# Some Remarks on the Global Transforms of Noetherian Rings 

Kazunori Fujita and Shiroh Itoh<br>(Received September 20, 1976)

In his paper [4], Matijevic generalized the Krull-Akizuki theorem on the intermediate rings between a noetherian domain of Krull dimension one and its quotient field to the case of general noetherian rings, using the notion of the global transform of a noetherian ring. The aim of this paper is to give some interesting properties of the global transforms of noetherian rings. For a noetherian ring $A$, the global transform $A^{g}$ is the set $\{x \in Q(A) ; x \in A$ or $\operatorname{dim}(A /(A: x))=0\}$, where $Q(A)$ is the total quotient ring of $A$. Now $A^{g}$ coincides with the $\mathscr{C}$ divisorial envelope of $A$ in $Q(A)$, where $\mathscr{C}$ is the Serre subcategory of $\operatorname{Mod}(A)$ consisting of all $A$-modules $M$ such that $\operatorname{Supp}(M) \subseteq \operatorname{Max}(A)$ (for $\mathscr{C}$-divisorial envelope, see [2]). On the other hand, a $\mathscr{C}$-divisorial module $M$ is characterized by $\operatorname{Ext}_{A}^{1}(N, M)=0$ for every object $N$ in $\mathscr{C}$. In other words, the relation between $A^{g}$ and $A$ depends deeply on the set $\left\{\operatorname{depth}\left(A_{\mathfrak{m}}\right) ; \mathfrak{m} \in \operatorname{Max}(A)\right\}$. Among our results in this paper, we shall show that the canonical homomorphism $A \rightarrow A^{g}$ is a flat epimorphism for any noetherian normal domain $A$, and also that the global transform of $A^{g}$ is $A^{g}$ itself if $A$ is reduced. Finally we give an example which shows that the Corollary to the Theorem in [4] is not true if we drop the assumption of reducedness of $A$.

Throughout this paper, all rings are commutative with unit. We use the following notations: for a ring $A$,
$\operatorname{Max}(A)=$ the set of all maximal ideals in $A$,
$z(A)=$ the set of all zero divisor of $A$,
$(A: x)=\{a \in A ; a x \in A\}$, where $x$ is any element of $Q(A)$.
Proposition 1. Let $A$ be a noetherian ring. Then the following statements hold;
a) If $\operatorname{dim}(A) \leq 1$, then $A^{g}=Q(A)$.
b) $S^{-1}\left(A^{g}\right) \subseteq\left(S^{-1} A\right)^{g}$ holds for any multiplicatively closed subset $S$ of $A$.
c) Suppose that $h t(\mathfrak{p}) \leq 1$ for any associated prime ideal $\mathfrak{p}$ in $A$. Let $S$ be a multiplicatively closed subset of $A$ such that $\operatorname{Max}\left(S^{-1} A\right) \subseteq\left({ }^{a} i\right)^{-1}(\operatorname{Max}(A))$, where ${ }^{a}{ }_{i}$ is the morphism of $\operatorname{Spec}\left(S^{-1} A\right)$ to $\operatorname{Spec}(A)$ defined by the canonical homomorphism $i$ of $A$ to $S^{-1} A$. Then $S^{-1}\left(A^{g}\right)=\left(S^{-1} A\right)^{g}$. In particular, $\left(A^{g}\right)_{\mathfrak{m}}=\left(A_{\mathfrak{m}}\right)^{g}$ for any maximal ideal $\mathfrak{m}$ in $A$.

