Нікозніма Матн. J. 7 (1977), 33–59

(Z, λ)-Nuclear Mappings and Z-Nuclear Spaces

Atsuo Jôichi

(Received April 14, 1976) (Revised August 4, 1976)

Introduction

Persson and Pietsch [5] introduced the concepts of *p*-nuclear and *p*-quasinuclear mappings in Banach spaces. These concepts were recently extended in Miyazaki [4] to (p, q)-nuclear and (p, q)-quasi-nuclear mappings by using the sequence spaces $l_{p,q}$. On the other hand, these were extended in Ceitlin [1] to (Z, p)-nuclear and (Z, p)-quasi-nuclear mappings. The object of this paper is to extend these two kinds of concepts to (Z, λ) -nuclear and (Z, λ) -quasi-nuclear mappings in Banach spaces by making use of abstract sequence spaces λ . In case $1 \le p \le \infty$, $1 \le q < \infty$, if $\lambda = l_{p,q}$ and Z is one-dimensional, a (Z, λ) -nuclear mapping coincides with a (p, q)-nuclear mapping, and if $\lambda = l_p$, a (Z, λ) -nuclear mapping coincides with a (Z, p)-nuclear mapping. We shall also extend the notion of nuclear spaces to Z-nuclear spaces by using (Z, l_1) -nuclear mappings introduced by Ceitlin [1]. We see that the tensor product of a nuclear space and a Banach space Z is Z-nuclear, and thus the space $\mathfrak{S}(R^n, Z)$ of rapidly decreasing functions defined in R^n and valued in Z is a Z-nuclear space.

In Section 1, we define the sequence space λ of type Λ and of type Λ_0 in such a way that $l_{p,q}$ is a space of type Λ_0 for $1 \le p \le \infty$, $1 \le q \le \infty$ and is a space of type Λ for $q \ne \infty$. In Section 2, we introduce the space $\lambda(Z)$ and consider the dual space of $\lambda(Z)$. Section 3 is devoted to studying (Z, λ) -nuclear mappings and Section 4 to studying (Z, λ) -quasi-nuclear mappings. We investigate Z-nuclear spaces in Section 5.

§1. Notations and Definitions

Let E and F be Banach spaces. We shall denote by L(E, F) the space of continuous linear mappings T from E to F with the usual mapping norm

$$||T|| = \sup_{||u|| \le 1} ||Tu||.$$

We denote by K(E, F) the space of compact mappings and by $L_0^Z(E, F)$ the space of mappings of Z-finite rank. Here $T \in L_0^Z(E, F)$ means that it can be written in the form

$$Tu = \sum_{i=1}^{n} B_i A_i u$$
 for each $u \in E$

with $\{A_i\} \subset L(E, Z)$ and $\{B_i\} \subset L(Z, F)$, where Z is a Banach space.

Now we start with the sequence space C_0 of all scalar sequences converging to zero in which an extended quasi-norm p is given. We shall then define the sequence space $\lambda \subset C_0$ to be the space consisting of all $x \in C_0$ such that $p(x) < \infty$. We shall denote the extended quasi-norm p by $\|\cdot\|_{\lambda}$. We assume that λ is a nonzero space satisfying the following conditions:

(a) If for any $u = (u_1, ..., u_n, ...) \in \lambda$ we set $u^i = (u_1, ..., u_i, 0, ...)$ for i = 1, 2, ...,then $||u - u^i||_{\lambda} \to 0$ as $i \to \infty$.

(b) $\|\cdot\|_{\lambda}$ is absolutely monotone, i.e., $|u_i| \le |v_i|$ for all i imply $\|u\|_{\lambda} \le \|v\|_{\lambda}$.

(c) λ is a K-symmetric space. That is, if u_{π} is the sequence which is obtained as a rearrangement of the sequence u corresponding to a permutation π of the positive integers, then $||u||_{\lambda} = ||u_{\pi}||_{\lambda}$ for each $u \in \lambda$ and each π .

(d) For any $u = (u_1, ..., u_n, ...) \in \lambda$, let v be its subsequence $(u_{i_1}, ..., u_{i_n}, ...)$ such that $u_j = 0$ for any $j \neq i_n$ (n = 1, 2, ...). Then $||v||_{\lambda} = ||u||_{\lambda}$.

We say the above λ to be a space of type Λ , and if λ satisfies only the conditions (b), (c), (d), then we say λ to be a space of type Λ_0 . We remark that $l_{p,q}$ is a space of type Λ_0 for $1 \le p \le \infty$, $1 \le q \le \infty$ and is a space of type Λ for $q \ne \infty$ (Proposition 3 in [3]).

We denote by λ' the topological dual of λ . λ' is a Banach space. If λ is of type Λ , then λ' is realized as a sequence space.

§2. The dual space of $\lambda(Z)$

We begin with the following

DEFINITION 1. Let λ be of type Λ_0 and let Z be a Banach space. Then $\lambda(Z)$ is the space of zero sequences (u_i) with values in the Banach space Z such that

$$\|(u_i)\|_{\lambda(Z)} = \|(\|u_i\|)\|_{\lambda}$$

is finite. Then $||(u_i)||_{\lambda(Z)}$ is a quasi-norm in $\lambda(Z)$.

DEFINITION 2. Let λ be of type Λ and let Z be a Banach space. Then $\lambda'(Z')$ is the space of sequences (u'_i) with values in the Banach space Z' such that

$$\|(u_i')\|_{\lambda'(Z')} = \|(\|u_i'\|)\|_{\lambda'}$$

is finite. Then $||(u_i')||_{\lambda'(Z')}$ is a norm in $\lambda'(Z')$.

THEOREM 1. Let λ be of type Λ_0 and complete and let Z be a Banach space. Then $\lambda(Z)$ is complete. **PROOF.** Let $(u_i^{(v)}) \in \lambda(Z)$ and

$$\lim_{u,v\to\infty} \|(u_i^{(\mu)}-u_i^{(v)})\|_{\lambda(Z)}=0.$$

Then for each $i u_i^{(v)}$ is a Cauchy sequence in Z. Hence there exist $u_i \in Z$ $(i \in N)$ such that

$$u_i = \lim_{v \to \infty} u_i^{(v)}$$
 for each *i*.

Since $\{(||u_i^{(\nu)}||)\}$ is a Cauchy sequence in λ and since λ is complete, $\{(||u_i^{(\nu)}||)\}$ converges to $(a_i) \in \lambda$, and $(a_i) = (||u_i||)$. Hence $(u_i) \in \lambda(Z)$. If we put

 $v_i^{(v)} = \|u_i^{(v)} - u_i\|,$

 $\{(v_i^{(\nu)})\}\$ is a Cauchy sequence in λ . Since λ is complete, $\{(v_i^{(\nu)})\}\$ converges to (0, 0, ...). Therefore $\{(u_i^{(\nu)})\}\$ converges to (u_i) in $\lambda(Z)$. The proof is complete.

DEFINITION 3. Let λ be of type Λ_0 and complete and let Z be a Banach space. Then $\lambda'_0(Z')$ is the space of sequences (u'_i) with values in the Banach space Z' such that for every $(u_i) \in \lambda(Z)$ the series $\sum_{i=1}^{\infty} u'_i(u_i)$ converges. The norm $\|\cdot\|_{\Delta^1}^{0}$ in $\lambda'_0(Z')$ is given by

$$||(u_i')||_{\lambda'}^0 = \sup_{||(u_i)||_{\lambda(z)} \le 1} |\sum_{i=1}^\infty u_i'(u_i)|.$$

We show that $||(u'_i)||_{\lambda'}^0 < \infty$ for all $(u'_i) \in \lambda'_0(Z')$ and $||\cdot||_{\lambda'}^0$ is a norm. In fact, if $(u'_i) \in \lambda'_0(Z')$, then (u'_i) can be considered as the linear form f on $\lambda(Z)$ defined by $f((u_i)) = \sum_{i=1}^{\infty} u'_i(u_i)$. Define a sequence $\{f_n\}$ of linear forms on $\lambda(Z)$ by $f_n((u_i)) = \sum_{i=1}^{n} u'_i(u_i)$. It is easy to see that each f_n is continuous. Furthermore $\{f_n\}$ converges to f at each point of $\lambda(Z)$. Since $\lambda(Z)$ is a complete quasinormed space by Theorem 1, from the Banach-Steinhaus Theorem it follows that f is continuous and $||(u'_i)||_{\lambda'}^0 = ||f||$. Hence $||\cdot||_{\lambda'}^0$ is a norm.

