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Introduction

Persson and Pietsch [5] introduced the concepts of p-nuclear and p-quasi-
nuclear mappings in Banach spaces. These concepts were recently extended in

Miyazaki [4] to (p, g)-nuclear and (p, g)-quasi-nuclear mappings by using the

sequence spaces lptq. On the other hand, these were extended in Ceitlin [1]

to (Z, p)-nuclear and (Z, p)-quasi-nuclear mappings. The object of this paper

is to extend these two kinds of concepts to (Z, Λ,)-nuclear and (Z, A)-quasi-nuclear
mappings in Banach spaces by making use of abstract sequence spaces λ. In

case l<p<oo, I<tq<co9 if λ = lptq and Z is one-dimensional, a (Z, A)-nucίear
mapping coincides with a (p, g)-nuclear mapping, and if λ = lp, a (Z, λ)-nuclear
mapping coincides with a (Z, p)-nuclear mapping. We shall also extend the

notion of nuclear spaces to Z-nuclear spaces by using (Z, /J-nuclear mappings

introduced by Ceitlin [1]. We see that the tensor product of a nuclear space and

a Banach space Z is Z-nuclear, and thus the space &(Rn

9 Z) of rapidly decreasing

functions defined in Rn and valued in Z is a Z-nuclear space.
In Section 1, we define the sequence space λ of type A and of type 40 in such

a way that Ipt9 is a space of type Λ0 for 1 < /? < oo, 1 < g < oo and is a space of type
Λ for q^co. In Section 2, we introduce the space λ(Z) and consider the/ dual

space of λ(Z). Section 3 is devoted to studying (Z, A)-nuclear mappings and
Section 4 to studying (Z, A)-quasi-nuclear mappings. We investigate Z-nuclear

spaces in Section 5.

§ 1. Notations and Definitions

Let £ and F be Banach spaces. We shall denote by L(£, F) the space of
continuous linear mappings T from E to F with the usual mapping norm

||Γ||= sup || Tu ||.
ll«ll^ι

We denote by K(E9 F) the space of compact mappings and by L%(E, F) the space
of mappings of Z-finite rank. Here TeL%(E, F) means that it can be written

in the form
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Tu = Σ ?= i BΛiU for each ueE

with {ΛJcLCE, Z) and {Bi}aL(Z9 F), where Z is a Banach space.
Now we start with the sequence space C0 of all scalar sequences converging

to zero in which an extended quasi-norm p is given. We shall then define the
sequence space λ<=.C0 to be the space consisting of all x e C0 such that p(x)< oo.
We shall denote the extended quasi-norm p by || ||λ. We assume that A is a non-
zero space satisfying the following conditions :

(a) Ifforanyu = (uί9...9un9...)eλ we set ui = (uί9...9 ui9 0,...)/or ΐ = l , 2,...,
then ||M — ti'l^-^O as i-*oo.

(b) II \\λ is absolutely monotone, i.e., lu^l^l for all i imply \\u\\ λ^\\v\\λ.
(c) λ is a K-symmetric space. That is9 if uπ is the sequence which is

obtained as a rearrangement of the sequence u corresponding to a permutation
π of the positive integers, then \\u\\ λ = ||wπ | |λ/0r each ueλ and each n.

(d) For any u = (uί9...9un9...)eλ9 let v be its subsequence (uil9...9uin9...)
such that Uj = Q for any j^in(n = l9 2,...). Then \\v\\ λ= \\u\\ λ.

We say the above λ to be a space of type Λ9 and if λ satisfies only the
conditions (b), (c), (d), then we say λ to be a space of type Λ0. We remark that
lptq is a space of type ΛQ for l<p<oo, l<g<oo and is a space of type A for
q *r oo (Proposition 3 in [3]).

We denote by λ' the topological dual of λ. λ' is a Banach space. If λ is
of type Λ, then λ' is realized as a sequence space.

§ 2. The dual space of λ(Z)

We begin with the following

DEFINITION 1. Let λ be of type ΛQ and let Z be a Banach space. Then
λ(Z) is the space of zero sequences (ut) with values in the Banach space Z such
that

is finite. Then ||(ti|)||A(Z) is a quasi-norm in λ(Z).

DEFINITION 2. Let λ be of type A and let Z be a Banach space. Then
λ'(Z') is the space of sequences (u\) with values in the Banach space Z' such that

is finite. Then 110 )̂11 '̂) is a norm in λ'(Z').

THEOREM 1. Let λ be of type A0 and complete and let Z be a Banach space.
Then λ(Z) is complete.
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PROOF. Let (w[v)) e λ(Z) and

lim ||(W^-^V))||A(Z) = 0.
μ,v-+oo

Then for each iι^v) is a Cauchy sequence in Z. Hence there exist w f e Z (ieΛΓ)

such that

for each i.
v-»oo

Since {(||Wiv ) | |)} is a Cauchy sequence in A and since A is complete,

converges to (αf) e A, and Oi) = ( l l M i l l ) Hence (ut) e A(Z). If we put

ί(ϋiv))} is a Cauchy sequence in λ. Since A is complete, {(0jv))} converges to
(0, 0,...). Therefore {(u|v))} converges to (M,) in A(Z). The proof is complete.

