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Introduction

Persson and Pietsch [5] introduced the concepts of p-nuclear and p-quasi-
nuclear mappings in Banach spaces. These concepts were recently extended in
Miyazaki [4] to (p, q)-nuclear and (p, g)-quasi-nuclear mappings by usih'g the
sequence spaces [, ,. On the other hand, these were extended in Ceitlin [1]
to (Z, p)-nuclear and (Z, p)-quasi-nuclear mappings. The object of this paper
is to extend these two kinds of concepts to (Z, A)-nuclear and (Z, /I)-quasi}nu(:lehi'
mappings in Banach spaces by making use of abstract sequence spaces A In
case 1<p<oo, 1<g<w, if A=1,, and Z is one-dimensional, a (Z, A)-nuclear
mapping coincides with a (p, g)-nuclear mapping, and if A=1, a (Z, 2)-nuclear
mapping coincides with a (Z, p)-nuclear mapping. We shall also extend the
notion of nuclear spaces to Z-nuclear spaces by using (Z, l,)-nuclear mappings
introduced by Ceitlin [1]. We see that the tensor product of a nuclear spacé and
a Banach space Z is Z-nuclear, and thus the space S(R", Z) of rapidly decreasing
functions defined in R* and valued in Z is a Z-nuclear space.

In Section 1, we define the sequence space 4 of type A and of type 4, in such
a way that [, , is a space of type A, for 1 <p< o0, 1<g< 0o and is a space of type
A for g% 00. In Section 2, we introduce the space A(Z) and consider the: dual
space of A(Z). Section 3 is devoted to studying (Z, A)-nuclear mappings and
Section 4 to studying (Z, 1)-quasi-nuclear mappings. We investigate Z-nuclear
spaces in Section 5.

§1. Notations and Definitions
‘Let E and F be Banach spaces. We shall denote by L(E, F) the space of
continuous linear mappings T from E to F with the usual mapping norm

[Tl = sup |Tul.
llull<1

We denote by K(E, F) the space of compact mappings and by L%(E, F) the space
of mappings of Z-finite rank. Here Te L3(E, F) means that it can-be written
in the form
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Tu =37 BAu foreach ueE

with {4;} = L(E, Z) and {B;} =L(Z, F), where Z is a Banach space.

Now we start with the sequence space C, of all scalar sequences converging
to zero in which an extended quasi-norm p is given. We shall then define the
sequence space Ac=C, to be the space consisting of all x € C,, such that p(x) < co.
We shall denote the extended quasi-norm p by |- ||,. We assume that A is a non-
zero space satisfying the following conditions:

(@) If for any u=(uy,..., u,,...) €L we set u'=(uy,..., u;, 0,...) fori=1, 2,...,
then |ju—u'||,—0 as i—co.

(b) |-, is absolutely monotone, i.e., |u;|<|v;| for all i imply |u|,<|v];.

(c) 4 is a K-symmetric space. That is, if u, is the sequence which is
obtained as a rearrangement of the sequence u corresponding to a permutation
7 of the positive integers, then ||u||,=|u,|, for each u e A and each .

(d) For any u=(uy,..., u,,...)€A, let v be its subsequence (u;,,..., u;,...)
such that u;=0 for any j=xi, (n=1, 2,...). Then |v|;=]ul;.

We say the above A to be a space of type A, and if A satisfies only the
conditions (b), (c), (d), then we say A to be a space of type A,. We remark that
l,,1s a space of type A, for 1<p<o0,1<q< o0 and is a space of type A for
q > oo (Proposition 3 in [3]).

We denote by A’ the topological dual of 4. A’ is a Banach space. If 1 is
of type 4, then A’ is realized as a sequence space.

§2. The dual space of 2(Z)
We begin with the following

DEerFINITION 1. Let A be of type Ay and let Z be a Banach space. Then
A(Z) is the space of zero sequences (u;) with values in the Banach space Z such
that

[@)llazy = IClusdDIl
is finite. Then ||(u)|l 1z is a quasi-norm in A(Z).

DEFINITION 2. Let A be of type A and let Z be a Banach space. Then
A(Z') is the space of sequences (u}) with values in the Banach space Z' such that

@ azy = NCuilDN
is finite. Then (Ul 1z is a norm in A'(Z’).

THEOREM 1. Let A be of type A, and complete and let Z be a Banach space.
Then A(Z) is complete.
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Proor. Let (u{")e A(Z) and

lim “(“g")—ug"))”A(Z) = 0.
My V0
Then for each iu{" is a Cauchy sequence in Z. Hence there exist u;e Z (ie N)
such that

u; = limu{”  for each i.

v =00

Since {(||u¢{"])} is a Cauchy sequence in A and since A is complete, {(Ju{*|)}
converges to (a;) € 4, and (a;)=(||u;]). Hence (u;) € A(Z). If we put

o) = Juf?—ul

{(¥{")} is a Cauchy sequence in A. Since A is complete, {(v{"))} converges to
0, 0,...). Therefore {(u!")} converges to (u;) in A(Z). The proof is complete.

