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1. Introduction

In this paper we study the problem of asymptotic relationships between
solutions of two systems of differential equations, one of which involves deviating
arguments. We consider the systems

(D x'(t) = Ax(D)+f(t, x(9(1))),
(2) Y1) = ADy(D),

where A(t) is a continuous r x n matrix function on R, =[0, o), f(¢, z) is a con-
tinuous n-vector function on R, x R", g(t) is a continuous n-vector function on
R, such that each component g(¢) is positive and satisfies lim g,(f) = co, and

t =00

x(g(®) = (x1(g,(D),.., x,(g.(1))).

An important special case of (1) is the ordinary differential equation
(3) x'(t) = A@x(0)+f(t, x(1)).

The problem of asymptotic relationships and/or asymptotic equivalence has
been studied in many papers; see e.g. Brauer [1], Brauer and Wong [2], Cooke
[3], Kato [5], Kitamura [6], Rab [7], Svec [8], and the references cited in
these papers. Recently, Rab [7] and Kitamura [6] have presented conditions
that lead to an equivalence between certain components of the solutions of (3)
and the corresponding components of the solutions of (2).

The main purpose of this paper is to extend results of [6] to the systems (1)
and (2) with general deviating argument g(¢) and to establish conditions that ensure
the asymptotic equivalence of (1) and (2) when the deviating argument g(f) is
retarded.

In what follows we assume that the components fi(t, z) of f(t, z) depend es-
sentially on ¢ and the g components z,, z,,..., z, (1=g=<n) of z in the sense that

(4) lfj(t, Zyseees Zn)l é wj(t’ lzlla'"’ |Zq|)

for (t, z)e R, xR" and j=1,..., n, where each wt, ry,..., r,)) is continuous on
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R x RY and nondecreasing in (r,,..., r,) for fixed te R .

We are particularly interested in some asymptotic relationships between
the p components x,(%),..., x,(t) (g < p=<n) of the solutions x(t) of (1) and the p
components y,(1),..., y,(t) of the solutions y(t) of (2).

2. Results

Let P,, P, be n x n matrices such that
(5) P,+P, =1 (identity matrix)

and let Y(¢)=(y;;(t)) be a fundamental matrix of the linear system (2). Then we
define

Y(OP Y7'(s) = (yit, s; Py)),
Y(OP,Y~1(s) = (yift, 55 Py)).

THEOREM |. Assume that the condition (4) holds. Let uf(t), m(t) (i=
1,..., p) be positive continuous functions defined on R, which satisfy

(6) my(t) = pt) for teR,, i=1,...,p.

Suppose that there exist matrices P, P, satisfying (5) and a constant T =0
such that for any k>0

(7) S;OIJ'U'(t, 55 PPlw(s, km(g(s))ds < co
Jort2T i, j=1,..., n, and

(8) S:OIyij(t> s; Plw (s, km(g(s))ds = o(u(1)),

®) [\ 1yt 53 Polo,Gs, kmlg)ds = olu0)

as t—oo for i=1,..., p, j=1,..., n, where
km(g(s)) = (km(g(s))s..., kMg (s)))-

Then, to any solution y(t)=(y,(t),..., y.(t)) of (2) such that y(t)= O(mt))
as t—» oo (i=1,..., p), there exists a solution x(t)=(x(1),..., x,(2)) of (1) such that

(10) x{(H) =y +o(u(t) as t— o0 (i=1,...,p).

Conversely, to any solution x(t)=(x,(t),..., x,(t)) of (1) such that x(t)=
o(myt)) as t—» o (i=1,..., p), there exists a solution y(t)=(y(t),..., y,(1)) of (2)
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such that (10) holds.

Proor. The first half of the theorem will be proved with use of the Schauder-
Tychonoff fixed point theorem as formulated in Coppel [4, p.9]. Let y(¢)
=(y1(¥), .., y,(1)) be a solution of (2) satisfying y,(t)= O(m(t)) as t»>oo(i=1,..., p).
There exist positive numbers t,> T and M such that

(11) (D] £ Mmgt)  for t=ty(i=1,.,p).