DEFINITION 3. Lei A be of type A0 and complete and let Z be a Banach

space. Then A'0(Z') is the space of sequences (u\) with values in the Banach space

Z' such that for every (Wί)eA(Z) the series Σί^ιwKwi) converges. The norm

\\.\\»,inλ'Q(Z')isgivenby

We show that \\(u\)\\ϊ, «x> for all (tij) e A'0(Z') and || . ||£ is a norm. In

fact, if (X ) e AΌ(Z'), then (M •) can be considered as the linear form / on A(Z)

defined by /((Mf)) = ΣS=ι wί(wi) Define a sequence {/„} of linear forms on A(Z)

by fn((ut)) = Σ?=ιMi(M») It is easY to see that each /„ is continuous. Further-
more {/„} converges to / at each point of A(Z). Since A(Z) is a complete quasi-

normed space by Theorem 1, from the Banach-Steinhaus Theorem it follows that

/is continuous and ||(M/

ί)||J' = ||/||. Hence || . | |J/ is a norm.

PROPOSITION 1. Let λ be of type A and complete and let Z be a Banach

space. Then the dual space of A(Z) is norm isomorphic with A'0(Z'), where a

sequence (wj) in A'0(Z') is identified with the linear form f defined by

(1) /((w ί))=ΣΓ=ιX(w ί) for each (Wί)eA(Z).

PROOF. Let (u\) e A'0(Z'). Then the linear form / defined by (1) is con-

tinuous and 11/11 = ||(Xi)ll;i'» which we have already shown in the paragraph after
Definition 3. Conversely, let/eA(Z)'. If for each ieN we define u\ by

wί(w) =/((0,..., 0, ώ, 0,...)) for each u eZ,

then u\eZ'. If for any (u^eλ(Z\ we put MΠ = (MI,..., wπ, 0,...), then
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un - > (M.) (n - > oo

by the condition (a). Hence we have

/((«,))= /(limu")

Consequently we have

(w;)

and

11/11 -

The proof is complete.

THEOREM 2. Lei A be of type A and complete and let Z be a Banach space.
Then the dual space of λ(Z) is norm isomorphic with A'(Z'), where a sequence
(u'i) in A'(Z') is identified with the linear form f defined by

/(("<)) = ΣΓ=ι u\(uύ for each (M|) e λ(Z) .

PROOF. Since λ(Z)' is norm isomorphic with Λ/0(Z') by Proposition 1,
we have only to prove that A'(Z') and Λ/0(Z') are norm isomorphic. Let (wj) e
λ'(Z'\ Then, for any (wf) e λ(Z)

from which it follows that (w )eΛ/0(Z') and ||(Mί)||J'^||(tt})llλ'(z') Thus we have

'λl(7l\ i— 2' (7'\ ΛV\Ϊ\ II I I 0 ^ || ||Λ \ΔJ ) <— /\,Q\LJ j diivα I ) ||^^ ^x. || ||^'(2')

On the other hand, let (tij) e λ'0(Z'). Put

ιιί/||ttίl| for u'^O

0 for u\ = 0

and αf = ||uj ||. Then, u\ = α^J for each i e N. For any ε > 0, if e't *? 0, there exists
an e f eZ such that ||̂ || = 1 and e'i(ei)>l — ε. If e; = 0, we put ^ = 0. Then, for

any (ξi)eλ with 11(^)11^^1 w^ have
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Σ&i \ξΛ\ < 1/(1 -<0 ΣΓ-i

ε) sup

Thus we have

°
^Ό(Z') c= λ'(Z') and H l A ' ( Z ' ) A ' .

This completes the proof.

§ 3. (Z, Λ ) -nuclear mappings

We shall define (Z, Λ)-nuclear mappings as follows.

DEFINITION 4. Lei A be of type A and let E9 F and Z be Banach spaces.
TeL(E, F) is said to be a left (Z, λ)-nuclear or simply (Z, λ)-nuclear (resp.
right (Z, λ)-nuclear) mapping, if T can be written in the form

(2) Tu = Σ Γ= i BiAiU for each uεE

with {Ai}c:L(E9 Z) and {5J cL(Z, F) such that

L < QO

and sup IKIIB^IDIlA' < oo
l l ϋ ' l l ^ l

(resp. sup IKM^D)^ < oo
l l « l l £ i

and l l ( l |B < | i ) | | λ <oo),

where B\ is the adjoint mapping of Bit We denote by Nz λ(E, F) (resp. Nz' λ(E, FJ)
the collection of (Z, X)-nuclear (resp. right (Z, λ)-nuclear) mappings. The
quasi-norm (as proved later) is defined by

| | ) | l A sup
Hβ'll^

(resp. v* *(T) = inf( sup ||(||^u||)||
l l « l l^ ι

where infimum is taken over all representations (2) of T.

REMARK. In case l<p<oo, l<g<oo, if λ=lptq and Z is one-dimension-
al, a (Z, λ)-nuclear (resp. right (Z, λ)-nuclear) mapping coincides with a (p, q)-
nuclear (resp. right (p, q)-nuclear) mapping introduced in Miyazaki [4], and
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if λ = lp9 a (Z, λ)-nuclear mapping coincides with a (Z, p)-nuclear mapping

introduced in Ceitlin [1].
For Γe Nz>λ(E, F) and for each u e E, the series (2) is convergent. In fact,

for any finite set J of positive integers and for each u e E we have

_ [ j i i l l < sup Σ Mittll lμ
ieJ \\v'\\£l ieJ

< \\u\\. IKαΛL sup
||»'||£i

where

\\At\\ for ί 6 J

0 for ί $ J.

