + b (h)e'*Ha(E) a.e..

Hence
Ib(x, WTu =Bl < | ({Bo(e—&, W—bo¢ =&, et a(Eae|

+1bo(h) = b, (O) | &] .
By Young’s Theorem and condition 5) we have
Ib(x, WTju—Byull < 2ch|ull,
which implies (5.9) if b(x, h)T¢ e #,. Since
Ib(x, MT5ull < |Byul +2chljul,
b(x, h)T% belongs to s, and the proof is complete.

Let &, be the set of all finite sums of families of the form Y ,b,(x, h)T%
(b(x, u) e B,) and let ¢, be the subalgebra of s, generated by #,. It is clear
that &y %@, and F,<¥,.

Let E,€¥,. Then E, can be written as

Eo= SENEG-ER  (ERed),
where
Ef) = Toefd(x, MT;  (ef2(x, we Bo).
Corresponding to these we put
FR = S0 OTs,  Fy= SFOFQ-FR.

Then F§;) € o, by the definition of #, and E{)=F() by Lemma 5.2. Hence
F,e #,and E,=F,. Thus we have

THEOREM 5.1. Let S,(x, h) be the difference operator (2.4) with
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(5.10) Cam, (X, WEBy  (j=1,2,...,v).
Then
S,(x, h)e%,, Su(x, 0) e F,.
Let L, be the family associated with a symbol belonging to S,(x, 0). Then
L,e«s,, Sy(x, B) = S(x, 0= L,.

By this theorem and Corollary 2.1, in proving the stability of the scheme
(2.2) under the condition (5.10) the problem is to establish (2.17) for L,.
Let

s(x, (l))= ZmH}:lcmj(x, (l)) ’
where
Cmy(Xs @) = 3 oCamy(X, 0)€*° 2, 4y (X, ) € Bo.

Then s(x, ) is a symbol belonging to S,(x, 0). For instance let

(5.11) f(x, @5 2) = c(@)] +iip(x, w),

(5.12) m(x, w; A) = I+ilp(x, o) [c(w)] +ilp(x, w)/2],
where

(5.13) p(x, 0) = X1 4,(x)s(@), c(w)=(X]-;cosw))/n,
(5.14) sj(w) = sin wj, Ax)esty (j=1,2,...,n).

Then f(x, w; 4) and m(x, w; A) are symbols belonging to F, and M, given by (2.10)
and (2.11) respectively.

6. Stability of difference schemes

6.1. Assumptions and lemmas

In this section we study the stability of the scheme (2.2). Let
6.1) A(x, @) = 311 A (X)w;

and let 4, (j=1, 2,..., n) be the difference operators such that sj(w) (j=1, 2,...,
n) satisfy (2.9). Suppose the following conditions are satisfied:

CoNDITION A.  Aj(x) (j=1, 2,...,n) are bounded and continuous on RZ
and can be written as
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Afx) = A;o(X)+ A, G=12,..,n)),
where
lim A;o(x) =0 (j=1,2,.,n).
| x] »o0
ConpITION B.  DJ4;(x) (I=1,2,...,n; m=0, 1,..., n+3) are bounded, con-
tinuous and integrable on R”.

ConpritioN C. 1) Eigenvalues of A(x, w’) are all real and their multiplicities
are independent of x and w’;
2) There exists a constant >0 independent of x and w’ such that

A, @) =Ax @) 28 (i#j3ihj=1,2..,5),

where A(x, ®') (i=1, 2,..., s) are all the distinct eigenvalues of A(x, ®");
3) Elementary divisors of A(x, @) are all linear.

By Corollary 4.2 A;(x) (j=1, 2,..., n) belong to &,

Let
(6.2) Py = 31 1A(x)4,
(6.3) p(x, @) = X j-14,(x)s(®),
(6.4 Pi(x, @) = -1 4(x)s (w)/|s(w)] -

Then P, e o, and ip(x, w) is the symbol of P,. By Lemmas 4.6 and 4.7 p,(x, )
belongs to .# and satisfies Condition N. We have the following two lemmas.

LEMMA 6.1. There exists an element g(x, w) of & satisfying the conditions
of Theorem 3.3 such that

(6.5) {9(x, 0)p.(x, 0)}* = g(x, W)p.(x, ®)  for weR"-Z.

LEMMA 6.2. There exist elements w(x, w) and w™1(x, w) of & satisfying
Condition N such that

(6.6) g(x, ) = w*(x, o)w(x, w).

For ae " wedenote waw™! by d. By these lemmas j, and p are hermitian
matrices on R? x (R? —Z) and on R x R”, respectively. By Lemma 3.4 p, satisfies
Condition N and by Lemma 4.4 it belongs to ..

In the following we assume that S,(x, h)e¥,. Then S, (x,0)e#, and a
symbol belonging to S,(x, 0) is an element of .«7.

From the results obtained in Sections 2, 4 and 5 we can conclude that if a
symbol belonging to S,(x, 0) satisfies conditions of Theorem 4.1 or 4.2, then the
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scheme (2.2) is stable by Theorem 2.1 and its corollary.
Let P[4; .#] be the set of all polynomials in 4 of the form
a(x, w; 2) = Tollayx, w), afx,w)eg (j=01,..,m)),

and denote by P[4; p] the set of all polynomials in A and p(x, w). The set P[4;
#] is defined similarly. For a scalar function #(w) we use the notation

a(x, w; Dfw) = 2" oMa;lte A (or &, A)

if a)(x, w)/{w)e X (or &, #) (j=0, 1,..., m).

6.2. Special schemes

We have the following [17]

THEOREM 6.1. Friedrichs’ scheme is stable, if Ap(p(x, w))<1/\/n. The
modified Lax-Wendroff scheme is stable if Ap(p,(x, w))<2/\/n.

Proor. For Friedrichs’ scheme by (5.11) f(x, w; A) can be rewritten in
X as

f(x, w; ) = c(0) +ilp,(x, @) |s(w)|,

which is of the form (4.10). By the fact p,e.# and by Lemma 6.1 the first part
of the assumptions and condition 1) of Theorem 4.1 are satisfied.
From (5.13) and (5.14) it follows that

1=c?(w) = n7!|s(®)|* +b(w), bw) =% ;> bh(w),
b;(w) = (cosw;—cos w,)/n.

Hence conditions 2) and 4) of Theorem 4.1 are satisfied.
By Corollary 4.1 we have

g—f*gf = W*(n"l—ﬂ.zﬁ})lslzw—}- bg.

Since /lp(,s,)gl/.\/ n, we have g—f*gf =bg and condition 3) of Theorem 4.1 is
satisfied. Hence Friedrichs’ scheme is stable.
By (5.12) m(x, w; A) can be rewritten in X" as

m(x, w; A) = I+iip,c|s|—A2p2|s|?/2.

Since p2 € ¥ by Lemma 4.4, the assumptions of Theorem 4.1 are satisfied except
condition 3).
By Corollary 4.1 we have

g—m*gm = w*(Lp)? [(n~'1—A%p2[4)|s|? + bIw.
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Since Ap(p,)<2/\/n, we have g—m*gm=0. Hence the modified Lax-Wendroff
scheme is stable. '

6.3. Stability theorems

We consider the schemes (2.2) with accuracy of order r=1 and state stability
conditions in terms of a symbol I(x, w; 1) belonging to S,(x, 0). Suppose
s(w) satisfies (2.9) and let

1 if ris odd, o
d=r+k k= y(x, 03 A) = Xh=,(idp.) |s|F2[j.
2 -if ris even, '

Then since p,, |s|I € £, by Lemma 4.4 ye Z.
We denote by 4y, ¢, and ¢, positive constants and by #(w) a scalar function
such that t((w)l € X", ‘

THEOREM 6.2. Let
(6.7) I(x, 02 2) = Th=o(i2p)/j!,

where r=4m—1 or 4m (m21). Then the scheme (2.2) is stable for sufficiently
small A.

ProoF. [ can be rewritten in ¢ as
I(x, w; 2) = I +ilp,|s|+ yls|?,

and the assumptions of Theorem 4.1 are satisfied except condition 3).
We have '

g—I*gl = c;w*(Ap) I —(Ap)*g)w,

where ¢,=2/(r!d) and qe P[1; p]. Hence there exists 1, such that g—I*gl=0
for A<1,. Thus the scheme (2.2) is stable for A< 4,.

THEOREM 6.3. Let
(6.8) I(x, @5 4) = 3 5=0(ip)[j! = (Apy"v(Ap)™,
where r22m (m=1) and v(x, w; A) e P[A; #]. Suppose

D Is(@)l” £ ¢y(w);

2) v(x, w;A) =vfte X,

3) ux, 0;) 2 cxf(@)  for AL A,
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where 6=d—2m and u=70*+5—0*(Ap)2™D. Then the scheme (2.2) is stable for
sufficiently small A. :

Proor. [ can be rewritten in ¢ as
(6.9 Ix, w; 2) = I+fils|+folsl?,
where
fi =ikp,, [fo = y—22"pFopyis|>2.

By Lemma 4.4 f,,f,e 2.
It suffices to show that condition 3) of Theorem 4.1 is satisfied. We have

g—1*gl = w*(Qp)"[u+1q9, +(Ap)°Gs1 (Ap)"w,
where g5 € P[4; p],
(6.10) g, = %G, +310, q, = 2 h=1(ip)iAi-1jl.

By condition 1) we can define e(w)=|s(w)|°/t(w) as in 4.1 and it follows that
e(w)l e " and

g—I*gl = w(p)"tLe,l + g5, +(A5,) G1e] (AP)"w
+w¥(Ap)"(u — c,tI) (Ap)"w,
where
421 = 914, + 430, o=2.

Hence by condition 3) there exists 1, (0<4; £1,) such that g—1*gl>0 for A< 4,.
Thus the scheme is stable for A< 4,.