DEFINITION 3. Let A be of type A, and complete and let Z be a Banach
space. Then Ao(Z') is the space of sequences (u;) with values in the Banach space
Z' such that for every (u;)€ A(Z) the series > 2 ,ui(u;) converges. The norm
|- 1% in 25(2") is given by

I@Dl = sup |ZiZ, uiu)l.
[(u)llacz)<1

We show that [[(u})|| <oco for all (u})eAy(Z') and ||. ]9 is a norm. In
fact, if (u}) e Ao(Z’), then (u;) can be considered as the linear form f on A(Z)
defined by f((u,))=> %, uj(u;). Define a sequence {f,} of linear forms on A(Z)
by f,(u))=X 1, uj(u;). It is easy to see that each f, is continuous. Further-
more {f,} converges to f at each point of A(Z). Since A(Z) is a complete quasi-
normed space by Theorem 1, from the Banach-Steinhaus Theorem it follows that
fis continuous and ||(u})||2-=|lf]. Hence ||.|¢. is a norm.

PrOPOSITION 1. Let A be of type A and complete and let Z be a Banach
space. Then the dual space of M(Z) is norm isomorphic with Ay(Z’), where a
sequence (u}) in Ao(Z') is identified with the linear form f defined by

(1) f(@)) = iz ui(w)  for each (u)eA(Z).

Proor. Let (u})€Ay(Z’). Then the linear form f defined by (1) is con-
tinuous and | f]=|(u})|$-, which we have already shown in the paragraph after
Definition 3. Conversely, let fe A(Z)'. If for each ie N we define u; by

wiw) = £(Q....,0, 4,0,..)) foreach ueZ,

then u}e Z’. If for any (u;) € M(Z), we put u"=(uq,..., u,, 0,...), then
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u" — (u;) (n— ) in A(Z)
by the condition (a). Hence we have
S (@) = f(lim ur)
= lim f(u")

= lim 37 wiuy)
n—o

= 2 uiu).
Consequently we have
(u7) € 4o(Z")
and
1A= @)L

The proof is complete.

THEOREM 2. Let A be of type A and complete and let Z be a Banach space.
Then the dual space of MZ) is norm isomorphic with A'(Z'), where a sequence
(u}) in A'(Z") is identified with the linear form f defined by

S(u)) = X5z, ui(uy) Jor each (u;) e A(Z).

Proor. Since A(Z)' is norm isomorphic with A5(Z’) by Proposition 1,
we have only to prove that 1'(Z") and 1y,(Z’') are norm isomorphic. Let (u})e
A(Z"). Then, for any (u;) € A(Z)

2 lui@)l < 1l szl @l vz < 0,
from which it follows that (uf) € Ao(Z’) and [[(u)|2 <UDl zz) Thus we have
N(Z) e io(Z) and |2 < |- lw)-
On the other hand, let (u}) e A;(Z'). Put
, uif|uil for u;x0
i=[ 0 for u;=0

and o;=|lujfl. Then, uj=o.e; foreach ie N. For any £¢>0, if ¢;0, there exists
an e¢;€ Z such that ||¢;]|=1 and ej(e;)>1—¢. If e;=0, we put ¢;=0. Then, for
any (&) € A with ||(£)]l;<1 we have
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TR G < 1/(L—e) T2 |oei(Ee)l

<1/(1—-e)  sup 21 luiuy)
I(u)llaz)s1

= 1/(1—e&) [|(u)Il?-.
Thus we have
oZ)<cXN(Z) and ||y <13

This completes the proof.

§3. (Z, 2)-nuclear mappings

We shall define (Z, A)-nuclear mappings as follows.

DEFINITION 4. Let A be of type A and let E, F and Z be Banach spaces.
Te L(E, F) is said to be a left (Z, A)-nuclear or simply (Z, A)-nuclear (resp.
right (Z, 2)-nuclear) mapping, if T can be written in the form

2) Tu=Y%2,BAu  foreach ueE

with {A;} < L(E, Z) and {B;} < L(Z, F) such that

I AiIDI: < oo
and sup (1 Biv' DIl <
(PR3
(resp. sup (| AuiDll; < o0
llull<1t
and Il BiD1; < o0,

where Bj is the adjoint mapping of B;. We denote by N, ,(E, F) (resp. N%:4E, F))
the collection of (Z, A)-nuclear (resp. right (Z, A)-nuclear) mappings. The
quasi-norm (as proved later) is defined by

vz, (T) = inf (| (I 4:IDI] 1 Sup 1Kl Bz DN 2)
(resp. v&4(T) = inf( Sup, ICHAz D 1B L) 5

where infimum is taken over all representations (2) of T.

REMARK. In case I<p< o, I<q<oo, if A=1,, and Z is one-dimension-
al, a (Z, X)-nuclear (resp. right (Z, X)-nuclear) mapping coincides with a (p, q)-
nuclear (resp. right (p, q)-nuclear) mapping introduced in Miyazaki [4], and
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if A=1, a (Z, A)-nuclear mapping coincides with a (Z, p)-nuclear mapping
introduced in Ceitlin [1].

For Te N ,(E, F) and for each u € E, the series (2) is convergent. In fact,
for any finite set J of positive integers and for each u € E we have

| X BiAull < sup 3 [[Aul - ||Bi’||
ieJ o' l|I<1 ied
< llull - IC)llz- sup NCIB DG,
florli<1

where
4, for ielJ
o =
0 for i&J.

Let ¢ be any positive number. Since [(||4;[)]|;<o0, by the condition (a) of 4
there exists an integer p>0 such that

”(O;'-': 09 “Ap”:' ||Ap+1“’--~)“/l <e.
For J={p, p+1,..., q}, by the condition (b) of 4 we have
[0,..., 0, ap,..., 24, 0,...)[1; < .
It follows that

| ¥ BAu|| < C.¢ with a constant C.
iel

Hence the series (2) is convergent. A similar fact is valid for Te N2:*(E, F).