PROPOSITION 1. Let λ be of type Λ and complete and let Z be a Banach space. Then the dual space of $\lambda(Z)$ is norm isomorphic with $\lambda'_0(Z')$, where a sequence (u'_i) in $\lambda'_0(Z')$ is identified with the linear form f defined by

(1)
$$f((u_i)) = \sum_{i=1}^{\infty} u'_i(u_i) \quad \text{for each} \quad (u_i) \in \lambda(Z).$$

PROOF. Let $(u'_i) \in \lambda'_0(Z')$. Then the linear form f defined by (1) is continuous and $||f|| = ||(u'_i)||_{\lambda'}^0$, which we have already shown in the paragraph after Definition 3. Conversely, let $f \in \lambda(Z)'$. If for each $i \in N$ we define u'_i by

$$u'_i(u) = f((0,...,0, \dot{u}, 0,...))$$
 for each $u \in Z$,

then $u'_i \in Z'$. If for any $(u_i) \in \lambda(Z)$, we put $u^n = (u_1, \dots, u_n, 0, \dots)$, then

$$u^n \longrightarrow (u_i) \qquad (n \longrightarrow \infty) \quad \text{in} \quad \lambda(Z)$$

by the condition (a). Hence we have

$$f((u_i)) = f(\lim_{n \to \infty} u^n)$$

= $\lim_{n \to \infty} f(u^n)$
= $\lim_{n \to \infty} \sum_{i=1}^n u'_i(u_i)$
= $\sum_{i=1}^\infty u'_i(u_i)$.

Consequently we have

$$(u_i') \in \lambda'_0(Z')$$

and

$$||f|| = ||(u'_i)||_{\lambda'}^0.$$

The proof is complete.

THEOREM 2. Let λ be of type Λ and complete and let Z be a Banach space. Then the dual space of $\lambda(Z)$ is norm isomorphic with $\lambda'(Z')$, where a sequence (u'_i) in $\lambda'(Z')$ is identified with the linear form f defined by

$$f((u_i)) = \sum_{i=1}^{\infty} u'_i(u_i) \quad \text{for each} \quad (u_i) \in \lambda(Z).$$

PROOF. Since $\lambda(Z)'$ is norm isomorphic with $\lambda'_0(Z')$ by Proposition 1, we have only to prove that $\lambda'(Z')$ and $\lambda'_0(Z')$ are norm isomorphic. Let $(u'_i) \in \lambda'(Z')$. Then, for any $(u_i) \in \lambda(Z)$

$$\sum_{i=1}^{\infty} |u_i'(u_i)| \le ||(u_i)||_{\lambda(Z)} ||(u_i')||_{\lambda'(Z')} < \infty,$$

from which it follows that $(u_i) \in \lambda'_0(Z')$ and $||(u_i)||_{\lambda'}^0 \leq ||(u_i)||_{\lambda'(Z')}$. Thus we have

$$\lambda'(Z') \subset \lambda'_0(Z') \text{ and } \|\cdot\|^0_{\lambda'} \leq \|\cdot\|_{\lambda'(Z')}.$$

On the other hand, let $(u'_i) \in \lambda'_0(Z')$. Put

$$e'_i = \begin{cases} u'_i / \|u'_i\| & \text{for } u'_i \neq 0 \\ 0 & \text{for } u'_i = 0 \end{cases}$$

and $\alpha_i = ||u'_i||$. Then, $u'_i = \alpha_i e'_i$ for each $i \in N$. For any $\varepsilon > 0$, if $e'_i \neq 0$, there exists an $e_i \in Z$ such that $||e_i|| = 1$ and $e'_i(e_i) > 1 - \varepsilon$. If $e'_i = 0$, we put $e_i = 0$. Then, for any $(\xi_i) \in \lambda$ with $||(\xi_i)||_{\lambda} \le 1$ we have (Z, λ) -Nuclear Mappings and Z-Nuclear Spaces

$$\begin{split} \sum_{i=1}^{\infty} |\xi_i \alpha_i| &\leq 1/(1-\varepsilon) \sum_{i=1}^{\infty} |\alpha_i e'_i(\xi_i e_i)| \\ &\leq 1/(1-\varepsilon) \sup_{\|(u_i)\|_{\lambda(z)} \leq 1} \sum_{i=1}^{\infty} |u'_i(u_i)| \\ &= 1/(1-\varepsilon) \|(u'_i)\|_{\lambda'}^0. \end{split}$$

Thus we have

$$\lambda'_0(Z') \subset \lambda'(Z')$$
 and $\|\cdot\|_{\lambda'(Z')} \leq \|\cdot\|_{\lambda'}^0$

This completes the proof.

§3. (Z, λ) -nuclear mappings

We shall define (Z, λ) -nuclear mappings as follows.

DEFINITION 4. Let λ be of type Λ and let E, F and Z be Banach spaces. $T \in L(E, F)$ is said to be a left (Z, λ) -nuclear or simply (Z, λ) -nuclear (resp. right (Z, λ) -nuclear) mapping, if T can be written in the form

(2)
$$Tu = \sum_{i=1}^{\infty} B_i A_i u \quad \text{for each} \quad u \in E$$

with $\{A_i\} \subset L(E, Z)$ and $\{B_i\} \subset L(Z, F)$ such that

 $\|(\|A_i\|)\|_{\lambda} < \infty$ and $\sup_{\|v'\| \le 1} \|(\|B_i'v'\|)\|_{\lambda'} < \infty$ (resp. $\sup_{\|u\| \le 1} \|(\|A_iu\|)\|_{\lambda'} < \infty$

and $\|(\|B_i\|)\|_{\lambda} < \infty),$

where B'_i is the adjoint mapping of B_i . We denote by $N_{Z,\lambda}(E, F)$ (resp. $N^{Z,\lambda}(E, F)$) the collection of (Z, λ) -nuclear (resp. right (Z, λ) -nuclear) mappings. The quasi-norm (as proved later) is defined by

$$v_{Z,\lambda}(T) = \inf(\|(\|A_i\|)\|_{\lambda} \sup_{\|v'\| \le 1} \|(\|B'_i v'\|)\|_{\lambda'})$$

(resp.
$$v^{Z,\lambda}(T) = \inf(\sup_{\|u\| \le 1} \|(\|A_i u\|)\|_{\lambda'} \cdot \|(\|B_i\|)\|_{\lambda})),$$

where infimum is taken over all representations (2) of T.

Remark. In case $1 \le p \le \infty$, $1 \le q < \infty$, if $\lambda = l_{p,q}$ and Z is one-dimensional, a (Z, λ) -nuclear (resp. right (Z, λ) -nuclear) mapping coincides with a (p, q)-nuclear (resp. right (p, q)-nuclear) mapping introduced in Miyazaki [4], and

if $\lambda = l_p$, a (Z, λ) -nuclear mapping coincides with a (Z, p)-nuclear mapping introduced in Ceitlin [1].

For $T \in N_{Z,\lambda}(E, F)$ and for each $u \in E$, the series (2) is convergent. In fact, for any finite set J of positive integers and for each $u \in E$ we have

$$\|\sum_{i\in J} B_{i}A_{i}u\| \leq \sup_{\|v'\|\leq 1} \sum_{i\in J} \|A_{i}u\| \cdot \|B_{i}'v'\|$$

$$\leq \|u\| \cdot \|(\alpha_{i})\|_{\lambda} \cdot \sup_{\|v'\|\leq 1} \|(\|B_{i}'v'\|)\|_{\lambda'},$$

where

$$\alpha_i = \begin{cases} \|A_i\| & \text{ for } i \in J \\ 0 & \text{ for } i \notin J. \end{cases}$$

Let ε be any positive number. Since $\|(\|A_i\|)\|_{\lambda} < \infty$, by the condition (a) of λ there exists an integer p > 0 such that

$$\|(0,...,0, \|A_p\|, \|A_{p+1}\|,...)\|_{\lambda} < \varepsilon.$$

For $J = \{p, p+1, ..., q\}$, by the condition (b) of λ we have

$$\|(0,\ldots,0,\alpha_p,\ldots,\alpha_q,0,\ldots)\|_{\lambda}<\varepsilon.$$

It follows that

$$\|\sum_{i \in I} B_i A_i u\| < C \cdot \varepsilon$$
 with a constant C .

Hence the series (2) is convergent. A similar fact is valid for $T \in N^{Z,\lambda}(E, F)$.

PROPOSITION 2. Let λ be of type Λ , let E, F and Z be Banach spaces and let $T \in N_{Z,\lambda}(E, F)$ (resp. $T \in N^{Z,\lambda}(E, F)$). Then

$$\|T\| \le v_{\mathbf{Z},\lambda}(T) \qquad (resp. \quad \|T\| \le v^{\mathbf{Z},\lambda}(T)).$$

PROOF. If $T \in N_{Z,\lambda}(E, F)$, we have

$$||Tu|| \leq ||u|| \cdot ||(||A_i||)||_{\lambda} \cdot \sup_{||v'|| \leq 1} ||(||B'_iv'||)||_{\lambda'}.$$

Therefore we have

$$||T|| \leq \inf(||(||A_i||)||_{\lambda} \cdot \sup_{||v'|| \leq 1} ||(||B'_i v'||)||_{\lambda'}),$$

where infimum is taken over all representations (2) of T. The proof is complete.

PROPOSITION 3. Let λ be of type Λ and let E, F and Z be Banach spaces.