Let ε be any positive number. Since ||(Mill)||λ<°o, by the condition (a) of λ
there exists an integer p > 0 such that

||(0,...,0, \\A,\\,\\Ap+i\\,...)\\λ<e.

For J = {p, p+ I,..., <?}, by the condition (b) of λ we have

||(0,..., 0, α ,..., α , 0,...)||λ < ε.

It follows that

3iA u\\ < C ε with a constant C.
ieJ

Hence the series (2) is convergent. A similar fact is valid for TE Nz λ(E, F).

PROPOSITION 2. Let λ be of type Λ, let E, F and Z be Banach spaces and
let TE NZtλ(E, F) (resp. TE Nz>λ(E, F)). Then

\\T\\ <vZίλ(T) (resp. \\T\\ <

PROOF. If TE NZfλ(E, F), we have

~~ * λ II»ΊI£

Therefore we have

' ~ v " sup

where infimum is taken over all representations (2) of T. The proof is com-
plete.

PROPOSITION 3. Let λ be of type Λ and let E, F and Z be Banach spaces.
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Then if TeNZtλ(E, F), its adjoint T belongs to NZ' \F', E') and it satisfies

vz' λ(r)<vz,λ(Γ).

Furthermore, assume E, F and Z are reflexive. Then ifT'eNz'tλ(F', £'),
we have

TeNZ)λ(E9F)

and

vz' λ(r) = vZίλ(r).

PROOF. If Te NZtλ(E9 F), then for any ε>0 it can be written as

Tu = Σ £ i BAH for each u e E

with

IKMilDIL sup ||(||5Xi|)||^<vz>A(Γ) + ε.
H r ' l l ^ l

Hence we have

T'Ό' = Σ Γ= i AiW for each \f e F'

and we have

v^^ΓO^IKMίlDIL sup ||(||βXH)||r<vz,λ(Γ) + ε.
l l»ΊI£i

Therefore we have

vz'>\T')<vZiλ(T).

When E9 F and Z are reflexive, in the same way 7" eNz''λ(F'9 E') implies

TeNZtλ(E,F)

and

Thus

This completes the proof.

THEOREM 3. Let λ be of type A, let E, F and Z be Banach spaces and let
Tk e NZιλ(E, F) for fe=l, 2,..., M, M being α positive integer. Then Σ£ίιr*



40 Atsuσ JόicHi

εNZ)λ(E,F)and

Vz,A(Σf= i Tk) < CM~ * . M . (Σ JSL i vz,

where C is a constant.
A similar statement holds for elements of NZtλ(E9 F).

PROOF. For any ε>0 Tk can be written in the form

Tku = ΣT=ιBkiiAktiu9 / c = l , 2 , . . . , M

with

{Λ,J c L(E, Z) and {Bk)ί} c L(Z, F)

such that

and

sup | |( | |Λί f,ϋΊI)llA' < vz>λ(Tfc) + ε/2^, fc = 1, 2,..., M.
l l r ' l l^ l

Hence we have

< C^-i.M,

where C is a constant. On the other hand, we have

sup IKI |Bί f ,ϋΊI)ι jA'^ΣfLι sup

Thus we have

Since ε is arbitrary, this completes the proof.

PROPOSITION 4. Let λ be of type A and let E, F, G and Z be Banach spaces.
If Te NZtλ(E9 F) and S 6 L(F, G)5 then 5Te Nz>λ(£, G) and

vz,A(ST)<||S||.vz,A(T).

// Te L(£, F) and S e Nz>λ(F, G), then STe NZfλ(E9 G)
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vz,Λ(SΓ)<vZι/l(S).||Γ||.

The analogues for the mappings of NZfλ are valid.

PROOF. First let TeNZtλ(E, F) and SeL(F, G). If S = 0, the assertion is
trivial. So we assume S ̂  0. Then we have

STu = Σ Γ= i SBtAμ for each u e £,

with

{AJ c L(£, Z) and {BJ cr L(Z, F)

such that

IKIIΛIDIL < op

and

sup \\(\\(SBύ'w'\\)\\λ.

< . s u p
Hw'l lσ^ l

<||S||. sup IKIIBίi iΊDIlA' < oo.
l l B ' l l F ' ^ l

This implies STeNZtλ(E, G) and

vz>λ(SΓ)<||S||.vz>λ(Γ).

Secondly, let Te L(E, F) and S e Nz>λ(F, G). Then we have

STu = ΣT=ιBΛιTu for each ueE,

with

and

sup ||(||BX||)||r < oo.
H w ' l l G ' ^ l

Hence

STeNZ)λ(E9G)

and
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This completes the proof.

PROPOSITION 5. Let λ be of type A and let E, F and Z be Banach spaces.
Then Lg(£, F) is dense in Nz>λ(E9 F) and Nz>λ(E9 F).

PROOF. Let TeNZtλ(E9F). Then TM = Σί°=ι^Λ w for each we£, with

IKMilDIL < oo

and

sup ||(||BJi;'||)||A' < oo.
IMIsa

If we set

we obtain

TkεLz

0(E,F)

and

(Γ- Tk)u = Σ T= i Bk+Λk+iU for each w e £.

Consequently we have

ί||)||λ. sup

Owing to (a), this converges to 0 as fe-> oo. Hence L§(£, F) is dense in Nz>λ(E, F).
In the same way we can show that Lξ(F, F) is dense in Nz'λ(£, F).