PROPOSITION 2. Let A be of type A, let E, F and Z be Banach spaces and
let Te Ny (E, F) (resp. Te N4:%(E, F)). Then

ITI <vzAT)  (resp. [T| <v*XT)).
Proor. If Te Ny ,(E, F), we have
I Tull < flull - ICHADN - ,Sup, B DN -
Therefore we have

ITH < inf (ICHA:ID - ,Sup, ICIB" D1 2) 5

where infimum is taken over all representations (2) of T. The proof is com-
plete.

PROPOSITION 3. Let A be of type A and let E, F and Z be Banach spaces.
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Then if Te N, (E, F), its adjoint T' belongs to N2:(F’, E') and it satisfies
VESAT) < vz (T).

Furthermore, assume E, F and Z are reflexive. Then if T' e N2"*(F', E'),
we have

Te Ny 4(E, F)

and
VESHT') = vz (T).
Proor. If Te Ny ,(E, F), then for any £>0 it can be written as
Tu =32 B;Au foreach ueE
with

AN sup (1B DIz < vz,A(T)+e.
llo'li<t

Hence we have
TV = Y2, A,Bv' foreach v eF’
and we have

vERHT) < NI AiDN - ,Sup, ICIB3 DN 2 < vz,(T) +e.

Therefore we have
VELNT) < vy T).
When E, F and Z are reflexive, in the same way T’ e NZ-4F’, E') implies
Te Ny ,(E, F)
and
vz,l(T) < V2" XT").
Thus
vz, (T) = v2XT").
This completes the proof.

THEOREM 3. Let A be of type A, let E, F and Z be Banach spaces and let
T,€ Nz E, F) for k=1,2,..., M, M being a positive integer. Then >} T,
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€N, (E, F) and
V(XK T) < CM L M. (ZM vz (T,

where. C is a constant.
A similar statement holds for elements of N2'*(E, F).

ProoF. For any e>0 T, can be written in the form

T;‘u = Z?;lBk,iAk’iu, k = 1, 2,..., M

with
{4;,} €« L(E, Z) and {B,;} < L(Z, F)
such that
I AxlDill 2 < 1
and

Sup B Dl < vz i(T)+ef2h, k=120, M.

Hence we have
I ArilDigeln < CH=1 R I ArilDill 2
L CM-1. M,
where C is a constant. On the other hand, we have

sup (|(IB, 0" il < XXy sup (1B, 0" Dill -
llerlist flerli<1

< T vz (To+e.
Thus we have
vz (R T) S CM L M (e vz, (To) +e).
Since ¢ is arbitrary, this completes the proof.

PrOPOSITION 4. Let A be of type A and let E, F, G and Z be Banach spaces.
If Te N, ,(E, F) and S € L(F, G), then STe N, ,(E, G) and

VZ,}.(ST) < S| 'Vz,z(T) .
If Te L(E, F) and Se N ,(F, G), then STe NZJ(E, G)

and
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vz, (ST) < vz,u(8)-ITI.
The analogues for the mappings of N%:* are valid.

Proor. First let Te N, ,(E, F) and Se L(F, G). If S=0, the assertion is
trivial. So we assume Sx0. Then we have

STu = Y& ,SB;Au foreach ue€kE,

with
{A} < (E,Z) and {B} < L(Z, F)
such that
ICIA:DI . < o0
and

sup _ [I(ICSB)' W'D »
lg/<1

1wl

< |ISI- sup NCUBSI=ESWIDIL
lIwllg <1
< ISl- sup (1Bl < oo.
llullF <1
This implies STe N ,(E, G) and
vz (ST) < |IS]l - vz, (T).

Secondly, let Te L(E, F) and S e N ,(F, G). Then‘we have
STu = Y2 ,B;A;Tu  foreach ucE,

with
AT < NT0- 14D < o
and
sup [I(IIB;w' DIl < 0.
Iwller<1
Hence
STe N4 ,(E, G)
and

Vz,(ST) < vz ,(S) | T .
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This completes the proof.

PROPOSITION 5. Let A be of type A and let E, F and Z be Banach spaces.
Then L4(E, F) is dense in N ,(E, F) and N?-XE, F).

ProoF. Let Te N, ,(E, F). Then Tu=3Y 2, B;Au for each ueE, with

(4Dl < oo

and
Higllll;lll(llﬂév'll)lly < .
If we set
T = Y% BAu,

we obtain

T,e L§(E, F)
and

(T— 7-;c)u = Z?c’:IBk.,.;Ak.,,iu fOI‘ eaCh uEE‘
Consequently we have

vz (T—To < ll(llAk+iII)Ilz-||31|l'ls>l IC1Bi+ 0" D12 -

Owing to (a), this converges to 0 as k—»oo0. Hence L(E, F) is dense in N ,(E, F).
In the same way we can show that LZ(E, F) is dense in N%-*E, F).

COROLLARY. Let A be of type A, let E and F be Banach spaces and let Z
be a finite dimensional Banach space; then N ,(E, F)c K(E, F) and N%-XE, F)
<K(E, F).

