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1. Introduction

In this paper we study the problem of asymptotic relationships between

solutions of two systems of differential equations, one of which involves deviating

arguments. We consider the systems

(1) x'(t)

(2) y'(t) = A(t)y(i),

where A(t) is a continuous n x n matrix function on R+ = [0, oo), /(f, z) is a con-

tinuous n-vector function on R+ xRn, g(t) is a continuous n-vector function on

R+ such that each component g£i) is positive and satisfies lim #,•(() = 00, and
f-

An important special case of (1) is the ordinary differential equation

(3) x'(t)

The problem of asymptotic relationships and/or asymptotic equivalence has

been studied in many papers; see e.g. Brauer [1], Brauer and Wong [2], Cooke

[3], Kato [5], Kitamura [6], Rab [7], Svec [8], and the references cited in

these papers. Recently, Rab [7] and Kitamura [6] have presented conditions

that lead to an equivalence between certain components of the solutions of (3)

and the corresponding components of the solutions of (2).

The main purpose of this paper is to extend results of [6] to the systems (1)

and (2) with general deviating argument g(t) and to establish conditions that ensure

the asymptotic equivalence of (1) and (2) when the deviating argument g(t) is

retarded.

In what follows we assume that the components//*, z) of/(ί, z) depend es-

sentially on t and the q components z1? z2,..., zq (l^q^n) of z in the sense that

(4)

for (ί, z)eR + xRn and j=l,..., n, where each ω/ί, r l5..., rq) is continuous on
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R+ xRq

+ and nondecreasing in (r^..., r(/) for fixed teR + .
We are particularly interested in some asymptotic relationships between

the p components x,(ί), .., xp(t) (g^prgrc) of the solutions x(t) of (1) and the p
components y$),..., yp(f) of the solutions y(t) of (2).

2. Results

Let P l 9 P2 be n x n matrices such that

(5) Pι+?2 = l (identity matrix)

and let ^(0 = CVi/0) be a fundamental matrix of the linear system (2). Then we
define

THEOREM!. Assume that the condition (4) fto/ds. Lei μ^ί), m£(ί) (i =
1,..., p) 6^ positive continuous functions defined on R+ which satisfy

(6) mM^μfc) for teR + , i = ],..., p.

Suppose that there exist matrices P l 5 P2 satisfying (5) αwrf α constant T^O
suc/i that for any κ>0

(7)

/or ί ̂  Γ, /, 7 = 1 , . . . , n, and

(8) J Jtt/f, 5; PJIω/s, ιcmto(S)))ds = 0 (̂0) >

(9) JΊ^X^ 5; ^2>|ω/s, κm(g(s)))ds = o(μ{t))

as t->co for i= 1,..., p, j— 1,..., H, where

κm(g(s)) = (fcm^^^s)),..., κmq(gq(s))).

Then, to any solution y(t) = (y &),..., yn(t)) of (2) SMC/I f/?αί
as ί->oo (/ = !,..., p), fftere exists a solution x(t) = (xί(f)9...9xn(f)) of (\) such that

(10) Xi(0

Conversely, to any solution x(t) = (x1(t)9..., xn(t)) of (1) SMC/I ί/iαί Xj(0 =

tf)) as ί~>oo (t= 1,..., p\ there exists a solution y(t) = (yί(t\..., yn(t)) of (2)
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such that (10) holds.

PROOF. The first half of the theorem will be proved with use of the Schauder-
TychonofΓ fixed point theorem as formulated in Coppel [4, p. 9]. Let y(t)
= ();ι(0j . > Jn(0) be a solution of (2) satisfying yi(i)=O(mi(f))as f->oo(/ = 1,..., p).
There exist positive numbers t0 ̂  T and M such that

(11) for t^

In view of (8) and (9), we can choose, for a constant κ;>max{M, 1}, a number
t^t0 so large that the following inequalities hold:

(12)

(13)

\ y i j ( t , s ; Pί)\ωj(s, κm(g(s)))ds g K-M

>ij(t,s; P2) I ώj(s, κm(g(s)))ds £ ? μ f (/)

for f^ f , , l=\,...,p and 7 = !,...,«. Put τ = min{ infgf ((ί) : i =!,..., «}, and define
tit,

the functions m, (ί) (/=p+ 1,..., n) on [τ, oo) by

(14)

Σ
j=ι Jt

ΰy(s, κm(g(s)))ds

ΌJ(S, fcm(fif(s)))ds, ί ̂  ίi,

τ g ί <

We denote by F the set of all vector functions £(0 = (£ι(0» » ^/t(0) trιat are con

tinuous on [τ, oo) and satisfy Iξ^^Km^t) for ίe[τ, oo), /=!,..., n. We now
define the operator Φ by

(15)

Σ

+ Σ r < , si P2)//S, t ^ ti9

t ^ / < / i , (/=!,..., /i).

