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Introduction

H. Cartan [2] systematically applied the method of Hubert space to the study
of capacity and balayage in the classical potential theory. His idea was generalized
to the axiomatic theory of Dirichlet spaces by A. Beurling and J. Deny [1].
Balayages and capacities in Dirichlet spaces are studied in [1], [4], [5], [6] and
[7] to some extent. In the present paper, we proceed to study inner and outer
balayages and capacities in Dirichlet spaces. We shall show that characteriza-
tions of these notions are obtained as consequences of a certain duality theorem
(Theorem 3.1). As an application, we shall show that the inner balayage and the
outer balayage coincide for K-analytic sets.

§ 1. Cones and T-cones in a Hubert space

In this section, let H be a real Hubert space with norm || || and scalar product

(.,.)• A cone in H is a set S in H such that Λ.^0 and x e S imply /UeS. A
set S in H will be called a T-cone (T stands for "truncated") if λ^\ and x e S
imply λx e S. Given a set S in H, we put

S° = {j>eH;.(x, jO^ O for all xeS},

S* = {y e H; (x, y) ^ 1 for all x e S} .

Then the following properties are easily verified :

(1.1) S° is a non-empty closed convex cone containing 0; SJ is a closed con-
vex T-cone.

(1.2) SicSj implies S?=>S2 and Sf =>Sί
(1.3) S° = H if and only if either S = 0 or S = {0}; SJ = H if and only if S=0.

(1.4) S° = S° and SJ = SΔ, where S denotes the closure of S in H.
(1.5) If S is closed convex, then SJ = 0 if and only if S a 0.

LEMMA 1.1. (a) 7/S^0, then S°° is the smallest closed convey cone con-

taining S.
(b) //S J J^0 (equivalently.SA^0), then SΔΔ is the smallest closed convex
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Ύ-cone containing S.

PROOF. Both statements are proved by the separation theorem. Since (a)

may be well-known, we give here a proof of (b). If S = 0, then S Δ Δ = 0. Suppose

87*0. First we observe that SJJ is a closed convex T-cone containing S. Let

S' be the smallest closed convex T-cone containing S. By assumption we have

S' 3 0. Let x0 £ S'. Since S' is a T-cone, [0, x0] Π S' = 0. Hence, by the separa-

tion theorem (see e. g., [8]), there is y e H such that

sup (x, y) < inf (x, y) .
*e[0,jc0] *eS'

Since the left hand side is non-negative, we may assume that inf(x, >0 = 1. Then

j;e(S')Jc:SJ and (x0, y)<l. Hence x0£SJJ. Thus S^cΓs* so that S^ = S'.
This proves (b).

LEMMA 1.2. (a) Let {Sα}αe/4 be a family of sets in H and put S= U αeA

Then S°= nα6A° ^d S^= nα€AJ

(b) Let {Sα}αe>1 be a lower directed family of closed convex cones in H.

(c) Let {SΛ}ΛeA be a lower directed family of closed convex Ύ-cones in H

and n αeA^0. Then ( n αeA)J = U αeA

PROOF, (a) is easily obtained from the definition.

(b) If Sβ=0 for some α, then (flα6A)° = UαeΛS° = H. If Sα^0 for all
αeA, then the equality follows from Lemma 1.1, (a), since S£° = Sα and \J SJ

aeA
is a convex cone.

(c) If OeSα for all αe>4, then (nα eA)J= W S^ = 0. If Oί Sβ for some
neA

βeA9 then put ^0 = {αeA; α^J?}. Then S^J = Sα for αe^0

 bY Lemma 1.1,
(b). Hence we obtain the required equality by Lemma 1.1, (b) since U ΛeA S^

= W S^ is a convex T-cone and n αeA^0
ΛeAo

Now, let S be a non-empty closed convex set in H. Given x e H, the projec-
tion x0 = Ps(x) of x onto S is the unique element x 0 eS such that ||x — x0|| =
min||x — y\\. In particular, Ps(0) is the unique element minimizing the norm in
yeS

S. In case S is a closed convex cone, x0=Ps(x) is characterized by the following

two relations :

(x — x0, x0) = 0 and (x — x0, y) g 0 for any y e S.