LeEmMMA 1. Let A be of type A and a Banach space, let Z be a Banach
space, let (6;)€ A and let D, be the mapping from | (Z) into I(Z) defined by

Dy((a) = (;a) for each (a) el (Z).
Then
D; e N, (1,(2), (2))
and

Vz,;.(Dl) = 1G)ll1-
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PrOOF. Let I(2)=(0,..,0, 7, 0,.). Then I(z)eN(Z) for zeZ, since

@©, ..,0,1,0,...)eA. Hence I, is a mapping of Z into A(Z). Define A4;: I (Z)
—Z by Au=2a;a, for each u=(a;) el (Z). Then

I} =« LZ, X(2)), {4} = L((2), 2),
Du=3Y%,L,Au for each uel(Z),
IC1A:IDIL = 16125

and by Theorem 2

sup  [[(I150' DN = sup
<1 o’ llar

o' llacz)y (z)

A0 D = 1.
<1

Hence
Dy €Nz i(l(2), MZ)) and vz (D) < ()4
On the other hand, let I be (z, z,...) with ||z =1. Then we have
10112 = I1D11ll 3z < IDyll < vz,u(Dy),
where the last inequality follows from Proposition 2. Hence
vz,1(Dy) = 1161
The proof is complete.

THEOREM 4. Let ) be of type A and a Banach space and let E, F and Z
be Banach spaces. Then Te L(E, F) is (Z, A)-nuclear if and only if T can be
factorized in the form T=Q,D,P,:

E 21, 1.(2) -2, (2) 245 F,

where P, e L(E, l1,(Z)) with |P,||<1, Q, € L(AZ), F) with |Q,||<1 and D, is a
mapping of the type given in Lemma 1.

Proor. The sufficiency is evident by Proposition 4 and Lemma 1. The
necessity is proved by virtue of the definition of T'e N ,(E, F) and the following
decomposition of T. Since, for any £¢>0,

Tu =32 BAu
with
14Dz < vz,(T) +5,

and
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Sup B DI < 1,
we can get the decomposition of T':
E- 2y 1.(Z) 2 WZ) 25 F,
where for each u € E P,u=(v;) with
Aul| A, for 4;%0
"o for A, =0,
and
Di((a)) = (| 4lla;) e ((Z) for each (a)el (2),
Q.((b)) = X% ,BbeF for each (b)eA(Z).
It is easy to verify that |P,||<1. Furthermore we have ||Q,[|<1. In fact,

1221 Bibillp = sup | X2 ,0'(B;b))l
v’ lI<t

< sup X2, |Biv'(by)l
o li< 1

< (b))l 2z - ”'S)P”I; 1(Biv)l a2

< 1Bl acz) -
Thus the proof is complete.

LEMMA 2. Let A be of type A and a Banach space, let Z be a Banach
space, let (6;)€ A and let D,: A'(Z)—1,(Z) be defined by

D,((b)) = (6;b;))  for each (b)ei'(Z).
Then
D, e NZ:4N(2), 1,(2))
and
vEAD,) = (|8
Proor. If we define A4;: A'(Z)—»Z by Au=4b; for u=(b;) € A'(Z), we have
Dyu=3Y2 L, Au= 3% ,0,l,0;Au

with
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1/5, for & %0

& =
0 for §; =0,
where
I8N = 11(8Dl2 < o
and
o S0P, NG A < 1.
Hence
D, e N42(2), 1,(2))
and

v24(Dy) < 1)z

On the other hand, we have

161l 2 =” sup 1“(51"’.')”11(2)-

bi)llar(z)=

Hence for any £>0, there exists (b;) with |(b))]l;:zy=1 such that
10l —& < 1D((BD)1y2) -
Since
ID2((b)1y(zy < 1Dl
by Proposition 2 we have
Gl —e < vZ#4(D,).
Thus we obtain
1@N2 < v5A(Dy).
Consequently
v&4(Dy) = (B
The proof is complete.

THEOREM 5. Let A be of type A and a Banach space and let E, F and Z
be Banach spaces. Then Te L(E, F) is right (Z, 2)-nuclear if and only if T
can be written in the form T=Q,D,P,:
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E P2, )/(2) 22,1,(2) 2, F,

where P, € L(E, A'(Z)) with ||P,||<1, Q, € L(1,(Z), F) with ||Q,| <1 and D, is a
mapping of the type given in Lemma 2.

Proor. The sufficiency is evident by Proposition 4 and Lemma 2. The
necessity is proved by virtue of the definition of Te NZ-XE, F) and the following
decomposition of T. Since for any ¢>0 we have

Tu =% ,BAu
with
ICAB:DI2 < v&4T)+e
and

sup [|([l4ulDllz < 1,
llull<1

we can get the decomposition of T':
E P2, )/(Z) 22, 1,(Z) 2=, F,
where
Po,u = (Au)e V(Z) foreach u€kE,
D,((a)) = (|Billa)el,(Z)  for each (a;) €A (Z)
and for each (b)) € 1,(Z)
2:((b)) = XiZ.Cib;
with
B,/||B;ll for B;x0

C, =
0 for B;=0.

It is easy to verify that ||P,|| <1 and ||Q,[|<1. The proof is complete.

§4. (Z, 2)-quasi-nuclear mappings

In this section we shall introduce and investigate the (Z, A)-quasi-nuclear
mappings.

DEFINITION 5. Let A be of type A, and let E, F and Z be Banach spaces.
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Te L(E, F) is said to be a (Z, A)-quasi-nuclear mapping if there exists a sequence
{A;} = L(E, Z) such that

(4;N el
and
[Tull < (l4ulD),  foreach wuekE.