Clearly, Φ is well-defined on F by the condition (7). We shall show that Φ is
continuous and maps F into a compact subset of F.

(i) Φ maps F into F. If xeF and i=l,..., p, then by (4), (11), (12), (13)
and (6) we have
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Σ\'
J=l ^ί i

+ Σ ('
J=lJt

Pι)|ω/s, κm(g(s)))ds

P2)l<»Xs, κm(g(s)J)ds

for ί^ίl9 and

for τ^ί<ί j . If xeF and ί = p+l,...,n, then by virtue of (4) and (14) we easily
see that \(Φx)i(t)\^mi(t)^κmi(f) for ί^τ. Therefore Φ maps F into itself.

(ii) Φ is continuous. Let xk (k— 1, 2,...) and x be functions in F such that
*fc(0-**(0 uniformly on every compact subinterval of [τ, oo). First, consider
any interval of the form [ίl9 Γ]. Given an ε>0, there is £ 2^Tsuch that

(16) \ max |j;y(ί, s; P^lω/s, κm(g(s)))ds < s/βn
• J f 2 ί 6 [ f ι , Γ ]

for ί,7 = l,..., n. Then,

^ .Σ \yι& 5; POI I//5,

(17) (X<. s; P2)l l/Xs,

max i
ίe[ίι,Γ]

. max |/χs, xk(g(s)))-ffa x(g(s)))\
se[fι,f 2 ]

+ 2 Σ ί°° max I^Xί, s; PJlωfa κm(g(s)))ds
j=l.Jt2teltίtTl

max \ y i J ( t 9 s ; P 2 ) \ d s . max
ίιίε[ίι,Γ] s6[ίi,Γ
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for te[tι, T] and i=l,..., n. Since //s, z) (7 = !,..., n) are continuous and the
sequence {xk(t)} converges uniformly to x(t) on any compact subinterval of [τ, oo),
there exists a positive integer /c0 such that if /c^/c0, then

(18) max |//
se[ί ι .f 2 ]

= l,..., n, where

2 max |ylf.(ί, s; P,)|ds: / = 1, 2; j, j = 1,..., ni .
fi feCfi.T] J

Using (16), (17) and (18), we conclude that if fc^fc0, then

(19) \(Φxk)i(t)-(Φx)i(t)\ < Σ N.εβnN + 2 £ ε/6n + f N . ε/3nN = ε
7=1 J=l 7=1

for any ίe[ί l 5 Γ], ί=l,..., n. Next, consider the interval [τ, ίj]. The in-
equality (19) implies that for a given ε>0 there is a positive integer k0 such that
if /c^/c0, then

l(Φ^)i(ίι)-(^)i(ίι)l<ε( max
ίe[τ,fι]

for ϊ = l,..., π. Therefore, if /c^/c0, we have

(20)

for any ίe[τ, ίj, /=!,..., n. The inequalities (19) and (20) show that, for each
i, (ΦXfc) (O converges uniformly to (Φx\(t) on any compact subinterval of [τ, oo).
This implies that Φ is continuous.

(iii) ΦF is uniformly bounded and equicontinuous at every point of [τ, oo).
The uniform boundedness of ΦF is obvious. Differentiating (15), we obtain

(Φx)KO = y\(f)- --y^t, s; PO//S, x(g(s)))ds
j=\Jt VI

from which, noting that \Xi(t)\^κmι(t) for t^τ, we see that

);.(ί)l ^ |/,(OI+ Σ (Ί -έ
j=Ut VI

Σ
j — \ J t
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+ Σ IttX', '; JM + Λ/f. * ^lω/ί, κm(g(t)))

for ί^ίi. This implies that, on any finite subinterval of [tl9 oo), the functions

(Φx)ί(O (/ = !,.••» Ό are bounded by a constant independent of xeF. Hence,
ΦF is equicontinuous on every finite subinterval of \_tl9 oo). The equicontinuity

of (Φx)f(0» xeF, on [τ, ίj) is obvious, since (Φx)/0ι) (/=!,..., n) are bounded
independently of x e F. Thus we conclude that ΦF is equicontinuous on every
finite subinterval of [τ, oo).