COROLLARY. Let λ be of type A, let E and F be Banach spaces and let Z
be a finite dimensional Banach space', then ΛΓZjA(£, F)cX(F, F) and NZtλ(E,F)

, F).

LEMMA 1. Let λ be of type A and a Banach space, let Z be a Banach
space, let (δt)eλ and let Dί be the mapping from l^(Z) into λ(Z) defined by

for each (αf) e /JZ) .

Then

D1eNz>λ(laD(Z)9λ(Z))

and
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PROOF. Let /f(z) = (0, . . . , 0, , 0, . . .). Then /f(z) e Λ(Z) for z e Z, since

^(0, ..,0, ϊ, 0,...)eΛ. Hence /f is a mapping of Z into /,(Z). Define A^ /^(Z)
->Z by Aiu = δίai for each u = (at) e l^(Z). Then

{/,} c L(Z, A(Z)), μj c LίUZ), Z) ,

Σί°=ιMi" for each u e /JZ),

and by Theorem 2

sup IKII/XDIL' = sup IKH/XIDL. = 1.
| |»ΊU(Z)'£1 | |y ' |U' (z')^l

Hence

ί>ι e NZtλ(UZ), A(Z)) and v^^DJ < ||(δt.)||Λ .

On the other hand, let / be (z, z,...) with ||z|| = 1. Then we have

where the last inequality follows from Proposition 2. Hence

The proof is complete.

THEOREM 4. Let λ be of type A and a Banach space and let E9 F and Z
be Banach spaces. Then TeL(E, F) is (Z, λ)-nuclear if and only if T can be
factorized in the form T=Q1D1P1:

E JX /JZ) -2u λ(Z) J2u F,

w/i^re P! eL(£, /^(Z)) wiίΛ HPJI <1, G! eL(A(Z), F) wiίfc HQJI <1 αnrf D! is a
mapping of the type given in Lemma 1.

PROOF. The sufficiency is evident by Proposition 4 and Lemma 1. The
necessity is proved by virtue of the definition of Te NZtλ(E, F) and the following
decomposition of T. Since, for any ε>0,

Tu = Σ

with

and
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sup IKIIFXIDL- < 1,
l l u ' l l ^ i

we can get the decomposition of Γ:

E -ίi* iβ(Z) -2

where for each w e £ P!« =(t>, ) with

f ^H/μ,!! for 4 if 0
»ι =

[ 0 for 4 = 0,

and

βι((α,)) = (II4II fli) e A(Z) for each (αf) ε /Λ(Z) ,

βι((*ί)) = Σ!°.ιBA6F for each (fr,)ελ(Z).

It is easy to verify that HPJI^l. Furthermore we have | |Qιl|<l. In fact,

IIΣf.ιBΛ«F= sup iΣΓ-^'ίBiWI
l l" ' l l^ι

< sup ΣΓ.ilBίP'WI
llo'll^i

< H(frι)1Uz) sup IKBX)IL-(z-)
'

Thus the proof is complete.

LEMMA 2. Let λ be of type A and a Banach space, let Z be a Banach
space, let (δt)eλ and let D2: λ\Z)-^ll(Z) be defined by

D2((bi)) = (<5A ) for each (6£) e λ'(Z) .

Then

and

vM(D2) = \\(δt)\\λ.

PROOF. If we define 4: A'(Z)->Z by Aίu = δίbl for ti=(fcj)e A'(Z), we have

02" = Σf-ι/ι4« = ΣΓ

with
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ί l/<5, for 5, * 0

δ'i = \
[ 0 for δ, = 0,

where

IKIIίΛIDIL = IK^HA < «>

and

sup iKil^uiDL, < i.
l l « I

Hence

and

vz'\D2)<\\(δi)\\λ.

On the other hand, we have

II(^)IL= sup iK^bOlliuz).
l l ( & i ) I U ' ( Z ) = ι

Hence for any ε>0, there exists (bt) with ||(foί)||A'(Z):::::l such

Since

l | i>2((W)lll l (2) < \\D2\\,

by Proposition 2 we have

Thus we obtain

11(̂ )11 A <v z λ(D2).

Consequently

The proof is complete.

THEOREM 5. Let λ be of type A and a Banach space and let E9 F and Z
be Banach spaces. Then TeL(E,F) is right (Z, λ)-nuclear if and only if T
can be written in the form T=Q2D2P2:
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E _^ χ>(Z) _^L» /χ(Z) -Q^ F,

P2eL(£, λ'(Z)) wiί/i ||P2||<1, Q2eL(/1(Z), F) wίfΛ ||β2||<l «wd D2 is α
mapping of the type given in Lemma 2.

PROOF. The sufficiency is evident by Proposition 4 and Lemma 2. The
necessity is proved by virtue of the definition of Te Nz'λ(E, F) and the following
decomposition of T. Since for any ε>0 we have

with

and

sup ικμίW||)||r<ι,
IMI^i

we can get the decomposition of T :

E _Ei» λ'(Z) -°!+ ^(Z) -̂  F,

where

P2w = (Aμ) e λ'(Z) for each u ε £,

ί>2((βι)) = (H*ilk ) 6 /i(Z) for each (αf) e A'(Z)

and for each (ft;) e /

with

for
Q =

( 0 for Bt = 0.

It is easy to verify that ||P2|| < 1 and ||Q2|| < 1. The proof is complete.