The inf ||(]| ;D] which is taken over all {A;} satisfying the above condition is
denoted by v3 ,(T). The collection of all (Z, A)-quasi-nuclear mappings is
denoted by N%, ,(E, F).

PrROPOSITION 6. Let A be of type A, and let E, F and Z be Banach spaces.
Then for any Te N% ,(E, F) we have

ITI < v8,«(T).
Proor. Let Te N2 ,(E, F). Then
I Tull < Nl - 0CHAIDN 2
Thus the proof is complete.

ProrosITION 7. Let A be of type A and let E, F and Z be Banach spaces.
Then we have

Nz (E, F) = N% i(E, F)
and
v3,u(T) < vz, (T)
for each Te N, ,(E, F).

ProoF. Te Ny ,(E, F) can be expressed as follows. For any &>0 there
exist sequences {A4;} = L(E, Z) and {B;} = L(Z, F) such that

Tu= 372 ,BAu for each wu€ekE,
1AL < vz (T)+e
and

sup [|(I1Biv' DIl < 1.
o<1

Therefore we have
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ITu] < sup i, ||Aul- | B
o<1
< I AuiD2- sup (B D 4
llo’lis1

< A4 Dl 4,
which shows Te N ,(E, F) and v% ,(T)<vz,(T). The proof is complete.

ProPoOsITION 8. Let A be of type A, and let E, F, G and Z be Banach
spaces. If Te N% ,(E, F) and Se L(F, G), then STe N%,,(E, G) and

v8,A(ST) < ||S||-v§,(T).
If Te L(E, F) and Se N$% ,(F, G), then STe N¢ ,(E, G) and
v8,2(ST) < v§ 4(S)- I T] .

Proor. If Te N ,(E, F) and SeL(F, G), there exists a sequence {4}
< L(E, Z) such that

(J4;)eA and || Tu|| < ||(|Aul)l, - foreach ueE.
Then
{ISl4} = L(E, Z),  (IS|l-ll4:lDel
and
ISTull < SN - [1Tull < ISI- 14D
= |I(IISII - 14Dl 2 foreach uekE.
Therefore we have
STe N% ,(E, G)
and
v3,:(ST) < |ISI|-v§,«(T).

In the same way, if Te L(E, F) and SeN$% ,(F, G), there exists a sequence {B;}
< L(F, Z) such that

(IB)l)eA and (Sv| < (IBwl)ll,  foreach wveF.
Therefore we have

ISTu) < |I(I|B;Tul)ll foreach uekE
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and
ICBTIDN: < ITH- 1B 2 < oo,
that is,
(IB;Tl) €A
Consequently we have
STe N% ,(E, G)
and
VvA2AST) <v§ (8- IIT] .
The proof is complete.

THEOREM 6. Let A be of type A,, let E, F and Z be Banach spaces and
T,e N ,(E, F), k=1,2,...., M. Then Y} T, € N ,(E, F) and

V8 AT T) < M.CH-1 . (2M V8. A(T)).
Proor. For any >0 there exist sequences
{Aii}1<i<o < L(E, Z), k=1,2,.., M,
such that
(1 Aw,ilill 2 < v8,2(Ti) +&/2%
and
1Tl < (A0l foreach uekE, k=1,2,.,M.
Therefore we have
I(ZEToul < T, 1 Teull
< 2R (A Dill 2
< M| Akt 1Dl 4
Hence we have
VAL T) < M- AiilDell
<M. CME FR U AklDill 2
< M.CM-1 (T ] (T)+e).
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Consequently we have
2 Te N%A(E, F)
and
VEAZILT) S M.CY=1 (T V8, (T -
The proof is complete.

DEFINITION 6. A Banach space F is said to have the extension property
if each mapping T, € L(E,, F), E, being any linear subspace of an arbitrary
quasi-normed space E, can be extended to a Te L(E, F) preserving its norm.

PROPOSITION 9. Let A be of type A, let E, F and Z be Banach spaces, and
let us assume that F has the extension property. Then any (Z, A)-quasi-nuclear
mapping T: E~F is (Z, A)-nuclear, and

vz (T) = V%,A(T) .

ProoF. From the definition, for any &¢>0 there exists a sequence {4}
< L(E, Z) such that

[Tul < I(|[AuDll;  foreach ueE
and
IA:DI: < vE (T +e.

Let us denote by Q, the mapping from the subspace {(4u)|u € E} of A(Z) into F
defined by

Qo((Au)) = Tu.

Then we have ||Qy||<1. Thus, by our assumption there exists an extension Q:
MZ)—F of Q, with |Q| <1. If we define I;: Z—A(Z) such that

I(z) = 0,...,0, £, 0,...),

then Y {2 ,I;A;u is convergent in A(Z) by condition (a) for A and equal to (4;u).
Hence we have

Tu =3, 0LAu
and for each v' € F’

IR YDl = 1ALV DN
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= ”Q’v,“}.’(l’)'
By Theorem 2
NI V' DNz = 1QV | azy < V']

Therefore we have

sup [[(IQI)'v' DIl < 1

flv'li<1
and

vz,(T) < Vg (T)+e.

Owing to Proposition 7 we now obtain the conclusion of the proposition.

§5. Z-nuclear spaces

We first recall the definition of Z-nuclear mappings ([1]).