38

Then if $T \in N_{Z,\lambda}(E, F)$, its adjoint T' belongs to $N^{Z',\lambda}(F', E')$ and it satisfies

 $v^{Z',\lambda}(T') \leq v_{Z,\lambda}(T).$

Furthermore, assume E, F and Z are reflexive. Then if $T' \in N^{Z', \lambda}(F', E')$, we have

$$T \in N_{Z,\lambda}(E, F)$$

and

$$v^{Z',\lambda}(T') = v_{Z,\lambda}(T)$$

PROOF. If $T \in N_{Z,\lambda}(E, F)$, then for any $\varepsilon > 0$ it can be written as

$$Tu = \sum_{i=1}^{\infty} B_i A_i u$$
 for each $u \in E$

with

$$\|(\|A_i\|)\|_{\lambda} \cdot \sup_{\|v'\| \le 1} \|(\|B'_i v'\|)\|_{\lambda'} \le v_{Z,\lambda}(T) + \varepsilon$$

Hence we have

$$T'v' = \sum_{i=1}^{\infty} A'_i B'_i v'$$
 for each $v' \in F'$

and we have

$$v^{Z',\lambda}(T') \leq \|(\|A'_i\|)\|_{\lambda} \sup_{\|v'\|\leq 1} \|(\|B'_iv'\|)\|_{\lambda'} \leq v_{Z,\lambda}(T) + \varepsilon.$$

Therefore we have

$$v^{Z',\lambda}(T') \leq v_{Z,\lambda}(T).$$

When E, F and Z are reflexive, in the same way $T' \in N^{Z', \lambda}(F', E')$ implies

$$T \in N_{Z,\lambda}(E, F)$$

and

$$v_{Z,\lambda}(T) \leq v^{Z',\lambda}(T')$$

Thus

$$v_{Z,\lambda}(T) = v^{Z',\lambda}(T').$$

This completes the proof.

THEOREM 3. Let λ be of type Λ , let E, F and Z be Banach spaces and let $T_k \in N_{Z,\lambda}(E, F)$ for k=1, 2, ..., M, M being a positive integer. Then $\sum_{k=1}^{M} T_k$

 $\in N_{\mathbf{Z},\lambda}(E, F)$ and

 $v_{Z,\lambda}(\sum_{k=1}^{M} T_k) \leq C^{M-1} \cdot M \cdot (\sum_{k=1}^{M} v_{Z,\lambda}(T_k)),$

where C is a constant.

A similar statement holds for elements of $N^{Z,\lambda}(E, F)$.

PROOF. For any $\varepsilon > 0$ T_k can be written in the form

$$T_k u = \sum_{i=1}^{\infty} B_{k,i} A_{k,i} u, \qquad k = 1, 2, ..., M$$

with

 $\{A_{k,i}\} \subset L(E, Z)$ and $\{B_{k,i}\} \subset L(Z, F)$

such that

$$\|(\|A_{k,i}\|)_i\|_{\lambda} \leq 1$$

and

$$\sup_{\|v'\|\leq 1} \|(\|B'_{k,i}v'\|)\|_{\lambda'} \leq v_{Z,\lambda}(T_k) + \varepsilon/2^k, \qquad k = 1, 2, ..., M.$$

Hence we have

$$\|(\|A_{k,i}\|)_{i,k}\|_{\lambda} \leq C^{M-1} \cdot \sum_{k=1}^{M} \|(\|A_{k,i}\|)_{i}\|_{\lambda}$$
$$\leq C^{M-1} \cdot M,$$

where C is a constant. On the other hand, we have

$$\sup_{\|v'\|\leq 1} \|(\|B'_{k,i}v'\|)_{i,k}\|_{\lambda'} \leq \sum_{k=1}^{M} \sup_{\|v'\|\leq 1} \|(\|B'_{k,i}v'\|)_{i}\|_{\lambda'}$$
$$\leq \sum_{k=1}^{M} v_{Z,\lambda}(T_{k}) + \varepsilon.$$

Thus we have

$$v_{Z,\lambda}(\sum_{k=1}^{M} T_k) \le C^{M-1} \cdot M \cdot (\sum_{k=1}^{M} v_{Z,\lambda}(T_k) + \varepsilon)$$

Since ε is arbitrary, this completes the proof.

PROPOSITION 4. Let λ be of type Λ and let E, F, G and Z be Banach spaces. If $T \in N_{Z,\lambda}(E, F)$ and $S \in L(F, G)$, then $ST \in N_{Z,\lambda}(E, G)$ and

$$v_{Z,\lambda}(ST) \leq \|S\| \cdot v_{Z,\lambda}(T).$$

If $T \in L(E, F)$ and $S \in N_{Z,\lambda}(F, G)$, then $ST \in N_{Z,\lambda}(E, G)$

and

 (Z, λ) -Nuclear Mappings and Z-Nuclear Spaces

$$v_{Z,\lambda}(ST) \le v_{Z,\lambda}(S) \cdot \|T\|.$$

The analogues for the mappings of $N^{\mathbf{Z},\lambda}$ are valid.

PROOF. First let $T \in N_{Z,\lambda}(E, F)$ and $S \in L(F, G)$. If S = 0, the assertion is trivial. So we assume $S \neq 0$. Then we have

$$STu = \sum_{i=1}^{\infty} SB_i A_i u$$
 for each $u \in E$,

with

$$\{A_i\} \subset L(E, Z)$$
 and $\{B_i\} \subset L(Z, F)$

such that

$$\|(\|A_i\|)\|_{\lambda} < \infty$$

and

$$\sup_{\|w'\|_{G'} \le 1} \|(\|(SB_i)'w'\|)\|_{\lambda'}$$

$$\leq \|S\| \cdot \sup_{\|w'\|_{G'} \le 1} \|(\|(B_i'\|S\|^{-1}S')w'\|)\|_{\lambda'}$$

$$\leq \|S\| \cdot \sup_{\|u'\|_{F'} \le 1} \|(\|B_i'u'\|)\|_{\lambda'} < \infty.$$

This implies $ST \in N_{Z,\lambda}(E, G)$ and

 $v_{Z,\lambda}(ST) \leq \|S\| \cdot v_{Z,\lambda}(T).$

Secondly, let $T \in L(E, F)$ and $S \in N_{Z,\lambda}(F, G)$. Then we have

 $STu = \sum_{i=1}^{\infty} B_i A_i Tu$ for each $u \in E$,

with

 $\|(\|A_iT\|)\|_{\lambda} \le \|T\| \cdot \|(\|A_i\|)\|_{\lambda} < \infty$

and

$$\sup_{\|w'\|_{G'}\leq 1} \|(\|B'_iw'\|)\|_{\lambda'} < \infty.$$

Hence

 $ST \in N_{Z,\lambda}(E, G)$

and

 $v_{Z,\lambda}(ST) \leq v_{Z,\lambda}(S) \cdot \|T\|.$

This completes the proof.

PROPOSITION 5. Let λ be of type Λ and let E, F and Z be Banach spaces. Then $L_0^Z(E, F)$ is dense in $N_{Z,\lambda}(E, F)$ and $N^{Z,\lambda}(E, F)$.

PROOF. Let $T \in N_{Z,\lambda}(E, F)$. Then $Tu = \sum_{i=1}^{\infty} B_i A_i u$ for each $u \in E$, with

 $\|(\|A_i\|)\|_{\lambda} < \infty$

and

$$\sup_{\|v'\|\leq 1} \|(\|B'_iv'\|)\|_{\lambda'} < \infty.$$

If we set

$$T_k u = \sum_{i=1}^k B_i A_i u,$$

we obtain

 $T_k \in L_0^Z(E, F)$

and

$$(T-T_k)u = \sum_{i=1}^{\infty} B_{k+i}A_{k+i}u$$
 for each $u \in E$.

Consequently we have

$$v_{Z,\lambda}(T-T_k) \leq \|(\|A_{k+i}\|)\|_{\lambda} \cdot \sup_{\|v'\|\leq 1} \|(\|B'_{k+i}v'\|)\|_{\lambda'}$$

Owing to (a), this converges to 0 as $k \to \infty$. Hence $L_0^Z(E, F)$ is dense in $N_{Z,\lambda}(E, F)$. In the same way we can show that $L_0^Z(E, F)$ is dense in $N^{Z,\lambda}(E, F)$.

COROLLARY. Let λ be of type Λ , let E and F be Banach spaces and let Z be a finite dimensional Banach space; then $N_{Z,\lambda}(E, F) \subset K(E, F)$ and $N^{Z,\lambda}(E, F) \subset K(E, F)$.

LEMMA 1. Let λ be of type Λ and a Banach space, let Z be a Banach space, let $(\delta_i) \in \lambda$ and let D_1 be the mapping from $l_{\infty}(Z)$ into $\lambda(Z)$ defined by

$$D_1((a_i)) = (\delta_i a_i)$$
 for each $(a_i) \in l_{\infty}(Z)$.