THEOREM 6.4. Let
(6.11) Ix, w5 ) = X5-o(iAp)[j! = (iAp)*™*1a—(Ap)"* tv(Ap)™+1,

where r22m+2 (m20), v(x, w; A) e P[A; #] and a(w) is a real-valued scalar
function such that a(w)l € & and (a(w)/t(w))] e #. Suppose conditions 1), 2)
and 3) of Theorem 6.3 are satisfied, where 6 =d—2m—2,

u = 5+ 5*+(—1)ym2al - 6*(Ap)*™b, b = (—1)y"(ia)+Apv.
Then the scheme (2.2) is stable for sufficiently small A.

ProoFr. I can be rewritten in 2" as (6.9), where

Ji=ilp(l=a), f,=y—(pw(p,) if m=0,
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Ji=idp, f; =y—(@p)"b(Apy"*'|s|?m"1 if m = 1.
By Lemma 4.4 f,, f,e.#. We have
g—1*gl = w*@Ap)y"*[u+idgs + (AP)’ 4.1 (Ap)™* ' w,
where 6=2, q, € P[4; p],
43 =93P~ Pds. 42 = 5—id1h, g1 = TFR(APY(+2).
By condition 1) we can define e(w)=|s(w)|°/t(w) and we have e(w)l € X",
g—1I*gl = w*@Ap)y"*tlc, I +ilgs, +(AP.) Gae] AP)™H 1w
+ WAy (u— et (AP)™+ ' w,
where
d31 = 451 P—Pq21, 421 = B, —ig1h,,
by = (=Dm(iay)+Apvy, a, = aft.

Hence by condition 3) there exists A, (0<A1, <4,) such that g—1I*gl=0 for A<4A,.
Thus by Theorem 4.1 the scheme is stable for A< A,;.

COROLLARY 6.1.  Let
(6.12) I(x, w5 4) = T5=0(iAp)i[j! —(iAp) e,

where r=4m+1 or 4m+2 (m21), e(w) is a scalar function such that |s(w)|?
<c,e(w) for some c¢;>0 and e(w), 0;e(w) and 0,0;e(w) (j, k=1, 2,..., n) are
bounded and continuous on R%. Then the scheme (2.2) is stable for sufficiently
small A.

THEOREM 6.5. Let
(6.13) I(x, w; A) = X5=o(iAp)I[j!— A2,
where r22m (m=0, r=1),
v(x, w; A) = a+A*b (x = 0),
a(x, w; A)e P[1; #], b(x, w; A)eP[L; £],
a,(x, w; A) = af|s|*€ ¥, b(x, w; L) = b/|s|e £.
Suppose
1) b*+b5=0;
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2) Is(w)*"2 = ¢ t(w);
3) ay(x,w; A)=a,JteH, by(x,w; i) =blteX;
4) u(x, w3 A) 2 cptls|I?l for A= Ao,

where u=a*+d—A*>m*p. Then the scheme (2.2) is stable for sufficiently small

A.
ProOF. [ can be rewritten in J¢" as (6.9), where
fi = iAp,— b, f,=y—A%"a,, B =2m+a
By Lemma 4.4 f|, f,€%. By (6.5) and condition 1) we have
fig+gf, = 0.

Hence the assumptions of Theorem 4.1 are satisfied except condition 3).
We have

g—I*gl = A2"w*(u+Aq, +A7p4g5)w,

where 6=d—2m 22, q; € P[A; p] and q, is given by (6.10). By condition 2) we
can define e(w)=[s(w)|4~2/t(w) and e(w)[ € #". Put

421 = @:/(11512) qiy = qiflsl, qe = @34, +A*b34, .
Then
921(x, @3 1) = q4+qieA,
g—T*gl = 22mw*t|s|?(col + Mg, + A7 pleg 3)w
+ A2mw*(u — c,t|s|2 Dw |

and by condition 4) there exists 4; (0<A;<4) such that g—1*gl=0 for A<4,;.
Thus the scheme is stable for A<A4,.

THEOREM 6.6. Let
(6.14) I(x, w; 2) = X5=0(ilp)! [ j! = A%v,
where
v(x, w; A) = mI+APa+A"b  (B,y=0),
m(w; 2) = 3h-odimyw), yzaz20,
a(x, w; A)e P[A; #], b(x, w; N)eP[L; 4],
a(x, w; A) = afls| e 4, b(x, w; 1) =b||s|ed,
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myw) (j=0, 1,..., u) are scalar functions satisfying Condition 1. Suppose
1) b*+b=0;
2) t(w) satisfies Condition 1;
3 Is(w)? £ eyt (@), Im@) S ¢yt (@) (=0, 1,.., p);

4) a,(x, w; A) =aftte A, by(x, w; A) = b|s|/t?e X and a,, b, and b,
satisfy Conditions N and 1II;

5) u(x, w; A) = ct?l  for A Z A,

where u=(m*+ m)l +8(G* + @) — A*5*5. Then the scheme (2.2) is stable for suffi-
ciently small A.

PROOF. [ can be rewritten in ¢ as
I(x, w; A) = c(w; DI+fls|,
where
c(w; ) =1-1*m, f=iip,+y|s|—A*(APa,;+A"by).

By Lemma 4.4 fe.# and c(w; A) satisfies Condition I. By (6.5) and condition 1)
we have

g—1Il*gl = A*w*(u+Aq, +/1”ﬁdq3)w,

where g=d—a =1, q;€ P[4; p] and q, is given by (6.10).
By condition 3) we can define

ey(w) = [s()|/t3(w), ey(w; A) = Th-oAimw)/t*(w)
and e;Jet (j=1,2). Put
d21 = qa/t?, vy = e;l+2a,, g1 = q4/lsl,
Qe =14, +27634,,.
Then q,,(x, w; A)=q,+q% € # and we have
g—1I*gl = 2*t?>(w)r(x, w; 1),
where
r(x, 03 ) = w¥(u; —cyl)w+w*(c 1 +4q,, + A7 plgae)w,

uy(x, w5 A) = By +0, — A5+ A 6*5, +2276%h,).
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By condition 4) v, and v satisfy Conditions N and II, so that r satisfies the
same conditions. Since by condition 5)

u(x, w; A) = c,I for 1< A,
there exist ¢;>0 and 4, (0<1;=4,) such that
r(x, ) = c3w*w = ciel for 1< 4.

Hence conditions 1) and 2) of Theorem 4.2 are satisfied and the scheme is stable
for AZ4,.

~ 6.4. Case of a regularly hyperbolic system

In this section we assume that 4,(x) (j=1, 2,..., n) are real matrices and that
(1.1) is a regularly hyperbolic system, that is, eigenvalues of A(x, ') are all real
and distinct (s=N in Condition C) [19].

THEOREM 6.7. For a regularly hyperbolic system with real coefficients let
(6.15) I(x, w; 2) = I+ilp(x, @)+ 2%2q(x, w; A)|s(w)|?,
where q is a polynomial in A with coefficients satisfying Condition VI. Suppose
(6.16) ox, 0 D) <1 for A<l

Then the scheme (2.2) is stable for sufficiently small A.
To prove the theorem we need the following

LeMMA 6.3. Under the assumptions of the theorem there exist A, (0<A,
< 1o) and a nonsingular matrix u(x, w; 2) such that

i) u and u~?! belong to & for each A (0<AZA));
i) g(x, w; A)=u*u satisfies Condition N for each A (0<AZ1,);
iii) For some e; >0

g(x, w; 1) = e I for A=A
iv) u(p,—ilglshu=! =d+Als|f for weR"—-Z, A<,

where d(x, w; 1) and f(x, w; A) are diagonal matrices belonging to & and d is
a real matrix.

Proor orF THEOREM 6.7. By Lemma 4.5 and its corollary,
Gh"’LrGth = Gh_LgoGhoLh
| = Ujelly— Lo LUy,



Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems 345
where I(x, w; A)=ulu~!. We have in &
I=T*T = R2|s2[i(f*—f)— (d+As| f*) (d + As| )],

which satisfies conditions 1), 2) and 3) of Theorem 3.4 for A<, by Lemma 4.3.
Since 1 is a diagonal matrix by Lemma 6.3, from (6.16) it follows that

I-T*I2(-p)I =0 for AZ4A,.

Hence u*(I —I*T)u satisfies all conditions of Theorem 3.4 and we have for some
c; =0

Re((G,— LG L), av)
= Re((Uio(I,— LyoL)oUpaw, av) = —c,hfjal|?
forall veL,, h>0.

By the same argument as in the proof of Theorem 4.1 we have for some c,
0

v

01, — 1 Lwwlld, Z Zi=0 Re((Gy— LioGyeLy)op, ov)—c2hv]|%,

so that
lvl&, — I Lywlld, = —(c;+cy)h|v]2.

Hence for some ¢, =0
ILwlg, = (1+coh) 0],

and by Corollary 2.1 the scheme is stable for A<4,.

7. Examples of schemes

In this section Conditions A, B and C are assumed. To construct difference
schemes with accuracy of order r, we assume that 4 (x) (j=1, 2,..., n) are bounded
and continuous together with their partial derivatives up to the r-th order, where
r=3 in examples 2 and 3 and r=4 in examples 4 and 5.

We introduce the following difference operators:

4,;=(T;=T7H2, 4;; =[&T;—T7")—(T;-T;73]/12,
0; =(T;+T;1=2D/4 (j=1,2,..,n),

th(x) = Z;!=1Aj(x)dmj (m = 19 2)3
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Fon(x, ) = 3 ;24 A4 (A i) + =1 A (A1 ;A ) A )
Ku(x, h) = F,+431-,A%5;,
Kyu(x, h) = Fp+435-1A436,(1-6,/3),
Ou(x, h) = Fy+ 3 1-1A24% (1—-46,/3).