DEFINITION 7. Let E, F and Z be Banach spaces. Then Te L(E, F) is
said to be a Z-nuclear mapping, if T can be written in the form

Tu =32 ,BAu for each ueE
with
{A;} =« L(E,Z) and {B;} = L(Z, F)
such that
Z1ll 4l - 1Byl < oo,
that is, Tis a (Z, 1,)-nuclear mapping.

Let E be a locally convex space, let U be an arbitrary absolutely convex
neighborhood of zero and p, be the gauge of U. Then the quotient space
E/py1(0) is normable by the norm #i— ||fi| = py(u), where uefi. We shall denote
by E, the normed space (E/pg'(0), | -|) and by E;, its completion. Then the
quotient mapping is continuous on E into E~U This mapping will be denoted
by ¢y.

If E is a locally convex space and B=s ¢ an absolutely convex bounded subset
of E, then E,=\U% nB is a subspace of E. The gauge function pg of B in E;
is seen to be a norm on E;. Then the normed space (E;, pg) will be denoted
by Eg. It is immediate that the imbedding mapping y: Ez—~E is continuous.

If U and V are absolutely convex neighborhoods of zero in E with respective
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gauge functions p; and p, and such that UcV, then p;'(0)<py1(0) and each
equivalence class fl mod p;'(0) is contained in a unique equivalence class ?
mod py*(0) and i—p is a linear mapping ¢, ,, which is called the canonical
mapping of E; onto E,. It has a unique continuous extension of E{J into E,,
which is again called canonical and also denoted by ¢y .

We now generalize the notion of a Z-nuclear mapping to arbitrary locally
convex spaces E, F as follows.

DEeFINITION 8. A linear mapping T of a locally convex space E into another
locally convex space F is said to be Z-nuclear if there exist an absolutely
convex neighborhood of zero U in E and an absolutely convex bounded set B
in F with Fg complete such that T(U)<B with respect to which T can be then
decomposed in the form T=ygoTyop, with Ty e L(Ey, Fg) such that the mapping
Ty ofE{, into Fg induced by T, is Z-nuclear.

ProposiTION 10. Let E and F be Banach spaces. Then T:E—F is
Z-nuclear with E and F considered as Banach spaces if and only if Tis Z-nuclear
with E and F considered as locally convex spaces.

ProoF. Let T: E-F be Z-nuclear with E and F considered as Banach
~— ~
spaces. If we put U={x||x| <1} in E and B=T(U), then E,=E and Fy is
complete. T can be decomposed in the form

T = Yo Tody

with ¢, the identity mapping. Therefore T is Z-nuclear with E and F considered
as locally convex spaces. Conversely, if T is Z-nuclear with E and F considered
as locally convex spaces, T can be decomposed in the form

T = Y Toodus
where U and B are sets of E and F stated in the definition above and T, is Z-

nuclear of ENU into Fg. Therefore by Proposition 4 T is Z-nuclear when E and
F are considered as Banach spaces. The proof is complete.

THEOREM 7. Let E and F be locally convex spaces and let Z be a Banach
space. Then a linear mapping Te L(E, F) is Z-nuclear if and only if it can be
written in the form

Tu = 32, \B;Au for each ueeE,

where > 2,|A] <00, {A;} is an equicontinuous sequence in L(E, Z) and {B;}
is a sequence in L(Z, F) for which there exist a neighborhood of zero W in Z
and an absolutely convex bounded set B with Fg complete such that B{(W)<B
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foranyi=1,2,...
Proor. The condition is necessary. For, if T is Z-nuclear, then
T= WB°T0°¢U,

where T, is Z-nuclear in L(E\U’, Fp), U being a suitable neighborhood of zero and
B being a suitable bounded subset of F for which Fy is complete. Therefore Ty,
can be written in the form

Tot = Y2 ,B,Afi  foreach 1 EE(;
with
{43 < L(Ey, 2) and (B} = L(Z, Fp)
such that
2o 14l - 1Bl < oo.

That is, To=1(S) with S > lB ®A; eL(EU, Z)®L(Z Fpg), where t is the ca-
nonical mapping of L(EU, Z)®L(Z Fp) into L(EU, Fg). By virtue of Theorem
6.4 of [6], S can be written in the form

S=3Y2,4B ®4,
with
Z?O:IM'J < OO,

where {AN,-} and {E} are null sequences in L(EZ,, Z) and L(Z, Fpg) respectively.
Then {Z"fi’u} is equicontinuous in L(E, Z). Since {E} is a null sequence in
L(Z, Fp), there exists a neighborhood of zero W in Z such that lpBoE{(W)cB
for any i=1, 2,.... It is clear that the mapping T= ?‘;,AianoEoZo¢U is of the
form stated in the theorem.

The condition is sufficient. For, if T is as indicated in the theorem, let
U={uckE||A )| <1, ieN}. Then U is an absolutely convex closed neighbor-
hood of zero in E by the equicontinuity of {4;}. Defining Z (ie N) by Ai=Z'°¢u
on E; and the extension to ENU, we obtain ||>11-]| <1 forall i. Then T, is the map-
ping

f — T2, A5 oB) AR
with

Se Al IWateB)l - 4] < .
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Therefore T, is a Z-nuclear mapping. The proof is complete.

COROLLARY. Let E, F, G and H be locally convex spaces, let Z be a Banach
space, let Se L(E, F), let We L(G, H) and let T be a Z-nuclear mapping on F
into G. Then ToS and WoT are Z-nuclear mappings.