§4. (Z, Λ)-quasi-nuclear mappings

In this section we shall introduce and investigate the (Z, A)-quasi-nuclear
mappings.

DEFINITION 5. Let λ be of type ΛQ and let E, F and Z be Banach spaces.
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TeL(E9 F) is said to be a (Z, λ)-quasi-nuclear mapping if there exists a sequence
{Ai}cL(E9 Z) such that

and

\\Tu\\ < IKHΛ MlDL for each ueE.

The mf\\(\\Aι\\)\\λ which is taken over all {At} satisfying the above condition is
denoted by v$tλ(T). The collection of all (Z, λ)-quasi-nuclear mappings is
denoted by N$'fλ(E, F).

PROPOSITION 6. Let λ be of type AQ and let E, F and Z be Banach spaces.
Then for any ΓeN§>λ(£, F) we have

\\T\\ <v

PROOF. Let TeNg fΛ(£, F). Then

\\TU\\ <NI

Thus the proof is complete.

PROPOSITION 7. Let λ be of type A and let E, F and Z be Banach spaces.
Then we have

Nz>λ(E, F) c Ni,λ(F, F)

and

vUΓ) < vz,Λ(T)

for each TeNZtλ(E,F).

PROOF. TeNz>λ(E9 F) can be expressed as follows. For any ε>0 there
exist sequences {Ai}^L(E, Z) and {βJc=L(Z, F) such that

7w = Σ S= i BΛiU for each u e E,

IKK-IDIL < vz,Λ(Γ)+ε

and

sup IKHBίf'IDHλ' < 1.

Therefore we have
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\\Tu\\ < sup Σ?- ιM,« II ll*ί»Ί
l l f ' l i s i

^ IKM/flDL sup

<: IKII^IDIU.

which shows TeNf_Λ(E, F) and vf>A(T)^vZjλ(T). The proof is complete.

PROPOSITION 8. Let λ be of type Λ0 and let E, F, G and Z be Banach
spaces. If TeA^/E, F) and SeL(F, G), then STeN$ιλ(E, G) and

// TeL(E, F) and SeJVi,λ(F, G), then STeN$>λ(E, G) and

PROOF. If TeN$ιλ(E, F) and SeL(F, G), there exists a sequence {Λ
L(£,Z) such that

(M,||)6λ and | |7l ι | |^ l l(Mι«ll) l lA for each ueE.

Then

{\\S\\A,} c L(£, Z), (||S||.M,||)6λ

and

= ll(l|S||.μ ι "ll)L for each

Therefore we have

ST6JVijA(£, G)

and

vt*(ST)£ \\S\\ vlλ(T).

In the same way, if TeL(E, F) and SeN$tλ(F, G), there exists a sequence {BJ
<=L(F, Z) such that

(||B,H)6λ and ||Sp|| ^ ||(||B(f||)||λ for each veF.

Therefore we have

I|ST«|| ^ IKIIBiTulDL for each ueE
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and

that is,

(\\BtW eλ.

Consequently we have

STeN$iλ(E, G)

and

The proof is complete.

THEOREM 6. Let λ be of type Λ0, let E, F and Z be Banach spaces and
TkeN$tλ(E,F)9 J fc=l ,2 , . . . ,M. Then Σιf=ιTke N^tλ(E9 F) and

PROOF. For any ε>0 there exist sequences

HuWco <= L(E, Z), fc=l,2,...,Af,

such that

and

lir*«ll ^ IKIMw«ll)ί l lA for each « e£' k = l> 2 . M

Therefore we have

Hence we have
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Consequently we have

Σ£ιTkeN$tλ(E
and

The proof is complete.

DEFINITION 6. ^4 Banach space F is said to have the extension property
if each mapping T0eL(E0, F), E0 being any linear subspace of an arbitrary
quasi-normed space E, can be extended to a Te L(E, F) preserving its norm.

PROPOSITION 9. Let λ be of type Λ, let E, F and Z be Banach spaces, and
let us assume that F has the extension property. Then any (Z, λ)-quasi-nuclear
mapping T: E-+F is (Z, λ)-nuclear, and

PROOF. From the definition, for any ε>0 there exists a sequence
L(£, Z) such that

\\Tu\\ < Hdl^iilDIL for each uεE

and

Let us denote by Q0 the mapping from the subspace {(Aιu)\u e£} of λ(Z) into F
defined by

βo((4n)) = Tu.

Then we have H Q o l l ^ l Thus, by our assumption there exists an extension Q:
λ(Z)-+F of ρ0 with I I Q I I < 1. If we define It: Z-*λ(Z) such that

7ί(z) = (0,... ,0,1,0,...),

then ΣS=ι^iM is convergent in λ(Z) by condition (a) for λ and equal to (Atu).
Hence we have

and for each i/ e F'
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By Theorem 2

IKIKeWIDIL' = \\Q'v'L(zy< \\v'\\

Therefore we have

sup IKIKQWIDII, < 1
l l f ' H ^ i

and

Owing to Proposition 7 we now obtain the conclusion of the proposition.

§ 5. Z-nuclear spaces

We first recall the definition of Z-nuclear mappings ([!]).

DEFINITION 7. Let £, F and Z be Banach spaces. Then Te L(£, F) is
said to be a Z-nuclear mapping, if T can be written in the form

Tu = Σ Γ= i BiAtu for each uεE

with

{A,} c: L(E, Z) and {Bt} c L(Z, F)

such that

that is, Tis a (Z, I ̂ -nuclear mapping.