LEMMA 1.3. (a) Let S be a non-empty closed convex cone in H. Then

ps(x) = PSO+Λ(0) for any xe H.
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(b) Let S be a non-empty closed convex set such that θ£S. Then

Ps.(0)=||Ps(0)||-2Ps(0),

so that

ιipsχo)iι =
PROOF, (a) Since S is a convex cone, (PS(X), jO^O, y) for all

Hence Ps(x) e S° + x. Since Ps(x)eS and Pso+JC(0)-x e S°, (Ps(x), x)^(Ps(x),

Pso+*(0)). Hence,

IIPsWII 2 = (PsW, x) ^ IIPsWII IIPso+*(0)|| ,

so that ||Ps(x)ll^l|Pso+*(0)||. By the uniqueness of Pso+x(0), we have Ps(x)

= PSO+JC(0).

(b) Since Ps(0) e S and PS4(0) G S Δ, we have

1 g (Ps(0), Ps"(0)) ̂  ||PS(0)|| ||PS*(0)|| .

On the other hand, (Ps(0), y)^||Ps(0)||2 for all yeS, so that ||Ps(0)||-2Ps(0)eS^

Since

II l|Ps(0)||-2Ps(0)|| = llPsίO)!!'1 ^ ||PS.(0)|| ,

it follows from the uniqueness of Ps^(0) that ||Ps(0)IΓ2Ps(0) = Ps^(0).

The next lemma is well-known.

LEMMA 1.4. Let {Sα}αe/1 be a family of non-empty closed convex sets in H

and let x 6 H.

(a-1) // {Sα} is lower directed and S= Παe/4Sα^0, then PSβ(x)-»Ps(x) in
H.

(a-2) //{SJ is lower directed and Πα6ASα = 0, then ||PSαWIHoo.

(b) // {SJ is upper directed and S= U αeA, then Ps<xOc)-»Ps(x) in H.

§ 2. Basic facts on Dirichlet spaces

From now on, we consider a real Dirichlet space Of = &(X ξ) in the sense

of Beurling-Deny [1]. Here, X is a locally compact, σ-compact Hausdorff space

and ξ is a positive Radon measure on X. The norm and scalar product in & are

again denoted by ||. || and (., .), respectively.

Recall that u e ̂  is called a pure potential if there exists a unique non-

negative Radon measure μ on X such that

(ii, φ) =
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for any φetf Π £&, where # is the space of all continuous functions with compact
support in X. Such u is denoted by Uμ in the present paper and μ is called the
associated measure of u. Let 0> be the set of all pure potentials in Q). We know
the following properties ([1], [5], [6]):

(2.1) 0> is a non-empty closed convex cone in Q>.
(2.2) ^ is total in 0, i.e., ̂ -^ is dense in ̂ .
(2.3) If u = Uμ and t?=[7v belong to & and u^v (i.e., w(x)^φ ) ξ-a.e.

in X\ then ||w||^|M| and (dμ^ίdv.

(2.4) I f u , υ e &, then min (w, υ) e 0>.
(2.5) If Uμ E 0> and 0 ̂  v ̂  μ, then l/v e ̂  exists.

By [1, Lemma 2], we easily see

LEMMA 2.1. // S is α non-empty closed convex set in & such that S +
{ue ® u ̂ 0} = S, ί/ien Ps(0) e ̂ .

The capacity of an open set ω is defined as follows ([1], [5], [6]): put

^ω.ι = {wG0:i ϊ (x) ^ 1 ξ-a.e. on. ω}

and

inf
M

C(ω) =
+00 i f^ ω>1 =0.

Note that ^ωtl is a closed convex set (in fact a T-cone) and

if ^ω,ι τ^0. The outer and inner capacities are defined in the usual way: for a set

Ce(E) = inf {C(ω) ω : open z> £} ,

= sup {Ce(K)\ K: compact c £} .

We know ([5]) that Borel sets are capacitable, i.e., Ce(E) = O(E) if £ is a Borel
set. Remark that if Ce(£) = 0, then μ(£) = 0 for any μ with Uμe0> (see [6,
p. 169-170]).

LEMMA 2.2. (a) C*(0 En) ^ Σ Ce(En) ([5, Theoreme 4]).
n=l n=l

(b) // Bn are Borel sets, then for any set E, C*(E Π G BΛ)g f

(c/. [2, p. 253]).
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(c) σ(El(^E2)^C(El) + C-(E2).