In view of (8) and (9), we can choose, for a constant k>max {M, 1}, a number
t, =t, so large that the following inequalities hold:

(12) ("1 iste 5 POLoGs, wmig(n)ds = gnM o),

(13) S it 55 Po) | w,(s, km(g(s)ds < K= M )

fort=t,, i=1,..,pand j=1,..,n Putt= mm{mfg(t) i=1,..., n}, and define

the functions my(t) (i=p+1,..., n) on [1, o) by

o1+ 5§ 1rute, 5 PoloGs, kmig(s)ds

(1) mil) = + 3 1 e s Polots, kmigomds, 12 1,

mt,), TSt <.
We denote by F the set of all vector functions &(t)=(&,(¢),..., &,(t)) that are con-

tinuous on [t, o0) and satisfy |[£(t)|<kmyt) for te[1, ©), i=1,..., n. We now
define the operator @ by

5= 2 § vt 1 PS5, x(g))ds

(15) (Px)(1) = + Z S Vif(t, 55 Po)fi(s, x(g(s))ds,  t 2 ty,

% my(t), tSt<ty, (i=1,.,n).

Clearly, @ is well-defined on F by the condition (7). We shall show that @ is
continuous and maps F into a compact subset of F.

(i) @ maps F into F. If xeF and i=1,..., p, then by (4), (11), (12), (13)
and (6) we have
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IA

(@001 < 101+ 3§ Ivite, 5: POIISGs, X(a(6))ids

n

+ 50 It 3 PG5, Xtg(s)ids

n

< M)+ 3§71yt 53 P, kmig(s))ds

™M=

+
J

[\ 1y, 55 Pl s, rem(g(s))ds

1

It

n

s Mm(0)+ ¥ al M 1) < kmyo)

M L
p+ 3 X
Jj=1
for t=t,, and

[(Px)(8)| = '%’f_();%l)—'mi(t) < %m (1) = kmy(t)

for t=t<t,. IfxeF and i=p+1,..., n, then by virtue of (4) and (14) we easily
see that |(@x),(1)| = my(t)<kmt) for t=1. Therefore ® maps F into itself.

(i) & is continuous. Let x, (k=1,2,...) and x be functions in F such that
x,()—>x(t) uniformly on every compact subinterval of [1, 00). First, consider
any interval of the form [t,, T]. Given an ¢>0, there is t, = T such that

(16) S“’ max_ |yt 5; Poloy(s, km(g(s))ds < ef6n

ta te[ty,T

for i, j=1,...,n. Then,
[(Dx,)i(1) — (Px)i(0)]

=<

M=

[\t 55 POLLILs, 50N =£(6, XgIds

1

J
n

+ Swlyi,-(t, s3 POILSi(s, xi(g())—fi(s, x(g(s))lds

Jj=1Jt2

an + 3§ s PSS sua@)—fiG. xgs))lds

< 507 max s Polds: max |65, xu(g(6))=f(s, X(g6))

Jj=1Jty te[ty,T]

#2317 max 1yt 53 Polos, em(g()ds

j=1Jtz te[ty,T

+ 30 max {51 Polds: max (s, si(g@) /(5. X(g@))

tyte[ty,T]
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for te[t,, T] and i=1,..,n. Since fi(s, z) (j=1,..., n) are continuous and the
sequence {x,(t)} converges uniformly to x(f) on any compact subinterval of [z, c0),
there exists a positive integer k, such that if k=>k,, then

(18) max lf (s, x((g(M —fi(s, x(9(N)] < &/3nN

selty,

for j=1,..., n, where

N=max{5t2 max |y, (t,s; P)lds: 1=1,2;i,j=1,. }

ty telty,T]

Using (16), (17) and (18), we conclude that if k> k,, then
(19)  [(@x))— (@)D < 3 N.e/3nN+23 efén+ 3 N.¢/3nN = ¢
=1 i=1 ji=1

for any te[t,, T], i=1,...,n. Next, consider the interval [z, t,]. The in-
equality (19) implies that for a given £¢>0 there is a positive integer k, such that
if k= kg, then

[(Px,)i(t1) = (Px)(1)] < & nax ]mi(t)/ m(t;))~!

for i=1,..., n. Therefore, if k=k,, we have

(20) [(Px)i(1) = (Px)(D] = {m (1) m(t)}(Px,)i(t,) — (Px)(ty)| < &

for any te[x, t,], i=1,..., n. The inequalities (19) and (20) show that, for each
i, (¥x,)(t) converges uniformly to ($x),(f) on any compact subinterval of [z, o).
This implies that & is continuous.