Then

$$D_1 \in N_{Z,\lambda}(l_{\infty}(Z), \lambda(Z))$$

and

$$v_{Z,\lambda}(D_1) = \|(\delta_i)\|_{\lambda}.$$

PROOF. Let $I_i(z) = (0, ..., 0, \dot{z}, 0, ...)$. Then $I_i(z) \in \lambda(Z)$ for $z \in Z$, since $(0, ..., 0, \dot{1}, 0, ...) \in \lambda$. Hence I_i is a mapping of Z into $\lambda(Z)$. Define $A_i: l_{\infty}(Z) \to Z$ by $A_i u = \delta_i a_i$ for each $u = (a_i) \in l_{\infty}(Z)$. Then

$$\begin{aligned} \{I_i\} &\subset L(Z, \lambda(Z)), \quad \{A_i\} \subset L(l_{\infty}(Z), Z), \\ D_1 u &= \sum_{i=1}^{\infty} I_i A_i u \quad \text{for each} \quad u \in l_{\infty}(Z), \\ \|(\|A_i\|)\|_{\lambda} &= \|(\delta_i)\|_{\lambda}, \end{aligned}$$

and by Theorem 2

$$\sup_{\|v'\|_{\lambda(z)}\leq 1} \|(\|I'_iv'\|)\|_{\lambda'} = \sup_{\|v'\|_{\lambda'}(z')\leq 1} \|(\|I'_iv'\|)\|_{\lambda'} = 1.$$

Hence

$$D_1 \in N_{Z,\lambda}(l_{\infty}(Z), \lambda(Z))$$
 and $v_{Z,\lambda}(D_1) \le \|(\delta_i)\|_{\lambda}$

On the other hand, let I be (z, z,...) with ||z|| = 1. Then we have

$$\|(\delta_i)\|_{\lambda} = \|D_1I\|_{\lambda(Z)} \le \|D_1\| \le v_{Z,\lambda}(D_1),$$

where the last inequality follows from Proposition 2. Hence

$$v_{Z,\lambda}(D_1) = \|(\delta_i)\|_{\lambda}.$$

The proof is complete.

THEOREM 4. Let λ be of type Λ and a Banach space and let E, F and Z be Banach spaces. Then $T \in L(E, F)$ is (Z, λ) -nuclear if and only if T can be factorized in the form $T = Q_1 D_1 P_1$:

$$E \xrightarrow{P_1} l_{\infty}(Z) \xrightarrow{D_1} \lambda(Z) \xrightarrow{Q_1} F,$$

where $P_1 \in L(E, l_{\infty}(Z))$ with $||P_1|| \le 1$, $Q_1 \in L(\lambda(Z), F)$ with $||Q_1|| \le 1$ and D_1 is a mapping of the type given in Lemma 1.

PROOF. The sufficiency is evident by Proposition 4 and Lemma 1. The necessity is proved by virtue of the definition of $T \in N_{Z,\lambda}(E, F)$ and the following decomposition of T. Since, for any $\varepsilon > 0$,

$$Tu = \sum_{i=1}^{\infty} B_i A_i u$$

with

$$\|(\|A_i\|)\|_{\lambda} \leq v_{Z,\lambda}(T) + \varepsilon,$$

and

$$\sup_{\|v'\|\leq 1} \|(\|B'_iv'\|)\|_{\lambda'} \leq 1,$$

we can get the decomposition of T:

$$E \xrightarrow{P_1} l_{\infty}(Z) \xrightarrow{D_1} \lambda(Z) \xrightarrow{Q_1} F,$$

where for each $u \in E P_1 u = (v_i)$ with

$$v_i = \begin{cases} A_i u / ||A_i|| & \text{for } A_i \neq 0 \\ 0 & \text{for } A_i = 0, \end{cases}$$

and

$$D_1((a_i)) = (||A_i||a_i) \in \lambda(Z) \quad \text{for each} \quad (a_i) \in l_{\infty}(Z),$$
$$Q_1((b_i)) = \sum_{i=1}^{\infty} B_i b_i \in F \quad \text{for each} \quad (b_i) \in \lambda(Z).$$

It is easy to verify that $||P_1|| \le 1$. Furthermore we have $||Q_1|| \le 1$. In fact,

$$\begin{split} \|\sum_{i=1}^{\infty} B_{i}b_{i}\|_{F} &= \sup_{\|v'\| \leq 1} |\sum_{i=1}^{\infty} v'(B_{i}b_{i})| \\ &\leq \sup_{\|v'\| \leq 1} \sum_{i=1}^{\infty} |B'_{i}v'(b_{i})| \\ &\leq \|(b_{i})\|_{\lambda(Z)} \cdot \sup_{\|v'\| \leq 1} \|(B'_{i}v')\|_{\lambda'(Z')} \\ &\leq \|(b_{i})\|_{\lambda(Z)} \,. \end{split}$$

Thus the proof is complete.

LEMMA 2. Let λ be of type Λ and a Banach space, let Z be a Banach space, let $(\delta_i) \in \lambda$ and let $D_2: \lambda'(Z) \rightarrow l_1(Z)$ be defined by

$$D_2((b_i)) = (\delta_i b_i)$$
 for each $(b_i) \in \lambda'(Z)$.

Then

$$D_2 \in N^{\mathbb{Z}, \lambda}(\lambda'(\mathbb{Z}), l_1(\mathbb{Z}))$$

and

$$v^{Z,\lambda}(D_2) = \|(\delta_i)\|_{\lambda}.$$

PROOF. If we define $A_i: \lambda'(Z) \to Z$ by $A_i u = \delta_i b_i$ for $u = (b_i) \in \lambda'(Z)$, we have

$$D_2 u = \sum_{i=1}^{\infty} I_i A_i u = \sum_{i=1}^{\infty} \delta_i I_i \delta'_i A_i u$$

with

$$\delta_i' = \left\{ egin{array}{ll} 1/\delta_i & \mbox{ for } \delta_i
eq 0 \ 0 & \mbox{ for } \delta_i = 0, \end{array}
ight.$$

where

$$\|(\|\delta_i I_i\|)\|_{\lambda} = \|(\delta_i)\|_{\lambda} < \infty$$

and

$$\sup_{\|u\|_{\lambda'}(z)\leq 1} \|(\|\delta'_i A_i u\|)\|_{\lambda'} \leq 1.$$

Hence

$$D_2 \in N^{\mathbb{Z}, \lambda}(\lambda'(\mathbb{Z}), l_1(\mathbb{Z}))$$

and

 $v^{Z,\lambda}(D_2) \leq \|(\delta_i)\|_{\lambda}.$

On the other hand, we have

$$\|(\delta_i)\|_{\lambda} = \sup_{\|(b_i)\|_{\lambda'(Z)}=1} \|(\delta_i b_i)\|_{l_1(Z)}.$$

Hence for any $\varepsilon > 0$, there exists (b_i) with $||(b_i)||_{\lambda'(\mathbf{Z})} = 1$ such that

 $\|(\delta_i)\|_{\lambda} - \varepsilon \leq \|D_2((b_i))\|_{l_1(\mathbb{Z})}.$

Since

$$||D_2((b_i))||_{l_1(Z)} \le ||D_2||,$$

by Proposition 2 we have

$$\|(\delta_i)\|_{\lambda} - \varepsilon \leq v^{Z,\lambda}(D_2).$$

Thus we obtain

$$\|(\delta_i)\|_{\lambda} \leq v^{Z,\lambda}(D_2).$$

Consequently

$$v^{Z,\lambda}(D_2) = \|(\delta_i)\|_{\lambda}.$$

The proof is complete.

THEOREM 5. Let λ be of type Λ and a Banach space and let E, F and Z be Banach spaces. Then $T \in L(E, F)$ is right (Z, λ) -nuclear if and only if T can be written in the form $T = Q_2 D_2 P_2$:

$$E \xrightarrow{\mathbf{P}_2} \lambda'(Z) \xrightarrow{\mathbf{D}_2} l_1(Z) \xrightarrow{\mathbf{Q}_2} F,$$

where $P_2 \in L(E, \lambda'(Z))$ with $||P_2|| \le 1$, $Q_2 \in L(l_1(Z), F)$ with $||Q_2|| \le 1$ and D_2 is a mapping of the type given in Lemma 2.

PROOF. The sufficiency is evident by Proposition 4 and Lemma 2. The necessity is proved by virtue of the definition of $T \in N^{Z,\lambda}(E, F)$ and the following decomposition of T. Since for any $\varepsilon > 0$ we have

$$Tu = \sum_{i=1}^{\infty} B_i A_i u$$

with

$$\|(\|B_i\|)\|_{\lambda} \leq v^{Z,\lambda}(T) + \varepsilon$$

and

$$\sup_{\|u\|\leq 1} \|(\|A_i u\|)\|_{\lambda'} \leq 1,$$

we can get the decomposition of T:

$$E \xrightarrow{P_2} \lambda'(Z) \xrightarrow{D_2} l_1(Z) \xrightarrow{Q_2} F,$$

where

$$P_2 u = (A_i u) \in \lambda'(Z) \quad \text{for each} \quad u \in E,$$
$$D_2((a_i)) = (||B_i||a_i) \in l_1(Z) \quad \text{for each} \quad (a_i) \in \lambda'(Z)$$

and for each $(b_i) \in l_1(Z)$

$$Q_2((b_i)) = \sum_{i=1}^{\infty} C_i b_i$$

with

$$C_i = \begin{cases} B_i / \|B_i\| & \text{for } B_i \neq 0\\ 0 & \text{for } B_i = 0. \end{cases}$$

It is easy to verify that $||P_2|| \le 1$ and $||Q_2|| \le 1$. The proof is complete.

