A Remark on Parabolic Index of Infinite Networks

Fumi-Yuki Maeda

(Received September 16, 1976)

In the preceding paper [1], M. Yamasaki introduced the notion of parabolic index of infinite networks. He proposed (orally) a problem to determine the parabolic index of the infinite network N_d formed by the lattice points and the segments parallel to coordinate axes in the *d*-dimensional euclidean space. The purpose of the present paper is to show that the parabolic index of N_d is equal to the dimension *d*. This is a discrete analogue of the well-known fact that

$$\inf \int_{\mathbf{R}^d} |\operatorname{grad} f|^p dx = 0$$

if and only if $p \ge d$, where the infimum is taken over all C¹-functions f on \mathbb{R}^d with compact support such that $f \ge 1$ on a fixed ball in \mathbb{R}^d .

For notation and terminologies, we mainly follow [1].

1. Description of the network

Let \mathbb{R}^d be the *d*-dimensional euclidean space $(d \ge 1)$. Let $X^{(d)}$ be the set of all lattice points, i.e.,

 $X^{(d)} = \mathbb{Z}^d$ (Z: the set of integers).

Let $e_1, ..., e_d$ be the standard base of \mathbb{R}^d , i.e., the k-th component of e_j is 1 for k=j and 0 for $k\neq j$. For $a, b \in \mathbb{R}^d$, let [a, b] denote the directed line segment from a to b. For each j (=1, ..., d), set

$$\begin{split} S_{j,+}^{(d)} &= \{ [x, x + e_j]; \ x = (v_1, \dots, v_d) \in X^{(d)}, \ v_j \ge 0 \} \,, \\ S_{j,-}^{(d)} &= \{ [x, x - e_j]; \ x = (v_1, \dots, v_d) \in X^{(d)}, \ v_j \le 0 \} \end{split}$$

and

$$S_{j}^{(d)} = S_{j,+}^{(d)} \cup S_{j,-}^{(d)}$$

We define $Y^{(d)}$ by

$$Y^{(d)} = \bigcup_{j=1}^d S_j^{(d)}.$$

For $x \in X^{(d)}$ and $y = [x_1, x_2] \in Y^{(d)}$, let

$$K(x, y) = \begin{cases} 1, & \text{if } x_2 = x, \\ -1, & \text{if } x_1 = x, \\ 0, & \text{if } x_1 \neq x \text{ and } x_2 \neq x. \end{cases}$$

With $r(y) \equiv 1$, $N_d = \{X^{(d)}, Y^{(d)}, K, r\}$ is an infinite network in the sense of [1]. What we shall prove is

THEOREM. Ind $N_d = d$.

Here Ind N_d is the parabolic index of N_d (see [1, §5]). The case d=1 is proved in [1, Example 4.1]. The proof for $d \ge 2$ consists of two parts:

- (1) If $p \ge d$, then N_d is of parabolic type of order p;
- (II) If $1 , then <math>N_d$ is of hyperbolic type of order p.

For simplicity, we shall omit the superscript (d) in the notation. For $x = (v_1, ..., v_d) \in X$, we write $|x| = (|v_1|, ..., |v_d|)$ and $||x|| = \max_j |v_j|$. For $y = [x_1, x_2] \in Y$, the point x_1 will be denoted by a(y); if $y \in S_j$, then the index j will be denoted by j(y).

2. Proof of (\mathbf{I})

Let

$$X_n = \{ x \in X; \|x\| \le n \}, \qquad n = 0, 1, \dots$$

and

$$Y_n = \{ [x_1, x_2] \in Y; x_1, x_2 \in X_n \}, \qquad n = 1, 2, \dots$$

Then $\{\langle X_n, Y_n \rangle\}$ is an exhaustion of N_d . It is elementary to see that

Card
$$Y_n = 2dn(2n+1)^{d-1}$$
, $n = 1, 2, ...$

(Here, Card stands for the cadinal.) Hence, if we put $Z_n = Y_n - Y_{n-1}$ ($Y_0 = \emptyset$), then

Card
$$Z_n = \text{Card } Y_n - \text{Card } Y_{n-1} \leq 2d^2(2n+1)^{d-1}, \quad n = 1, 2, \dots$$