Since by Corollary 4.2 A(x)e s/, and 4,;4(x)e B, (j=1, 2,...,n; m=1,2),
P, (x) (m=1, 2) belong to «7, and F,,(x, h), K,4(x, h) (m=1,2) and Q,(x, h)
belong to ,.

In connection with these operators we define the following functions:

aiw) = sinw;, Pw) = sin?(w;/2),

si(w) = o;(1+28;/3) (J=12,.,n),

(7.1) pi(x, ) = S A, palx, ©) = T As),

(12)  nyx 0) =450, 4282, ny(x, ) = (16/9) X1, 422+ BB,
(1.3) f(x, @) = @)9) %1, A3,

(7.4) kn(x, @) = —p2—n, (m=1,2), qlx, )= —p}+f,

(1.5)  ri(x, @) = (/)11 A8 rjea(x, ©) = pori+ripl (J=1,2).

Matrices ip,(x, w), k,(x, w) (m=1, 2) and ¢(x, w) are symbols belonging to
P, (%), K(x, 0) (m=1, 2) and Q,(x, 0) respectively. By Lemmas 4.6 and 4.7
P> My K (m=1,2), r; (j=1, 2, 3), f and q belong to # and satisfy Condition
N.

Put

lof = (Xj=1a})/2, Bl = (X]j=18D"?,

o) = (T3 B2, ) = Th i,
Then we have
(7.6) | < Is| = 5]al/3,

lel> S 4nlBl, 1Bl <7, IBI? < /na?, 9Is|2/100 < /n|fl.

From these it follows that
(7.7 @/lsh1 (j=1,2,...,n),  (lal/IshI € £,
(7.8) (/1T (Bi1B)I (G = 1, 2,...; m), (Usl/leDd, (ld?/1BDI,
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(BIOL, (1B [a®)L, (IsI2/1BDI, (Is|*[0)] € .
Hence by (7.1)-(7.8)
(7.9 Pullsl (m=1,2), rjflsl (j=1,23), fllsl’e2,
(7100 n,/IBIm*t (m = 1,2), ri/(jelIB) (G =1,2,3), fl(al?|Bl?)ex,

and they satisfy Conditions N and II. 1Tt is clear that |f(w)|] and o(w) satisfy
Condition I and

rj(x’ (D) = pJZ'—le (.] = 1’ 2’ 3)

For simplicity we put u=1/n. For a difference operator S,(x, h) let I(x, w;
A) be a symbol belonging to S,(x, 0) and let M(x, w; 1) denote a hermitian element
of .

ExampLE 1. Let
(7.11) Su(x) = Xh=o(AP24)[j!,

where r=3 or 4. Then I(x, w; 1) can be written as (6.7). By Theorem 6.2 the
scheme (2.2) with the operator (7.11) is stable if Ap(p,)<./3d/\/n in the case r=3
and is so if Ap(p,)<2./2d/\/n in the case r=4, where p,=p,/|s|,d=
(2/25) /40y 6=15.

ExXAMPLE 2. Let
(7.12) Su(x) = I—Eh+iP2,,+}.2P2hP1h/2+/13P?,,/6,
where E,=pu?3"_, 43,3 4-,0,. Then I(x, w; A) can be written in " as
(7.13) I(x, w; 2) = F3=0(iAp,) [j! =0,
where
v(x, w; A) = el —A%p,r,[2—il3r;/6,
e(w) = p?laj?t, t=r1.

By (7.7)-(7.10) v/|s|?> € & and v/(t|s|?>)e o#". Since u?|«|?t<1, by (7.6) we have
for some 1y, and M
u=+5-5"
= ts]? [W?Q2— 2o ?t)(al/|sN*T=A2M] 2 0 for A < Ao

Application of Theorem 6.5 with a(x, w; A)=v, b(x, w; 1)=0, r=3 and m=(
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shows that the scheme (2.2) with the operator (7.12) is stable for sufficiently small
A.

ExAMPLE 3. Let
(1.14) Si(%, h) = I = Cy+ AP,y + A2P2,/2+ 23K 1,P1,/6,
where C,=uY1-,0%2. Then we have (7.13), where
u(x, w; A) = cl+1%a, c(w)=pX"-,p3,
a(x, w; A) = —ry/24+iM(nyp, —r3)/6.

Put t=|p|. Then by (7.7)-(7.10) a/|s| e # and a/t? satisfies Conditions N and
II. Hence for some i, and M we have

u = 2cl+A2(a* + a)—v*v
= PLUR—p)=)2M] 20 for A< o

Application of Theorem 6.6 with m(w; A)=c, b(x, w; ))=0 and r=3 yields the
stability of the scheme (2.2) with the operator (7.14) for sufficiently small A.

ExamMPLE 4. Let
(7.15) Si(x, h) = I+ Ey+ AMI+ AP,,[2+ A2Q,/6+ A3P3,/24)P,,,

where E,=p?3 " 4};3>7-16%. Then we have in &
(7.16) I(x, w5 2) = Ti-0(iAp2)/[j! v,
where
v(x, w; A) = el —iA3 fp,/6+ A%rsyp,/24, e = p?laf?|B|%.

Put t=|B]2. Then by (7.7)-(7.10) v/|s|?2 € &, and v/(t|s|?) e 2. Hence by (7.6)
we have for some 1, and M

u = 5*+5- %
= Uls]2[p? Q2 - p? o> (lol/IsD* 1= 22M] 2 0 for A < 4.

Thus the scheme (2.2) with the operator (7.15) is stable for sufficiently small A
by applying Theorem 6.5 with r=4 and m=0.

ExaMPLE 5. Let
(7.17)  Sy(x, h) = I+ E,+ A(I+AP3,[2+ 22K ,,/6 + 13K 1, P14/28) P,,,
where E,=p3 %.,63. Then we have (7.16), where
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v(x, w; A) = el+A3a, e = uc?,
a(x, w; 4) = [iny+A(rs —nyp,)/41p,/6.

Put t=0. Then by (7.7)-(7.10) a/|s| belongs to .# and a/t? satisfies Conditions
N and II. Hence for some 4, and M we have

u = 2el +23(a* + a)—v*v
= 2[uQR—utH)[-12M]} =0 for A< Ao
By Theorem 6.6 the scheme (2.2) with the operator (7.17) is stable for sufficiently

small A.

8. Proofs

In 8.1-8.5 we denote ess . sup by sup for short.

8.1. Proof of Theorem 3.3

Let o; (0= i <) be the family associated with a(x)I. Then o (x)u(x) = (a;u) (x)
(0=<i<s). Since

|Zi=0 Re(Guotu, au)| = Ti-oll gl ellaull® = [g1llul?,

we have the second inequality of (3.25).
By continuity of the L,-norm it suffices to prove the first inequality in the
case ue . We consider first the case 1<i<s. From (3.12) it follows that

(Gyu, au) = (0,Gyou, u),
2,Gyo = a,.(x)x-lgefx-cg(x, heyam (E)dE.

Without loss of generality we may assume that x( is the origin. By the
mean value theorem we have

9(x, h¢) = g(0, h)+ % ,-ij:g A0x, h&)do,

where g(x, w)=D;g(x, w). Since g(0, h)=2el by condition 2), it follows that
8.1) Re (Gyau, ou) = elloul|? — Ejl(G'jh“iu’ xj“iu)| ’

where

Graa(x) = 1t {ete:s{ (0, he)avmaErde.
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Let {¢} be any sequence such that ¢ >0 and ¢—0 as k—o0. Then by the
boundedness of g; we have

(8.2) (Gpou, X jouu) = ,!im (Wi x;00u),
where

Wa(x) = x-lge"x-ﬁgjk(x, heYau (&)de,

1
gu(x, w) = S g,(0x, w)do.
ek

Since supp (x;a;u) < V;, we have
||xj°'i“" < ellau| .

Combining this with the estimate (to be shown later)

(8.3) Iwiell = cjllaul,  ¢; = Ssgpm,(x, w)ldy,

we obtain
(Wi xj0u)] < ecjllogull?,
which yields by (8.2)
I(G'jh“i“a xj“tu)| < ﬁcj”“.'“ 2.
From this and (8.1) with ¢c=3%_,c; we have
Re (Gyou, o) = ellou |2 —celloul|2,
so that
(8.4) Xi=1 Re(Guu, o) 2 eF 5= logu|? — ce(Xi=y llou]?).

Next we consider the case i=0. Let G, and G,, be the families associated
with g (w) and gy(x, w) respectively. Then

Re (Gyaou, aou) = Re (G 00u, aou)+Re (aoGéhaou, u),
(Gonttolt, tou) 2 ellogull?,
because g . (w)=el. Since by definition
aoGonttot = 0g(Gox(0to)) = (@oGon) (%o%)

and oG, =00°G, by Corollary 3.1, we have
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2oGonttot = (0g°Gop) (0oU) -
Hence it follows that
2 T
Re (Gyaou, o) 2 eflogul|? — [laogoll pllaoull flull .
From this and (8.4) we have

2 o 2

2i=o Re(Guu, quu) = ellul|? —cellu| — [loogoll llull.

A~
Now we choose ¢ small so that ce<e/4, and then choose R large so that |jaogollr
<e/4. This choice of R is possible by N-2). For such ¢ and R we have

(8.5) $=0 Re(Gyou, ou) = (e/2) luf?,

which is the first inequality of (3.25).
It remains to show (8.3). Since g;(x, w) is continuous and integrable with
respect to x for each w, by the change of order of integration we have

1 1
flance, ondx < (' (1g,0x, w)laxao = {lgx, w)dx{ 1/1617do.
ek ek
Hence g;,(x, w) is integrable for each w, and

(8.6) Gt ©) = xg §e~i*~1g,-(6x, w)dxdd

= . 9,00, wyio1as.

Since §(y, w) is integrable for each w, it follows that

f1.cx. o < §§ 19,000, @n0mdoay

1
= (" §1.00, opinorazao
< {l9.00 w)lar.
Hence §;(x, ) is integrable for each w and by N-1) we have from (8.6)
[suplonce dzse, (=120 m.

