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1. Introduction

In this paper, we shall study the limits of potentials on Rn along rays issuing

from the origin. It is known that if U\ is the Newtonian potential of a measure

μ with finite energy, then limr_» ̂  l/5(rξ) = 0 for a. e. ξ with |ξ| = l (seeN. S. Landkof
[2; Theorem 1.21]). We shall deal with the Riesz potential l/JJ of order α, 0<α<
n, of a measure μ whose energy may not be finite, and give an improvement of
the above result (Theorem 1).

We shall then consider the functions of the form

where α>0, β^O, p>l, ap + β<n and/eLp(#n). In special cases, e.g. in the
case where α = l , /? = 0 and l<p<n, 'M. Ohtsuka showed that limr^00F(rξ) = 0
for a.e. ξ with \ξ\ = 1 ([5; Theorems 9.6 and 9. 12, Example 1 given after Theorem
3.21]). This result will be improved in Theorem 2.

Finally we shall be concerned with locally p-precise functions on Rn. We
say that a function u is locally p-precise on Rn if u is p-precise on any bounded

open set in Rn\ for p-precise functions, see [7]. We also refer to [5; Chap.
IV]. Let 1 <p<n and u be a locally p-precise function on R" such that

\|grad u\p\x\~βdx < oo

for some non-negative number β smaller than n — p. Then we shall show in

Theorem 3 that there are a constant c and a set Ec:Γ={ξeRnι \ξ\ = l} such that

) = c if ξeΓ-E
r->oo

and

CP(E) = 0 if. p £ 2,

Cp_ε(£) = 0 for any ε with 0 < ε < p if p > 2 ,

where Cy(E) is the Riesz capacity of E of order y. If, in addition, u is a Riesz

potential of a non-negative measure with finite energy, then c = 0 (cf. [5; Theorem
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10.18]).

2. Preliminaries

Let Rn be the π-dimensional Euclidean space (n^2) with points x, y, etc.

and let α be a number such that 0<α<n. For a non-negative (Radon) measure

μ, the Riesz potential of μ of order α is defined by

The Riesz capacity of a Borel set EcR" of order α is defined by

where the supremum is taken over all non-negative measures μ such that 5μ

(the support of μ)^E and l/£ g 1 on Sμ. By the definition of Riesz capacity and

a maximum principle, we have

LEMMA 1. Let μ be a non-negative measure on Rn and let 0<α<n.

where M=\ if a<*2 and M = 2n~* if <x>2.

Let lg/?<oo. We denote by Lp(Rn) the class of all measurable functions
/ on Rn such that

<oo .

We denote by Lfoc(,R/l) the class of all measurable functions / on Rn such that

\f(x)\pdx<ao for any compact set
JK

We now let l<p<n. A set EaR" is said to be p-exceptional if there is a

non-negative function /e Lp(Rn) such that \ |x — y|1~Λ/(^)^);=oo for any xeE.

If a property is true on Rn except for a ^-exceptional set, then we say that this

property is true p-a. e. on Rn. We note that if u and υ are locally p-precise
functions on Rn such that u = i? a. e. on jR", then u = v p-a. e. on Rn. Furthermore.

if u is a locally p-precise function on R"9 then |gradu| is defined a.e. on Rn and

belongs to Lfoc(^π). For these facts, see Ohtsuka [5; Chap. IV].

3. Radial limits of potentials of measures

We first show
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THEOREM 1. Let 0<α<n and let μ be a non-negative measure such that

(1)

Then there is a Borel set Ed Γ such that Cα(E) = 0 and

lim t/Jftrί) = 0 // ξeΓ-E.
r-»oo

REMARK 1. Condition (1) is equivalent to U%φao.

PROOF OF THEOREM 1. We decompose l/J as 1̂  + U2, where

tfiOO =
\ x - y \ z \ x \ f 2

\x-y\*-ndμ(y).
\ χ - y \ < \ χ \ / 2

First we shall show that C/1(x)->0 as |x|->oo. Let |x| = r2, r>l . If |jc — y\^
|x|/2, then |x — j;|^(l + |^|)/5. If, in addition, 1-hl^l^r, then |x — y\^ι
(r/2)(l-f \y\). Hence

which tends to zero as r-*oo.