Since $r(y) \equiv 1$,

$$\mu_n^{(p)} \equiv \sum_{y \in Z_n} r(y)^{1-p} = \text{Card } Z_n \leq 2d^2(2n+1)^{d-1}, \qquad n = 1, 2, \dots.$$

Hence, if $p \ge d$ and 1/p + 1/q = 1, then

$$\sum_{n=1}^{\infty} (\mu_n^{(p)})^{1-q} \ge (2d^2)^{1-q} \sum_{n=1}^{\infty} (2n+1)^{(d-1)(1-q)} = +\infty,$$

since $(d-1)(1-q) \ge -1$. Therefore, by [1, Corollary 1 to Theorem 4.1], N_d is of parabolic type of order p if $p \ge d$.

3. Proof of (II)

We shall prove (II) in several steps. Let \mathscr{P} be the set of all permutations of $\{1,...,d\}$ and for $x = (v_1,...,v_d)$ and $\pi \in \mathscr{P}$, let $\pi^* x = (v_{\pi(1)},...,v_{\pi(d)})$.

(i) For $y, y' \in Y$, if there is $\pi \in \mathscr{P}$ such that $\pi^*|a(y)| = |a(y')|$ and $j(y) = \pi(j(y'))$, then we say that y and y' are equivalent and write $y \sim y'$. Obviously, this is an equivalence relation in Y. Now we put

$$X^* = \{x^* = (\mu_1, \dots, \mu_d) \in X; \, \mu_1 \ge \dots \ge \mu_d \ge 0\}$$

and

$$Y^* = \{ [x_1, x_2] \in Y; x_1, x_2 \in X^* \}$$

Observe that for $x^* = (\mu_1, ..., \mu_d) \in X^*$, $x^* + e_j \in X^*$ (resp. $x^* - e_j \in X^*$) if and only if

$$j = \min\{k; \mu_k = \mu_j\}$$
 (resp. $\mu_j \neq 0$ and $j = \max\{k; \mu_k = \mu_j\}$).

Using this fact, we can easily see that Y^* is a set of representatives with respect to the equivalence relation \sim , i.e., for every $y \in Y$, there is exactly one $y^* \in Y^*$ such that $y^* \sim y$.

(ii) In order to construct a flow from $\{0\}$ to ∞ , we consider the following values defined inductively:

(1)
$$\begin{cases} F(n; 1) = (2n-1)^{-d}, \\ F(n; j+1) = 2^{-1}j(d-j)^{-1}\{(2n-1)F(n; j) - (2n+1)^{1-d}\}, \quad j = 1, 2, ..., d-1, \end{cases}$$

n=1, 2, ... In a closed form, F(n; j) is expressed as

$$F(n; j) = {\binom{d-1}{j-1}}^{-1} (2n+1)^{1-d} \sum_{k=0}^{d-j} {\binom{d-1}{k+j-1}} 2^k (2n-1)^{-k-1},$$

which is verified by induction on j. Observing that

$$\binom{d-1}{j-1}^{-1}\binom{d-1}{k+j-1} \leq \binom{d-j}{k}, \quad k=0, 1, ..., d-j,$$

we obtain

(2)
$$F(n; j) \leq (2n-1)^{-d}, \quad j = 1, ..., d; n = 1, 2, ..., d$$

(iii) Given $x^* = (\mu_1, ..., \mu_d) \in X^*$, let $k(x^*)$ denote the largest integer k such that $\mu_k = \mu_1$. We define a function w on Y as follows:

(a) If $y = [x^*, x^* + e_1] \in Y^*$ and $x^* = (\mu_1, ..., \mu_d)$, then

 $w(y) = (2d)^{-1}(2\mu_1 + 1)^{1-d};$

(b) If $y = [x^*, x^* + e_j] \in Y^*$ with j > 1 and $x^* = (\mu_1, ..., \mu_d)$, then

$$w(y) = (2d)^{-1}(2\mu_i + 1)F(\mu_1; k(x^*) + 1);$$

(c) If $y \in Y - Y^*$, then $w(y) = w(y^*)$ for $y^* \in Y^*$ such that $y^* \sim y$.