Put

0u(&) = Séjk(c—c', hE"Yai (£)de".
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Then by the same argument as in the proof of Lemma 3.2 we have
floaconae = e {@conae,
3.7 lopll < cjlloull .
Since v e L; n L,,
Lim. x‘lge‘x'évj,,(é)dé = wu(x) ace..

Thus [v; ]l =I|lw;l and (8.3) holds by (8.7).

8.2. Proof of Theorem 3.4

By continuity of the L,-norm it suffices to prove the theorem in the case
ue&. Let o be a space variable in R*, By={a]||06| <1} and q(c) be a C* even
function such that

) q(0) 20, suppq(o) = By;

ii) qu(a)da = 1.

After Vaillancourt [16] we introduce the functions

a(x, ) = e px, Dex(w, 0L,

b(@®, x, @) = c—nge@, Dp(x, De(w, DL,

where
c=h'2 [ =w-co, elw {)=q(c[w-{]).

As will be shown in the proof of Lemma A, the families of operators 4, and B,
can be defined by

88)  Au(x) = lim. ic‘lgei’"‘Sé(E —&, hENA(E)AE e,

(89  Bu(x) =lim. x“Se"’"fSB(hé, E—&, hEYA(E)dE dE

forall ues,
where b(®, 1, ) is the Fourier transform of b(&, x, w) with respect to x.

LEMMA A. A, and B, are families of bounded linear operators mapping
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& into L, and

(8.10) Bu,u)=0  forall ues,
(8.11) A, =P,
(8.12) A,+ Af =2B,.

By this lemma we have
Re(Pyu, u) = Re(P,u, u)—(B,u, u)
= Re((P,— Apu, u)+((4,+ AF —2By)u, u)/2
2 —[|Py— Ayl llull? = | Ay + A = 2B, ]| [ull?/2.
Hence (3.28) holds by (8.11) and (8.12).
PrOOF OF LEMMA A. Let
W) = (Bre, £-¢', heHaEdg.
Then

w() = Sro(f—é', h&N(ENAE" +r ,(hO)a(E),

where

ro(iy @) = c-"ge(hxm, Dol De(w, DL,

ro(®) = c-"ge(w, Opu(Oe(w, OdL.

By condition i) we have

flsup oz, @)ldx = L{sup1po(z, wld,
sup (@) < Lsyp [po(@)],

where L=maxq’-(n)g 1 do.
" lol=1

By the same argument as in the proof of Lemma 3.2 we have ||w|| < L| |l ¢ #].
Hence we L,, and the formula (8.9) defines a family of bounded linear operators
B,. The same reasoning applies also to A4,.

We show (8.10). Put
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(8.13) 8, §) = e(h¢, D).

Then |8(&, {)|? is integrable for each fixed {. Hence there exists the Fourier in-
verse transform v(x, {) such that |v(x, {)|? is integrable for each fixed {. Since
p(x, {)=0, it follows that

v*(x, Op(x, Hu(x, {) 2 0.

Integration of this inequality with respect to x yields by Plancherel’s formula

(8.14) Sv*(x, Op(x, Do(x, Hdx

N Sﬁﬁ*«f, DPE—&, DN, DdE'dE = 0.

Substituting (8.13) into (8.14) and then integrating it with respect to {, by the
change of order of integration we have (#, w)=0, which shows (8.10), because

w=B,u by (8.9).
Since

a(x, w) = Sp(x, - c6)q?(0)do,
from (8.8) it follows that

8.15)  (Py—Apu(®) = S{ﬁ(x, w)— a(y, ©)}0(E)dE

=§§{ﬁ(x, ®)— Pl ©—c0)}q*(o)doa(E)dE’,

where y=¢,—¢&', o=h¢'.
Owing to condition 1) we have by the mean value theorem

B16)  Polts @ =dolt, ) = e[ £30,0,] 2,800t @ c0)a(0)d0do.
Since 0;po(x, w) is absolutely continuous with respect to wy,
(8.17) 0;Po(x> @)= 0;po(x> @—p)
= 2 =1{0;Po(Xs @yservs D15 gy Mg 150445 M)
—0;Po(Xs @15+ D15 N> Nt 1+++5 M)}
= Zik=1m (X 1, @),

where p=0co, n=w—p,
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.
my (x> 1, ) = —So 0k0; Do)y Dysenvs Wp— 1y O =tis Mg 150+-5 M)Al

Hence by (8.16) and (8.17)

(8.18) Po(x» @)—ao(x, w)

= | 2310, 01po( @a2(0)d0da = ck(y, @),

where

K @) = {£310,] Sames(e, 1, 0)a% (@) dodo.
The first term on the right side of (8.18) vanishes, because g2(o) is even.
ekt o) = e[ 5541, 101 syp 18:2,0(t, @)la*(@)d0do
< h3usup|0i0;Po(1, @) a.e.,
from (8.18) it follows that
|Po(x, @)—ao(x, @) £ hZ j,sup|0;00(x, @) a.e..
Similarly we have
1Po(@) — (@) < S 45up100,p(@)]  a.e..
The same argument as in the proof of Lemma 3.2 yields from (8.15)
I(Pu—Aul < Mhlal,
where
M = 254 sup 10:0,p0(t, @ldx+sup13,0,p(@)])-
Hence (8.11) holds.
From (8.8) and (3.20) it follows that

(8.19) (Ap+ AL —2B)u(®)

{00 0 tethr+ 0, 0 - e, D120 dcaE,

{200t 0 tatr + ) a(@n 20 dodz.

355

Since
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where ¥’ =cy, x=¢(—¢&, o=h¢', {=w—co. By the mean value theorem we have

|{pote. 0t +0) - a(@)12 o]

< 4| pot: {1, 2L o+ o)} [do

da;
< hKysup (1312 po(x, @) a.e.,

where

K1=nmlax{m%x<'§qu(n)|2>}S 1 do.

lels1

From (8.19) it follows as in the proof of (8.11) that
I(An+ AR —2Bul = Kzhlla],
where K, = g sup (x1?1po(x, @))dy. Hence (8.12) holds.

In the following for simplicity we put
S,=R:, S,=Rr—Z, S,=R: S.=R: § =R}, S,=Rr—{0}
and let
Sap = SaX Sy, Sape = Sax Spx S,

where a, b and ¢ denote , z, §, x, t or 0. We denote by M[x, x, z] the set of
all bounded and measurable N x N matrix functions on S,,, and denote by C[y,
z] the set of all bounded and continuous N x N matrix functionson S,,. The sets
M[z], M[y, z], C[0], C[y, 0], etc. are also defined in the same manner.

8.3. Proof of Lemma 4.1

We show (i). Let I(x, w)=p|s|. Then by I'-1) I belongs to o#" and satisfies
I-1). Letc; (j=1, 2, 3) be constants such that

Iajsk(w)l = (91 on Sw (j, k=1, 2., n)9
1010, @)l = €2, |PoX, @) S¢; on S,, (j=1,2,..,n).
Denote by L(®, w) the line segment joining the points & and w, where

B = (@1,..., Wj_1, Bjy Djy15e00y By)y O = (Dy, Wg,..., O).
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When there lies no point of Z on L(®, w), by I'-3) we have

(8.20) lo(x, @) —Io(x, w) = (a)j_wj)ajlo(x, n,

where 5 is some point on L(@, w).
When a point & of Z lies on L(®, w), we have |s(®)|=0 and

lo(x @)= lo(x> @) = Po(x> @) (IS(D)] = (D)) + Po(¥, @) (Is(D)] = |s(@)]),

where the first (or second) term on the right side vanishes if @eZ (or we Z).
Hence it follows that

(8.21) Ho(xs @)= lo(x, @) = c3(Is(@) — s(@)| +|s(d) — s(w)1)
< Jneyey(|@;— o)+ b ;— o))
= /ncics|@;—wj|.
From (8.20) and (8.21) we have
Ho(x, @) —1o(x, @) £ c4ld;—wjl for @&, weR",

where ¢, =max (c,, \/ ncyc3). Thus lo(x, w) is absolutely continuous with respect
to w;. - Hence [, satisfies 1-2), because 0;l,€ M[y, z]. Similarly [, satisfies
1-2).

From I'-3) and I'-4) it follows that [ satisfies I-3).

The assertion (ii) can be shown similarly.

8.4. Proof of Lemma 4.3

Since sgp(lxlzl Pols|?]) is integrable by IV, it suffices to show that conditions
1) and 2) of Theorem 3.4 are satisfied. By I'-1)-1'-3) and V-2) 9,lo(x, @), dmjo
(-w) € My, z1; sup|0;lo(x, ®)I, sup|0um jo(x, w)l € M[x] and 0,1, (®), dum;e(w)
e M[z].

Let ro=Pols|? and r,=p,l|s|2. Then by I'-1) and I'-2) r,e M[y, @] and
ro(w)e M[w]. By I'-3) we have for we S,
(8.22) 0jro = mjg+1o(0;ls]), 0jry, = mj,+1,(9;ls]).

Since the terms on the right sides are continuous on S, for each y, so are d;ry
and 0;r,.

Let w(® be any point of Z. Then &;ry(y, ®®) and 0;r,(w(®) are calcu-
lated to be zero. By I'-2) and I'-3) p, and 0;l, are bounded on S,.; p., 0;l,
and J,|s| are bounded on S,. Hence the terms on the right sides of (8.22) tend to
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zero as w—w'®.  Therefore d;r, and J,r,, are continuous on S, for each y.

By the same argument as in the proof of Lemma 4.1 m;,, lo(9;ls]), m;,, and
1(d;ls]) are absolutely continuous with respect to w,. Hence by (8.22) d,r, and
0;r, have the same property and condition 1) is satisfied.