§4. $(\mathbf{Z}, \boldsymbol{\lambda})$ -quasi-nuclear mappings

In this section we shall introduce and investigate the (Z, λ) -quasi-nuclear mappings.

DEFINITION 5. Let λ be of type Λ_0 and let E, F and Z be Banach spaces.

 $T \in L(E, F)$ is said to be a (Z, λ) -quasi-nuclear mapping if there exists a sequence $\{A_i\} \subset L(E, Z)$ such that

$$(||A_i||) \in \lambda$$

and

$$||Tu|| \le ||(||A_iu||)||_{\lambda} \quad \text{for each} \quad u \in E.$$

The inf $\|(\|A_i\|)\|_{\lambda}$ which is taken over all $\{A_i\}$ satisfying the above condition is denoted by $v_{Z,\lambda}^0(T)$. The collection of all (Z, λ) -quasi-nuclear mappings is denoted by $N_{Z,\lambda}^0(E, F)$.

PROPOSITION 6. Let λ be of type Λ_0 and let E, F and Z be Banach spaces. Then for any $T \in N_{Z,\lambda}^0(E, F)$ we have

$$||T|| \leq v_{Z,\lambda}^{Q}(T).$$

PROOF. Let $T \in N^{Q}_{Z,\lambda}(E, F)$. Then

 $||Tu|| \leq ||u|| \cdot ||(||A_i||)||_{\lambda}.$

Thus the proof is complete.

PROPOSITION 7. Let λ be of type Λ and let E, F and Z be Banach spaces. Then we have

$$N_{Z,\lambda}(E, F) \subset N^{Q}_{Z,\lambda}(E, F)$$

and

$$v_{Z,\lambda}^{Q}(T) \le v_{Z,\lambda}(T)$$

for each $T \in N_{Z,\lambda}(E, F)$.

PROOF. $T \in N_{Z,\lambda}(E, F)$ can be expressed as follows. For any $\varepsilon > 0$ there exist sequences $\{A_i\} \subset L(E, Z)$ and $\{B_i\} \subset L(Z, F)$ such that

$$Tu = \sum_{i=1}^{\infty} B_i A_i u \quad \text{for each} \quad u \in E,$$
$$\|(\|A_i\|)\|_{\lambda} \le v_{Z,\lambda}(T) + \varepsilon$$

and

$$\sup_{\|v'\|\leq 1} \|(\|B'_iv'\|)\|_{\lambda'} \leq 1.$$

Therefore we have

$$\begin{aligned} \|Tu\| &\leq \sup_{\|v'\| \leq 1} \sum_{i=1}^{\infty} \|A_i u\| \cdot \|B'_i v'\| \\ &\leq \|(\|A_i u\|)\|_{\lambda} \cdot \sup_{\|v'\| \leq 1} \|(\|B'_i v'\|)\|_{\lambda'} \\ &\leq \|(\|A_i u\|)\|_{\lambda}, \end{aligned}$$

which shows $T \in N^Q_{Z,\lambda}(E, F)$ and $v^Q_{Z,\lambda}(T) \le v_{Z,\lambda}(T)$. The proof is complete.

PROPOSITION 8. Let λ be of type Λ_0 and let E, F, G and Z be Banach spaces. If $T \in N^Q_{Z,\lambda}(E, F)$ and $S \in L(F, G)$, then $ST \in N^Q_{Z,\lambda}(E, G)$ and

$$v_{\mathbf{Z},\lambda}^{\mathbf{Q}}(ST) \leq \|S\| \cdot v_{\mathbf{Z},\lambda}^{\mathbf{Q}}(T)$$

If $T \in L(E, F)$ and $S \in N^{Q}_{Z,\lambda}(F, G)$, then $ST \in N^{Q}_{Z,\lambda}(E, G)$ and

 $v_{Z,\lambda}^Q(ST) \le v_{Z,\lambda}^Q(S) \cdot \|T\|.$

PROOF. If $T \in N^{Q}_{Z,\lambda}(E, F)$ and $S \in L(F, G)$, there exists a sequence $\{A_i\} \subset L(E, Z)$ such that

$$(||A_i||) \in \lambda$$
 and $||Tu|| \le ||(||A_iu||)||_{\lambda}$ for each $u \in E$.

Then

$$\{\|S\|A_i\} \subset L(E, Z), \qquad (\|S\| \cdot \|A_i\|) \in \lambda$$

and

$$||STu|| \le ||S|| \cdot ||Tu|| \le ||S|| \cdot ||(||A_iu||)||_{\lambda}$$
$$= ||(||S|| \cdot ||A_iu||)||_{\lambda} \quad \text{for each} \quad u \in E.$$

Therefore we have

$$ST \in N^{Q}_{Z,\lambda}(E, G)$$

and

$$v_{Z,\lambda}^{Q}(ST) \leq \|S\| \cdot v_{Z,\lambda}^{Q}(T).$$

In the same way, if $T \in L(E, F)$ and $S \in N_{Z,\lambda}^0(F, G)$, there exists a sequence $\{B_i\} \subset L(F, Z)$ such that

$$(||B_i||) \in \lambda$$
 and $||Sv|| \leq ||(||B_iv||)||_{\lambda}$ for each $v \in F$.

Therefore we have

$$||STu|| \le ||(||B_iTu||)||_{\lambda}$$
 for each $u \in E$

and

$$\|(\|B_iT\|)\|_{\lambda} \le \|T\| \cdot \|(\|B_i\|)\|_{\lambda} < \infty,$$

that is,

$$(||B_iT||) \in \lambda.$$

Consequently we have

$$ST \in N^{Q}_{Z,\lambda}(E, G)$$

and

$$v_{Z,\lambda}^Q(ST) \le v_{Z,\lambda}^Q(S) \cdot \|T\|.$$

The proof is complete.

THEOREM 6. Let λ be of type Λ_0 , let E, F and Z be Banach spaces and $T_k \in N^Q_{Z,\lambda}(E, F)$, k=1, 2, ..., M. Then $\sum_{k=1}^{M} T_k \in N^Q_{Z,\lambda}(E, F)$ and

 $v_{Z,\lambda}^Q(\sum_{k=1}^M T_k) \leq M \cdot C^{M-1} \cdot (\sum_{k=1}^M v_{Z,\lambda}^Q(T_k)).$

PROOF. For any $\varepsilon > 0$ there exist sequences

$$\{A_{k,i}\}_{1 \le i < \infty} \subset L(E, Z), \qquad k = 1, 2, ..., M,$$

such that

$$\|(\|A_{k,i}\|)_i\|_{\lambda} < v_{Z,\lambda}^Q(T_k) + \varepsilon/2^k$$

and

$$||T_k u|| \le ||(||A_{k,i} u||)_i||_{\lambda}$$
 for each $u \in E$, $k = 1, 2, ..., M$.

Therefore we have

$$\|(\sum_{k=1}^{M} T_{k})u\| \leq \sum_{k=1}^{M} \|T_{k}u\|$$
$$\leq \sum_{k=1}^{M} \|(\|A_{k,i}u\|)_{i}\|_{\lambda}$$
$$\leq M \cdot \|(\|A_{k,i}u\|)_{k,i}\|_{\lambda}.$$

Hence we have

$$\begin{split} v_{\mathbb{Z},\lambda}^{Q}(\sum_{k=1}^{M}T_{k}) &\leq M \cdot \|(\|A_{k,i}\|)_{k,i}\|_{\lambda} \\ &\leq M \cdot C^{M-1} \cdot \sum_{k=1}^{M} \|(\|A_{k,i}\|)_{i}\|_{\lambda} \\ &\leq M \cdot C^{M-1} \cdot (\sum_{k=1}^{M}v_{\mathbb{Z},\lambda}^{Q}(T_{k}) + \varepsilon). \end{split}$$

Consequently we have

$$\sum_{k=1}^{M} T_k \in N_{Z,\lambda}^{Q}(E, F)$$

and

$$v_{Z,\lambda}^{Q}(\sum_{k=1}^{M} T_{k}) \leq M \cdot C^{M-1} \cdot \left(\sum_{k=1}^{M} v_{Z,\lambda}^{Q}(T_{k})\right).$$

The proof is complete.

DEFINITION 6. A Banach space F is said to have the extension property if each mapping $T_0 \in L(E_0, F)$, E_0 being any linear subspace of an arbitrary quasi-normed space E, can be extended to a $T \in L(E, F)$ preserving its norm.