From the preceding considerations we are able to apply the Schauder-
Tychonoff fixed point theorem to the operator Φ. Let x(t) = ( x ί ( t ) 9 . . . 9 xn(t))eF
be a fixed point of Φ. It is easy to see that x(ί) is a solution of (1) for ί^ίx.
Using (15) we have

'* s; Λ)K(s, κm(g(s)))ds

lΛ/ί, 5; P2)|ω/s, κm(g(s)))ds

for ί^ί l9 / = !,...,/?. This inequality together with (8) and (9) shows that the solu-
tion x(ί) has the required asymptotic property (10).

To prove the second assertion of the theorem, let x(t) = (x1(t)9...,xn(fj)
be a solution of (1) such that χ.(t)=O(mi(t)) as ί->oo (/ = !,..., p). Define y(t)

Σ Xi, 5; PO//S, x(g(s)))ds
j=lJt

- Σ Γ Λ/ί, «; P2)/Xs,
J=l J ί i

where ίx is sufficiently large. Since there is a constant κ>0 such that |
^κmj(g(fj) for ί^ί1? / = !,...,/?, the function y(ί) is well-defined by the condition
(7). It is easy to verify that y(i) is a solution of (2) for t^tl. The required
asymptotic relationship (10) follows readily from (8) and (9). This completes
the proof of Theorem 1 .

REMARK 1. Theorem 1 is an extension of a result of Kitamura [6, Theo-
rem 1],

THEOREM 2. Assume that the condition (4) holds. Let μf(0, mf(0 (/ =
1,. ..,/?) be positive continuous functions which satisfy (6). Suppose that there
exist matrices Pl9 P2 satisfying (5) and constants T^O and L>0 such that
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for any κ:>0

(7) ^\yij(t, s; Pι)\ωj(s, κm(g(s)))ds < oo,

(•GO

(21) \ ω/s, κm(g(s)))ds < oo

for t^T, /, 7 = 1,..., w,

(22) l

(23) I j ̂ s P^lrgL^O, Γg s ^ ί,

(24) Λ/ί; P2)MO - > 0 0s ί - > oo

/or z = l,..., p,7=l,..., n, w/ι^r^ j^/ί; P2)
 ί5 ^^ (i, j)-element of the matrix

Y(t)P2.
Then, the conclusions of Theorem 1 hold.

PROOF. It suffices to show that the conditions (21)-(24) imply the condi-
tions (8) and (9) of Theorem 1. The condition (8) is obvious from (21) and
(22). To see that (9) is valid, let ε>0 be given arbitrarily. We choose t0^T

so large that

(25) ("ωfaκm(g(s)))ds<εl2L,
Jto

and take t1^t0 so that

(26) |Λk(f P2)\/μM < ε/2nM (k = 1,..., w)

for t^tί9 where

M = m a x < \ K/c, 7')-element of Y~ *(s)\a)j(s9 κm(g(sj))ds: k = 1,..., n> .

These are possible by (21) and (24). Then, using (23), (26) and (25), we compute
as follows :

— - - Λ/ί, 5; P2)|ω/s, κm(g(s)))ds

5; p2)|ω/s, κm(g(s)))ds

^ s; p2)|ω/s, κm(g(s)))ds
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\yik(t\P2)\
k=l

C f o i (kj)- element of y-H^lω.Cϊ, κm(g(s)))ds
JT

,(j, κm(g(s)))ds
k=l

< Σ {ε/2nM}M + L{ε/2L} = ε, ί ̂  *,.
fc=l

This shows that (9) holds, and the proof of Theorem 2 is complete.

REMARK 2. Theorem 2 is a generalization of a result of Brauer and Wong
[2, Theorem 1].

