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1. Introduction

Our objective is to treat the nonlinear functional differential equation

(1.1) *(0 = /(*, x(0) + F(t, x,), t > s > 0

x(s) = h 6 //, xs = φ 6 L*(- r, 0; #)

by means of the theory of nonlinear evolutions in Banach spaces. The notation
of (1.1) means that H is a Hubert space, l<p<oo, 0<r<oo, x: (s —r, oo)-»//,
/: [0, oo)x//-»#, F: [0, oo)xL*(-r, 0; #)-»#, and xr6L*(-r, 0; H) is de-
fined by xf(θ) = x(f + θ) for — r<θ<0. The equation (1.1) may be formulated
as the abstract ordinary differential equation

(1.2) du(t)/dt = -Au(t)-B(t, «(ί)), t > s > 0

u(s) = xeX

in the Banach space Xd=Lp(-r, 0; H)xH. The notation of (1.2) means w :
[s, oo)-»X, ^: X->X such that — y4 is the infinitesimal generator of a strongly
continuous semigroup of linear operators in X, and B: [0, oo) x X^X such that
J5(ί, .) is nonlinear. By converting (1.1) to the form (1.2), we will be able to take
advantage of the extensive theory which has been developed in recent years for
nonlinear evolution equations of the form (1.2). The special semi-linear form
of (1.2) will allow us to state explicitly the relationship between the solutions of
(1.1) and (1.2).

There is a growing literature associated with the treatment of functional
differential equations as abstract ordinary differential equations in function spaces,
and some recent papers on this subject are listed in our references. Our work
continues the investigations of [17], [18], and [19], where (1.1) was treated with
F independent of t and r<oo. In the present study we will allow the case that
r=oo, so that we may treat nonlinear Volterra integral equations of the form
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(1.3) x(0 = XO + [g(t-τ, x(τ))Jτ, ί > 0.
Jo

The semigroup approach to linear Volterra equations has been explored in [1],
[3], and [13]. As an application of our theory we will obtain new stability in-
formation for the equation (1.3).

2. An abstract theorem

For a Banach space X the duality mapping J: X->2X* is defined by

(2.1) jeJ(x) iff <xj> = ||x||2 = \\j\\* for xeX.

The (nonlinear) operator A: X-+X is accretive iff

(2.2) for all x, y e D(A) and some j e J(x — y),

<Ax-Ay,j> > 0.

THEOREM 2.1. Let X be a Banach space and let ω be a real constant.
Let A: X-*X such that —A is the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators T(t)9 ί>0 in X. Let B: [0, ao)xX-*X
such that B is continuous, everywhere defined, and maps bounded sets into
bounded sets. Let A + B(t, ) + ωI be accretive for each ί>0. Then for each
xeX and s>0, there exists a unique continuous function u: [s, oo)->X satisfy-
ing

(2.3) ιι(0 = T(t-s)x- f Y(f-τ)B(τ, ιι(τ))dτ, t > s.
J s

If we define U(t, s)x = u(t) as in (2.3), then the family of (nonlinear) operators

U(t, s), ί>s>0 satisfies

(2.4) U(s, s)x = x;

(2.5) U(t9 5) = U(t9 r)U(r, s\ t > r > 5;

(2.6) U(t, s)x is continuous as a function in tfor x and s fixed and t>s;

(2.7) \\U(t9s)x-U(t9s)y\\^^^\\x-y\\ for ί > s > 0 and x, yeX.

If, in addition, B is of the form B(t, x) = C(x) + c(0 and C(0) = 0, then

(2.8) ||l/(f,s)jc|| ^β»<f- )||jc|| + (W-T)|c(τ)|dτ, t > s > 0, xeX.
Js

The equation (2.3) is the integrated form of equation (1.2). Several authors
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have treated the existence problem for equation (2.3), among them [6], [11],
[12], [14], and [16]. The version of Theorem 2.1 which we have stated here is
slightly different from those found in the above references, but may be established
readily using the methods of these references.