PROPOSITION 9. Let λ be of type Λ , let E, F and Z be Banach spaces, and let us assume that F has the extension property. Then any (Z, λ) -quasi-nuclear mapping $T: E \rightarrow F$ is (Z, λ) -nuclear, and

$$v_{Z,\lambda}(T) = v_{\overline{Z},\lambda}^Q(T).$$

PROOF. From the definition, for any $\varepsilon > 0$ there exists a sequence $\{A_i\} \subset L(E, Z)$ such that

$$||Tu|| \le ||(||A_iu||)||_{\lambda}$$
 for each $u \in E$

and

$$\|(\|A_i\|)\|_{\lambda} \leq v_{Z,\lambda}^Q(T) + \varepsilon.$$

Let us denote by Q_0 the mapping from the subspace $\{(A_i u) | u \in E\}$ of $\lambda(Z)$ into F defined by

$$Q_0((A_i u)) = Tu.$$

Then we have $||Q_0|| \le 1$. Thus, by our assumption there exists an extension $Q: \lambda(Z) \to F$ of Q_0 with $||Q|| \le 1$. If we define $I_i: Z \to \lambda(Z)$ such that

$$I_i(z) = (0, ..., 0, \overset{i}{z}, 0, ...),$$

.

then $\sum_{i=1}^{\infty} I_i A_i u$ is convergent in $\lambda(Z)$ by condition (a) for λ and equal to $(A_i u)$. Hence we have

$$Tu = \sum_{i=1}^{\infty} QI_i A_i u$$

and for each $v' \in F'$

$$\|(\|(QI_i)'v'\|)\|_{\lambda'} = \|(\|I_i'Q'v'\|)\|_{\lambda'}$$

50

 (Z, λ) -Nuclear Mappings and Z-Nuclear Spaces

$$= \|Q'v'\|_{\lambda'(Z')}.$$

By Theorem 2

$$\|(\|(QI_i)'v'\|)\|_{\lambda'} = \|Q'v'\|_{\lambda(Z)'} \le \|v'\|.$$

Therefore we have

$$\sup_{\|v'\| \le 1} \|(\|(QI_i)'v'\|)\|_{\lambda'} \le 1$$

and

$$v_{\mathbf{Z},\boldsymbol{\lambda}}(T) \leq v_{\mathbf{Z},\boldsymbol{\lambda}}^{Q}(T) + \varepsilon.$$

Owing to Proposition 7 we now obtain the conclusion of the proposition.

§5. Z-nuclear spaces

We first recall the definition of Z-nuclear mappings ([1]).

DEFINITION 7. Let E, F and Z be Banach spaces. Then $T \in L(E, F)$ is said to be a Z-nuclear mapping, if T can be written in the form

$$Tu = \sum_{i=1}^{\infty} B_i A_i u$$
 for each $u \in E$

with

$$\{A_i\} \subset L(E, Z) \text{ and } \{B_i\} \subset L(Z, F)$$

such that

 $\sum_{i=1}^{\infty} \|A_i\| \cdot \|B_i\| < \infty,$

that is, T is a (Z, l_1) -nuclear mapping.

Let *E* be a locally convex space, let *U* be an arbitrary absolutely convex neighborhood of zero and p_U be the gauge of *U*. Then the quotient space $E/p_U^{-1}(0)$ is normable by the norm $\hat{u} \to ||\hat{u}|| = p_U(u)$, where $u \in \hat{u}$. We shall denote by E_U the normed space $(E/p_U^{-1}(0), ||\cdot||)$ and by $\widetilde{E_U}$ its completion. Then the quotient mapping is continuous on *E* into $\widetilde{E_U}$. This mapping will be denoted by ϕ_U .

If E is a locally convex space and $B \neq \phi$ an absolutely convex bounded subset of E, then $E_1 = \bigcup_{n=1}^{\infty} nB$ is a subspace of E. The gauge function p_B of B in E_1 is seen to be a norm on E_1 . Then the normed space (E_1, p_B) will be denoted by E_B . It is immediate that the imbedding mapping $\psi_B \colon E_B \rightarrow E$ is continuous.

If U and V are absolutely convex neighborhoods of zero in E with respective

gauge functions p_U and p_V and such that $U \subset V$, then $p_U^{-1}(0) \subset p_V^{-1}(0)$ and each equivalence class $\hat{u} \mod p_U^{-1}(0)$ is contained in a unique equivalence class $\hat{v} \mod p_V^{-1}(0)$ and $\hat{u} \rightarrow \hat{v}$ is a linear mapping $\phi_{V,U}$, which is called the canonical mapping of E_U onto E_V . It has a unique continuous extension of \widetilde{E}_U into \widetilde{E}_V , which is again called canonical and also denoted by $\phi_{V,U}$.

We now generalize the notion of a Z-nuclear mapping to arbitrary locally convex spaces E, F as follows.

DEFINITION 8. A linear mapping T of a locally convex space E into another locally convex space F is said to be Z-nuclear if there exist an absolutely convex neighborhood of zero U in E and an absolutely convex bounded set B in F with F_B complete such that $T(U) \subset B$ with respect to which T can be then decomposed in the form $T = \psi_B \circ T_0 \circ \phi_U$ with $T_0 \in L(E_U, F_B)$ such that the mapping $\overline{T_0}$ of $\overline{E_U}$ into F_B induced by T_0 is Z-nuclear.

PROPOSITION 10. Let E and F be Banach spaces. Then $T: E \rightarrow F$ is Z-nuclear with E and F considered as Banach spaces if and only if T is Z-nuclear with E and F considered as locally convex spaces.

PROOF. Let $T: E \to F$ be Z-nuclear with E and F considered as Banach spaces. If we put $U = \{x \mid ||x|| \le 1\}$ in E and $B = \widetilde{T(U)}$, then $\widetilde{E_U} = E$ and F_B is complete. T can be decomposed in the form

$$T = \psi_{B} \circ T \circ \phi_{U}$$

with ϕ_U the identity mapping. Therefore T is Z-nuclear with E and F considered as locally convex spaces. Conversely, if T is Z-nuclear with E and F considered as locally convex spaces, T can be decomposed in the form

$$T = \psi_{B^{\circ}} \overline{T}_0 \circ \phi_U,$$

where U and B are sets of E and F stated in the definition above and \overline{T}_0 is Z-nuclear of $\widetilde{E_U}$ into F_B . Therefore by Proposition 4 T is Z-nuclear when E and F are considered as Banach spaces. The proof is complete.

THEOREM 7. Let E and F be locally convex spaces and let Z be a Banach space. Then a linear mapping $T \in L(E, F)$ is Z-nuclear if and only if it can be written in the form

$$Tu = \sum_{i=1}^{\infty} \lambda_i B_i A_i u$$
 for each $u \in E$,

where $\sum_{i=1}^{\infty} |\lambda_i| < \infty$, $\{A_i\}$ is an equicontinuous sequence in L(E, Z) and $\{B_i\}$ is a sequence in L(Z, F) for which there exist a neighborhood of zero W in Z and an absolutely convex bounded set B with F_B complete such that $B_i(W) \subset B$

for any i = 1, 2, ...

PROOF. The condition is necessary. For, if T is Z-nuclear, then

$$T = \psi_{B^{\circ}} \overline{T}_0 \circ \phi_U,$$

where \overline{T}_0 is Z-nuclear in $L(\widetilde{E_U}, F_B)$, U being a suitable neighborhood of zero and B being a suitable bounded subset of F for which F_B is complete. Therefore \overline{T}_0 can be written in the form

$$\overline{T}_0 \hat{u} = \sum_{i=1}^{\infty} B_i A_i \hat{u}$$
 for each $\hat{u} \in \widetilde{E_U}$

with

$$\{A_i\} \subset L(\widetilde{E_U}, Z) \text{ and } \{B_i\} \subset L(Z, F_B)$$

such that

$$\sum_{i=1}^{\infty} \|A_i\| \cdot \|B_i\| < \infty.$$

That is, $\overline{T}_0 = \tau(S)$ with $S = \sum_{i=1}^{\infty} B_i \otimes A_i \in L(\widetilde{E}_U, Z) \otimes L(Z, F_B)$, where τ is the canonical mapping of $L(\widetilde{E}_U, Z) \otimes L(Z, F_B)$ into $L(\widetilde{E}_U, F_B)$. By virtue of Theorem 6.4 of [6], S can be written in the form

$$S = \sum_{i=1}^{\infty} \lambda_i \widetilde{B_i} \otimes \widetilde{A_i}$$

with

$$\sum_{i=1}^{\infty} |\lambda_i| < \infty$$

where $\{\widetilde{A}_i\}$ and $\{\widetilde{B}_i\}$ are null sequences in $L(\widetilde{E}_U, Z)$ and $L(Z, F_B)$ respectively. Then $\{\widetilde{A}_i \circ \phi_U\}$ is equicontinuous in L(E, Z). Since $\{\widetilde{B}_i\}$ is a null sequence in $L(Z, F_B)$, there exists a neighborhood of zero W in Z such that $\psi_B \circ \widetilde{B}_i(W) \subset B$ for any $i = 1, 2, \ldots$. It is clear that the mapping $T = \sum_{i=1}^{\infty} \lambda_i \psi_B \circ \widetilde{B}_i \circ \widetilde{A}_i \circ \phi_U$ is of the form stated in the theorem.