By I'-3) and V-2) we have from (8.22) for we S,

0k0,ro = Gem jo+(Oilo) (0ls1) + Pols| (8,0;ls1) ,
0i0;r o = OrMjoo +(0l ) (O}151) + oo s1 (8051s1) ,

and 0, 0;rq€ M[y, z], 0,0;r,, € M[z], sgpl&kajroleM[x]. By the conditions
sgpl@kajrol is integrable and sgplakajrml is finite, so that condition 2) is satis-
fied.

8.5. Proof of Lemma 4.4

We prove that if p and q satisfy (a) Il (or IV) (b) I’ (c) I', 1T and 111" or (d) V,
then p+4q, pq and p* satisfy the corresponding conditions. For properties (i)
and (ii) of the lemma follow from (a) and (c) respectively; property (iii) follows
from (a), (c) and (d). It suffices to show these assertions only for pq.

Put d=pgq. Then by Lemma 3.1 de ", d,e M[w] and sgpl&o(x, w)| is
integrable.

We prove (a). Since

(823) ao(Xa CO) = pO*@0+ﬁ0qm+pw40’ doo = P9

we have

(8.24) |xl1dol < Slx—tl [Bo(x—1t, )| 1qo(t, w)ldt+glﬁo(x—t, )| |t 14o(t, w)|dt
+1xl Dol 190l +1Po ! X1 140l s

(8.25) 1x1?1dol = 2{{lx—1121po(z—1, @) 4o(t, )t

+ {1Bo—t, @ 112140(t, @)t} + 121210l gl + .ol 11171461

Taking the essential suprema of both sides of (8.24) and (8.25) over S, and inte-
grating them with respect to y, we find that sgp(lx("lao(x, w)]) is integrable in

the case k=1 (or k=2) if p and q satisfy II (or IV).
We prove (b). Let

UO(X$ Cl)) = 40|S|’ vao(w) = lesla eo(X, w) = aOtSL eoo(w) = dootsl .
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Then 0,;l4(x, ), 0;v9(x, @) €M[y, z] and 0;l (w), 0;v,, € C[z]; 0;lo(x, ) and
0;vo(y, w) are measurable on S, for each we §..

It can be shown that if f(y, w) is measurable on S,, and is continuous on S,
for each g, then sup | f(x, )| is measurable on S, and

(8.26) [f(x o)l = suplf(x, )| on S,.

Hence by I'-1)-1'-3) sup |po(x, )|, sup [4o(x ), sup |0;lo(x, w)| and sup [0;vo(xs
w)| belong to M[x].
Let ¢, (k=1, 2, 3, 4) be constants such that

[s(w)] £ ¢4 on S,
(8.27) [ils(l| £c; (j=1,2,...,n) on S,
[Pox, 0 S €3, 10lo(x, @) Ses (j=1,2,..,n) on §,,.
Then by (8.26)
[Po(x—1t, @)do(t, @) = c35up|do(t, @) for (1, x, ) €Sy

Integration of both sides with respect to t shows that po*q, is bounded on S,,.
By I'-1) and I'-2) p_.4, and poq,, are bounded on S,,. Hence I'-2) is satisfied
by (8.23).

By (8.23) we have

(828) €y = lo*‘?o‘{”loqm‘*'lw‘?o’ € = Iooqoo‘

By I'-1) and I'-2) Iy(x—1, w)§o(t, w) belong to M[t, y, z] and is integrable with
respect to t for each (x, w)€S,,. By I'-3) we have for weS,

(8.29) 0i{lo(x—1, @)go(t, @)} = (0;lo(x—1t, w))qo(t, W)
+ﬁo(X—t, w)ajvo(ta w)"ﬁo(X—t, (U)‘?o(ta (D)(a‘[!s!)9

so that by (8.26)

10;{lo(x =1, ®)4o(t, W)} = @(1),

where
(1) = (cac3+¢4) sup [4o(t, @) +cy sup [0;00(t, @)|,

which is integrable by I'-1) and I'-4). Hence

(8.30) 6j(lo*qo)=gé’j{lo(x—t, ©)dot, w)}dt  for (1, ®)ES,,
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9/(lo*d0) € M, z] and sup|0;(lox§o)l € M[x].
By I'-3) and (8.29) 0;{lo(x—1t, @)§o(t, w)} is continuous on S, for each (x, ) and
is dominated by ¢(%), so that d(Io*4,) is continuous on S, for each y.

By I'-1)-1'-3) 0,(1,40), 0(loq.,) € M[x, z] and 0(l,q,)€ M[z]; they are
continuous on S, for each y. Hence by (8.28) d satisfies I'-3).

Since d satisfies I'-1) and I'-3), sgpwjeol e M[x]. From (8.29) it follows

that

(8.31)  sup|9;{lo(x—1, @)4o(t, ®)}| < sup|d;lo(x—1, ®)|sup |§o(t, w)|
+sup | po(x —1, @) |(sup [0,00(t, W)+ ¢;5up[go(t, w)I).

By I'-1) and I'-4) the terms on the right side are integrable with respect to x
and t. Hence from (8.30) and (8.31) we have

flsup 10,toxa0)ldx < {sup12,1oti, @) 1dx10ol

+ “f’o“)«"g sup [0;v0(x> @) [dx+ 2 Pollll doll ¢
and sup [0/(lo*@o)| is integrable.
Since

sup [0(1,4o)| = sup 0,1, sup |Gol +sup | pe|sup |0;v,|
+¢,5Up |p|sup (ol ,

by I'-1), I'-3) and I'-4) sgplaj(lmqo)l is integrable. Similarly sgplaj(loqm)l is
integrable. Hence by (8.28) sup |0;e0l is integrable and 1'-4) is satisfied.

We prove (c). By (a) and (b) it suffices to show that d satisfies 1II'-4).
From (8.29) it follows that

(8.32)  Iyllo{lo(x—1, ®)do(t, @)} = |x;—1110;lo(x —t, @) 14o(t, )|
+10;lo(x—1t, @)l 1t;]140(t, @) +1x;— ;| 1Bo(x —1, )] |000(t, )|
+1Po(x— 1, @)l [1;118;00(t, @) +1x;—1;11bo(x — 1, @)l 140(t, w)|10;ls]]
+1po(x—1, @)l t;1g0(t, @)[19,ls]] -

Each term of (8.32) is measurable on S,,, and its essential supremum over S,
is measurable on S,,, so that the integrability of sgp(lle [0(Io*4,)]) follows from

the conditions.
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By I', I and III" it can be shown that sgp(|xj| 10/(1,40)) and sgp(lle-
[0/(log)]) are also integrable. Hence by (8.28) sup (Ix;110;€0) is integrable and
I11"—4) is satisfied.

We prove (d). By (b) it suffices to show that d satisfies V-2) and V-3).
Let wjo(x, @)=(0;v9)|s|. Then by V-1) and V-2) gym;o(x, @) and O,w;o(x, @)
belong to M[y, z] and are measurable on S, for each weS,; sgpl@kmjo(x, w)l,
sup [0w;0(t> ©)] € MLx).

Multiplying both sides of (8.30) by |s(w)|, we have by (8.29)

(8.33) {0,(Io*do)} Is| = mjo*Qo+ Po*w 0 —(lg*40) (9;1s]) .

By the same argument as in the proof of (b) d,(m;o*4,) belongs to M[y, z] and
is continuous on S for each y; sup|di(mjo*§o)| belongs to M[y] and is integrable.

Similarly for d,(po*w;o) and 6,{(lo*d,)(0;ls|])} we have the same results. There-
fore by (8.33) poq, satisfies V-2) and V-3).

It is readily verified that p,q,, pog. and p.q., satisfy the same conditions.
Hence by (8.28) d satisfies V-2) and V-3).

In the following sup does not stand for ess . sup.

8.6. Proof of Lemma 4.6

We prove (i). By VI-1) and VI-2) p satisfies conditions 1) and 2) of .
Since

(8.34) 1o @)l <« sup po(x, )ld,

by VI-2) po(x, w) belongs to M[x, w]; it belongs to M[w] for each x and is con-
tinuous on S, for each . Hence ess . sup 1Po(xts @)1, sup [Do(x> @)l € M[x].

By integration by parts we have for each w

Di+3po(x, @) = (ix)"*2 po(x, ),

so that

211D po(x, @)l = Zio il 3 1o, ).

Let d be a positive constant such that Y 7, |x|**3=d|x|"*3. Then since

dlxl"*31bol = Zi=1lul"1bol = KZ?=1S|D?+3Po|dx,
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we have for any fixed A>0

[ sup(upotn odx s c|  1gkdy (k=0,1,2),
Ixiz4 Ixlz4

where
¢ = (/) 1, { sup IDFpolx, @ldx.

Hence Sal)lp(|xl"|f)0(}:, w)|) (k=0, 1, 2) are integrable, because by (8.34)

[ sup(lekipot )y < co.
Ixl=4 @

Thus p satisfies condition 3) of 2", II and IV.
We prove (ii). Since p belongs to " and py(x, w) is bounded on S,, by (i),

s
p satisfies 1'-1), I'-2), 11I'-1) and 11I'-2). By VI-3) and VI-4) ess(;sup(léjpol Is]),

sup (13,pol sl) € M1 (j=1, 2,.... ).
By VI-2) e”i**xpy(x, w)|s(w)| is measurable on S,,, and is integrable with
respect to x for each (x, w)eS,,. By VI-3) we have for we S,

0j(e™*"xpq|s|) = e~"*"%(0;po) Is| + e~ xpo0ls|,
so that
[0j(e=™ %pols)| = (x)  for weS,,
where
o(x) = igg(la,-pol Is)+c, sup | Pol

and c, is given by (8.27). By VI-2) and VI-4) ¢(x) is integrable. Hence

(8.35) 3/(olsh) = 3,(polsl)  for (x, w)€S,.,
8,(Polsl) € M[x, z] and

s
(8.36) 0i(Polsl) = 0;pols|+ po?;ls| for (3, w)eS,..