Proor. It is evident from Theorem 7 that ToS is Z-nuclear. By our as-
sumption, we have a decomposition of T as a sequence

F _¢vu Fy To Gp -4z, G,

where ¢, and Y are the canonical mappings, T, is Z-nuclear and B is an absolutely
convex bounded set in G for which Gy is complete. Since Gy is a Banach space
and since C= W(B) is an absolutely convex bounded in H, H is a Banach space.
In fact, the restriction W|Gg of Wto Gginduces an isometry J of the Banach space
Gg/(Ggn W=1(0)) onto Hc. Therefore H¢ is a Banach space. Finally, we have
a decomposition of WoT into the sequence

F $u, F, To, G, %ISe g ¥, |,
Since (W|Gp)oT, is Z-nuclear, so is WoT.

PrOPOSITION 11. Let E and F be locally convex spaces and let Z be a
Banach space. Then if Te L(E, F) is Z-nuclear, T has a unique extension
Te L(E, F), where E is the completion of E, and T is Z-nuclear.

ProOF. By our assumption, we have a decomposition of T as follows.
~ =

where ¢, and Y are the canonical mappings and T, is a Z-nuclear mapping.
Then ¢, has a unique continuous extension @, on E into E{, Therefore T= g
Toedy is a continuous extension of T on E into F and this extension is unique.
It is clear that T is Z-nuclear from the above corollary. The proof is complete.

DEFINITION 9. Let Z be a Banach space. Then a locally convex space
E is said to be Z-nuclear if for each absolutely convex neighborhood of zero U
in E there exists another absolutely convex neighborhood of zero V with UV
such that ¢y v E;—»E;, is Z-nuclear.

THEOREN 8. Let E be a locally convex space and let Z be a Banach space.
Then the following assertions are equivalent:

(@) E is Z-nuclear.

(b) There exists a base B of absolutely convex neighborhoods of zero in
E such that for each Ve B, the canonical mapping ¢ : E—+’E\:, is Z-nuclear.
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(c) Every continuous mapping of E into any Banach space is Z-nuclear.

Proor. (a)=-(b): If U is a given absolutely convex neighborhood of zero
in E, there exists another V with U>V such that ¢y, is Z-nuclear. Since ¢y

=¢y oy, it follows from the corollary of Theorem 7 that ¢ : E—+E; is Z-
nuclear.

(b)=>(c): Let F be any Banach space and Te L(E, F). Then there exists
an absolutely convex neighborhood of zero V in E such that ¢ : E—»E;, is Z-
nuclear, and such that T(V) is bounded in F. Since ¢, (E)=E,, T determines
a unique SeL(a,, F) such that T=Se¢,. By the corollary of Theorem 7, T
is Z-nuclear.

(c)=(a): Let U be any absolutely convex neighborhood of zero in E.
By our assumption, the canonical mapping ¢: E—»ET, is Z-nuclear, and hence
of the form

¢u = Z?O=1 /liBiAi

with
Y24l <o, {4)<LE 2Z) and {B}c LZ, E)

as described in Theorem 7. Set V=U n {u|||A;u| <1, ie N}; then V<U is an
absolutely convex neighborhood of zero in E. Now each 4; induces a continuous
linear mapping on E, into Z. Denote by C; its continuous extension to a,’
It is clear that the canonical mapping ¢ ,: ET-—»EZ is given by > 2, 4,B;C; and
hence Z-nuclear by Theorem 7. The proof is complete.

PROPOSITION 12. Let Z be a Banach space, let E be a Z-nuclear locally
convex space, let U be a given neighborhood of zero in E and let p be a number
such that 1<p<oo. Then there exists an absolutely convex neighborhood
of zero V< U for which I:JT, is norm isomorphic with a subspace of 1,(Z).

Proor. We show that there exists a continuous linear mapping TeL(E, [ (Z))
such that T-1(B)c U, where B is the open unit ball of [,(Z). V=T"1(B) will
be the neighborhood in question. Assume without loss of generality that U is
absolutely convex. The canonical mapping ¢y : E—»E;, is Z-nuclear by the above
theorem, and hence of the form

¢u = Z =1 )'iBiAi

with

{4} = L(E,Z) and {B} < L(Z, E),
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where we can assume that 1,>0, >%2,1,=1, |B;]|=1 and the sequence {4} is
equicontinuous. Define T by

T(u) = (P\/Z.Al(u), ”\mzAz(“)vm)

for each ueE (set »/1;=1 for all i if p=o0). By the equicontinuity of the
sequence {4;}, we have T(u)el,(Z) and Te L(E, |(Z)). Then we obtain

l¢u@) = | X2 4B Al
< TR A4 < IT@,, ) -

Therefore T-1(B)cU. Letting V=T-1(B), the definition of T implies that E,
is norm isomorphic with T(E). Hence E, is norm isomorphic with the closed
subspace T(E) of 1(Z). The proof is complete.

THEOREM 9. Let Z be a Banach space. Then the locally convex direct
sum of a countable family of Z-nuclear spaces is a Z-nuclear space.