The condition is sufficient. For, if T is as indicated in the theorem, let $U = \{u \in E | ||A_i(u)|| \le 1, i \in N\}$. Then U is an absolutely convex closed neighborhood of zero in E by the equicontinuity of $\{A_i\}$. Defining $\widetilde{A_i}$ $(i \in N)$ by $A_i = \widetilde{A_i} \circ \phi_U$ on E_U and the extension to $\widetilde{E_U}$, we obtain $||\widetilde{A_i}|| \le 1$ for all i. Then $\overline{T_0}$ is the mapping

$$\hat{u} \longrightarrow \sum_{i=1}^{\infty} \lambda_i (\psi_B^{-1} \circ B_i) \widetilde{A_i} \hat{u}$$

with

$$\sum_{i=1}^{\infty} |\lambda_i| \| (\psi_B^{-1} \circ B_i) \| \cdot \| \widetilde{A_i} \| < \infty.$$

Therefore \overline{T}_0 is a Z-nuclear mapping. The proof is complete.

COROLLARY. Let E, F, G and H be locally convex spaces, let Z be a Banach space, let $S \in L(E, F)$, let $W \in L(G, H)$ and let T be a Z-nuclear mapping on F into G. Then $T \circ S$ and $W \circ T$ are Z-nuclear mappings.

PROOF. It is evident from Theorem 7 that $T \circ S$ is Z-nuclear. By our assumption, we have a decomposition of T as a sequence

$$F \xrightarrow{\phi_U} F_U \xrightarrow{\overline{T}_0} G_B \xrightarrow{\psi_B} G,$$

where ϕ_U and ψ_B are the canonical mappings, \overline{T}_0 is Z-nuclear and B is an absolutely convex bounded set in G for which G_B is complete. Since G_B is a Banach space and since C = W(B) is an absolutely convex bounded in H, H_C is a Banach space. In fact, the restriction $W|G_B$ of W to G_B induces an isometry J of the Banach space $G_B/(G_B \cap W^{-1}(0))$ onto H_C . Therefore H_C is a Banach space. Finally, we have a decomposition of $W \circ T$ into the sequence

$$F \xrightarrow{\phi_U} \widetilde{F}_U \xrightarrow{\overline{T}_0} G_B \xrightarrow{W|GB} H_C \xrightarrow{\psi_C} H.$$

Since $(W|G_B) \circ \overline{T}_0$ is Z-nuclear, so is $W \circ T$.

PROPOSITION 11. Let E and F be locally convex spaces and let Z be a Banach space. Then if $T \in L(E, F)$ is Z-nuclear, T has a unique extension $\overline{T} \in L(\widetilde{E}, F)$, where \widetilde{E} is the completion of E, and \overline{T} is Z-nuclear.

PROOF. By our assumption, we have a decomposition of T as follows.

$$E \xrightarrow{\phi_U} \widetilde{E_U} \xrightarrow{\overline{T}_0} F_B \xrightarrow{\psi_B} F,$$

where ϕ_U and ψ_B are the canonical mappings and \overline{T}_0 is a Z-nuclear mapping. Then ϕ_U has a unique continuous extension $\overline{\phi}_U$ on \widetilde{E} into \widetilde{E}_U . Therefore $\overline{T} = \psi_{B^\circ}$ $\overline{T}_0 \circ \overline{\phi}_U$ is a continuous extension of T on \widetilde{E} into F and this extension is unique. It is clear that \overline{T} is Z-nuclear from the above corollary. The proof is complete.

DEFINITION 9. Let Z be a Banach space. Then a locally convex space E is said to be Z-nuclear if for each absolutely convex neighborhood of zero U in E there exists another absolutely convex neighborhood of zero V with $U \supset V$ such that $\phi_{U,V} : \widetilde{E_V} \rightarrow \widetilde{E_U}$ is Z-nuclear.

THEOREN 8. Let E be a locally convex space and let Z be a Banach space. Then the following assertions are equivalent:

(a) E is Z-nuclear.

(b) There exists a base \mathfrak{B} of absolutely convex neighborhoods of zero in E such that for each $V \in \mathfrak{B}$, the canonical mapping $\phi_V : E \to \widetilde{E_V}$ is Z-nuclear.

(c) Every continuous mapping of E into any Banach space is Z-nuclear.

PROOF. (a) \Rightarrow (b): If U is a given absolutely convex neighborhood of zero in E, there exists another V with $U \supset V$ such that $\phi_{U,V}$ is Z-nuclear. Since ϕ_U $= \phi_{U,V} \circ \phi_V$, it follows from the corollary of Theorem 7 that $\phi_U: E \rightarrow \widetilde{E_U}$ is Z-nuclear.

(b) \Rightarrow (c): Let F be any Banach space and $T \in L(E, F)$. Then there exists an absolutely convex neighborhood of zero V in E such that $\phi_V: E \rightarrow \widetilde{E_V}$ is Znuclear, and such that T(V) is bounded in F. Since $\phi_V(E) = E_V$, T determines a unique $S \in L(\widetilde{E_V}, F)$ such that $T = S \circ \phi_V$. By the corollary of Theorem 7, T is Z-nuclear.

(c) \Rightarrow (a): Let U be any absolutely convex neighborhood of zero in E. By our assumption, the canonical mapping $\phi_U: E \rightarrow \widetilde{E_U}$ is Z-nuclear, and hence of the form

$$\phi_U = \sum_{i=1}^{\infty} \lambda_i B_i A_i$$

with

$$\sum_{i=1}^{\infty} |\lambda_i| < \infty, \quad \{A_i\} \subset L(E, Z) \text{ and } \{B_i\} \subset L(Z, \widetilde{E_U})$$

as described in Theorem 7. Set $V = U \cap \{u \mid ||A_iu|| \le 1, i \in N\}$; then $V \subset U$ is an absolutely convex neighborhood of zero in E. Now each A_i induces a continuous linear mapping on E_V into Z. Denote by C_i its continuous extension to $\widetilde{E_V}$. It is clear that the canonical mapping $\phi_{U,V} \colon \widetilde{E_V} \to \widetilde{E_U}$ is given by $\sum_{i=1}^{\infty} \lambda_i B_i C_i$ and hence Z-nuclear by Theorem 7. The proof is complete.

PROPOSITION 12. Let Z be a Banach space, let E be a Z-nuclear locally convex space, let U be a given neighborhood of zero in E and let p be a number such that $1 \le p \le \infty$. Then there exists an absolutely convex neighborhood of zero $V \subset U$ for which \widetilde{E}_V is norm isomorphic with a subspace of $l_p(Z)$.

PROOF. We show that there exists a continuous linear mapping $T \in L(E, l_p(Z))$ such that $T^{-1}(B) \subset U$, where B is the open unit ball of $l_p(Z)$. $V = T^{-1}(B)$ will be the neighborhood in question. Assume without loss of generality that U is absolutely convex. The canonical mapping $\phi_U: E \to \widetilde{E}_U$ is Z-nuclear by the above theorem, and hence of the form

$$\phi_U = \sum_{i=1}^{\infty} \lambda_i B_i A_i$$

with

$$\{A_i\} \subset L(E, Z) \text{ and } \{B_i\} \subset L(Z, E_U),$$

where we can assume that $\lambda_i > 0$, $\sum_{i=1}^{\infty} \lambda_i = 1$, $||B_i|| = 1$ and the sequence $\{A_i\}$ is equicontinuous. Define T by

$$T(u) = \left({}^{p} \sqrt{\lambda_{1}} A_{1}(u), \, {}^{p} \sqrt{\lambda_{2}} A_{2}(u), \ldots \right)$$

for each $u \in E$ (set $p_{\sqrt{\lambda_i}} = 1$ for all *i* if $p = \infty$). By the equicontinuity of the sequence $\{A_i\}$, we have $T(u) \in l_p(Z)$ and $T \in L(E, l_p(Z))$. Then we obtain

$$\|\phi_{U}(u)\| = \|\sum_{i=1}^{\infty} \lambda_{i} B_{i} A_{i}(u)\|$$

$$\leq \sum_{i=1}^{\infty} \lambda_{i} \|A_{i}(u)\| \leq \|T(u)\|_{1-(Z)},$$

Therefore $T^{-1}(B) \subset U$. Letting $V = T^{-1}(B)$, the definition of T implies that E_V is norm isomorphic with T(E). Hence \widetilde{E}_V is norm isomorphic with the closed subspace $\overline{T(E)}$ of $l_p(Z)$. The proof is complete.

THEOREM 9. Let Z be a Banach space. Then the locally convex direct sum of a countable family of Z-nuclear spaces is a Z-nuclear space.