For a positive integer /c, we set

βfc =

Since Σ?=ι f lfc< °° by our assumption, there is a sequence {bk} of positive numbers
such that lim f c_Q Of? f c=oo and ΣA°=ιfljA< 0 0 Set

Ek = {xeR»; 2k ^ \x\ < 2fc+1, U2(x) ^ i/bk}

for each positive integer /c. If x e Ek, then |x —y| < |x|/2 implies 2fc-1 < |j| <2fe+2,

so that \ |x—vl^MμOO^br1. Hence we have by Lemma 1
J2K-ι<\y\<2k + 2

CΛ(Ek) ^ 2n-«bk \ dμ(y) ^ 2"-αα
)2k-ι<\y\<2k + 2

Denote by Ek the set of all points ξ e Γ such that rξ e Ek for some r > 0. Then

CΛ(Ek) ί 2-*<»-«>Cα(Ek)

for each positive integer k. Setting E=r\f=l\J™=JEk, we see that CX(E)=0 and
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limr_00C/20^) = 0 for ξeΓ — E. Thus E is the required exceptional set.

REMARK 2. Theorem 1 is the best possible as to the size of the exceptional
set; in fact, for a Borel set Ec:Γ with Cα(E) = 0, there is a non-negative measure
μ such that U^φco and l imsup r _^U%(rξ) = oo for every ξ.eE. To show this

fact, we set E={jξ; ξεE and j is a positive integer} and note that Cβ(£) = 0.
Hence there is a non-negative measure μ such that U^φ oo but U%(x) = oo for each
xe E. Clearly, lim supr_+ ̂  UJ(rξ) = oo for each ξ e E.

4. Radial limits of potentials of measures with density

The following two lemmas can be proved in the same manner as Lemmas

4 and 5 in [4] with slight modifications (also cf. [1 Lemma 4.3] for Lemma 2).

LEMMA 2 (cf. [4; Lemma 4]). Let α and p be positive numbers such that

1 <P~2 and ccp<n. Let f be a non-negative function in Lp(Rn) and set

r< ί n M f i 1,,-nr, Λ Λ ^ ΛE — <xeK"; \\x — y\ J(y)dy ^ 1 > .
( J )

Then there/is a constant M>0 independent of f such that

Cβp(£) ̂  M||/||;.

LEMMA 3 (cf. [4; Lemma 5]). Lei α, p and ε be positive numbers such that
p>2 and ε<α/?</ι. For a positive number r and a non-negative function f in

LP(R"), we set

Then there is a constant M>0 independent of r and f such that

CΛp.ε(E) ^ Mr ||/||;.

We now show

THEOREM 2. Let α, β and p be numbers such that α>0, β^O, p>\ and

<y.p + β<n. For a non-negative function f in Lp(Rn), we set

Then there is a Borel set EaΓ such that

lim F(rζ) = 0 for each ξeΓ-E,
r-»oo
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Cα/E) = 0 if p^2

and

Cαp_ε(£) = 0 for any ε with 0 < ε < oφ if p > 2.

PROOF. We decompose F as Fί + F2, where

\*-yΓn\y\β/pf(y)dy.
\x-y\<\x\/2

Since |x — y\^.\x\/2 implies |y|^3|x — y\9 we have by Holder's inequality

x -

where l/p-hl/p '=l . Since p'(<z + β/p — n)< —n, this implies that F^x) tends to
zero as |x|-»oo.

For a positive integer /c, we set

Ek = {xeR"; 2fe g |x| < 2k+1, F2(x) ̂

As in the proof of Theorem 1 , we see that for x e Ek

f |jc - y\*-n\
j 2 f c - ι < b | < 2 k + 2

Hence we have by Lemmas 2 and 3

t\y\'f(yydy

ε)\ f(yγdy
J2k~ί<\y\<2k + 2

for some constant M>0 independent of k and β, where ε = 0 if p^2 and 0<ε<oφ

ifp>2. Set

Ek = {ξ e Γ; rξ e Ek for some r > 0}.