By VI-2) and VI-3) d(e"***py|s|) is continuous on S,, and is dominated
by ¢(x), so that d,(pols|) is continuous on S,, and p, satisfies I'-3) and III"-3).
Since by VI-3)

(8.37) 0/(Pols) = (0;px) Isl + Pos0jls|  for weS,,
by VI-1), VI-3) and VI-4) p,, (0;p,)|s| € C[z] and p,, satisfies I'-3). Thus
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I'-3) and 11I'-3) are satisfied.
By integration by parts we have

—_— P
Di*20;po(x, @) Is(w)| = (ix)"*20;po(x, w)|s(w)]  for weS,,

and sup(|x|“}6 Dol Is]) (k=0, 1) are integrable by the same argument as for

SUP(|X|k|ﬁ0(X» w)|). Hence by (i) and (8.36) Stlp(lxl 101(PolsDD) (k=0, 1) are inte-
grable and p satisfies I'-4) and 11I'-4). Therefore by (i) pe .#.
We prove (iii). By (ii) it suffices to show that V-2) and V-3) are satisfied.

By VI-5) and VI-6) ess;sup (2,0l Is1%), sup(13;p0l ) € MU (s k=1,

2,..., n).
Multiplying both sides of (8.36) by |s(w)|, we have

A /\ A
(8.38) {0/(PolsD} Is| = 0;pols|? + Bolsldjls|  for weS..

By the same argument as in the proof of (8.35)
A~ ——
9d0;pols|?) = 0,{(9;p0) Is|?} for wes,

2
and 5k(5jpoIS! Ye Clx, z].
Since p satisfies V-1), we have for we S,

0i(PolslojIsl) = {0k(PolsD}d;ls| + DolslOndjls »

which belongs to C[y, z]. Hence by (8.38) 0,[{0;(PolsD}|s|]e CLx, z] and p,
satisfies V-2).

Multiplying both sides of (8.37) by |s(w)|, we have
(8.39) {01(PolsD} Isl = (0;pe) IsI? + Posls|Ojls] .

Calculating the partial derivatives of (8.39) with respect to w,, by VI-3)-VI-6)
we find 0,[{0,(p,Is)} Is|]e C[z]. Hence p,, satisfies V-2).
From (8.38) it follows for (y, ) € S,, that

T S
(8.40) OkL{0(Bols)} IsI] = 0k0;pols|? +20;pols|Ols|
+{0(PolsD)}0;ls| + Dols|owd,lIsl -

By the same argument as for sup (16 ;Pol Is]) we have the integrability of sup (IO/@EI
w¢Z

|s|?). Since sup |0k(Pols])| is integrable by (ii), so is sup [0,[{0;(PolsD} |sl}| by (8.40)

and V-3) is satlsﬁed
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8.7. Proof of Lemma 4.7

By VI-1) and VI-2) Dpgy(x, w)e M[x, w] agi\ sup Drgo(x, w)e M[x]
(l=17 2,...,1’!; m=0, 1"“’n+3)' Hence gO(Xa (l)), Dlgo(Xa (D)EM[X, (D];CSS-

R P . o~ w
sup |go(x> w)l; eSSL;,SUPlDtgo(X, ), Sal"plgo(l, w)| and S}ulplDlgO(Xa w)| belong to
M[x].

By Lemma 4.6 g #". Since D,g=D,g,, by VI-2) D,g(x, w) is bounded on
S.., and is continuous and integrable with respect to x for each w.

P
From VI-2) it follows as in the proof of Lemma 4.6 /tgat Dyg(y, w) (I=1,
2,..., n) are integrable with respect to y and that ess(:)suplD,g(x, w)| (I=1,2,...,
n) are also integrable. Thus g satisfies N-1).

By the same argument as in the proof of Lemma 4.6 we have for any fixed
A>0

/\ _
[ suploogel ldx < c® iy,
x|z4 @ x|zA4

S
[ suplogoln wldz < c®f  1dr
Ixls4 @ 7 Ixls4

where
e/(R) = (/)T 1=, | syp IDF* (to(X)gofx, w)ldx,

o(R) = & sup lto(x)go(x, @)ldx

and d’ is a positive constant such that Y 7, |x "1 =d'|x|**!.
Since the supports of sgplao(x)go(x, )| and sgplD;’“ao(x)gO(x, w)| (I=1,

2,..., n) are contained in ¥, and D7ag(x) (m=0, 1,..., n+ 1) are bounded uniformly
with respect to R, by the integrability of sup |Drgo(x, w)| we have

limc(R)=0  (j=0,1).
R->
Hence
. S
lim { sup [oga(, @ldx = 0,

and Condition N-2) is satisfied.
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8.8. Proof of Lemma 6.1

8.8.1. Preliminary results and proof

Assume that 4, <2,<---</; and let p; (1<i<s) be the multiplicity of A,.
We denote by sup u(x, ') the supremum of u(x, ') over S""!. Unless other-
wise stated, in this section we denote by j, k, I, m, g and r the integers such that
1£j,k, 120, 0Em=<n+3,0£9<n+2 and 0=r=<n+1. To prove Lemma
6.1 we need the following three lemmas.

LEMMA B. Under Conditions A and C there exists a hermitian matrix
S(x, ') such that

(8.41) S(x, @) = Sp(x, @)+ S (),
(8.42) S(x, w) = el,
(8.43) {S(x;, @)A(x, @)}* = S(x, )A(x, '),

where Sy(x, ' )—0 uniformly with respect to @’ as |x|—o0 and e is a positive
constant which does not depend on x and w'.

Let a(x, w) be a scalar function defined on S,,. Then we introduce the fol-
lowing
Property D. 1) a(x, w) can be written as

a(x9 (D) = aO(x5 w)+am(a)),

where lim aq(x, @)=0 for we S,;

2) ID"'ao(x w), D{0;a¢(x, w) and Dj;0,0;aq(x, w) are continuous on S,o;
0;a,(w) and 0,0;a,(w) are continuous on Sy;

3) sup(ID7ag(x, w)), sup(IDf0;ac(x, )l |w]) and sup (1D}d,0;a0(x, w)| lw|?)
are bounded and integrable; sup (lao(®))), sup (19; aw(w)l [a)]) and sup (10400 (@)|-
|w|?) are finite.

LemMA C. Let a(x, w) and b(x, ) be scalar functions with property
D. Then

(i) a+b, ab and a have property D;

(ii) If |b|=a for some a>0, then a/b has property D;

(iii) If a=p for some B>0, then \/a has property D.

LemMma D. Under Conditions A, B and C the eigenvalues A(x, w[|w])
(i=1, 2,..., 5) of A(x, o/|w|) (|| #0) and the entries of S(x, w/|w|) have property
D.
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PrROOF OF LEMMA 6.1. Let
S(x, s(w)/Is(w))  if weS,
(8.44) g(x, w) =
el if weZ.

We show that g(x, w) satisfies VI. Since by Lemma D the entries of S(x, w/|w|)
have property D, by D-1) we have

S(x, of|w]) = So(x, oflw])+S(of|o]),
where lilm So(x, o/|w])=0. Let
| x| =00

So(s(@)/Is(@)))  if weS,
el if weZ,

(8.45) 9o(0) =

and put go(x, w)=g(x, ®)—g(w). Then

lim gy(x, @) =0 for weR®*,
| %]~

(8.46) go(x, @) =0 for weZ.

By D-2) and D-3) go(x, w)eC[x, z] and g (w)e C[z]. Hence by (8.45) and
(8.46) go(x, w)e M[x, w] and g, (w)e M[w]. Thus g satisfies VI-1).
Since supID"'SO(x of|w|)| belongs to M[x] and is integrable by D-2) and

D-3), sup]D go(x, )| is bounded and integrable. Hence g satisfies VI-2).
For we S, we have

(8.47) D{0;go(x, w) = 2 i=1{0;su@)} [DI0,So(x, 0f|0])]w=s(w) >

(8.48) 0;9 (@) = i=1{0;5(@)} [0S or(@/|0D] 1y =5(w) »

so that by D-2) D{d;g,(x, ) and 0,9,(w) are continuous on S,, and on S,
respectively. Thus g satisfies VI-3).
From (8.47) and (8.48) it follows that for (x, w)e S,,

ID10,g0l 5] < ¢Zi-1 sup(IDF6,So(x, wflw))] ),
1091151 < ¢Zg-1 sup (WS (@l |0,

where ¢ is a constant such that |0;s(w)|<c. Hence by D-3) sup(qualgol Is)
w¢Z
is bounded and integrable and sup(l@,gwl |s|) is finite. Thus g satisfies VI-4).

Similarly it can be shown that g fulﬁlls VI-5) and VI-6).
By Lemma 4.6 ge . Since by (8.42) and (8.44)
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gx,w)zel  (e>0),

by Lemma 4.7 g satisfies the conditions of Theorem 3.3. Finally (6.5) follows
from (8.43).

8.8.2. Proof of Lemma B
Let

(8.49) d(Z; x, ") = det(AI = A) = [T5=,(A—4,)",
d,(A; x, o) =D,d(A; x, ') (D, = 0/04),
Ap(@) = 3" 14,0, d(d; ) =det(A]—A (),
d;u(A; @) =D;d (4; ®).
As A; (j=1, 2,..., 5) are real, we have
(8.50) d;(4; x, @) = NTTj=1 (2= A)P THEY G- 1),

where 1 (x, o) (k=1, 2,...,s—1) are real and 4, <y <Agyq.