Now we shall prove that w is a flow (see [1, §4]) from $\{0\}$ to ∞ with strength I(w)=1.

(iii-1) Every $y \in Y(0)$ is equivalent to $y^* = [0, e_1] \in Y^*$ (see [1, (1.3)] for Y(x)). Therefore, $w(y) = w(y^*) = (2d)^{-1}$ for all $y \in Y(0)$, and hence

$$I(w) = -\sum_{y \in Y(0)} K(0, y)w(y) = -2d(-1)\frac{1}{2d} = 1.$$

(iii-2) Let $x = (v_1, ..., v_d) \in X$ and $x \neq 0$. Choose $x^* = (\mu_1, ..., \mu_d) \in X^*$ such that $\pi^*|x| = x^*$ for some $\pi \in \mathscr{P}$. For each *j*, let us compute $\sum_{y \in S_j} K(x, y)w(y) = \sum_{y \in Y(x) \cap S_j} K(x, y)w(y)$.

If $v_j > 0$ (resp. $v_j < 0$), then

$$Y(x) \cap S_j = \{[x, x+e_j], [x-e_j, x]\}$$
 (resp. = $\{[x, x-e_j], [x+e_j, x]\}$).

For $y_1 = [x, x + e_j]$ (resp. $[x, x - e_j]$), choose π so that

$$\pi^{-1}(j) = \min \{k; |v_{\pi(k)}| = |v_j|\}.$$

Then $y_1^* = [x^*, x^* + e_m]$ $(m = \pi^{-1}(j))$ belongs to Y^* and is equivalent to y_1 . Since $\mu_m = |v_j|$ and m = 1 if and only if $|v_j| = \mu_1$,

$$w(y_1) = w(y_1^*) = \begin{cases} (2d)^{-1}(2\mu_1 + 1)^{1-d}, & \text{if } |v_j| = \mu_1, \\ (2d)^{-1}(2|v_j| + 1)F(\mu_1; k(x^*) + 1), & \text{if } |v_j| < \mu_1. \end{cases}$$

For $y_2 = [x - e_i, x]$ (resp. $[x + e_i, x]$), choose π so that

$$\pi^{-1}(j) = \max\{k; |v_{\pi(k)}| = |v_j|\}.$$

Then $y_2^* = [x^* - e_m, x^*]$ $(m = \pi^{-1}(j))$ belongs to Y^* and is equivalent to y_2 . The *m*-th component of $x^* - e_m$ is equal to $|v_j| - 1$; m = 1 if and only if $|v_j| = \mu_1$ and $k(x^*) = 1$. Furthermore,

$$k(x^* - e_m) = \begin{cases} k(x^*) - 1, & \text{if } |v_j| = \mu_1 \text{ and } k(x^*) > 1, \\ k(x^*), & \text{if } |v_j| < \mu_1. \end{cases}$$

150

Hence

$$w(y_2) = w(y_2^*) = \begin{cases} (2d)^{-1}(2\mu - 1)^{1-d} = (2d)^{-1}(2\mu_1 - 1)F(\mu_1; k(x^*)), \\ & \text{if } |v_j| = \mu_1 \text{ and } k(x^*) = 1, \\ (2d)^{-1}(2\mu_1 - 1)F(\mu_1; k(x^*)), & \text{if } |v_j| = \mu_1 \text{ and } k(x^*) > 1, \\ (2d)^{-1}(2|v_j| - 1)F(\mu_1; k(x^*) + 1), & \text{if } |v_j| < \mu_1. \end{cases}$$

Therefore, in case $v_j \neq 0$, using (1) we have

(3)
$$\sum_{\mathbf{y} \in S_{\mathbf{j}}} K(x, \mathbf{y})w(\mathbf{y}) = w(\mathbf{y}_{2}) - w(\mathbf{y}_{1})$$

$$= \begin{cases} (2d)^{-1} \{ (2\mu_{1} - 1)F(\mu_{1}; k(x^{*})) - (2\mu_{1} + 1)^{1-d} \} \\ = \frac{d - k(x^{*})}{dk(x^{*})} F(\mu_{1}; k(x^{*}) + 1), & \text{if } |v_{\mathbf{j}}| = \mu_{1}, \\ -d^{-1} F(\mu_{1}; k(x^{*}) + 1), & \text{if } |v_{\mathbf{j}}| < \mu_{1}. \end{cases}$$