ProOF. Let E=®R,E, let E; (ie N) be Z-nuclear spaces and let T be a
continuous linear mapping of E into a given Banach space F. If T, is the
restriction of T to the subspace E; of E, T; is continuous and hence Z-nuclear,
and thus of the form

’Ti = Z:o=1#i,nBi,nAi,n
with
el <i72(ieN), {4} = (E;, Z) and {B,,} = L(Z, F)

such that |B;,||<1 for all (i, n)e Nx N and {4;,: ne N} is equicontinuous in
L(E;, Z). Let us define the linear mapping 4;, of E into Z in such a way that

A;n on E,

0 on @;E;

Then the family {4;,: (i, n)e Nx N} is equicontinuous in L(E, Z). Since T
can be written in the form

T = Z ?t.’n= 1 ﬂi,nBi,nZi,m

it follows from Theorem 7 that T is Z-nuclear. Hence by Theorem 8, E is Z-
nuclear. The proof is complete.

THEOREM 10. Let Z be a Banach space. Then the product of an arbitrary
family of Z-nuclear spaces is Z-nuclear.
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Proof. Let {E,: xe A} be an arbitrary family of Z-nuclear spaces, let
E=T],E, andlet T be a continuous linear mapping of E into a given Banach
space F. Then there exists a neighborhood of zero V in E such that T(V)
is bounded in F, and by definition of the product topology, V contains a
neighborhood of zero of the form V, x---xV, XT1gsq,Es. It follows that T
vanishes on the subspace G=[T;.,,E;of E. Since E=[]}-,E, x G, it remains
to show that the restriction of Tto []%,E,, is Z-nuclear. Since []}-,E,, can be
identified with @}-E,, this is clear from Theorem 9. The proof is complete.

THEOREM 11. Let Z, and Z, be Banach spaces. Then if E is a Z,-nuclear
locally convex space and F is a Z,-nuclear locally convex space, then the
projective tensor product EQ . F is Zlgnlz-nuclear and also E@nF is
Zlgnlz-nuclear.

Proor. Let U and V be absolutely convex neighborhoods of zero in E
and F respectively, let G=E® ,F and let W be the absolutely convex hull of
U®Vin G. It is clear ([6, Ch. IIl, 6.3]) that G, is identical with the normed
space (Ey®Fy, r), where r is the tensor product of the respective norms of E
and F,. Hence if ¢y, ¢ and ¢y denote the respective canonical mappings
E-E,, F»F, and G-G,, we have ¢, =¢,®¢,. Since E and F are Z,-
nuclear and Z,-nuclear respectively, Theorem 7 implies that

v = T 21 4BiA;
with
{4} < L(E, Z)) and (B} < L(Zy, Ey)
and
¢y = T 4;D,C;
with

{C} = L(F,Z)) and {D;}  L(Zy, Fy),

where {4;}, {i;}, etc., have the properties enumerated in Theorem 7. For ueE
and v e F we have by definition

Gy ® Pp(u ®v) = (X7, 4Bi4(W) ® (239=1HijCj(v))'
Hence we have
Odwu®@v) = 3; ; 2iui(B; ® D) (Au) ® Cy(v))

so that
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Ow =2 ;M (B;®D)(A4;®C).

Now {Au;: (i, j)ENXN} is a summable family, {4,®C; }cL(E® F, Z, ® Z,)
and {B,®D,} < L(Z, ®.Z, Gy). By Theorem 7 ¢, is Z,® ,Z,-nuclear. The
nuclearity of E® F follows from Proposition 11. The proof is complete.

COROLLARY. Let E be a locally convex space and let Z be a Banach space.
If E is nuclear, then E®Q . Z is a Z-nuclear space and also E® ,Z is a Z-nuclear
space.

Proor. This follows from the above theorem.

DEFINITION 10. Let Z be a topological vector space and let C*(R", Z)
be the space of infinitely differentiable functions, defined in R" and valued in
Z. Then we denote by S(R", Z) the space of functions ue C*(R", Z) such that,
for all pairs of polynomials P, Q in n variables, with complex coefficients,
P(x)Q(0/0x)u(x) remains in a bounded subset of Z as x varies over R". We
equip S(R", Z) with the topology of uniform convergence of the functions
P(x)Q(3/0x)u(x) over the whole of R", for all possible P and Q.

If Z is a Banach space, by [7] we have S(R", Z)=G(R")§n Z. Since the
space S(R") of rapidly decreasing functions is a nuclear space, by virtue of the
above corollary &(R", Z) is a Z-nuclear space.

THEOREM 12. Let Z be a finite dimensional Banach space and let E be a
Z-nuclear space. Then every bounded subset of E is precompact.

PrROOF. Let B be a bounded subset of E. Then for each absolutely convex
neighborhood of zero U in E there exists another absolutely convex neighborhood
of zero V with U>V such that ¢, ,: E,~E, is Z-nuclear. The canonical
mapping ¢, of E into Ej, can be decomposed into ¢ yo¢,. Since ¢, and ¢, are
continuous linear mappings and since ¢, is a compact mapping, the canonical
image of B in E, is precompact. Since U is arbitrary, B is precompact in E.
The proof is complete.

CoROLLARY 1. Let Z be finite dimensional and let E be a quasi-complete
Z-nuclear space. Then every closed bounded subset of E is compact.

The proof is simple.

COROLLARY 2. Let Z be finite dimensional. Then a normable space E
is Z-nuclear if and only if it is finite dimensional.

Proor. If E is finite dimensional, it is clear that E is Z-nuclear.
Conversely, if E is Z-nuclear, then E is Z-nuclear. Since E is quasi-complete, the
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unit ball in E is compact. Therefore E is finite dimensional. The proof is
complete.
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