3. Functional differential equations as abstract ordinary differential
equations

Let H be a Hubert space with norm | | and inner-product (,). Let 1 <p < oo,
0<r<oo, and let α e R . We will formulate equation (1.1) as equation (2.3)
in the Banach space

(3.1) Xd=L*>(-r, 0; H\ μ) x #, where dμ(θ)d=e-P*θdθ, with norm

The introduction of the weight function e~pxθ in the norm of X will allow us to
obtain stability information about the solutions of (1.1). The duality mapping
for X is given by

(3.2) if {φ9 h}eX, then j e J({φ, /?}), where j is defined at {ψ, k}eX

by <{ιMU> = \\{Φ,h}\\2->°

(see [17], Proposition 2.1). We will let πl and π2 be the projections on X de-

fined by nί{φ, h} = φ and n2{φ, h} = h.

We require the following hypotheses on /and F in (1.1):

(3.3) / : [0, oo) x H-+H such that/is continuous, maps bounded sets into bound-
ed sets, and for each t > 0, — /(ί, ) + γI is accretive in H, where 7 is a real
constant;

(3.4) F: [0, oo) x L*(-r, 0; H\ μ)-+H, where p> 1, α= fy+ 1/p, dμ(θ)d=e~PΛθdθ9

F is continuous, F maps bounded sets into bounded sets, and for each
ί>0, F(ί, .) is Lipschitz continuous with Lipschitz constant <β, β some
positive constant.

Let X be defined as in (3.1) and define A: X-*X by

(3.5) D(A) = {{φ, h}eX: φ is absolutely continuous on bounded intervals
of (-r, 0], φ'eLP(-r, 0; H; μ)9 and φ(0) = h]

} = {-φ',0} for {φ,h}eD(A).
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Define B: [0, ao)xX-+X for all ί>0, {φ, h}eXby

(3.6) B(ί, {φ, h}) = {0, -/(f, fι)-F(f, φ)} .

The proposition which follows establishes that A and B as defined above
satisfy the hypothesis of Theorem 2.1. In the proof we will use the following
elementary inequality :

(3.7) abP~l < w(p)(a* + bP), a > 0, b > 0, p > 1, where w(p) = (p-iY/qlp
if p > 1, l/p+ 1/4 = 1, and w(p) = 1 if p = 1.

PROPOSITION 3.1. Let (3.3) and (3.4) /ιoJd, to X be defined as in (3.1)
wϊf/ t α = y-f 1/p, /eί ^4 fre defined as in (3.5), /eί B fee defined as in (3.6), and /eί
ω = a + w(p)β.

Then the hypothesis of Theorem 2.1 is satisfied.

PROOF. For ί>0 define the linear operator T(t) in X as follows:

(3.8) (^nOW, Λ})(θ) = φ(ί + β) for a.e. 06(-r, -ί)

(nlT(f){φ, h})(θ) = Λ for a.e. θe(-ί, 0)

It is easily verified that T(ί), ί>0 is a strongly continuous semigroup of bounded
linear operators in X. We will show that —A is the infinitesimal generator of

Γ(ί), ί>0. Let X t be the infinitesimal generator of Γ(ί), ί>0. If A is real and
sufficiently large, then for all {φ, h} eX

(3.9) (λl-AJ^iΦ, h} = (VAβ Γ(s){0, Λ}Λ
Jo

(see [4], Theorem 11, p. 622). From (3.8) we have for a.e. 0e(-r, 0),

(3.10) (π1^e'^T(s){φ9h}ds^(θ)

θ "> e~λshds
θ

and

, h}ds = h/λ.

Define X: *->X by K{φ, h} = {λφ-φ', λh} with £>(£) = D(,4). Using (3.9)
and (3.10) we see that (λl-AJ-^K^I on D(A) and X(λ/-^1)-1=J on X.
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Thus, K = λI — Al9 which implies that Av= — A.

From (3.3) and (3.4) it is clear that B is continuous, everywhere defined, and
maps bounded sets into bounded sets. It remains to show that A + B(t, ) + ω!
is accretive for each ί>0. Let {ψ1? hj, {φ2, h2}εD(A\ let φ = φί-φ29 let
h = hί-h2, and let j e J({φ9 h}) as in (3.2). Then, using an integration by parts
and (3.7), we obtain

t, .y>{φ29h2},j>

= \\{Φ> h}\\

II {0, Λl

and the proof is complete.
By virtue of Theorem 2.1 there is a unique solution w(f)=l/(ί, s){φ, ft} to

(2.3). Our goal will be to show that the solution x(t) to (1.1) is given by

(3.11) x(t) = φ(t-s) for a.e. ίe(s-r, s)

x(f) = π2U(t, s) {φ9 h} for t > s.