A property is said to hold quasi-everywhere (q.e.) (resp. nearly everywhere
(n.e.)) on a set if the outer capacity (resp. inner capacity) of the exceptional
set is 0. Quasi-continuity of functions is defined with respect to this capacity.
We know ([1], [5], [6]) that to each u e &, there exists a function u*9 which is
called a refinement of w, such that u*(x) = u(x) £-a.e. on X9 w* is quasi-continuous

and (M, Uμ) = \u*dμ for all Uμe^. We can choose w* to be Borel measurable,

which we shall always assume in the present paper. Note that two refinements
of u coincide q.e. on X. It follows that the properties "M*(X)^C q.e. on E"
and "w*(x)^c n. e. on E" do not depend on the choice of refinements (cf. Lemma
2.2).

§3. A duality theorem

For a compact set K in X, let

K} and 9KΛ = {Uμe&κ; μ(K) ^ 1} .

&κ is a closed convex cone and ̂ κ,ι is a closed convex T-cone. The closedness
of 0>KΛ follows from the existence qΐ φef n & suph that φ — \ on X and φ^O
on X. Given a set E in X, put

and
— π
"~ M ω : o p e n = > £

Then ̂ £, ̂ 1 are closed convex cones and ̂ ^ j , ̂ ^ ! are closed convex T-cones.

Obviously ̂ c^ E and ̂ 'E.I^^BΛ The mappings £->«^£, etc., are all mono-
tone increasing. It is easy to see that if ί/^e^f (in particular, if U^e^ pr

&EΛ or «^£,ι)> ^en supp)Mc£. We shall consider the classes

Jξ}. and *TJ = nω : o p e n 3 £7ΓL,

where σ(u) denotes the spectrum of u (see [1, § 6]). These are closed linear sub-
spaces of &.. Obviously, ^^c^ and ̂ |c7Γ|. The theorem of spectral
synthesis (see [1, Theorem 8] or [6, p. 108]) implies

LEMMA 3.1. ^£: is. total in

Next, we consider the classes

#JP = {u E 2 M*(ΛT) g 0 n. e. on E} ,

Ή,ι ''••— {u e &;u*(x) ^ 1 n. e, on E} ,
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|̂ = {u e & u*(x) ^ 0 q. e. on E},

^£,1 = (u e ®\ u*W ^ 1 Q e on E}.

<%1

E and ̂ ! are convex cones in ̂  and ^k,ι and 9te

EΛ are convex T-cones in
2 (cf. Lemma 2.2). Obviously ^ID^! and ^.i^^f.i The mappings
£->^£, etc., are all monotone decreasing. By [5, Theoreme 7], we see

LEMMA 3.2. |̂ and <%E)ι are closed.

Now, we show

LEMMA 3.3. Functions bounded from below in WE (resp. WE,I) are dense
in<%e

E(resp.<%e

EΛ).

PROOF. Given ue^r| (resp. ^1,0, let wn = suρ(u, -n), n = l, 2,....
Then un e ̂ | (resp. ̂ |fl) and ||UM|| ̂  ||u||. Since

(M«» ^/ί) = \wί^ > \u*dμ = (w, Uμ)

for any l/μ e ̂ , MΠ->Ί/ weakly in ̂  by virtue of (2.2). Since ||uj| ̂  ||u||, it follows
that uπ->w strongly in ̂ .

If ω is an open set, then ^^ = ̂ i

ω = ̂ ω and ^ω,ι==^ω,ι==^rω,ι» where
Vω = {u e D w(x)^0 ξ-a. e. on ω}. We have

PROPOSITION 3.1. ^r| = Uω:open=£^ω am/ «r|§1 = Uω;open=3£^*ω,ι -

The proof of this proposition is similar to [5, Lemme]. Note that in showing
|̂c u ̂ ω (resp. %e

EΛ e u ̂ ω, i), we may consider only functions bounded from
below in ̂ | (resp. ^r|t t) by virtue of the above lemma.