If $v_i = 0$, then

$$Y(x) \cap S_j = \{ [x, x+e_j], [x, x-e_j] \}$$

and by an argument similar to the above, we see that both $y_1 = [x, x+e_j]$ and $y_2 = [x, x-e_j]$ are equivalent to $y^* = [x^*, x^*+e_m] \in Y^*$. Since $v_j = 0, m \neq 1$. Hence, in case $v_j = 0$, we have

(4)
$$\sum_{y \in S_j} K(x, y) w(y) = -w(y_1) - w(y_2) = -2w(y^*) = -d^{-1} F(\mu_1; k(x^*) + 1).$$

Combining (3) and (4), we have in any case

$$\sum_{y \in S_j} K(x, y) w(y) = \begin{cases} \frac{d - k(x^*)}{dk(x^*)} F(\mu_1; k(x^*) + 1), & \text{if } |v_j| = \mu_1, \\ -\frac{1}{d} F(\mu_1; k(x^*) + 1), & \text{if } |v_j| < \mu_1. \end{cases}$$

Since Card $\{j; |v_j| = \mu_1\} = k(x^*),$

$$\sum_{y \in Y} K(x, y) w(y) = \sum_{j=1}^{d} \sum_{y \in S_j} K(x, y) w(y)$$

= $k(x^*) \frac{d - k(x^*)}{dk(x^*)} F(\mu_1; k(x^*) + 1) - \{d - k(x^*)\} d^{-1} F(\mu_1; k(x^*) + 1)$
= 0.

Therefore, w is a flow from $\{0\}$ to ∞ .

(iv) Finally, we show that if 1 and <math>1/p + 1/q = 1, then

$$\sum_{y \in Y} w(y)^q < +\infty$$

If $y \sim y^* \in Y^*$ and $a(y^*) = (\mu_1, ..., \mu_d)$, then $\mu_1 = ||a(y)||$. Hence if $j(y^*) = 1$ and $\mu_1 \ge 1$, then

$$w(y) = w(y^*) = (2d)^{-1}(2\mu_1 + 1)^{1-d} \le (2d)^{-1}(2\|a(y)\| - 1)^{1-d}$$

and if $j(y^*) > 1$, then $\mu_{j(y^*)} \leq \mu_1 - 1$, so that by virtue of (2),

$$w(y) = w(y^*) = (2d)^{-1}(2\mu_{j(y^*)} + 1)F(\mu_1; k(a(y^*)) + 1)$$

$$\leq (2d)^{-1}(2\mu_1 - 1)(2\mu_1 - 1)^{-d} = (2d)^{-1}(2\|a(y)\| - 1)^{1-d}.$$

Now let $T_n = \{y \in Y; \|a(y)\| = n\}, n = 0, 1, \dots$ Then $Y = \bigcup_{n=0}^{\infty} T_n$. For each $x \in X$ with $\|x\| = n$, there are at most 2d elements y in Y such that a(y) = x. Hence,

Card $T_0 = 2d$ and Card $T_n \leq 2d$ Card $(X_n - X_{n-1}), \quad n = 1, 2, \dots$

On the other hand, Card $X_n = (2n+1)^d$. Hence

Card
$$T_n \leq 4d^2(2n+1)^{d-1}$$
, $n = 1, 2, \dots$

Therefore

$$\sum_{y \in Y} w(y)^{q} = \sum_{n=0}^{\infty} \sum_{y \in T_{n}} w(y)^{q}$$
$$\leq 2d(2d)^{-q} + \sum_{n=1}^{\infty} 4d^{2}(2n+1)^{d-1}(2d)^{-q}(2n-1)^{(1-d)q} < +\infty,$$

since p < d implies d - 1 + (1 - d)q < -1.

(v) Now the statement of (II) follows from [1, Theorem 4.3].

Reference

[1] M. Yamasaki, Parabolic and hyperbolic infinite networks, this journal., 135-146.

Department of Mathematics, Faculty of Science, Hiroshima University

152