A Remark on Parabolic Index of Infinite Networks

Fumi-Yuki Maeda
(Received September 16, 1976)

In the preceding paper [1], M. Yamasaki introduced the notion of parabolic index of infinite networks. He proposed (orally) a problem to determine the parabolic index of the infinite network N_{d} formed by the lattice points and the segments parallel to coordinate axes in the d-dimensional euclidean space. The purpose of the present paper is to show that the parabolic index of N_{d} is equal to the dimension d. This is a discrete analogue of the well-known fact that

$$
\inf \int_{\mathbf{R}^{d}}|\operatorname{grad} f|^{p} d x=0
$$

if and only if $p \geqq d$, where the infimum is taken over all C^{1}-functions f on \mathbf{R}^{d} with compact support such that $f \geqq 1$ on a fixed ball in \mathbf{R}^{d}.

For notation and terminologies, we mainly follow [1].

1. Description of the network

Let \mathbf{R}^{d} be the d-dimensional euclidean space $(d \geqq 1)$. Let $X^{(d)}$ be the set of all lattice points, i.e.,

$$
X^{(d)}=\mathbf{Z}^{d} \quad(\mathbf{Z}: \text { the set of integers }) .
$$

Let e_{1}, \ldots, e_{d} be the standard base of \mathbf{R}^{d}, i.e., the k-th component of e_{j} is 1 for $k=j$ and 0 for $k \neq j$. For $a, b \in \mathbf{R}^{d}$, let $[a, b]$ denote the directed line segment from a to b. For each $j(=1, \ldots, d)$, set

$$
\begin{aligned}
& S_{j,+}^{(d)}=\left\{\left[x, x+e_{j}\right] ; x=\left(v_{1}, \ldots, v_{d}\right) \in X^{(d)}, v_{j} \geqq 0\right\} \\
& S_{j,-}^{(d)}=\left\{\left[x, x-e_{j}\right] ; x=\left(v_{1}, \ldots, v_{d}\right) \in X^{(d)}, v_{j} \leqq 0\right\}
\end{aligned}
$$

and

$$
S_{j}^{(d)}=S_{j,+}^{(d)} \cup S_{j,--}^{(d)} .
$$

We define $Y^{(d)}$ by

$$
Y^{(d)}=\bigcup_{j=1}^{d} S_{j}^{(d)} .
$$

For $x \in X^{(d)}$ and $y=\left[x_{1}, x_{2}\right] \in Y^{(d)}$, let

$$
K(x, y)=\left\{\begin{aligned}
& 1, \text { if } \\
&-1, x_{2}=x \\
& 0, \text { if } \\
& x_{1}=x \\
& x_{1} \neq x \text { and } x_{2} \neq x
\end{aligned}\right.
$$

With $r(y) \equiv 1, N_{d}=\left\{X^{(d)}, Y^{(d)}, K, r\right\}$ is an infinite network in the sense of [1]. What we shall prove is

Theorem. Ind $N_{d}=d$.
Here Ind N_{d} is the parabolic index of $N_{d}($ see $[1, \S 5])$. The case $d=1$ is proved in [1, Example 4.1]. The proof for $d \geqq 2$ consists of two parts:
(I) If $p \geqq d$, then N_{d} is of parabolic type of order p;
(II) If $1<p<d$, then N_{d} is of hyperbolic type of order p.

For simplicity, we shall omit the superscript (d) in the notation. For $x=$ $\left(v_{1}, \ldots, v_{d}\right) \in X$, we write $|x|=\left(\left|v_{1}\right|, \ldots,\left|v_{d}\right|\right)$ and $\|x\|=\max _{j}\left|v_{j}\right|$. For $y=\left[x_{1}, x_{2}\right]$ $\in Y$, the point x_{1} will be denoted by $a(y)$; if $y \in S_{j}$, then the index j will be denoted by $j(y)$.