(ili) @F is uniformly bounded and equicontinuous at every point of [z, o).
The uniform boundedness of ®F is obvious. Differentiating (15), we obtain

@90 = 30— 3, |72 it 53 PS5, x(a(s))ds

+ 3002yt 53 PS5, x(o()ds

=1t
+j§l[yij(ts t; P1)+yij(t’ t; P2)]f1(t’ x(g(t)))’
from which, noting that |x,(t)| < km(t) for t=1, we see that

(@001 < o1+ 35712 vt 53 PoloGs, kmig@))ds

> S' 2y, s PYlas, km(g(s)ds

Jj=1
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+§l Lyif(t, 5 P+ i1, 15 Py)lo(t, km(g(1)))

for t=t,. This implies that, on any finite subinterval of [t,, o), the functions
(®x)i(t) (i=1,..., n) are bounded by a constant independent of xe F. Hence,
®F is equicontinuous on every finite subinterval of [¢,, co). The equicontinuity
of (&x)(t), xe F, on [1, t,) is obvious, since (®x),(t,) (i=1,..., n) are bounded
independently of xe F. Thus we conclude that @F is equicontinuous on every
finite subinterval of [z, o0).

From the preceding considerations we are able to apply the Schauder-
Tychonoff fixed point theorem to the operator @. Let x(t)=(x,(?),..., x,(1)) € F
be a fixed point of &. It is easy to see that x(¢) is a solution of (1) for t=>¢,.
Using (15) we have

0=y < 3, §7Iyite, 53 Polos, rmig(s))ds

+ 3 " 1yt 53 Pa)logGs, wmlg(s))ds

fort=t,, i=1,..., p. Thisinequality together with (8) and (9) shows that the solu-
tion x() has the required asymptotic property (10).

To prove the second assertion of the theorem, let x(t)=(x,(?),..., x,(t))
be a solution of (1) such that x,(t)=O0(mt)) as t—>o0 (i=1,..., p). Define y(r)
=(y1(t)"’ yn(t)) by

50 = x(0+ 3§70t 51 POSs. *(a(s)ds

= 5 { wut 53 Pafts, xta(o)s,

where t, is sufficiently large. Since there is a constant k>0 such that |x,(g(?))|
<kmyg(t)) for t=t,, i=1,..., p, the function y(t) is well-defined by the condition
(7). Tt is easy to verify that y(¢) is a solution of (2) for t=t,. The required
asymptotic relationship (10) follows readily from (8) and (9). This completes
the proof of Theorem 1.

ReEMARK 1. Theorem 1 is an extension of a result of Kitamura [6, Theo-
rem 1].

THEOREM 2. Assume that the condition (4) holds. Let u(t), my(t) (i=
1,..., p) be positive continuous functions which satisfy (6). Suppose that there
exist matrices Py, P, satisfying (5) and constants T=0 and L>0 such that
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for any k>0
) [Lyute, 51 POl (s, kmig(s))ds < oo,
21 g:ﬂwj(s, km(g(s)))ds < oo

for t=T, i, j=1,..., n, and

(22) [yi(ts 55 POl = Lpg(0), T<t<s,
(23) [yif(t, s; Pyl < L pt), T<s=t,
(24) Yij(t; P)u(t) — 0 as t— o

for i=1,...,p, j=1,...,n, where y;(t; P,) is the (i, j-element of the matrix
Y()P,.
Then, the conclusions of Theorem 1 hold.

Proor. It suffices to show that the conditions (21)-(24) imply the condi-
tions (8) and (9) of Theorem 1. The condition (8) is obvious from (21) and
(22). To see that (9) is valid, let ¢>0 be given arbitrarily. We choose t,=T
so large that

(25) Swwj(s, km(g(s)))ds < ¢/2L,

and take t, 21¢, so that
(26) [Vits P)I/udt) < &/2nM (k=1,.,n)

for t=t,, where
M = max{gtol(k, Jj)-element of Y~!(s)|w(s, km(g(s))ds: k =1,..., n}.
T

These are possible by (21) and (24). Then, using (23), (26) and (25), we compute
as follows:

721‘6’ g;m,.(t, 55 Py)lo(s, km(g(s)))ds

= #]it) g:lyij(t’ S5 Pz)le(s, Km(g(s)))ds

* ﬁ S:D'V"f‘” 55 Pyl (s, km(g(s)))ds
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<3 M;—&ﬂg:uk, Jj)—element of Y~1(s)|w,(s, km(g(s)))ds

k=1 ui(?)
+ Do (o, wmig(a))as

= kgl L])Ltét};i)—LM.*_LS:wj(s’ km(g(s)))ds

< kil (e2nMIM+L{e2L} = ¢, t2t,.