We must first establish a certain "translation property" of the function x(t).

PROPOSITION 3.2. For {φ, h} eX, ί>s>0, and x: (s-r, oo)-»X as in

(3.11),

(3.12) xt = πlυ(t,

PROOF. If we can establish

(3.13) (π1l/(ί,5){0,A})(β) = 0(ί-s + fl) for a.e. fle(-rf s-f
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(3.14) ( π 1 U ( t , s ) { φ , h } ) ( θ ) = π2U(t + θ,s){φ,h} for a.e.

θe(s-ί, 0),

then (3.12) will follow immediately. Let k: [s, oo)-+H be the continuous function
k(t)=f(t, π2U(t, s}{φ, h}) + F(t, πιU(t, s){φ, h}). Using (3.8) we observe that

(3.15) ('πιT(ί-τ){0, k(τ)}dτ
Js

τHO, fc(τ)}χ(_r>τ_() + πιT(ί-τ){0, fc(τ)}χ(t_t>0)Wτ

= \(Qχ(-r>τ-t) + k(τ)χ(τ-.tf0))dτ
Js

= \ k(τ)χ(τ-t)())dτ.
Js

Then, for a.e. θe(-r, s-t), (3.13) follows from (2.3), (3.8), (3.15), and

(71,1/0, sΠΦ, h})(θ)

= (πιT(t-s){φ,

Also, for a.e. 0e(s-f, 0), (3.14) follows from (2.3), (3.8), (3.15), and

(π,ί/(ί, s){φ, h})(θ)

= (πίT(t-s){Φ, h})(θ)+(\ι'πlT(t-τ){0, k(τ)}

k(τ)dτ

Γt+θ
, h} + \ π2T(ί + θ~τ){0, k(τ)}dτ

Js

= π2U(t+θ,s){φ,h}.

PROPOSITION 3.3. Let f satisfy (3.3), let p>l, let α=y + l/p, /eί X be
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defined as in (3.1), let F satisfy (3.4), and let ω = α + w(p)j8. // {0, /ι}eX and
s>0, then the unique solution of (I A ) is given by (3.11). Moreover, if {φ, h},
{φ9 h} e X, and x(t), x(t) satisfy (1.1) for {φ, h}, {φ, h}, respectively, then for
t>s

(3.16) WO-*(OI < e«^\\{φ, h}-{φ, h}\\ ,

(3.17) l |Xr-ΛrllLP(-r.O;H; μ) < ̂ '̂  II «>, h} - {φ, h}\\ .

Finally, iff, F are of the form f(t, Λ) + F(ί, φ)=f(h) + f(φ) + c(t)9 w/zm>/(0) = 0
and F(0) = 0, then the solution x(t) o/(l.l) satisfies

(3.18) |x(ί)| < *»<'- >||{ψ, Λ}|| + -τ>|c(τ)|dτ, ί > 5,

(3.19) ||x(||t,(-r,o:H:μ) < βω<'-s)||{0, λ}|| + ('-*>|c(τ)|dτ, ί ̂  s.
Js

PROOF. Using (2.3), (3.8), and (3.12), we have that for ί^s

= π2T(t-s){φ, Λ}-J|π2T(ί-τ)B(τ,

τ, π2t/(τ, s){φ, Λ}) + F(τ, π,l/(τ, s){ψ, Λ}))dτ

(τ, x(τ)) + F(τ, χt))dτ.

Since /and F are continuous, x(t)=f(t, x(t)) + F(t, xt) for ί>s. Further, x(s) = /ι
and x^TΓjl/Cs, s){φ, /z} = ψ by (2.4). The estimates (3.16), (3.17), (3.18), and
(3.19) follow directly from (2.7) and (2.8).

REMARK 3.1. The family of evolution operators U(t, s), f>s>0, describes
the evolution of the solution x(t) of (1.1) in the sense that {xt, x(t)} = U(t, s){φ, h}.
The estimates (3.16) and (3.17) yield the continuous dependence of the solutions
of (1.1) upon the initial data {φ, h}.