2. Proof of (I)

Let

$$
X_{n}=\{x \in X ;\|x\| \leqq n\}, \quad n=0,1, \ldots
$$

and

$$
Y_{n}=\left\{\left[x_{1}, x_{2}\right] \in Y ; x_{1}, x_{2} \in X_{n}\right\}, \quad n=1,2, \ldots .
$$

Then $\left.\left\{<X_{n}, Y_{n}\right\rangle\right\}$ is an exhaustion of N_{d}. It is elementary to see that

$$
\operatorname{Card} Y_{n}=2 d n(2 n+1)^{d-1}, \quad n=1,2, \ldots
$$

(Here, Card stands for the cadinal.) Hence, if we put $Z_{n}=Y_{n}-Y_{n-1}\left(Y_{0}=\emptyset\right)$, then

$$
\operatorname{Card} Z_{n}=\operatorname{Card} Y_{n}-\operatorname{Card} Y_{n-1} \leqq 2 d^{2}(2 n+1)^{d-1}, \quad n=1,2, \ldots
$$

Since $r(y) \equiv 1$,

$$
\mu_{n}^{(p)} \equiv \sum_{y \in Z_{n}} r(y)^{1-p}=\operatorname{Card} Z_{n} \leqq 2 d^{2}(2 n+1)^{d-1}, \quad n=1,2, \ldots
$$

Hence, if $p \geqq d$ and $1 / p+1 / q=1$, then

$$
\sum_{n=1}^{\infty}\left(\mu_{n}^{(p)}\right)^{1-q} \geqq\left(2 d^{2}\right)^{1-q} \sum_{n=1}^{\infty}(2 n+1)^{(d-1)(1-q)}=+\infty
$$

since $(d-1)(1-q) \geqq-1$. Therefore, by [1, Corollary 1 to Theorem 4.1], N_{d} is of parabolic type of order p if $p \geqq d$.

3. Proof of (II)

We shall prove (II) in several steps. Let \mathscr{P} be the set of all permutations of $\{1, \ldots, d\}$ and for $x=\left(v_{1}, \ldots, v_{d}\right)$ and $\pi \in \mathscr{P}$, let $\pi^{*} x=\left(v_{\pi(1)}, \ldots, v_{\pi(d)}\right)$.
(i) For $y, y^{\prime} \in Y$, if there is $\pi \in \mathscr{P}$ such that $\pi^{*}|a(y)|=\left|a\left(y^{\prime}\right)\right|$ and $j(y)=$ $\pi\left(j\left(y^{\prime}\right)\right)$, then we say that y and y^{\prime} are equivalent and write $y \sim y^{\prime}$. Obviously, this is an equivalence relation in Y. Now we put

$$
X^{*}=\left\{x^{*}=\left(\mu_{1}, \ldots, \mu_{d}\right) \in X ; \mu_{1} \geqq \cdots \geqq \mu_{d} \geqq 0\right\}
$$

and

$$
Y^{*}=\left\{\left[x_{1}, x_{2}\right] \in Y ; x_{1}, x_{2} \in X^{*}\right\}
$$

Observe that for $x^{*}=\left(\mu_{1}, \ldots, \mu_{d}\right) \in X^{*}, x^{*}+e_{j} \in X^{*}\left(\right.$ resp. $\left.x^{*}-e_{j} \in X^{*}\right)$ if and only if

$$
j=\min \left\{k ; \mu_{k}=\mu_{j}\right\} \quad\left(\text { resp. } \mu_{j} \neq 0 \text { and } j=\max \left\{k ; \mu_{k}=\mu_{j}\right\}\right) .
$$

Using this fact, we can easily see that Y^{*} is a set of representatives with respect to the equivalence relation \sim, i.e., for every $y \in Y$, there is exactly one $y^{*} \in Y^{*}$ such that $y^{*} \sim y$.
(ii) In order to construct a flow from $\{0\}$ to ∞, we consider the following values defined inductively:
(1) $\left\{\begin{array}{l}F(n ; 1)=(2 n-1)^{-d}, \\ F(n ; j+1)=2^{-1} j(d-j)^{-1}\left\{(2 n-1) F(n ; j)-(2 n+1)^{1-d}\right\}, \quad j=1,2, \ldots, d-1,\end{array}\right.$ $n=1,2, \ldots$ In a closed form, $F(n ; j)$ is expressed as

$$
F(n ; j)=\binom{d-1}{j-1}^{-1}(2 n+1)^{1-d} \sum_{k=0}^{d-j}\binom{d-1}{k+j-1} 2^{k}(2 n-1)^{-k-1}
$$

which is verified by induction on j. Observing that

$$
\binom{d-1}{j-1}^{-1}\binom{d-1}{k+j-1} \leqq\binom{ d-j}{k}, \quad k=0,1, \ldots, d-j,
$$

we obtain

$$
\begin{equation*}
F(n ; j) \leqq(2 n-1)^{-d}, \quad j=1, \ldots, d ; n=1,2, \ldots \tag{2}
\end{equation*}
$$