Then
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,< + 2f(yYdy.

Consequently if we put E— n°P=ι U ?=;£*, then Cαp_ε(£Γ) = 0 and limr^00F2(rξ)
= 0 for ξeΓ — E. Thus the theorem is proved.

REMARK 3. Theorem 2 is also valid in case p = \ and a-\-β^n on account
of Theorem 1.

REMARK 4. Let α>0, p> 1 and ap<n. Let £ be a Borel set in Γ such that
Cαp(£) = 0 if p^.2 and Cαp+ε(£) = 0 for some ε>0 with αp + ε<n if p<2. Then

there is a non-negative function fe LP(R") such that lim sup^^ \ |rξ — y\Λ~nf(y)dy =

oo for every ξeE. To see this fact, setting E={jξ\ ξeE and 7 is a positive
integer}, we note that Cα/7(E) = 0 if /?^2 and Cyp+ε(E) = Q \ϊ p<2. In view of a
result of B. Fuglede [1], there is a non-negative function / in Lp(R") such that

\\x — y\<x~nf(y)dy=oo for every xe£. This shows that lim sup^^llrξ — y\Λ~"
J J
\y\β/pf(y)dy=co for any ξeE and any number β.

5. Radial limits of locally p-precise functions

THEOREM 3. Let β and p be numbers such that β^Q, p>\ and β + p<n.
Let u be a locally p-precise function on Rn such that

: oo.

Then there is a constant c such that lim r_Q Oι/(r^)==c except for ξ in a Borel set
£cιΓ such that Cp(E) = 0 if p^2 and Cp_E(E) = Qfor any ε with 0<ε< Jp if p>2.

To show Theorem 3, we shall establish the following integral representation

of u.

LEMMA 4 (cf. [5; Theorem 9.11], [3; Theorem 4.1]). Let β, p and u be as
in Theorem 3. Then there are constants c2 and c'2 such that

s'ι Σ \-5^— (log \χ-y\)-τr-(y) dy + c'2 (« = 2)j = ι } d X j όyj

holds for p-a.e. xeRn. Here c^ and c\ are the constants determined by A\x\2~n

= c~[1δ if n^3 and Alog|x| =c'1~
1 δ if n = 2, where A is the Laplacian and δ

is the Dirac measure.

PROOF. We shall prove only the case n^.3 because the case n = 2 is similarly
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proved. Put

Since p'(\-n) + βp'lp<-n, we see that \|x->;|1- | l|grad u\dy ε L}OC(R"). Con-

sequently GueL}oc(Rn). We shall show that Δ(u — Gu) = 0 in the sense of dis-
tribution. Let φ be any infinitely differentiable function with compact support.
Then we have by using Fubini's theorem

_

^{-Ί^\^^

= γ(y)Δφ(y)dy>

which implies that Δ(u — GM) = 0. According to WeyΓs lemma, there is a harmonic
function h such that

(2) /ι(x) = ι/(x)-Gu(x)

holds for a. e. x e R". If we use the following two lemmas, we see that h is con-
stant and (2) holds for p-a. e. x e Rn.

LEMMA 5 (cf. [5; Lemma 9.16]). Let β and p be numbers such that β<n

and p^l. Let h be a harmonic function on Rn, and assume that \|grad h\p

\x\~β dx< oo. Then h is constant.

PROOF. Since dh/dXj is harmonic on R" for each j = l, 2,..., n, we have

- > 0

as r-»oo, where cn and c'n are constants depending only on n. Thus dh/dXj
on Rn for each 7, so that h is constant.

The proof of the following lemma will be given in the next section.
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LEMMA 6. Let β and p be as in Theorem 3. For an integer y, l^ j^π,
and a function /e Lp(Rn\ we set

Then F is locally p-precise on Rn and

Jlgrad F|'|x|-'djc £ Λ f 11/115,

where M is a constant independent off.