By Condition A A(x, ®')—> A (") uniformly with respect to o’ as |x|— co.
Hence by continuity of eigenvalues of matrices we have the following results:

1) Eigenvalues of A4 (') are all real and their multiplicities are independent

of w';
2) |Ahig(@)=Aju(@) 20 (#j5i,j=1,2,.,59),

(8.51) Af(x, @) — 4, (@) (j=12,..,5)

uniformly with respect to o’ as |x|—> o0, where 1;,(@") (j=1, 2,..., s) are all the
distinct eigenvalues of A (@) and 1, ,<A,, < <Ay}

3 wx, @) (@) (k=1, 2,..., s—1) uniformly with respect to o’ as |x|
— o0, where y (0" (k=1, 2,..., s—1) are zeros of d (4, ®") such that 4, <
<k+1c0s

4) There exists a constant p>0 independent of x and w’ such that

(x, o) =pdx, o) 220 (j=1,2,..,8k=1,2,.,s=1).
Put ;0(x, @)=1;—4;, (j=1, 2,..., 5). Then from (8.51) it follows that
(8.52) Aj(x, w,) = )«jo(x, w,)+ljw(ﬂ),), leli_l}}o Ajo(x, w,) = 0.

Let Di(p) and D;,(p) (j=1, 2,..., s) be the open disks on the complex A-plane with
radius p and centers at 4; and A;,, respectively. Let E(4; x, »") and E(1; »')
be the matrices whose (i, j) entries are (j, i) cofactors of AI—A(x, ') and AI
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— A (w') respectively. Then E(4; x, o' )—>E_(2; ') uniformly with respect to
' for each fixed 4 as | x| — c0.

By C-3) (A —A(x, »'))"! has a simple pole at A=21;(x, ') (1=j=<s). Let
Cj(x, o) be the residue of (Al — A(x, w’))~! at A=4; and let

rid; x, @) = [Ti=1,i2 j(A=2)P,  Tjo(d; @) = TTi=y iz j(A—Ai)"t

Then
ridjs X, ©) — rip(Ajn; @)  as |x| > o
and we have
(8.53) (253 %, )] Z %P1, |1y )] Z 8NP,
Since

(A —A(x, @) ' = E(; x, 0)/d(4; x, ®'),
E(4; x, »') can be written on Dj(p) as
(8.54) E(4; x, @) = (A—=4j(x, @")P""1B{4; x, ),

where the entries of B;(4; x, »’) are sums of products of 4, 4;(x, ") and entries
of A(x, ). Hence Bj(4; x, ') converges to a matrix, say B;,(4; '), uniformly
with respect to @’ as |x|— oo for each fixed 4. It follows that

(8.55) Cj(x, @) = B{4;; x, @)r(4;; x, '),
(8.56) Bjulyws @) = lim B3 x, ),
x| =

and by (8.54) we have on D;(p)

(8.57) E, (2; @) = (A—=2j(@")?71B;(4; @").
Let
(8.58) Ciw(®@) = Bje(Ajeos @)1 jeo(Ljors @)

Then by (8.53) and (8.56) C(x, ®")—C;, (") uniformly with respect to w’ as
|x|]—>00. Since

(A —-Ay(0)! = E,(A; @)]d(A; @),
by (8.57) and (8.58) we have

Ayglw (A=A ,(0") M (A= 1je) = Cjn(@").
Hence (A — A,(w")~! has simple poles at A=4;, (j=1, 2,..., 5).
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We prove (8.41)-(8.43). After Friedrichs [3] we define S(x,; »’) by
SCx, @) = Ejer g, (1= 4%x, @)™ (- A(x, @)
(1] r;

xd;'(A; x, ®)d(A; x, ©')dA,

where I'; (1< j<s) is the positively oriented path running along the circumference
of Djp). Then it follows that

(8.59)  S(x, @) = 3=y lim (M- A4%)H(Al — A)'(A= A)?d5'd[(R— 1)}

= 352127 CH(x, @)Ci(x, ).
Hence
(8:60) S(, ) — 5(@) = £5-107" C1ul@)C1a(@)

uniformly with respect to o’ as |x|—o0. Put Sy(x, ®)=S(x, ®)— S (@).
Then (8.41) holds.

We show (8.42). From (8.59) we'have S(x, ®)=0. Suppose S(x, »’)
>0 does not hold. Then there exist a point (X, @") and a vector u (u#0) such
that S(X, @ )u=0, and (8.59) yields

Ci(x dw=0 (j=1,2.,5).

Since in general
e szzg.ﬂS“(u— A(x, o))" diu,

it follows that u=3"5_,C;(x, »")u, and so we have u=0, which is a contradiction.
Hence

S(x, )>0 forall xeR", ' eS* 1.

By the same argument it follows from continuity of S (') that S (w")=al for
some a>0.
By (8.60) there is Ry, >0 such that

S(x, ") = (/)1 for |x| = R,.
By continuity of S(x, w’) there exists §>0 such that
S(x, o) = pI for |x] <R, and ' e€S" 1.

Hence (8.42) holds with e=min («/2, ).
Finally we have
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{S(x, @)A(x, @)}* = A%(x, ®")S(x, )

= X5-1 g || A= 4% (= A dy dd

- Sr (A — A%) (A — A%\ — Ay d5 ' d d)

= S(x, 0)A(x, o'),

because the second integral vanishes.

8.8.3. Proof of Lemma C

It is clear that a+ b and a have property D. Let d=ab. Then d=dy+d,,
where

do = aob0+awb0+aobw, dm = awbw.

From this it follows that d has property D.
In the case (ii) let e(x, w)=a/b. Then e=e,+e,, where

eo(x, w) = ufv, e, = ay,/by,

u(x, ) = apgb,,—bpa,, v(x, w)=bb,.
By (i) u and v have property D. Since

U=ty Uy=0 [p]2a |bgl20,

it follows that e has property D.
In the case (iii) let f(x, w)=\/a and y=/B. Then f=f,+f,, where

folx, 0) = Ja—/a,, fo(@)= \ay.
Since
Jo 20 fu0ife =(0,a:)/2,
J0040;foo +(0uf5) (01 0) = (00a)/2,

f» has property D. As fo=ao/(\/a+ \/a,,) and 2=y, f, has property D.

8.8.4. Proof of Lemma D

Since by (8.52) A(x, w/|w]) (1=<i<s) has property D-1), we show first that
it has property D-2). The coefficients of the polynomial d(4; x, ®/|w|) are sums
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of products of entries of A(x, w/|w|), which have property D by Lemma C.
Hence 1(x, w/|o])e C[x, 0]. Similarly we have ;. (o/|w|) e C[0].
Put

(8.61) q(4; x, of|lw|) = D2~1d(4; x, of|lw]) (D, = 8/d4),
(8.62) do(A; of|lo|) = Dy~ 'd (4; wflw]), p= N-p,.

Then g(A(x, w/|wl); x, ©/|w])=0, g,(%,(®/|o]); o/lo])=0 and by C-2) we have
for (x, w)e S,o

(8.63) |D19(A(x, @f|@]); x, of|l@)| = TT§i=1, ki 14— Al*p;! = p;lé? > 0,
(8.64) 1D 29 o(Aio(@/|0]); of @D = TTi=1,k#ilAicc — Aewo| P*Pi! Z P67 > 0.

Hence by the implicit function theorem 1(x, w/|w|) has partial derivatives D4,
and 0;4; on S,,, which can be written as

(8.65) D)A(x, oflwl) = —[Dyq(; x, of|w])/D,;q9(; x, of|0))] =1,
(8.66) 0;A(x, of|lw]) = —[0;q9(4; x, wf|w])/Dq9(4; x, ©f|w])] 1=,

Similarly 4;,(w/|w|) has a partial derivative 0;4;,(w/|w|) on S,, which can be
written as

(8.67) 0jhin(0f|@]) = —[0,q45(%; @f|@])/D;3q5(4; 0f|@)];=3,.

On the other hand by (8.61) and (8.62) ¢(4; x, ®/|w|) and q.,(1; w/|w]) can
be written as follows:

(8.68) q(4; x, of|w]) = bAP*! +ay(x, of|®|)AP+ -+ +a,(x, o/|o]),
(8.69) 4o(4; 0f|o]) = bAP*! + a4 ,(wf|0)A? + -+ + a,q(wf o)),

where b=N!/(p+1)!, a, (t=0, 1,..., p) have property D and can be written as
a,=a,,+a,,. Hence by (8.63) and (8.65) DA(x, w/|w|) e C[x, 0], because A(x,
of|lw|)e C[x, 0]. By consideration of the successive derivatives of (8.65) with
respect to x; D7A;0(x, w/|w]) belongs to C[x, 0].

Since by (8.66) and (8.67) 0;4(x, w/|lw|) and 8;4;,(w/|w|) are continuous
on S,o, 50 is J;4;(x, w/|w|). Calculating the successive derivatives of (8.66)
with respect to x;, we see that DJ'0;4,0(x, w/|w|) is continuous on S,,.

By consideration of the derivatives of (8.66) and (8.67) with respect to w,
0,0;A(x, wf|w|) and 0,0;4;,,(w/|w]) are continuous on S,, and on S, respectively.
Hence 0;0;4;0(x, @/|w|) is continuous on S,,. Similarly D}0,0;4;0(x, ®/|w|)
is continuous on S,,. Thus 1,(x, w/|w|) has property D-2).

We prove that A,(x, w/|w]) has property D-3). Put g,(x, w)=q(4;(w/|®]);
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x, of|w|). Then from (8.61) and (8.49) we have
(8.70) qi(x, w) = A;o(x, of|lo|)elx, w),
where
ex, w) = =T T=1,j2i(Ais — 4,)% P! + X304 (x, )

and §(x, o) is a sum of products of 4;, and 4,(t=1, 2,..., s) which are bounded
on S,,. Hence there exists K>0 such that

(8.71) lex, w)| = (6/4)»  for |x| = K.
From (8.68) and (8.69) it follows that

(8.72) qi(x, ®) = - oa,0ic",
and from (8.70)-(8.72) we have for |x|= K
(8.73) 14i0(x, @flo)] = (X f=olacol |14ix|P~)/(8/4)".