Proof. a) Let $a / s$ be any element of $Q(A)$, where $a \in A, s \in A-z(A)$. We may assume that $s$ is a non-unit. Hence $\operatorname{dim}(A / s A)=0$; this implies that $a / s$ is an element of $A^{g}$ because $(A: a / s) \subseteq s A$.
b) This follows easily from the relation $S^{-1} Q(A) \subseteq Q\left(S^{-1} A\right)$.
c) We have $S^{-1} Q(A)=Q\left(S^{-1} A\right)$ by the remark (2) given after the proof. Let $x / s$ be any element of $\left(S^{-1} A\right)^{g}$, where $x \in Q(A), s \in S$. We may assume that $(A: x) \varsubsetneqq A$. Let $(A: x)=\mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{m}$ be a primary decomposition of $(A: x)$. Then $\left(S^{-1} A: x / s\right)=S^{-1} \mathfrak{q}_{1} \cap \cdots \cap S^{-1} \mathfrak{q}_{m}$. Since $x / s$ is an element of $\left(S^{-1} A\right)^{g}$, we may assume that $S^{-1} \sqrt{\mathfrak{q}_{1}}, \ldots, S^{-1} \sqrt{\mathfrak{q}_{r}}$ are maximal in $S^{-1} A$ and that $S^{-1} \mathfrak{q}_{r+1}$ $=\cdots=S^{-1} \mathfrak{q}_{m}=S^{-1} A$. By our assumption, $\sqrt{\mathfrak{q}_{i}}$ is maximal in $A$ for $i \leq r$. Let $t$ be an element of $S \cap \mathfrak{q}_{r+1} \cap \cdots \cap \mathfrak{q}_{m}$. Then $\mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{r} \subseteq(A: t x)$. Therefore $t x \in A^{g}$. Thus $x / s=t x / t s$ is an element of $S^{-1}\left(A^{g}\right)$.

Remark. (1) If $A$ is a Hilbert ring, then the multiplicatively closed subset $\left\{1, s, s^{2}, \ldots\right\}$ of $A$ satisfies the assumption of $c$ ).
(2) Let $A$ be a noetherian ring. Then it is easy to see that $S^{-1} Q(A)=$ $Q\left(S^{-1} A\right)$ holds for any multiplicatively closed subset $S$ of $A$ if and only if $h t(p) \leq 1$ for any associated prime ideal $\mathfrak{p}$ in $A$.

Assume that $A$ is a local ring and $Q(A)$ is $A$-injective. Then $A^{g}$ is the $\mathscr{C}$ divisorial envelope of $A$, where $\mathscr{C}$ is the Serre subcategory of $\operatorname{Mod}(A)$ consisting of all $A$-modules $M$ such that $\operatorname{Supp}(M) \subseteq \operatorname{Max}(A)$. Therefore $A^{g}=A$ if and only if $\operatorname{Ext}_{A}^{1}(N, A)=0$ for every object $N$ in $\mathscr{C}$, i.e., depth $(A)=1$. In general, weh ave the following:

Proposition 2. Let $A$ be a noetherian ring. Then the following statements are equivalent:
a) $A^{g}=A$.
b) $\operatorname{depth}\left(A_{\mathrm{m}}\right) \neq 1$ for any maximal ideal $\mathfrak{m}$ in $A$.

Proof. Suppose that $A^{g} \supsetneqq A$. Let $a / b$ be an element of $A^{g}-A$, where $a \in A, b \in A-z(A)$. Since $\operatorname{dim}(A /(b A: a))=0, \mathfrak{m}=((b A: a): c)=(b A: a c)$ is maximal in $A$ for some $c \in A$. Then we have depth $\left(A_{\mathrm{m}}\right)=1$. Conversely suppose that $\operatorname{depth}\left(A_{\mathfrak{m}}\right)=1$ for some maximal ideal $\mathfrak{m}$ in $A$. Then $\mathfrak{m}=(b A: a)$ for some $b \in A$ $-z(A)$ and $a \in A$; hence $a / b \in A^{g}-A$. Therefore $A^{g} \supsetneqq A$.

Corollary. Let A be a noetherian normal domain. Then the following statements hold:
a) $A^{g}=A$ if and only if there exists no height one maximal ideal in $A$.
b) The canonical homomorphism $A \rightarrow A^{g}$ is a flat epimorphism.
c) If the class group of $A$ is a torsion group, then $A^{g}$ is a localization of $A$.