PROOF. Let $E = \bigoplus_{i=1}^{\infty} E_i$, let E_i $(i \in N)$ be Z-nuclear spaces and let T be a continuous linear mapping of E into a given Banach space F. If T_i is the restriction of T to the subspace E_i of E, T_i is continuous and hence Z-nuclear, and thus of the form

$$T_i = \sum_{n=1}^{\infty} \mu_{i,n} B_{i,n} A_{i,n}$$

with

$$\sum_{n=1}^{\infty} |\mu_{i,n}| \le i^{-2} \ (i \in N), \quad \{A_{i,n}\} \subset L(E_i, Z) \quad \text{and} \quad \{B_{i,n}\} \subset L(Z, F)$$

such that $||B_{i,n}|| \le 1$ for all $(i, n) \in N \times N$ and $\{A_{i,n}: n \in N\}$ is equicontinuous in $L(E_i, Z)$. Let us define the linear mapping $\overline{A}_{i,n}$ of E into Z in such a way that

$$\bar{A}_{i,n} = \begin{cases} A_{i,n} & \text{on } E_i \\ \\ 0 & \text{on } \bigoplus_{j \neq i} E_j \end{cases}$$

Then the family $\{\overline{A}_{i,n}: (i, n) \in N \times N\}$ is equicontinuous in L(E, Z). Since T can be written in the form

$$T = \sum_{i,n=1}^{\infty} \mu_{i,n} B_{i,n} \overline{A}_{i,n},$$

it follows from Theorem 7 that T is Z-nuclear. Hence by Theorem 8, E is Z-nuclear. The proof is complete.

THEOREM 10. Let Z be a Banach space. Then the product of an arbitrary family of Z-nuclear spaces is Z-nuclear.

PROOF. Let $\{E_{\alpha}: \alpha \in A\}$ be an arbitrary family of Z-nuclear spaces, let $E = \prod_{\alpha} E_{\alpha}$, and let T be a continuous linear mapping of E into a given Banach space F. Then there exists a neighborhood of zero V in E such that T(V) is bounded in F, and by definition of the product topology, V contains a neighborhood of zero of the form $V_{\alpha_1} \times \cdots \times V_{\alpha_n} \times \prod_{\beta \neq \alpha_i} E_{\beta}$. It follows that T vanishes on the subspace $G = \prod_{\beta \neq \alpha_i} E_{\beta}$ of E. Since $E = \prod_{i=1}^{n} E_{\alpha_i} \times G$, it remains to show that the restriction of T to $\prod_{i=1}^{n} E_{\alpha_i}$ is Z-nuclear. Since $\prod_{i=1}^{n} E_{\alpha_i}$ can be identified with $\bigoplus_{i=1}^{n} E_{\alpha_i}$, this is clear from Theorem 9. The proof is complete.

THEOREM 11. Let Z_1 and Z_2 be Banach spaces. Then if E is a Z_1 -nuclear locally convex space and F is a Z_2 -nuclear locally convex space, then the projective tensor product $E \otimes_{\pi} F$ is $Z_1 \otimes_{\pi} Z_2$ -nuclear and also $E \otimes_{\pi} F$ is $Z_1 \otimes_{\pi} Z_2$ -nuclear.

PROOF. Let U and V be absolutely convex neighborhoods of zero in E and F respectively, let $G = E \otimes_{\pi} F$ and let W be the absolutely convex hull of $U \otimes V$ in G. It is clear ([6, Ch. III, 6.3]) that G_W is identical with the normed space $(E_U \otimes F_V, r)$, where r is the tensor product of the respective norms of E_U and F_V . Hence if ϕ_U, ϕ_V and ϕ_W denote the respective canonical mappings $E \rightarrow \tilde{E}_U, F \rightarrow \tilde{F}_V$ and $G \rightarrow \tilde{G}_W$, we have $\phi_W = \phi_U \otimes \phi_V$. Since E and F are Z_1 nuclear and Z_2 -nuclear respectively, Theorem 7 implies that

$$\phi_U = \sum_{i=1}^{\infty} \lambda_i B_i A_i$$

with

$$\{A_i\} \subset L(E, Z_1) \text{ and } \{B_i\} \subset L(Z_1, E_0)$$

and

$$\phi_V = \sum_{j=1}^{\infty} \mu_j D_j C_j$$

with

$$\{C_j\} \subset L(F, Z_2) \text{ and } \{D_j\} \subset L(Z_2, \widetilde{F}_V),$$

where $\{\lambda_i\}$, $\{\mu_j\}$, etc., have the properties enumerated in Theorem 7. For $u \in E$ and $v \in F$ we have by definition

$$\phi_U \otimes \phi_V(u \otimes v) = \left(\sum_{i=1}^{\infty} \lambda_i B_i A_i(u)\right) \otimes \left(\sum_{i=1}^{\infty} \mu_i D_i C_i(v)\right).$$

Hence we have

$$\phi_{W}(u \otimes v) = \sum_{i,j} \lambda_{i} \mu_{j}(B_{i} \otimes D_{j}) (A_{i}(u) \otimes C_{j}(v))$$

so that

$$\phi_W = \sum_{i,j} \lambda_i \mu_j (B_i \otimes D_j) (A_i \otimes C_j).$$

Now $\{\lambda_i \mu_j : (i, j) \in N \times N\}$ is a summable family, $\{A_i \otimes C_j\} \subset L(E \otimes_{\pi} F, Z_1 \bigotimes_{\pi} Z_2)$ and $\{B_i \otimes D_j\} \subset L(Z_1 \bigotimes_{\pi} Z_2, \widetilde{G}_W)$. By Theorem 7 ϕ_W is $Z_1 \bigotimes_{\pi} Z_2$ -nuclear. The nuclearity of $E \bigotimes_{\pi} F$ follows from Proposition 11. The proof is complete.

COROLLARY. Let E be a locally convex space and let Z be a Banach space. If E is nuclear, then $E \otimes_{\pi} Z$ is a Z-nuclear space and also $E \bigotimes_{\pi} Z$ is a Z-nuclear space.

PROOF. This follows from the above theorem.

DEFINITION 10. Let Z be a topological vector space and let $C^{\infty}(\mathbb{R}^n, Z)$ be the space of infinitely differentiable functions, defined in \mathbb{R}^n and valued in Z. Then we denote by $\mathfrak{S}(\mathbb{R}^n, Z)$ the space of functions $u \in C^{\infty}(\mathbb{R}^n, Z)$ such that, for all pairs of polynomials P, Q in n variables, with complex coefficients, $P(x)Q(\partial/\partial x)u(x)$ remains in a bounded subset of Z as x varies over \mathbb{R}^n . We equip $\mathfrak{S}(\mathbb{R}^n, Z)$ with the topology of uniform convergence of the functions $P(x)Q(\partial/\partial x)u(x)$ over the whole of \mathbb{R}^n , for all possible P and Q.

If Z is a Banach space, by [7] we have $\mathfrak{S}(\mathbb{R}^n, \mathbb{Z}) = \mathfrak{S}(\mathbb{R}^n) \bigotimes_{\pi} \mathbb{Z}$. Since the space $\mathfrak{S}(\mathbb{R}^n)$ of rapidly decreasing functions is a nuclear space, by virtue of the above corollary $\mathfrak{S}(\mathbb{R}^n, \mathbb{Z})$ is a Z-nuclear space.

THEOREM 12. Let Z be a finite dimensional Banach space and let E be a Z-nuclear space. Then every bounded subset of E is precompact.

PROOF. Let B be a bounded subset of E. Then for each absolutely convex neighborhood of zero U in E there exists another absolutely convex neighborhood of zero V with $U \supset V$ such that $\phi_{U,V}$: $\tilde{E}_V \rightarrow \tilde{E}_U$ is Z-nuclear. The canonical mapping ϕ_U of E into \tilde{E}_U can be decomposed into $\phi_{U,V} \circ \phi_V$. Since ϕ_V and $\phi_{U,V}$ are continuous linear mappings and since $\phi_{U,V}$ is a compact mapping, the canonical image of B in \tilde{E}_U is precompact. Since U is arbitrary, B is precompact in E. The proof is complete.

COROLLARY 1. Let Z be finite dimensional and let E be a quasi-complete Z-nuclear space. Then every closed bounded subset of E is compact.

The proof is simple.

COROLLARY 2. Let Z be finite dimensional. Then a normable space E is Z-nuclear if and only if it is finite dimensional.

PROOF. If E is finite dimensional, it is clear that E is Z-nuclear. Conversely, if E is Z-nuclear, then \tilde{E} is Z-nuclear. Since \tilde{E} is quasi-complete, the unit ball in \tilde{E} is compact. Therefore E is finite dimensional. The proof is complete.

References

- I. I. Ceitlin, A generalization of the Persson-Pietsch classes of operators, Soviet Math. Dokl., 14 (1973), 819-823.
- [2] A. Jôichi, (λ, μ) -absolutely summing operators, Hiroshima Math. J., 5 (1975), 395-406.
- [3] M. Kato, On Lorentz spaces $l_{p,q}{E}$, Hiroshima Math. J., 6 (1976), 73–93.
- [4] K. Miyazaki, (p, q)-nuclear and (p, q)-integral operators, Hiroshima Math. J., 4 (1974), 99-132.
- [5] A. Persson and A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math., 33 (1969), 19–62.
- [6] H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.
- [7] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York and London, 1967.

Department of Mathematics, Shimane University, Matsue