Let £ be a locally convex space, let U be an arbitrary absolutely convex
neighborhood of zero and pυ be the gauge of 17. Then the quotient space
Elpv1^) is normable by the norm w-> ||ύ|| =pu(u)9 where u e ύ. We shall denote

by Ev the normed space (E/p^O), || ||) and by E^ its completion. Then the

quotient mapping is continuous on E into Ev. This mapping will be denoted
by φv.

If £ is a locally convex space and B *? φ an absolutely convex bounded subset
of £, then E1 = \J™=1nB is a subspace of E. The gauge function pB of B in E!
is seen to be a norm on Et. Then the normed space (Eί9 pB) will be denoted
by EB. It is immediate that the imbedding mapping ψB: EB-+E is continuous.

If U and V are absolutely convex neighborhoods of zero in E with respective
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gauge functions pv and pv and such that 17c 7, then pϋl(fy<=pvl($) and each
equivalence class ύmodpϋl(Q) is contained in a unique equivalence class v
mod pγl(Q) and ύ-+ΰ is a linear mapping ψ^, which is called the canonical

mapping of Eυ onto Ev. It has a unique continuous extension of Eυ into £F,
which is again called canonical and also denoted by φV)U.

We now generalize the notion of a Z-nuclear mapping to arbitrary locally
convex spaces E, F as follows.

DEFINITION 8. A linear mapping Tofa locally convex space E into another
locally convex space F is said to be Z-nuclear if there exist an absolutely
convex neighborhood of zero U in E and an absolutely convex bounded set B
in F with FB complete such that T(U)c:B with respect to which T can be then
decomposed in the form T=\l/B°TQ°φu with TQeL(Eu,FB} such that the mapping

TO of EU into FB induced by T0 is Z-nuclear.

PROPOSITION 10. Let E and F be Banach spaces. Then T: £->F is
Z-nuclear with E and F considered as Banach spaces if and only ifTis Z-nuclear
with E and F considered as locally convex spaces.

PROOF. Let T: E-*F be Z-nuclear with E and F considered as Banach

spaces. If we put U={x\ | |x||<l} in E and B=T(U), then E^ = E and FB is
complete. T can be decomposed in the form

T= ψβoToφy

with φυ the identity mapping. Therefore Tis Z-nuclear with E and F considered
as locally convex spaces. Conversely, if T is Z-nuclear with E and F considered
as locally convex spaces, Tcan be decomposed in the form

T= ΨB°TO°ΦU>

where U and B are sets of E and F stated in the definition above and T0 is Z-

nuclear of Eυ into FB. Therefore by Proposition 4 T is Z-nuclear when E and
F are considered as Banach spaces. The proof is complete.

THEOREM 7. Let E and F be locally convex spaces and let Z be a Banach
space. Then a linear mapping TeL(E, F) is Z-nuclear if and only if it can be
written in the form

Tu = ΣΓ= iλiBiAtU for each we£,

where ΣS=ιl^il<00» {^J /s an equicontinuous sequence in L(E, Z) and {5J
ί's a sequence in L(Z, F) for which there exist a neighborhood of zero W in Z
and an absolutely convex bounded set B with FB complete such that
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for any /= 1, 2,... .

PROOF. The condition is necessary. For, if Γ is Z-nuclear, then

Γ= ΨB°TOOΦU,

where Γ0 is Z-nuclear in L(EU9 Fβ), U being a suitable neighborhood of zero and

B being a suitable bounded subset of F for which FB is complete. Therefore T0

can be written in the form

TQu = Σ T= i £*4fl for each w e £^

with

{4J c L(E^, Z) and {J5J c L(Z, FB)

such that

ΣT=ι\\Ai\\ \\Bt\\ «x>.

That is, T0 = τ(S) with S=ΣT=ιBi®AieL(EΪ9 Z)®L(Z, Fβ), where τ is the ca-

nonical mapping of L(EV, Z)®L(Z, Fβ) into L(Eυ, FB). By virtue of Theorem

6.4 of [6], 5 can be written in the form

with

where {^J and {jBJ are null sequences in L(Eυ, Z) and L(Z, Fβ) respectively.

Then {^^ψt/} is equicontinuous in L(£, Z). Since {Bt} is a null sequence in

L(Z, Fβ), there exists a neighborhood of zero W in Z such that ^/B^Bi(W)^B

for any ί = 1, 2,... . It is clear that the mapping T= ΣT=ι^ill/B0BioAioφu is of the

form stated in the theorem.
The condition is sufficient. For, if T is as indicated in the theorem, let

U={u eE\ \\At(u)\\ <1, ίeN}. Then U is an absolutely convex closed neighbor-

hood of zero in E by the equicontinuity of {A^. Defining At (ί e N) by Ai = Aioφu

on Eυ and the extension to EU9 we obtain H^H < 1 for all /. Then T0 is the map-

ping

U - ̂ Σ

with
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Therefore Γ0 is a Z-nuclear mapping. The proof is complete.

COROLLARY. Let E, F, G αrcd // be locally convex spaces, let Z be a Banach
space, let SeL(E, F), let WeL(G, H) and let T be a Z-nuclear mapping on F
into G. Then T°S and W°Tare Z-nuclear mappings.