LEMMA. Let Ft(t9 z l9..., zq) (i=l,..., g) fte nonnegatίve continuous func-
tions on [Γ, oo)x#£ wΛίcft are nondecreasing in (zl5..., zβ) and satisfy

lim(l/c) ί̂ s, c,..., c)ds = 0, i = 1,..., g,
ί->oo Jr

uniformly with respect to ce[l, oo). Let zt(i) (i = 1,..., q) be nonnegative
continuous functions on [Γ, oo) satisfying

(27) z,.(ί) ̂  Ki + Ffc, z^s),..., z,(s))ds, i = 1,..., q,

for t^T* (^T), w/?ere X£ are constants.
Then zf(ί) (/=!,..., ^) are bounded functions of t.

PROOF. We choose ί0 ̂  T* sufficiently large that

(28) (1/c) ΓF^, c,..., c)rfj ^ i, /= 1,..., ,̂
Jfo

for any c e [1, oo). We put

i = 1,..., q.

To prove that zf(ί) (i = l,..., ^f) are bounded functions of ί, it is sufficient to show
that Ifa) are bounded. We may assume without loss of generality that Kt^.l
(i = l,...,q). So we have I(i) = max {It(t) : i = l,...,q}^l for ί^ί0. From (28)
it follows that

(29)
to



Two Systems of Differential Equations 209

for ί^ί0, /=!,..., <?• For any t^t0 there is an index j e {!,..., g} such that

(30) 7(f) = 7/0 ̂  K+ F/s, z^s),..., z«(s))«fa,
Jto

where

X = max jtf + ̂ V/s, z^s),..., zq(s))ds:j = 1,..., 4},

which does not depend on ί. Then, using (30), (27) and (29), we have

^ K+ Fj(s, /(O,..
Jίo

from which it follows that I(t)£2K for t^t0. Since J^ is independent of ί,
the function 7(ί) is bounded. Therefore It(t) (ί = l,..., g) are bounded functions
of t. This completes the proof of the lemma.

In the remaining part of this paper we assume that the deviating argument
= ( g 1 ( t ) 9 . . . 9 gn(ί)) is retarded in the sense that

(31) 9i(t)^t for teR + 9 i=\,...9q.

With the help of the lemma we prove a theorem which enables us to estimate
the growth (or decay) of solutions of (1) in terms of a fundamental matrix of

(2).

THEOREM 3. Assume that the conditions (4) and (31) hold. Let Y(t)
= 0^(0) be a fundamental matrix of (2) and let Y(i)Y'i(s) = (ylj(t9 s)). Suppose
that there exist positive continuous functions σ^i), Mu(s) (/=!,..., /?, y = l,..., n)
defined on R+ such that

(32) σf(0 ^ max{|)fy(ί)|: j = 1,..., n},

(33) MlV(s) ̂  |Λ/ί, s)\lσ{t), 0 ̂  s ̂  ί,

(34) ^Myφω/s, κσ(g(s)))ds < oo (i = 1,..., /?, j = 1,..., n)

for any κ>Q and

(35) lim (lie) ("Mij(s)a>j(s9 cσ(g(&)))ds=0 (i = 1,..., ^,7 = I,-,
r-»oo Jί

uniformly with respect to ce [1, oo).
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Then every solution x(ί) = (x1(0,.. , *n(0) °f(\) w/ι/c/7 exists on some interval
[tx, oo ) satisfies χ.(t) = O(σi(t)) as ί->oo (/=!,..., p).

PROOF. Let x(f) = (xι(f)» > *B(0) be a solution of (1) defined on [fx, oo).
By the variation of constants formula x(f) admits the expression

xM = Σ yιβ)cj

where T^ίx is sufficiently large. Dividing the above equality by σf(ί) and using
(32) and (33), we obtain

.ΣM^^ω/^ \Xί(gι(s))\9...9 \xq(gq(s))\)ds

forί^T, / = !,..., p, where X=Σ" a s ιky | . Now, set

F£(s, zt,..., zβ) = Σ MlV(s)ω/s, z^^^^s)),..., zqσq(gq(s))).