(iii) Given $x^{*}=\left(\mu_{1}, \ldots, \mu_{d}\right) \in X^{*}$, let $k\left(x^{*}\right)$ denote the largest integer k such that $\mu_{k}=\mu_{1}$. We define a function w on Y as follows:
(a) If $y=\left[x^{*}, x^{*}+e_{1}\right] \in Y^{*}$ and $x^{*}=\left(\mu_{1}, \ldots, \mu_{d}\right)$, then

$$
w(y)=(2 d)^{-1}\left(2 \mu_{1}+1\right)^{1-d}
$$

(b) If $y=\left[x^{*}, x^{*}+e_{j}\right] \in Y^{*}$ with $j>1$ and $x^{*}=\left(\mu_{1}, \ldots, \mu_{d}\right)$, then

$$
w(y)=(2 d)^{-1}\left(2 \mu_{j}+1\right) F\left(\mu_{1} ; k\left(x^{*}\right)+1\right) ;
$$

(c) If $y \in Y-Y^{*}$, then $w(y)=w\left(y^{*}\right)$ for $y^{*} \in Y^{*}$ such that $y^{*} \sim y$.

Now we shall prove that w is a flow (see $[1, \S 4]$) from $\{0\}$ to ∞ with strength $I(w)=1$.
(iii-1) Every $y \in Y(0)$ is equivalent to $y^{*}=\left[0, e_{1}\right] \in Y^{*}$ (see [1, (1.3)] for $Y(x)$). Therefore, $w(y)=w\left(y^{*}\right)=(2 d)^{-1}$ for all $y \in Y(0)$, and hence

$$
I(w)=-\sum_{y \in Y(0)} K(0, y) w(y)=-2 d(-1) \frac{1}{2 d}=1
$$

(iii-2) Let $x=\left(v_{1}, \ldots, v_{d}\right) \in X$ and $x \neq 0$. Choose $x^{*}=\left(\mu_{1}, \ldots, \mu_{d}\right) \in X^{*}$ such that $\pi^{*}|x|=x^{*}$ for some $\pi \in \mathscr{P}$. For each j, let us compute $\sum_{y \in S_{j}} K(x, y) w(y)$ $=\sum_{y \in Y(x) \cap s_{j}} K(x, y) w(y)$.

If $v_{j}>0$ (resp. $v_{j}<0$), then

$$
Y(x) \cap S_{j}=\left\{\left[x, x+e_{j}\right],\left[x-e_{j}, x\right]\right\} \quad\left(\text { resp. }=\left\{\left[x, x-e_{j}\right],\left[x+e_{j}, x\right]\right\}\right)
$$

For $y_{1}=\left[x, x+e_{j}\right]\left(\right.$ resp. $\left.\left[x, x-e_{j}\right]\right)$, choose π so that

$$
\pi^{-1}(j)=\min \left\{k ;\left|v_{\pi(k)}\right|=\left|v_{j}\right|\right\}
$$

Then $y_{1}^{*}=\left[x^{*}, x^{*}+e_{m}\right]\left(m=\pi^{-1}(j)\right)$ belongs to Y^{*} and is equivalent to y_{1}. Since $\mu_{m}=\left|v_{j}\right|$ and $m=1$ if and only if $\left|v_{j}\right|=\mu_{1}$,

$$
w\left(y_{1}\right)=w\left(y_{1}^{*}\right)=\left\{\begin{array}{l}
(2 d)^{-1}\left(2 \mu_{1}+1\right)^{1-d}, \quad \text { if } \quad\left|v_{j}\right|=\mu_{1}, \\
(2 d)^{-1}\left(2\left|v_{j}\right|+1\right) F\left(\mu_{1} ; k\left(x^{*}\right)+1\right), \quad \text { if } \quad\left|v_{j}\right|<\mu_{1}
\end{array}\right.
$$