4. An application to nonlinear Volterra integral equations

As an application of the preceding development we will treat the nonlinear
Volterra integral equation (1.3). We make the following assumptions on the
nonlinear kernel g : [0, oo) x H-+H:

(4.1) 0(0, •) is continuous, maps bounded sets into bounded sets, and —0(0, .)
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-f yl is accretive in H, where y is some real constant;

(4.2) g is continuous, g is differentiable with respect to its first variable, gl is

continuous, and there is a real- valued function b on [0, oo) such that

\0ι(t, Ό-0ι(f, k)\<b(t)\h-k\ for ί>0, h,keH;

(4.3) for some p>i and α= f y+l/p, either (p(&(s)e-βO*<fcY/β=fj8<oo if

Jp>l, or esssups^0&(s)e~αsd=fβ<oo if jp=l (where l/p+l/g = l).

PROPOSITION 4.1. Let g: [0, oo)x//->/ί sαfΐs/> (4.1)-(4.3) and /eί ωd=α
+ w(/?)j5. If gί(t,ty = Q for ί>0 and >>: [0, oo)-># is continuously differ-

entiable, then there is a unique solution x(t) to equation (1.3). //, in addition,
0(0, 0) = 0, ω<0, and

eω(t~τ)\y(τ)\dτ < oo, then x(f) is bounded on [0, oo).
o

PROOF. Define f ( h ) = g(Q, h) for h eH and define F(ί, ^) = K

φ(τ))έ/τ for (ί, φ) e [0, oo) x L*(- oo, 0; H; )̂, where dμ(ff) = e~PΛθdθ. By virtue

of (4.1) / satisfies (3.3) and by virtue of (4.2), (4.3), and the continuity of y, F
satisfies (3.4). Thus, we can apply Proposition 3.3 and the unique solution x(f)

of (1.1) is given by (3.11). If we take s = 0 and {φ, /?} = {0, χθ)}, then the hy-
pothesis that g^t, 0) = 0 for ί>0 yields

x(0=/(f,x(0) + *"(*,*,)

Since x(0) = Λ = χθ), x(ί) is also the unique solution of (1.3). The last statement
of the proposition follows from (3.18).

REMARK 4.1. Suppose C is a linear operator from H to H (possibly un-

bounded) and λ is in the resolvent set of C. Let j>: [0, oo)-># and £: [0, oo) x

H-+H such that yά=(λl -€)-*$ and gά=(λI-CΓ*θ satisfy the hypothesis of
Theorem 4.1. The equation (1.3) becomes

λx(t) =

PROPOSITION 4.2. L^ί 0: [0, oo)xH->H sαίis/v (4.1)-(4.3), to ω=fα +
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w(p)/?, and let dμ(Θ) = e~pΛθdθ. If y: [0, oo)->// is continuously differentiable

andfort>Q

K O = Γ g^t-τ.φ^dτ for some 0el*(-oo, 0; H\ μ),
J-oo

(4.4)

then there is a unique solution to (1.3). //, in addition, 0(0, 0) = 0, ^(f, 0) = 0
/or f>0, and ω<0, then the solution x(t) of (1.3) converges exponentially to 0

as ί->oo.

PROOF. Define f ( h ) = 0(0, /ι) for heH and define F(ί, φ)=\° ^(-τ,
J-oo

φ(τ))dτ for (ί, 0)e[0, oo)xLp(-oo, 0; H; μ). As in the proof of Proposition

4.1 /and F satisfy (3.3) and (3.4), respectively. Again we may apply Proposition

3.3 to obtain a unique solution x(t) to (1.1) given by (3.11). If we take {φ, h}
= {φ, XO)}, where φ is as in (4.4), then the argument of Proposition (4.1) demon-

strates that x(t) also satisfies (1.3). The last statement of the proposition follows

from (3.16), using the fact that the solution of (1.1) with {φ, π} = {0, 0} is x(t)
= 0, t>-r.

REMARK 4.2. //(4.1)-(4.4) are satisfied, then the family of evolution opera-

tors U(t, s), ί>s>0, is actually a semigroup of operators, S(ί), ί>0, where U(t, s)
= S(t — s). This observation follows from the fact that B is autonomous, that is,

B(t, {φ, /z}) = {0, —f(K) — F(φ)} does not depend on t. In this case we have that

the evolution of the solutions of (1.3) is given by {xί? x(t)} = S(t){φ, XO)}, ί>0.
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