PROOF. It is evident from Theorem 7 that Γ°S is Z-nuclear. By our as-
sumption, we have a decomposition of T as a sequence

F ΦU^ F ^0 . Γr *B^ G
Γ > Γ y > (Jβ > 1 ,̂

where φυ and ψB are the canonical mappings, T0 is Z-nuclear and B is an absolutely
convex bounded set in G for which GB is complete. Since GB is a Banach space
and since C= W(B) is an absolutely convex bounded in //, Hc is a Banach space.
In fact, the restriction W\GB of Wto GB induces an isometry J of the Banach space

GB/(GB Π W~l(0)) onto Hc. Therefore Hc is a Banach space. Finally, we have
a decomposition of JF°Tinto the sequence

F *v* F f° v G W\GB U Ψc^ JJΓ > rv > uβ > /ιc >• n.

Since (WΊGB)°Γ0 is Z-nuclear, so is W°T.

PROPOSITION 11. Let E and F be locally convex spaces and let Z be a
Banach space. Then if TeL(F, F) is Z-nuclear, T has a unique extension
TeL(E, F), where E is the completion of E, and T is Z-nuclear.

PROOF. By our assumption, we have a decomposition of Γas follows.

F Φu ^ F TO v p ΦB ^ rL, > L>υ > Γ B » Γ,

where φυ and ψB are the canonical mappings and T0 is a Z-nuclear mapping.

Then φυ has a unique continuous extension (j>v on E into Eu. Therefore T= ψB°
TQOΦU is a continuous extension of Γ on E into F and this extension is unique.
It is clear that T is Z-nuclear from the above corollary. The proof is complete.

DEFINITION 9. Let Z be a Banach space. Then a locally convex space
E is said to be Z-nuclear if for each absolutely convex neighborhood of zero U
in E there exists another absolutely convex neighborhood of zero V with U=>V

--̂  ^^
such that φutv' Ev-*Eu is Z-nuclear.

THEOREN 8. Let E be a locally convex space and let Z be a Banach space.
Then the following assertions are equivalent:

(a) E is Z-nuclear.
(b) There exists a base 25 of absolutely convex neighborhoods of zero in

'•Ŝ

E such that for each KeS, the canonical mapping φv: E-^EV is Z-nuclear.
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(c) Every continuous mapping of E into any Banach space is Z-nuclear.

PROOF. (a)=>(b): If U is a given absolutely convex neighborhood of zero
in E, there exists another V with (7=>Fsuch that φUtV is Z-nuclear. Since φυ

= Φu,v°Φy> it follows from the corollary of Theorem 7 that φv: E-+Eυ is Z-
nuclear.

(b)=>(c): Let F be any Banach space and TeL(£, F). Then there exists

an absolutely convex neighborhood of zero V in E such that φv: E-*EV is Z-
nuclear, and such that T(V) is bounded in F. Since φv(E) = Ey, T determines

a unique 5eL(£^, F) such that T=S°φκ. By the corollary of Theorem 7, T
is Z-nuclear.

(c)=>(a): Let U be any absolutely convex neighborhood of zero in E.

By our assumption, the canonical mapping φu: E-+Eυ is Z-nuclear, and hence
of the form

with

ΣΓ=ι IΛ I < oo, μj c L(£, Z) and {BJ c L(Z,

as described in Theorem 7. Set K= ί/ n {M| ||^w|| <1, ί e Λ Γ } ; then Kcl/ is an
absolutely convex neighborhood of zero in E. Now each At induces a continuous

linear mapping on Ev into Z. Denote by C£ its continuous extension to £κ.
•̂ Ŝ  ^N^

It is clear that the canonical mapping φUtV'. Ev-*Eυ is given by ΣJ^i^ΆQ and
hence Z-nuclear by Theorem 7. The proof is complete.

PROPOSITION 12. Lef Z be a Banach space, let E be a Z-nuclear locally
convex space, let U be a given neighborhood of zero in E and let p be a number
such that i<p<co. Then there exists an absolutely convex neighborhood

of zero VciU for which Ev is norm isomorphic with a subspace of lp(Z).

PROOF. We show that there exists a continuous linear mapping TeL(E, lp(Z)}

such that T~1(B)(=:U, where B is the open unit ball of lp(Z). K=T~1(^) will
be the neighborhood in question. Assume without loss of generality that U is

'"N^

absolutely convex. The canonical mapping φυ: E-^Eυ is Z-nuclear by the above
theorem, and hence of the form

with

{A,} c L(E, Z) and {B(} c L(Z,
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where we can assume that ^>0, Σ£=ι^i=l> II ̂ i 11 = 1 and the sequence {At} is
equicontinuous. Define Γby

T(ύ) =

for each ueE (set p^ζ=l for all i if p=ao). By the equicontinuity of the
sequence [At}9 we have T(u)elp(Z) and TεL(E9 lp(Z)). Then we obtain

Therefore T~l(B)ciU. Letting K=T-1(5), the definition of T implies that Ev

is norm isomorphic with T(E). Hence £κ is norm isomorphic with the closed
subspace T(E) of lp(Z). The proof is complete.

THEOREM 9. Let Z be a Banach space. Then the locally convex direct
sum of a countable family of Z-nuclear spaces is a Z-nuclear space.