Then, we have

Γ0ί(O M

(36) Zί(ί) ̂  ̂  + J r Σ Af ,/s)ω/s, z,(s)ff1(01(s)),. . ., z^s)σ,(

ί »i(O
F,(s, z^s),..., zβ(s))ds

for i = l,... 5 jp and ί^Γ*, where Γ* is chosen so that ^(i)^Tfor ί^T*. If
ι = l,..., q, then by virtue of (31) we get

for i=\9...9 q and ί^Γ*. Since the hypothesis (35) yields

uniformly with respect to ce [1, oo), we are able to apply the lemma to conclude
that the functions zf(0 (/=!,..., q) are bounded. It follows from (34) and (36)

that zf(ί) (i = q + 1,..., p) are bounded functions of t. As the functions zf(ί)

= l*i(0i(0)l/σi(0i(0) 0 =!>•••> P) are bounded, |x/(OI/σi(0 are also bounded. Thus
Theorem 3 is proved.

Combining Theorem 1 with Theorem 3, we have the following theorem which
establishes the asymptotic equivalence of the systems (1) and (2) with retarded
argument g(i).
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THEOREM 4. Suppose that the hypotheses of Theorem 1 and 3 are satisfied.
Suppose in addition that

m X O ^ σ / ί O for f e Λ + , / = 1,..., p.

Then, to any solution y(t) = (y}(t), ..., yn(t)) of (2), there exists a solution
x(t) = ( x l ( t ) 9 . . . 9 *„(/)) o f ( \ ) such that

(10) xt.(0 - ̂ (0 + 0(^(0) as t - > oo, (/ = 1,..., p).

Conversely, to any solution x(t) = (x1(t),..., xn(tj) of (I), there exists a solution
sue* that (10) ΛoWs.

PROOF. By Theorem 1, we have only to show that any solution x(t) of (1)
satisfies xi(i) = O(mi(t)) as f->oo (/ = !,..., p) and that any solution y(t) of (2)
satisfies yi(t) = O(mi(f)) as f->oo (i = l,...,p). The former is a consequence of
Theorem 3, and the latter is clear, since

The next theorem follows immediately from Theorem 4.

THEOREM 5. Assume that the conditions (4) and (31) /ιo/d. Suppose that

a fundamental matrix Y(t) of (2) and /is inverse matrix y-1(0 are bounded.
Suppose that

Γ°°\ ω/s, K,..., κ:)ds < oo (7 = 1,..., n)

/or any κ>0 and

Γ°°
l i m ( l / c ) \ ω/s, c,..., c)ds = 0 ( = 1,..., w)
-

uniformly with respect to ce[l, oo).
, ίo any solution y(t) = (yι(t),..., yn(t)) of (2), ί/ίβre ex/5ίs a solution x(t)

(37) limlx^O-^O^O (/ = !,..., n).
ί-*00

Conversely, to any solution x(t) = (x1(t),..., xn(fj) of (I), there exists a solu-
tion y(t) = (y1(t),..., yn(t)) of (I) such that (37) holds.

PROOF. Take P, to be the identity matrix and P2

 to be the zero matrix.

Set Mf = sup {max {|^/ί)|:7=l,..., n}} and Mu= sup |^/ί, s)| (1,7 = !,..., n).

Since Y(0 = (.Xi/0) and y(θy~1(5) = (yί/ί, s)) are bounded, Mf and Ml7 are
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determined as positive constants. Taking μffy = σ^t) = m^t) = Mt and Mtj(s)
sMy/Mj, we can easily verify that all the conditions of Theorem 4 are satisfied.
Hence the conclusion follows from Theorem 4. This completes the proof.

REMARK 3. Theorem 5 is an extension of a result of Brauer [1, Theorem

3].
Finally, we examine the case that A(t) — A is a constant nxn matrix. The

differential equations are the following:

0') *'(*)

(20 y'(i)

We assume that A has the Jordan canonical form :

A = diag [,/!,..., Jfc, Jfc+i,..., JJ,

where Jh (l^h^ϊ) are square matrices of order nh with λh on the diagonal, 1
on the subdiagonal, and 0 elsewhere. Without loss of generality we will suppose
that ReΛ A ( l^/ι :gfc) are negative and ReAA ( f c + l f g / i r g / ) are nonnegative. Let
λ be the largest real part of the eigenvalues λh (1^/zg/) of A, and let m and r
be the maximum orders of the Jordan blocks which correspond to eigenvalues of
A with real part equal to λ and 0 respectively. (If no real parts equal zero, then
put r=l.)