This shows that (9) holds, and the proof of Theorem 2 is complete.

REMARK 2. Theorem 2 is a generalization of a result of Brauer and Wong
[2, Theorem 1].

LEMMA. Let F(t, zy,..., z,) (i=1,..., q) be nonnegative continuous func-
tions on [T, o) x R which are nondecreasing in (z,,..., z,) and satisfy

fim (1/c) S“’F,.(s, € ds =0, i=1,.,q,
t—00 t

uniformly with respect to ce[l, ). Let z(t) (i=1,...,q) be nonnegative
continuous functions on [T, ©) satisfying

@7) (1) < K,-+S;F,(S, 20 2SS, =1, q,
for t=T* (= T), where K; are constants.
Then z(t) (i=1,..., q) are bounded functions of t.

Proor. We choose t, = T* sufficiently large that

(28) (1/c) S:F,-(s, e O)ds <3, i=1l,q,

for any ce[1, o). We put

10 = Kt [ Fis, 200 205, 1= 1000
To prove that z(f) (i=1,..., q) are bounded functions of ¢, it is sufficient to show
that I(tf) are bounded. We may assume without loss of generality that K;>1
(i=1,...,q). So we have I(f)=max {I(t): i=1,...,q} =1 for t=t,. From (28)
it follows that

(29) S:F,-(s, Q0),..., [(H)ds < 31(7)
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for t=ty, i=1,...,q. For any t=t, there is an index je {1,..., g} such that
(30) 10 = I,1) < K+S:0Fj(s, 245 2(S))ds,
where

K = max {K,--(—S:Fj(s, Zy(8),..., z(8)ds: j = 1,..., q},
which does not depend on t. Then, using (30), (27) and (29), we have

10 < K+S:0Fj(s, 1,()os 1,(9))ds
< K+S:°Fj(s, I0),..., I(0)ds < K+3I(), 121,

from which it follows that I(f)<2K for t=t,. Since K is independent of ¢,

the function I(¢) is bounded. Therefore I,(t) (i=1,..., q) are bounded functions
of t. This completes the proof of the lemma.

In the remaining part of this paper we assume that the deviating argument
g(®=(g,(),..., g,(1)) is retarded in the sense that

(31 g =t for teR,, i=1,.,q.

With the help of the lemma we prove a theorem which enables us to estimate
the growth (or decay) of solutions of (1) in terms of a fundamental matrix of

).

THEOREM 3. Assume that the conditions (4) and (31) hold. Let Y(1)
=(y;i(1)) be a fundamental matrix of (2) and let Y()Y~'(s)=(y;,(t, s)). Suppose
that there exist positive continuous functions o(t), M;(s) (i=1,..., p, j=1,..., n)
defined on R, such that

(32) ai(t) g max{lyij(t)l:j = la“-a n}’ IER+5
(33) M;(s) 2 |yif(t, 9l/a(t), O0=s=t,
(34) X:M,-j(s)wj(s, ko(g(s))ds < ©  (i=1lpp,j=1,.,m)

for any k>0 and
(35 lim (1/0) S:"Mi,(s)w,(s, co(g())ds=0  (i=1,.qj=1,...n)

uniformly with respect to ce[1, o).



210 Manabu Narto and Yuichi KITAMURA

Then every solution x(t)=(x(t),..., x,(1)) of (1) which exists on some interval

[t., o) satisfies x(t)=O0(c(?)) as t—o0 (i=1,..., p).

Proor. Let x(t)=(x,(?),..., x,(t)) be a solution of (1) defined on [t,, o).

By the variation of constants formula x(f) admits the expression

%)= 3 y0es+ || S it 9f s, xtgNds

where T >t, is sufficiently large. Dividing the above equality by o,(t) and using

(32) and (33), we obtain

12Ol < k43 My(5)0,05, 15181 v x4(9,()) s

fort>T, i=1,..., p, where K=3"_,|c;|. Now, set
z(®) = |x(g))l/og{1)),
Fs, 200 2 = 3 My (s 200101 -» 240,04

Then, we have

gi(t) n

(36) z(H=K +ST fg‘l M; () (s, 21(5)01(g1()s- -, 2,(8)0,(94(s)))ds

- K+§mmFi(s, 24(S)s.. s Zg(5))ds

T

for i=1,..., p and t=T*, where T* is chosen so that g,(t)=T for t=T*.
i=1,..., q, then by virtue of (31) we get

2(0) < K+ S' S, 2y 2g(5))ds
T
for i=1,...,q and t=T*. Since the hypothesis (35) yields

lim (1/c) SwF,-(s, ey ds =0  (i=1,.,9)
t

t—00

If

uniformly with respect to ce[1, c0), we are able to apply the lemma to conclude
that the functions zy(¢) (i=1,..., q) are bounded. It follows from (34) and (36)
that z(f) (i=q+1,..., p) are bounded functions of t. As the functions z(¢)
=|x(g:®O)l/o(g?) (i=1,..., p) are bounded, |x,(t)|/a(t) are also bounded. Thus

Theorem 3 is proved.