Proof. a) This follows immediately from Prop. 2.
b) Let $\mathfrak{m}$ be any maximal ideal in $A$. If $h t(\mathfrak{m})=1$, then $\left(A^{g}\right)_{\mathfrak{m}}=\left(A_{\mathfrak{m}}\right)^{g}=$ $Q(A)$. If $h t(\mathfrak{m}) \geq 2$, then $\left(A^{g}\right)_{\mathrm{m}}=\left(A_{\mathrm{m}}\right)^{g}=A_{\mathrm{m}}$ by Prop. 2. Therefore $A_{\mathrm{m}} \rightarrow\left(A^{g}\right)_{\mathrm{m}}$ is a flat epimorphism; hence so is $A \rightarrow A^{g}$.
c) This follows from Cor. 4.4 in [3].

Remark. Let $A=k\left[X^{2}, X Y, Y^{2}, X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right]$ be a subring of the polynomial ring $k[X, Y]$, where $k$ is a field. We see easily that $A \rightarrow A^{g}=$ $k[X, Y]$ is neither an epimorphism nor a flat homomorphism from Prop. 1.7 in [3] and Prop. 2 in [5].

Proposition 3. Let $A \subseteq B$ be noetherian rings. Then the following statements hold:
a) Suppose $Q(A) \subseteq Q(B)$. If $B$ is integral over $A$, then $A^{g} \subseteq B^{g}$.
b) Suppose $B \subseteq Q(A)$. If the going down theorem holds for $A \subseteq B$, then $A^{g} \subseteq B^{g}$.
c) Suppose $B \subseteq A^{g}$. If every maximal ideal in $B$ contracts to a maximal ideal in $A$, then $B^{g} \subseteq A^{g}$.

Proof. a) Let $x$ be any element of $A^{g}$. Since we have $(A: x) \supseteq \mathfrak{a}$ for some ideal $\mathfrak{a}$ in $A$ such that $\operatorname{dim}(A / \mathfrak{a})=0,(B: x) \supseteq(A: x) B \supseteq \mathfrak{a} B$. Hence $x$ is an element of $B^{g}$ because $\operatorname{dim}(B / \mathfrak{a} B)=0$ by our assumption.
b) Let $\mathfrak{m}$ be a maximal ideal in $A$ and let $\mathfrak{n}$ be a prime ideal in $B$ such that $\mathfrak{m}=\mathfrak{n} \cap B$. We see easily that $h t(\mathfrak{n}) \leq h t(\mathfrak{m})$ holds by our assumption $B \subseteq Q(A)$. Since the going down theorem holds for $A \subseteq B, h t(\mathfrak{n}) \geq h t(\mathfrak{m})$. Therefore $h t(\mathfrak{n})$ $=h t(\mathfrak{m})$; this implies that $\mathfrak{n}$ is maximal in $B$. Hence $\mathfrak{b}$ ) can be proved similarly as a).
c) Let $x$ be any element of $B^{g}$; then $(B: x) \supseteq \mathfrak{n}_{1} \cdots \mathfrak{n}_{r}$ for some maximal ideals $\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{r}$ in $B$. Set $\mathfrak{m}_{i}=\mathfrak{n}_{i} \cap A$. By our assumption, $\mathfrak{m}_{i}$ is maximal in $A$. Let $x_{1}, \ldots, x_{n}$ generate $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{r}$. Since $x_{i} x$ is an element of $B \subseteq A^{g},\left(A: x_{i} x\right)$ $\supseteq \prod_{j=1}^{r(i)} \mathfrak{m}_{i j}$ for some maximal ideals $\mathfrak{m}_{i 1}, \ldots,{ }_{i r(i)}$ in $A$. Then we see that $(A: x) \supseteq \mathfrak{m}_{1} \cdots \mathfrak{m}_{r} \cdot \Pi_{i j} \mathfrak{m}_{i j}$. Therefore $x \in A^{g}$. Thus $B^{g} \subseteq A^{g}$.