PROOF OF THEOREM 3. By Lemma 4, there are constants c l 9 c2 and a p-
exceptional set EίaRn such that for x e Rn — E1

According to [1], Cp(£1) = 0 if p^2 and Cp_E(£1) = 0 for any ε with 0<ε<p
ifp>2. Set

EI = {£eΓ; rξeEί for some r ^ l } .

By Theorem 2 there is a Borel set E2aΓ such that

lim(\rξ-y\i-n\gτadμ\dy = 0 if ξeΓ-E2
r-*ooj

and

Cp_ ε(£2) = 0 f°r any ε with 0 < ε < p i f p > 2 .

It is easy to check that E± U E2 is the required exceptional set.

COROLLARY. Let 0<α<n ^πίί \<p<n. Let μ be a non-negative mea-

suresuch that \U^dμ<co. Assume that U% is locally p-precise on Rn and

\lgrad U%\p\x\~βdx<oo for some non-negative number β with β<n — p. Then

there is a Borel set EdΓ such that

\imU^(rξ) = 0 for ξeΓ-E
r-»oo

and

Cp(E) = 0 if p ^ 2,

Cp_ε(£) = 0 for any ε with 0 < ε < / ? // p>2.
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This is an easy consequence of Theorem 3 and the following lemma.

LEMMA 7 (cf. [5; Theorem 10.18]). LetQ«x<n and let μ be a non-negative

measure such that \U^dμ<co. Assume that lim^^U^rξ) is a constant c for

a.e. ξeΓ. Then c = 0.

6. Proof of Lemma 6

We may suppose that/is non-negative on Rn. Noting that (1 + \y\)1'

Lp'(Rn)9 p' = p/(p— 1), we have

(3)

We set κε(x) = x/|x|2+ε2)-n/2, ε>0, and define

From (3) we see that Fε e C°°CRW) and

for any / = !, 2,..., n. From the proof of [3; Lemma 3.2] we derive that

(4) HDjGJ, £ M! 11/11 p,

where D^d/dx^ /=!,..., n, and Mγ is a constant independent of ε and /. On
the other hand

(5) I I x l - f / i DtF.-Dfi.\ g M 2 - f ( y ) dy .

We write x = Rξ and y = rη, where R = \x\ and r=\y\. Setting

| |x — y\~nf(y)dy, we have by Holder's inequality

For simplicity, we set
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(6) I(R, r) = (
J\η\=l;,,,-ι \Rξ-rη\» '

This is independent of ξ e Γ and

where σn is the area of Γ. By (6),

^

Using Minkowski's inequality ([6; Appendix A.I]), we have

« |||=1

l /p f αo

|
O

, r)g(r)dr,
o

where

, r) = Λ(»-i)/pΓ(»-D/p7(Λ, r)|l-

Note that X(R, r) is homogeneous of degree -1, that is, K(λR, λr) =
(-00

r) for A>0 and that \ X(l, r)r l/pdr<co on account of (7). Hence we can ap-
Jo

ply Appendix A. 3 in [6] and obtain

H(RξydS(ξ)\Rn'1dR
=ι )

S oo

o

o |ξ|

p
dR

where M3 is a constant independent of/. Therefore (4) and (5) give

(8) || M-'/'JVMI, g M2M3

1/p||/|

where M = Ml+M2M3

1'''.

Let JV > 0. We write F=FlιN+F2>N, where
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—y \

2.Nw = \
)\y\>2) \ y \ > 2 N \X-y\"

From [3; Lemma 3.3] it follows that F{ N is locally p-precise on R" and for any i

*,(x-y)\y\β/pf(y)dy >0,F l i N in L*(Λ") as ε > 0 .

Furthermore F2tN is continuously differentiable on {xeR"ι \x\ <N} and

A \ (*/ —y/) \x — y\~n\y\β/pf(y)dy converges to D.F2 N uniformly on {x e R"',
)\y\>2N ^ '

|x|<N} as ε->Ό for any /. Thus F is locally p-precise on Rn and

J| \x\-VDtF\\, ^ M\\f\\p9 i = l , 2 , . . . , n ,

by (8) and Fatou's lemma. These complete the proof of Lemma 6.
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