PROOF. Let E=®Jl1E ί, let £f (ieN) be Z-nuclear spaces and let T be a
continuous linear mapping of E into a given Banach space F. If Γf is the
restriction of T to the subspace Et of E, Tf is continuous and hence Z-nuclear,
and thus of the form

with

Σ?=ιlμJ<i- 20'eN), {Af,π} c L(Ei9 Z) and {BM} c= L(Z, F)

such that ||5ίfJ<l for all (ϊ, n)eNxN and {/4ί>π: neN} is equicontinuous in
L(£ί5 Z). Let us define the linear mapping Άitn of E into Z in such a way that

Ai>n on E;

0 on ®j+tEj.

Then the family {Άitn: (i, n) e N x N} is equicontinuous in L(E, Z). Since T
can be written in the form

it follows from Theorem 7 that Γ is Z-nuclear. Hence by Theorem 8, E is Z-
nuclear. The proof is complete.

THEOREM 10. Let Z be a Banach space. Then the product of an arbitrary
family of Z-nuclear spaces is Z-nuclear.
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PROOF. Let {F α :αeA} be an arbitrary family of Z-nuclear spaces, let
E = YlaEΛ, and let T be a continuous linear mapping of E into a given Banach
space jp. Then there exists a neighborhood of zero V in £ such that T(V)

is bounded in F, and by definition of the product topology, K contains a
neighborhood of zero of the form Fαι x ••• x VΛnxYlβ^ΛiEβ. It follows that T
vanishes on the subspace G = Ylβ^ΛiEβ of E. Since E = Yl?=ίEaixG, it remains

to show that the restriction of Tto Π?=ι^«ι is Z-nuclear. Since Π?=ι^αi

 can be
identified with Θ?=ι£α., this is clear from Theorem 9. The proof is complete.

THEOREM 11. Let Zj and Z2 be Banach spaces. Then if E is a Z ^nuclear
locally convex space and F is a Z2-nuclear locally convex space, then the

projective tensor product E®πF is Zl®πZ2-nuclear and also E®πF is

Zj (x) π Z2-nuclear.

PROOF. Let U and V be absolutely convex neighborhoods of zero in E
and F respectively, let G = £®πF and let W be the absolutely convex hull of
[7® Fin G. It is clear ([6, Ch. Ill, 6.3]) that Gw is identical with the normed
space (Eυ®Fv, r), where r is the tensor product of the respective norms of Eυ

and Fv. Hence if φU9 φv and φw denote the respective canonical mappings

E-^EU, F-+Fγ and G-*GW, we have φw = φv®φv> Since E and F are Zx-
nuclear and Z2-nuclear respectively, Theorem 7 implies that

with

{AJ c= L(£, ZJ and {Bt} c= L(Zl5 £ )̂

and

Φκ = Σy-ι^DΛ
with

{C;} c L(F, Z2) and {Dj} c= L(Z2, ̂  ,

where {AJ, {μ^}, etc., have the properties enumerated in Theorem 7. For ueE
and v e F we have by definition

® ») = (ΣΓ-i AA^^ii)

Hence we have

so that
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Now {λ^ji ( ϊ , 7 ) e J V x JV} is a summable family, {Ai®CJ}cιL(E<S)πF, Zί®πZ2)

and {B ί®D/}c=L(Z1®πZ2, Gw). By Theorem 7 φw is Z1(x)πZ2-nuclear. The

nuclearity of E®πF follows from Proposition 11. The proof is complete.

COROLLARY. Let E be a locally convex space and let Z be a Banach space.

If E is nuclear, then E®πZ is a Z-nuclear space and also E®nZ is a Z-nuclear
space.

PROOF. This follows from the above theorem.

DEFINITION 10. Let Z be a topological vector space and let C™(Rn, Z)
be the space of infinitely differentiable functions, defined in Rn and valued in
Z. Then we denote by 6(#", Z) the space of functions u e C™(R", Z) such that,
for all pairs of polynomials P, Q in n variables, with complex coefficients,
P(x)Q(djdx)u(x) remains in a bounded subset of Z as x varies over Rn. We
equip <3(Kn, Z) with the topology of uniform convergence of the functions
P(x)Q(d/dx)u(x) over the whole ofRn,for all possible P and Q.

If Z is a Banach space, by [7] we have <5(R», Z) = ©(RΠ)®πZ. Since the
space SCR") of rapidly decreasing functions is a nuclear space, by virtue of the

above corollary ®(R", Z) is a Z-nuclear space.

THEOREM 12. Let Z be a finite dimensional Banach space and let E be a
Z-nuclear space. Then every bounded subset of E is precompact.

PROOF. Let B be a bounded subset of E. Then for each absolutely convex
neighborhood of zero U in E there exists another absolutely convex neighborhood
of zero V with U^V such that φVιV'. Ev-+Eυ is Z-nuclear. The canonical

mapping φυ of E into Eυ can be decomposed into ΦvίV

0Φv Since φv and φυ^v are
continuous linear mappings and since φυy is a compact mapping, the canonical
image of B in Ev is precompact. Since U is arbitrary, B is precompact in E.
The proof is complete.

COROLLARY 1. Let Z be finite dimensional and let E be a quasi-complete
Z-nuclear space. Then every closed bounded subset of E is compact.

The proof is simple.

COROLLARY 2. Let Z be finite dimensional. Then a normable space E

is Z-nuclear if and only if it is finite dimensional.

PROOF. If E is finite dimensional, it is clear that E is Z-nuclear.

Conversely, if E is Z-nuclear, then E is Z-nuclear. Since E is quasi-complete, the
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unit ball in E is compact. Therefore E is finite dimensional. The proof is
complete.
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