Remark. (1) Even if $A \subseteq B \subseteq Q(A)$, the relation $A^{g} \subseteq B^{g}$ does not always hold. In fact, let $A=k\left[X^{2}, X Y, Y^{2}, X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right]$ and let $B=A[X / Y]$, where $k$ is a field and $X, Y$ are indeterminates. Let $\mathfrak{m}=\left(X^{2}, X Y, Y^{2}, X^{3}, X^{2} Y\right.$, $\left.X Y^{2}, Y^{3}\right) A$ and let $\mathfrak{n}=\left(X / Y, X^{2}, X Y, Y^{2}, X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right) B$. For any positive integer $n,\left(B_{\mathrm{n}}: Y\right) \nexists(X / Y)^{n}$. Hence $Y$ is not contained in $\left(B_{\mathrm{n}}\right)^{g}$. Therefore $\left(A_{\mathrm{m}}\right)^{g} \ddagger\left(B_{\mathrm{n}}\right)^{g}$.
(2) Let $A$ be a noetherian domain. If $A$ is a universally catenarian and if $A$ has no height one maximal ideal, then $A^{g}$ is integral over $A$. In fact, $h t(\mathfrak{P} \cap A)$ $=1$ for any height one prime ideal $\mathfrak{P}$ in $\bar{A}$, where $\bar{A}$ is the derived normal ring of $A$; hence $A^{g} \subseteq \bigcap_{\mathfrak{B} \boldsymbol{H}_{t_{1}(\bar{A})}} A_{\mathfrak{P}_{n A}} \subseteq \bigcap_{\mathfrak{P}_{H t_{1}(\bar{A})}} \bar{A} \mathfrak{F}_{\mathfrak{B}}=\bar{A}$. Therefore $A^{g}$ is integral over $A$.

Proposition 4. Let $A$ be a noetherian ring. Then the following statements hold:
a) If $\mathfrak{M}$ is a maximal ideal in $A^{g}$ such that $\mathfrak{M} \ddagger z\left(A^{g}\right)$, then $\mathfrak{M} \cap A$ is maximal in $A$.
b) If $A$ is reduced, we have $\left(A^{g}\right)^{g}=A^{g}$.

Proof. Since $\mathfrak{m}=\mathfrak{M} \cap A \nsubseteq z(A)$ by our assumption, $\mathfrak{m}$ contains a non zero divisor $x$. From the Theorem in [4] it follows that $A^{g} / x A^{g}$ is a finite $A / x A$ module. Therefore $\mathfrak{m}$ is maximal in $A$.
b) If every maximal ideal in $A^{g}$ is not an element of Ass $\left(A^{g}\right)$, then $\left(A^{g}\right)^{g}=A^{g}$ holds by the assertion c) of Prop. 3. (Note that $A^{g}$ is noetherian by the Corollary in [4]). Let $m_{1}, \ldots, \mathfrak{m}_{r}$ be the height zero maximal ideals in $A^{g}$ and let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ be the minimal prime ideals which are not maximal. By the Chinese Remainder Theorem, we have $A^{g} \simeq A^{g} / \mathfrak{m}_{1} \times \cdots \times A^{g} / \mathfrak{m}_{r} \times A^{g} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{t}$. Set $\mathfrak{q}_{i}=\mathfrak{p}_{i} \cap A$ for $i=1, \ldots, t$. We see easily that $A^{g} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{t}=\left(A / \mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{t}\right)^{g}$. Since $A^{g} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{t}$ has not a height zero maximal ideal, $\left(A^{g} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{t}\right)^{g}$ $=A^{g} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{t} . \quad$ Therefore $\left(A^{g}\right)^{g} \simeq\left(A^{g} / \mathfrak{m}_{1}\right)^{g} \times \cdots \times\left(A^{g} / \mathfrak{m}_{r}\right)^{g} \times\left(A^{g} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{t}\right)^{g}$ $\simeq A^{g} / \mathfrak{m}_{1} \times \cdots \times A^{g} / \mathfrak{m}_{r} \times A^{g} / \mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{l} \simeq A^{g}$. Thus $\left(A^{g}\right)^{g}=A^{g}$.

Proposition 5. Let $A$ be a noetherian ring. Suppose that depth $\left(A_{\mathrm{m}}\right)$ $\geq 1$ for any maximal ideal $\mathfrak{m t}$ in $A$. Then the following statements hold:
a) $A^{g} \simeq \varliminf_{\lim }(\mathfrak{a}, A)$, where a runs over all ideals such that $\operatorname{dim}(A / a)$ $=0$.
b) $\quad(A(X))^{g} \simeq A^{g} \otimes_{A} A(X)$.