For $y_{2}=\left[x-e_{j}, x\right]\left(\right.$ resp. $\left.\left[x+e_{j}, x\right]\right)$, choose π so that

$$
\pi^{-1}(j)=\max \left\{k ;\left|v_{\pi(k)}\right|=\left|v_{j}\right|\right\} .
$$

Then $y_{2}^{*}=\left[x^{*}-e_{m}, x^{*}\right]\left(m=\pi^{-1}(j)\right)$ belongs to Y^{*} and is equivalent to y_{2}. The m-th component of $x^{*}-e_{m}$ is equal to $\left|v_{j}\right|-1 ; m=1$ if and only if $\left|v_{j}\right|=\mu_{1}$ and $k\left(x^{*}\right)=1$. Furthermore,

$$
k\left(x^{*}-e_{m}\right)= \begin{cases}k\left(x^{*}\right)-1, & \text { if } \quad\left|v_{j}\right|=\mu_{1} \quad \text { and } \quad k\left(x^{*}\right)>1, \\ k\left(x^{*}\right), & \text { if } \quad\left|v_{j}\right|<\mu_{1} .\end{cases}
$$

Hence

$$
w\left(y_{2}\right)=w\left(y_{2}^{*}\right)=\left\{\begin{array}{l}
(2 d)^{-1}(2 \mu-1)^{1-d}=(2 d)^{-1}\left(2 \mu_{1}-1\right) F\left(\mu_{1} ; k\left(x^{*}\right)\right), \\
\text { if }\left|v_{j}\right|=\mu_{1} \quad \text { and } k\left(x^{*}\right)=1, \\
(2 d)^{-1}\left(2 \mu_{1}-1\right) F\left(\mu_{1} ; k\left(x^{*}\right)\right), \quad \text { if }\left|v_{j}\right|=\mu_{1} \text { and } k\left(x^{*}\right)>1, \\
(2 d)^{-1}\left(2\left|v_{j}\right|-1\right) F\left(\mu_{1} ; k\left(x^{*}\right)+1\right), \quad \text { if }\left|v_{j}\right|<\mu_{1}
\end{array}\right.
$$

Therefore, in case $v_{j} \neq 0$, using (1) we have

$$
\begin{align*}
& \sum_{y \in S_{J}} K(x, y) w(y)=w\left(y_{2}\right)-w\left(y_{1}\right) \tag{3}\\
& =\left\{\begin{array}{l}
(2 d)^{-1}\left\{\left(2 \mu_{1}-1\right) F\left(\mu_{1} ; k\left(x^{*}\right)\right)-\left(2 \mu_{1}+1\right)^{1-d}\right\} \\
=\frac{d-k\left(x^{*}\right)}{d k\left(x^{*}\right)} F\left(\mu_{1} ; k\left(x^{*}\right)+1\right), \quad \text { if } \quad\left|v_{j}\right|=\mu_{1} \\
-d^{-1} F\left(\mu_{1} ; k\left(x^{*}\right)+1\right), \quad \text { if } \quad\left|v_{j}\right|<\mu_{1}
\end{array}\right.
\end{align*}
$$

If $v_{j}=0$, then

$$
Y(x) \cap S_{j}=\left\{\left[x, x+e_{j}\right],\left[x, x-e_{j}\right]\right\}
$$

and by an argument similar to the above, we see that both $y_{1}=\left[x, x+e_{j}\right]$ and $y_{2}=\left[x, x-e_{j}\right]$ are equivalent to $y^{*}=\left[x^{*}, x^{*}+e_{m}\right] \in Y^{*}$. Since $v_{j}=0, m \neq 1$. Hence, in case $v_{j}=0$, we have
(4) $\sum_{y \in S_{j}} K(x, y) w(y)=-w\left(y_{1}\right)-w\left(y_{2}\right)=-2 w\left(y^{*}\right)=-d^{-1} F\left(\mu_{1} ; k\left(x^{*}\right)+1\right)$.