Since A;p(x, o/lw]) -and = a,o(x, w/|w|) (t=0, 1,..., p) belong to C[x, 0],
su%ll,o(x, oflw])] and sup(:la,o(x, of|lo))| (t=0, 1,..., p) belong to M[x]. Put
,(x)—supllio(x, o/lw|)]. Then S' s c(x)dx<oo, and by (8.73) S| | c(x)dx

x|= x| 2K

< 00, because gsupla,o(x w/lwl)ldx<oo (t=0, 1,..., p). Hence ¢,(x) is integrable.
Since D,A;o(x, w/|w|) € C[x, 0], we have sup |DAi0(x, 0f|w))| € M[x]. As
A{(x, of|w|) is bounded on S,, by (8.65) and (8. 63) sup |D;20(x, @f|w])| is integra-

ble. By calculating the successive derivatives of (8. 65) with respect to x;, it can be
shown similarly that sup | D Aio(x, wf|wl])| is bounded and integrable.

As a/(x, of|lo|) (t—O 1,..., p) have property D, {0;a(x, o/|lo|)}|w|e C[x,
0] (t=0, 1,..., p) and by (8.66) and (8.63) {0;A(x, w/|lw])}|w| e C[x, 0]. Similar-
ly {0;Ao(0/|lw))}|w| e C[0]. Therefore us)g%(lajlio(x, of|lo))| o)) e M[x] and
sup (10,;4;(w/|o))| |w]) is finite.
ero From (8.70) we have
(8.74) 0;q/(x, ®) = (0;A0)e;+ Aio0;e;.

By D-3) sup(l9,a,o(x, @/l le]) and Sup |ao(x, wf|o))| (¢=0, 1,..., p) are
integrable. Hence from (8.72) it follows that sup(la qi(x, w)| |w]) is 1ntegrable.
By (8.73) and (8.74) we have for |x|= K

104:0(x, @f|@D] o] = {10;q:l |l + 40| 10e] [w]}/(5/4)7,

so that sup (]0;4;0(x, w/|w|)| |w|) is integrable.
w#*0
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Calculating the successive derivatives of (8.74) with respect to x,, we see that
{D70;;0(x, of|®|)} |o| € M[x, 0] and that sup (IDf0;Ai0(x, wf|w|)| [w]) is integrable.
Similarly it can be shown that sup(lD’&ka A,O(x, w/lw])] Jw|?) is bounded and in-
tegrable and that sup(laka lm(w/lwl)l |w|?) is finite. Hence A(x, w/|w|) has
property D-3).

By (8.55) the entries of C,(x, w/|w|) have property D by Lemma C, because
the entries of By(4;; x, w/|w]) and r(/;; x, /|w|) are sums of products of A,(x,
o/|w|) and entries of A(x, w/|w|). Hence the entries of S(x, w/|w|) have property
D.

8.9. Proof of Lemma 6.2
Let S(x, of|w|)=(s;;(x, w)) and

sll...sl

qux, w) = det{ ¢ } (k=1,2,.,N).

Sk1 Sk

Since S(x, w/|w|) is positive definite, it can be written as S(x, w/|w|)=W*W,
where W(x, w)=(w;;) is an upper triangular matrix and

wy = d; = (q,/q;-1)"'? (i=1,2,..,N;gq0=1),
w;; = duy; (>izi=1,2,.,N-1),
Uy = (S.,"Zk L d} ukzukl)/diz'
Put

W(x, s(w)) for weS,,

w(x, w) = l
Jel for weZ.

Then g(x, w) can be written as (6.6).
As S(x, w/|w|)=el, there exist positive constants ¢; (j=1, 2, 3) such that

¢ S qu(x, w) ¢y, 3 S dix, ®) (k=1,2,.,N).

Since s;; (i, j=1, 2,..., N) have property D by Lemma D, it follows that w;;
(j=i;i=1,2,..., N) have property D and as in the proof of Lemma 6.1 w(x, w)
satisfies VI.

Since detw(x, @)= min(./c,, \/&)>0, w™!(x, w) exists and satisfies VL.
Hence w(x, w) and w™(x, w) belong to .# and fulfill Condition N by Lemmas
4.6 and 4.7.
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8.10. Proof of Lemma 6.3

We construct first the matrix u which diagonalizes p,— ilq|s| for w € S,. By
regular hyperbolicity there exist a nonsingular matrix w(x, w) and a real diagonal
matrix d(x, w) with the following

Property E. 1) w, w=! and d satisfy Condition VI;

2) For some constant e, >0
(8.75) w*(x, o)w(x, w) = eol;

3) d=wpw! for weSP.

Put

e(x, w; 1) = w(p, —idq|shw™1.

Then by E-3) we have
(8.76) e(x, w; 1) = d—1|s|q,

where §(x, w; A)=iwgw~!. Let §=(§;;) and d=diag(d,, d,,...,dy). By the
condition of Theorem 6.7 and E-1) §;; (i, j=1, 2,..., N) are bounded on S,,
x (0, A,]- Hence for some 4, (0<i,=<4,)

8.7 ASITVildgl 84 (k=1,2,.,N) for A<,
and by C-2)
(8.78) ldi—d)l 26 for weS, (i#j;i,j=1,2..,N).

By Gershgorin’s Theorem the eigenvalues y(x, w; ) (i=1, 2,..., N) of e(x, w; 1)
can be numbered so that

lu;—d;| <6/4 (i=1,2,...,N) for wesS,, A= 4,
Therefore they are bounded on S,, x (0, 4,] and
(8.79) lwi—u;l 2 6/2, |w—d;| = 36/4 for weS,, 14,
i+#jsi,j=1,2,.,N).

We construct an eigenvector of e corresponding to y; (1Si<N).

1) The construction of w(x, ) is given in [11] and it follows as in the proof of Lemma 6.1
that w(x, ») has property E,
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From (8.76) we have

(8.80) [T)=1(di—py) = det{(d —d)+ Als|g} = Alslys,

where y(x, w; A) is a sum of products of d,, §,, (k, =1, 2,..., N) and A|s|. Let
dix, w3 4) = TT)=r,j2ildi— 1))

Since by (8.79) |¢;| =(36/4)¥~ ! for A< 4,, from (8.80) it follows that

(8.81) d;,—u; = Alslo; for A< 4,

where ¢(x, w; A)=y;/¢;.
Let 4;;(x, w; 1) (j=1, 2,..., N) be the (i, j) cofactors of the matrix u,[—e.
Since

pd —e = (—d)I+(d I —d)+Als|q,
by (8.81) we have
Ay = g+ Als|vy,  efx, o5 4) = [11=y,j2i(d;—d}),
d;;=Aslo;  (j#i5j=12,.,N),

where v;(x, w; A) (j=1, 2,..., N) are sums of products of Als|, ¢;, d, and Gy,
(k, I=1,2,..., N). Hence for some 4; (0<i3;=4,)

(8.82) Als| |v;] < 6N-1)2 for 1< A,
Since by (8.78) |g;| =6V~ 1, it follows that
(8.83) |Re(4;)| = oV-1)2 for A=< A,

Hence (4;;, 4;3,..., 4;5)T is an eigenvector of e corresponding to y;.

We normalize this eigenvector and find its expression. Since ¢; is of constant
sign, we may assume that g>0. Then ¢=6""! and by (8.82) Re(4;)=do""1/2
for A< ;. Setting 4,=(38_144/?)'/2, we have

(8.84) A, 2 N2, |Bu+4] 2Nt for AE A,

The vector m;=(m;,, m,,,..., m;y)T is defined as follows:

(8.85) mix, 0; ) =0 " for weZ,
(8.86) my(x, w; 1) = a,/b; for weSs,,
(8.87) m;(x, w; A) = v;/4; (j # i) for weSs,,

where
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aix, w; ) = Avy—0;)—Alslm, n; = Zf=1,k¢i|vik|2,

bi(x, w; 2) = A(d;+4).

Then
(8.88) Aii/Ai = ] +/1|S|m,-i fOI‘ weE Sz,
(8.89) A”/Al = Alslmu (J # i) for weE Sz'

Hence o;+ A|s|m; is a normalized eigenvector of e corresponding to y;, where o;
is the i-th column vector of I.
We define matrices m(x, w; A), A(x, w; A1) and #(x, w; 1) as follows:

m = (my, my,..., my), A=diag(u, pa,..., un),

(8.90) t=1T+4Alsjm for A< 2,
Then
(8.91) et =tA for weS,, 122,

Since by (8.84)-(8.87) m(x, w; A) is bounded on S,, x (0, 1;], we have for some
Ao 0<Ay£43)

(8.92) |dett] = 1/2 for A<,

Hence t~! exists for A<4, and is bounded on S,,x(0, 4,]. From (8.90) and
(8.91) it follows that

(8.93) A=tlet for A4,
(8.94) t1 =I-]s|t"'m.
Therefore for some 4, (0<i,<4,)
(8.95) Yt >21/2) for AZA,.
Let u(x, w; A)=t"!'w. Then from (8.93)
(8.96) A = u(p,—iAq|s|)u~! for weS,, i=4,

so that u transforms p,—ilq|s| into a diagonal matrix.
We show that u has properties of Lemma 6.3. By (8.75) and (8.95) we have

u*u g (30/2)1 fOI' (x’ w)esxan A- é '11’

and so u has property iii).
By the argument similar to that in 8.9 ¢ and ¢! satisfy VI and belong to .Z.
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Hence by E-1) and Lemma 4.4 u and u~! belong to % and by Lemmas 4.7 and
3.4 satisfy conditions of Theorem 3.3.

(8.97)

By (8.76), (8.90), (8.93) and (8.94) we have

A= t"let = d+s|f,

where f=dm—t"'mdt—t"14t. Since A and d are diagonal, so is f. It is clear
that fe #. Thus by (8.96) and (8.97) u has property iv).
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