Proof. a) Let $\mathfrak{a}$ be an ideal in $A$ such that $\operatorname{dim}(A / \mathfrak{a})=0$. Since $\mathfrak{a}$ contains a non zero divisor, $\mathfrak{a}^{-1} \simeq \operatorname{Hom}_{A}(\mathfrak{a}, A)$ holds. Therefore $A^{g}=\cup \mathfrak{a}^{-1} \simeq \lim _{\boldsymbol{H o m}}^{A}(\mathfrak{a}$, $A$ ), where $\mathfrak{a}$ runs over all ideals in $A$ such that $\operatorname{dim}(A / \mathfrak{a})=0$.
b) Every maximal ideal in $A(X)$ is of the form $\mathfrak{m} A(X)$ for some maximal ideal m in $A$. Therefore $(A(X))^{g} \simeq \lim \operatorname{Hom}_{A(X)}(\mathfrak{a} A(X), A(X))$, where $\mathfrak{a}$ runs over all ideals in $A$ such that $\operatorname{dim}(A / \mathfrak{a})=0$. Since $A(X)$ is flat over $A, \operatorname{Hom}_{A(X)}$ $(\mathfrak{a} A(X), A(X)) \simeq \operatorname{Hom}_{A}(\mathfrak{a}, A) \otimes_{A} A(X)$ by Prop. 11 in [1], Chap. I, §2. Thus $(A(X))^{g} \simeq A^{g} \otimes_{A} A(X)$.

The following proposition is a generalization of the Corollary in [4].
Proposition 6. Let $A$ be a reduced ring. If $Q(A)$ and $A / x A$ for any non zero divisor $x$ are noetherian, then $A$ is noetherian.

Proof. Since $Q(A)$ is noetherian, the number of minimal prime ideals in $A$ is finite. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be the minimal prime ideals in $A$. Set $B=A / \mathfrak{p}_{1} \times \cdots \times$ $A / \mathfrak{p}_{n}$. Since $A$ is reduced, $A$ is contained in $B$. Let $\mathfrak{a} / \mathfrak{p}_{1}$ be any non zero ideal in $A / \mathfrak{p}_{i}$ and let $x$ be an element of $\mathfrak{a}-\mathfrak{p}_{1} \cup \cdots \cup \mathfrak{p}_{n}$. By our assumption, $A / x A$
is noetherian. Therefore $\mathfrak{a}$ is finitely generated. Hence $A / \mathfrak{p}_{i}$ is noetherian and so is $B$. Thus by Eakin-Nagata's theorem, $A$ is noetherian.

Remark. The following example $A$ shows that the reducedness of $A$ in the above Prop. 6 is essential. Let $k$ be a field and let $X, Y$ be indeterminates. We put $B_{0}=k[X, Y], B=k\left[X, Y, Y|X, Y| X^{2}, \ldots\right], B_{1}=k[X, Y, 1 / X], A_{0}=B_{0} /$ $Y^{2} B_{0}, A=B /\left(Y^{2} B_{1} \cap B\right)$ and $A_{1}=B_{1} / Y^{2} B_{1}$. Let us denote $X$ and $Y \bmod Y^{2} B_{0}$ by $x$ and $y$ respectively. Since $Q\left(A_{0}\right)=k[x, y]_{y k[x, y]}=Q\left(A_{1}\right)$, we have $Q(A)$ $=k[x, y]_{y k[x, y]}$; hence $Q(A)$ is noetherian. We have $\left(A_{0}\right)^{g}=Q\left(A_{0}\right)$ by the assertion a) of Prop. 1. Therefore $A / x A$ is noetherian for any non zero divisor $x$ in $A$ by the Theorem in [4]. Set $\mathfrak{n}=X B /\left(Y^{2} B_{1} \cap B\right)$ and set $j: A \rightarrow A_{n}$ the canonical homomorphism. As is easily seen, $j(y)$ is not zero in $\left(A_{1}\right)_{n}$. Since $n^{n} A_{n}$ $\in j(y)$ for any $n, \mathfrak{n}^{n} A_{\mathrm{n}} \neq\{0\}$. This implies that $A$ is not noetherian.