Combining (3) and (4), we have in any case

$$
\sum_{y \in S_{j}} K(x, y) w(y)= \begin{cases}\frac{d-k\left(x^{*}\right)}{d k\left(x^{*}\right)} F\left(\mu_{1} ; k\left(x^{*}\right)+1\right), & \text { if }\left|v_{j}\right|=\mu_{1} \\ -\frac{1}{d} F\left(\mu_{1} ; k\left(x^{*}\right)+1\right), & \text { if }\left|v_{j}\right|<\mu_{1}\end{cases}
$$

Since Card $\left\{j ;\left|v_{j}\right|=\mu_{1}\right\}=k\left(x^{*}\right)$,

$$
\begin{aligned}
& \sum_{y \in Y} K(x, y) w(y)=\sum_{j=1}^{d} \sum_{y \in S_{j}} K(x, y) w(y) \\
& =k\left(x^{*}\right) \frac{d-k\left(x^{*}\right)}{d k\left(x^{*}\right)} F\left(\mu_{1} ; k\left(x^{*}\right)+1\right)-\left\{d-k\left(x^{*}\right)\right\} d^{-1} F\left(\mu_{1} ; k\left(x^{*}\right)+1\right) \\
& =0
\end{aligned}
$$

Therefore, w is a flow from $\{0\}$ to ∞.
(iv) Finally, we show that if $1<p<d$ and $1 / p+1 / q=1$, then

$$
\sum_{y \in Y} w(y)^{q}<+\infty .
$$

If $y \sim y^{*} \in Y^{*}$ and $a\left(y^{*}\right)=\left(\mu_{1}, \ldots, \mu_{\mathrm{d}}\right)$, then $\mu_{1}=\|a(y)\|$. Hence if $j\left(y^{*}\right)=1$ and $\mu_{1} \geqq 1$, then

$$
w(y)=w\left(y^{*}\right)=(2 d)^{-1}\left(2 \mu_{1}+1\right)^{1-d} \leqq(2 d)^{-1}(2\|a(y)\|-1)^{1-d}
$$

and if $j\left(y^{*}\right)>1$, then $\mu_{j\left(y^{*}\right)} \leqq \mu_{1}-1$, so that by virtue of (2),

$$
\begin{aligned}
w(y)=w\left(y^{*}\right) & =(2 d)^{-1}\left(2 \mu_{j\left(y^{*}\right)}+1\right) F\left(\mu_{1} ; k\left(a\left(y^{*}\right)\right)+1\right) \\
& \leqq(2 d)^{-1}\left(2 \mu_{1}-1\right)\left(2 \mu_{1}-1\right)^{-d}=(2 d)^{-1}(2\|a(y)\|-1)^{1-d} .
\end{aligned}
$$

Now let $T_{n}=\{y \in Y ;\|a(y)\|=n\}, n=0,1, \ldots$. Then $Y=\cup_{n=0}^{\infty} T_{n}$. For each $x \in X$ with $\|x\|=n$, there are at most $2 d$ elements y in Y such that $a(y)=x$. Hence,
$\operatorname{Card} T_{0}=2 d \quad$ and $\quad \operatorname{Card} T_{n} \leqq 2 d \operatorname{Card}\left(X_{n}-X_{n-1}\right), \quad n=1,2, \ldots$.
On the other hand, Card $X_{n}=(2 n+1)^{d}$. Hence

$$
\operatorname{Card} T_{n} \leqq 4 d^{2}(2 n+1)^{d-1}, \quad n=1,2, \ldots
$$

Therefore

$$
\begin{aligned}
\sum_{y \in Y} w(y)^{q} & =\sum_{n=0}^{\infty} \sum_{y \in T_{n}} w(y)^{q} \\
& \leqq 2 d(2 d)^{-q}+\sum_{n=1}^{\infty} 4 d^{2}(2 n+1)^{d-1}(2 d)^{-q}(2 n-1)^{(1-d) q}<+\infty
\end{aligned}
$$

since $p<d$ implies $d-1+(1-d) q<-1$.
(v) Now the statement of (II) follows from [1, Theorem 4.3].

Reference

[1] M. Yamasaki, Parabolic and hyperbolic infinite networks, this journal., 135-146.