Combining Theorem | with Theorem 3, we have the following theorem which
establishes the asymptotic equivalence of the systems (1) and (2) with retarded

argument g(1).
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THEOREM 4. Suppose that the hypotheses of Theorem 1 and 3 are satisfied.
Suppose in addition that
myt) = o(1) for teR,, i=1,.,p.

Then, to any solution y(t)=(y(1),..., y,(t)) of (2), there exists a solution
x()=(x,(1),..., x,(1)) of (1) such that

(lo) xi(t) = y,(t)+0([l,(t)) as t— 0, ([ = l9~--, p)'

Conversely, to any solution x(t)=(x,(?),..., x,(t)) of (1), there exists a solution
YO =1(1),-.., y(1) of (2) such that (10) holds.

Proor. By Theorem 1, we have only to show that any solution x(t) of (1)
satisfies x,(t)=O0(my(t)) as t—oo (i=1,..., p) and that any solution y(t) of (2)
satisfies y,(t)=0(m(t)) as t—oo (i=1,..., p). The former is a consequence of
Theorem 3, and the latter is clear, since

YOl = 12 =12i/(Dcjl £ Xh=10:Dle;]l = (X=1le;Dm(2).
The next theorem follows immediately from Theorem 4.

THEOREM 5. Assume that the conditions (4) and (31) hold. Suppose that
a fundamental matrix Y(t) of (2) and its inverse matrix Y~ '(t) are bounded.
Suppose that

S:wj(s, Ky..., K)ds < o0 (J=1,.,n)
for any k>0 and

lim (1/c¢) gwwj(s, ¢..., ¢)ds =0 (G=1,.,n)
t -0 t

uniformly with respect to ce[1, o).
Then, to any solution y(t)=(y(t),..., ya(t)) of (2), there exists a solution x(t)
=(x,(1),..., x,()) of (1) such that

(37) lim |x,()— y(®)] = 0 (i=1,..,n).
t—0
Conversely, to any solution x(t)=(x,(t),..., x,(t)) of (1), there exists a solu-
tion y(t)=(y,(®),..., y(t)) of (2) such that (37) holds.

Proor. Take P, to be the identity matrix and P, to be the zero matrix.
Set  M;=sup {max{ly;(1)|:j=1..... n}} and M= sup ly,(t, )| (i, j=1,.... n).
Since Y(t) (y,l(t)) and Y()Y~'(s)=(y;(t, s)) are bounded M; and M;; are
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determined as positive constants. Taking p(f)=o(f)=m,(t)=M; and M,;(s)
=M;;/M;, we can easily verify that all the conditions of Theorem 4 are satisfied.
Hence the conclusion follows from Theorem 4. This completes the proof.

ReMARK 3. Theorem 5 is an extension of a result of Brauer [1, Theorem

3].

Finally, we examine the case that A(f)=A is a constant nx n matrix. The
differential equations are the following:

1) x'(t) = Ax(O)+f(t, x(9(1)),
2" y'(t) = Ay(®).
We assume that A has the Jordan canonical form:

A = diag[Jl,..., Jk’ Jk+1""’ Jl] ’

where J, (1=<h=]) are square matrices of order n, with 4, on the diagonal, 1
on the subdiagonal, and O elsewhere. Without loss of generality we will suppose
that Rel, (1=<h<k) are negative and Re 4, (k+1=<h<=I) are nonnegative. Let
A be the largest real part of the eigenvalues A, (1<h<I) of A, and let m and r
be the maximum orders of the Jordan blocks which correspond to eigenvalues of
A with real part equal to A and 0 respectively. (If no real parts equal zero, then
put r=1.)