## Appendix

Matijevic has proved that $A^{g}$ is noetherian if $A$ is a reduced noetherian ring, and he has given a noetherian ring $A$ such that $A^{g}$ is not noetherian. We here give another example which is simpler than Matijevic's. To show this, we introduce the notion of the global transform of an arbitrary ring as follows: Let $A$ be a ring; then the global transform of $A$ is the set $A^{g}=\{x \in$ $Q(A)$; length $(A /(A: x))<\infty\}$. It is easy to see that $A^{g}$ is a subring of $Q(A)$. The following proposition is corresponding one to Prop. 2 in the non-noetherian case. This can be proved by the same arguments as in the proof of Prop. 2.

Proposition. Let $A$ be a ring. Then the following statements are equivalent:
a) $A^{g}=A$.
b) $A$ has no maximal ideal of the form (uA:a), where $u \in A-z(A)$ and $a \in A$.

Now we give our desired example. Let $k$ be a field, and let $X, Y$ and $Z$ be indeterminates. We put $C=k[X, Y, Z, 1 / X] /\left(Y Z, Z^{2}\right)$. Let $x, y$ and $z$ be the images of $X, Y$ and $Z$ in $C$ respectively. Moreover we put $A=k[x, y, z / x]$, $B=k\left[x, y, z / x, z / x^{2}, \ldots\right], \quad \mathfrak{m}=(x, y, z / x) A$ and $\mathfrak{n}=\left(x, y, z / x, z / x^{2}, \ldots\right) B$. Since $B / x B \simeq k[Y], x, y$ is a $B_{\mathrm{m}}=B_{\mathrm{n}}$-regular sequence. On the other hand $y, x$ is not a $B_{\mathrm{m}}$-regular sequence. Therefore $B_{\mathrm{m}}$ is not noetherian. $\left(A_{\mathrm{m}}\right)^{g} \supseteq B_{\mathrm{m}}$ holds by the fact that $\sqrt{\left(A: z / x^{t}\right)}=\mathrm{m}$ for any positive integer $t$. By the same proof as those of a) and c) of Prop. 3 we see that $\left(A_{\mathrm{m}}\right)^{g}=\left(B_{\mathrm{m}}\right)^{g}$ because $B_{\mathrm{m}}$ is integral over $A_{\mathfrak{m}}$. Every regular element of $\mathfrak{n}$ is of the form $f=x^{n} v(x)+y c+\left(z / x^{r}\right) d$, where $v(x) \in k[x]$ such that $v(0) \neq 0$ and $c, d \in B$. Since $z / x^{m}=\left(z / x^{n+m}\right)\left(x^{n} v(x)+y c\right.$ $\left.+\left(z / x^{r}\right) d\right)(1 / v(x))$ holds for every positive integer $m$ in $B_{m}, B_{m} /\left(f B_{m}\right) \simeq(k[X$,
$Y] /(F))_{(X, Y)}$ for some element $F$ of $k[X, Y]$. Therefore $n B_{\mathrm{m}}$ is not of the form $\left(u B_{\mathrm{m}}: a\right)$, where $u \in B_{\mathrm{m}}-z\left(B_{\mathrm{m}}\right)$ and $a \in B_{\mathrm{m}}$; this implies that $\left(B_{\mathrm{m}}\right)^{g}=B_{\mathrm{m}}$ by the above Prop. . Hence $\left(A_{\mathrm{m}}\right)^{g}=B_{\mathrm{m}}$. Thus $\left(A_{\mathrm{m}}\right)^{g}$ is not noetherian.

## References

[1] N. Bourbaki, Algébre commutative, chap. I, II, Hermann, Paris 1961.
[2] S. Itoh, Divisorial objects in abelian categories, Hiroshima Math. J., to appear.
[3] D. Lazard, Autour de la platitude, Bull. Soc. Math. France. 97 (1969), 81-128.
[4] J. R. Matijevic, Maximal ideal transforms of noetherian rings, Proc. Amer. Math. Soc. 54 (1976), 49-52.
[5] F. Richmann, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794 799.

Department of Mathematics,
Faculty of Science,
Hiroshima University