THEOREM 6. Assume that the conditions (4) and (31) hold.
(i) J//l<0, then suppose that

(°Vλsω/s, κ[g(sy]m-leλ°W)ds < oo (j = 1,..., n)

for any κ>0 and

(38) lim (1/c) (VAsω,(^, c[_g(s)']m-1eλ^)ds = 0 (y=l, ..., n)
f-»oo Jf

uniformly with respect to ce[l, oo), w/zere

(ii) J/λ^O, ί/ien suppose that

< oo (7 = 1,..., n)

for any κ>Q. Suppose in addition that the condition (38) is satisfied.

Then, to any solution y(t) = (yι(t),...9 yn(t)) of (2'), there exists a solution
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x(0 = (*ι(0, . , xΛO) of (I1) such that

(37) lim\Xi(t)-yi(t)\=0 (i =!,...,«).
ί-*oo

Conversely, to any solution x(t) = (xί(t)9..., xn(t)) o/(Γ), there exists a solu-

tion XO = Oι(0, , 3Ί,(0) of (2') such that (37) holds.

PROOF. A fundamental matrix Y(t) of (2') is given explicitly by

γ(t) = etA = diag|>fjv.., tj>

where

01J h

/ 2 /2!

0 1

0 0 0 1

, A = 1 , . . . , / .

Letting y(0 = 0>,XO) and y^y-H^HO^/M)), we have j>,/f, s) = Λ/f - s).
Take σί(0 = ̂ (ί+ l)m~^λf and M,/s) = Xβ"λβ (ϊ, 7 = 1,..., n), where K is a suitable
positive constant. Then, it is easy to see that all the conditions of Theorem 3
are satisfied.

(i) If Λ,<0, then we apply Theorem 3. It follows that every solution x(t)
= (x1(ί),...,xrt(0) of (Γ) has the property x£t)=O(tm~ieλt) as t-+ao (/=!,..., n).
Since every solution x(t) of (Γ) converges to zero as ί->oo and the same is true also
for the solutions y(t) of (2'), the asymptotic equivalence (37) is evident.

(ii) If A^O, then we apply Theorem 4. Take mi(t)^σi(t) = K(t+i)m-ίeλt

and μi(t) = K (i= 1,..., n). Let Pl9 P2 be the diagonal matrices such that P! =diag
[(>!,..., 0Λ,/*+!,...,!,] and P2 = diag [/1?..., Jfc, O f c + 1,...,OJ, where /„ and 0Λ

(0^/ι ^/) are the identity matrices and the zero matrices of order nh respectively.
We have

i,..., Ok,

and

; P2» = 1,..., OJ .

Noting that the real parts of the eigenvalues λh of Jh (k+1 ̂  h ̂  /) are positive or
equal to zero and that the real parts of the eigenvalues λh of Jh (1 ̂  /i ̂  /c) are nega-
tive, we obtain
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Itt/f, 5; P2)\ ^ K2(t-s+ !)»'*- V('-*), s ^ ίf

for /, 7=1,..., n, where Kί9 K2 are some constants and α<0 is the largest real part
of λh (1 ̂  h :g /c) and m* is the maximum order of those blocks in the Jordan form

which correspond to eigenvalues with real part equal to α. Then we have

^/f, 5; P^lω/s, κm(g(s)))ds

^ (KJK)

^ (KJK) ίQ°sΓ-1ω/5, 2κK[g(sy]m-ίeλ«<s>)ds - > 0
)t

as ί->oo, and we have

t9 5; P2)|ω/s, κm(g(s)))ds

^ (K2/K)2 T

4-cΓ
J ί / 2

ω/5, 2fc£|jr(s)]w-V*<5>)rfs - > 0
ί /2

asί->oo, where C = (/C2/K)sup(z+l)m*~1eα z / 2<oo. Hence all the conditions of
z^OTheorem 1 are satisfied.

The above observation enables us to apply Theorem 4, from which we con-

clude that the required asymptotic equivalence (37) is satisfied. This completes
the proof.

REMARK 4. Theorem 6 generalizes a result of Svec [8, Theorem 6].
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