THEOREM 6. Assume that the conditions (4) and (31) hold.
(i) If A<O, then suppose that

g:e"‘swj(s, K[g(s)]™1e*Nds < 0 (j = 1,..., 1)
for any k>0 and
(38) lim (1/c) Swe"“wj(s, c[g(s)]™ 1e?9®))ds =0 (=1, ..., n)
t—a t

uniformly with respect to c€[1, ), where
[gOT™ 8 = (c[gy()]™ ek, .., c[g (] ko).
(i) If A=0, then suppose that

S:s"lcoj(s, k[g(s)]™ le*#®))ds < oo (G=1,..,n)

for any k>0. Suppose in addition that the condition (38) is satisfied.
Then, to any solution y(£)=(y(t),..., y«(t)) of (2'), there exists a solution
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x(O)=(x(®),..., x,(1)) of (') such that
37 lim|x,()—y(®] =0 (i=1,...,n).

Conversely, to any solution x(t)=(x(t),..., x,(t)) of (1), there exists a solu-
tion y()=(y(1),..., yu(1)) of (2") such that (37) holds.

Proor. A fundamental matrix Y () of (2) is given explicitly by
Y(t) = e'4 = diag[e''1,..., ek, e+t . etl1 ],

where

I ¢t 220 et~ (n,—1)! 7
0 1 ¢ cee t"=2[(n,—2)!

etln = egint h=1,..., 1.

........................

00 0 - 1

Letting Y()=(y;(1)) and Y(O)Y~!(s)=(y;i(t, s)), we have y;{(t, s)=y;(t—s).
Take o,(t)=K(t+1)""'e** and M,(s)=Ke s (i, j=1,..., n), where K is a suitable
positive constant. Then, it is easy to see that all the conditions of Theorem 3
are satisfied.

(i) If A<0, then we apply Theorem 3. It follows that every solution x(#)
=(x,(1),..., x,(t)) of (1) has the property x,(tf)=O(t" 1e**) as t—o0 (i=1,..., n).
Since every solution x(t) of (1) converges to zero as t— oo and the same is true also
for the solutions y(f) of (2'), the asymptotic equivalence (37) is evident.

(i) If A=0, then we apply Theorem 4. Take my(t)=o(t)=K(t+1)" 1e*
and u()=K (i=1,...,n). . Let P,, P, be the diagonal matrices such that P, =diag
[04--s O Iyyse.., I;] and P,=diag [I,..., Iy, Ogyys..., 0], where I, and O,
(0 h £1) are the identity matrices and the zero matrices of order n, respectively.
We have

Y(O)P, Y~ 1(s) = (yij(t, s; Py)) = diag[0y,..., Oy, et 1, et=9))1]
and
Y(OP,Y™1(s) = (y;(t, 55 Py)) = diag[e"=91,..., €79k, Oy 4., 0F].

Noting that the real parts of the eigenvalues A, of J, (k+1<h=<1) are positive or
equal to zero and that the real parts of the eigenvalues 1, of J, (1 <h <k) are nega-
tive, we obtain

lyift, s; POl = Ky(s—t+1)71,  t <,
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it 55 Py)l £ Kp(t—s+1)m™-text=s), 5 <,
.}u 2

for i, j=1,..., n, where K;, K, are some constants and x <0 is the largest real part
of 4, (1 £h<k) and m* is the maximum order of those blocks in the Jordan form
which correspond to eigenvalues with real part equal to «. Then we have

o 1, s PO, emig(syas
< (K,/K) Sw(s—t+ 1~ tw(s, kK[g(s)+1]"" 1e?9®)ds

< (KiJK) | "5 005, 26K g(s)] ! s — 0
t
as t—o00, and we have

u-’(t) S;'yff(” s; Po)lw(s, km(g(s)))ds

= (KZ/K)S (t=s+ 1) tert=9w (s, kK[g(s)+ 1]m 1ers®)ds
t/2

< Cg e*=92qy (s, 2kK[g(s)]"~ 1e*9)ds
T

+ Cgt eau—s)/zwj(s’ ZKK[g(s)]"'_ 1 e‘-‘“")ds

t/2

< Ce‘"/“gmwj(s, 2kK[g(s)]m tet99))ds
T

+CS°° (s, 2cK[g(s)]™ 1e49))ds — 0
t/2

as t—oo, where C=(K,/K)sup(z+1)™-1e*?/2<c0. Hence all the conditions of
20

Theorem 1 are satisfied.

The above observation enables us to apply Theorem 4, from which we con-
clude that the required asymptotic equivalence (37) is satisfied. This completes
the proof.

ReEMARK 4. Theorem 6 generalizes a result of Svec [8, Theorem 6].
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