PROPOSITION 3.2. flrfc = n K:comPacte£^ α«ί/ *fc t l = n jc:cβ»p.ctc£*lc.l -

PROOF. Obviously, ^c n^i and ̂ fe^c: (}We

Ktί. Let u e n^J (resp.

t l) and put F = {xe£; w*(x)<0} (resp. {xe£; u*(x)<l}). For any com-
pact set KaE'9 Ce(K) = Q. Hence C(Ef)=09 so that w e ^ f e (resp. ^fe,ι).

COROLLARY 1. ^fc and ^^^ are closed.

COROLLARY 2. // «r| f l^0, ί/i^n Ce(E)=\\P# E fl(0)||2 and 1/^,^0,

rften Cί(£)=||P^ ̂ (O)!!2; if ®e

Etί=0, then C^(£) = oo and if W1

EΛ=0, then
Cί(£)=cx).

This corollary follows from Lemma 1.4, Propositions 3.1 and 3.2 and the
definitions of Ce and C1.

Now we are ready to prove our duality theorem.

THEOREM 3.1. For any subset E in X,
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PROOF. First we prove

(0>κ)° = <%e

k and O^A;,ι)d = ^£,1

for compact set X. If u e^£ (resp. ^£,1) and Uμe0>κ (resp. ^κ>1), then

(w, Uμ) = (u*dμ = ( u*dμ ^ 0 (resp. ^ 1).

Hence flrjciO^)0 (resp. V KΛ^(ffiKtlY).
Next, suppose u e(^κ)° (resp. (&K^Y) and put

F = {x e X; w*(x) < 0} (resp. = {x e K\ M*(X) < 1}) .

Since F is a Borel set, Ce(F) = Ci(F). Suppose Cβ(F)>0. Then we find a com-
pact set K'cF such that Ce(K')>0. Put ϋ = Prj/t l(0). By Lemma 2.1, we see
that t e^3. Let t;=l/v. By Corollary 2 to Proposition 3.2, ||u||2 = Ce(K/)>0.
Hence v^O. Now we shall show that suppvcX'. Let φe& n & and supp^
nK' = 0. Then υ + tφe<%%>tί9 so that ||t;||^||ι; + rφ|| for any real ί. It follows

that (v9 φ)=0, or \φdv=0. Hence suppvcX'. Therefore, ι?6^>x (resp. v/

v(K')e0>KΛ), and so

(resp. 1 ̂  (ii, ι;/v(X')) = ( w*<ίv/v(K') < 1) .
JK'

This is a contradiction. Therefore Ce(F) = 0, which means we^ (resp. ^£,1).
Hence (&K)°cVi (resp. (̂ ,0^ )̂.

For any subset £, by virtue of Lemma 1.2 (a) and (b), Propositions 3.1 and
3.2, we have

Lemma 1.2 (c), Proposition 3.1 and the above fact, we have

If ̂ | x = 0, then by Lemma 1.3 (b) and the above fact and the definition of outer

capacity, Ce(£) = 0. Hence (^I,ι)^ = ̂ t,ι =^

COROLLARY (cf. [6, Lemme 4]). (τΓyι = {we^; w*(x) = 0 π.e. on E}9

where J. denotes the orthogonal complement.

PROOF. By Lemma 3.1 and the above theorem, we have
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n ~ on)° «=,*k n ( - ^fe)

= {u e Q>\ u*(x) = 0 n,e. on E] .

§ 4. Inner and outer balayages and applications

For u έ'& and EaX, the inner and outer balayages of u to E are defined by

*4 = P^(w) and κf = P, (κ) ; . . - •

respectively. If u = Uμ9 then the associated measures of w^ and wf are denoted
by μJF and μf respectively. By Lemma 1.3 (a) and Theorem 3.1, we immediately
have the following characterizations of balayages.

THEOREM 4.1. For u e &9 ul

E (resp. UE) is the unique element which attains
the minimum norm in

u + #fc - {v e&'9v*^.u*n.e. on E}

(resp. u + <%e

E = {v e & v* ̂  u* q. e. on £}) .

Now, we obtain the following properties of balayages, which are \yell-knowji
in the classical case (see [2]).

THEOREM 4.2. Let u e & and E a X. Then
(1) ul

E ^ u and wf ^ M,
(2) (Wfe)*(x) =_ι/*(x) n. e. on_ E9 (w|)*(x) = w*(x) q. e. on E9

(3) suppμ^^ supp/ifcE,

(4) Jy/ijj^'Jrfμ, J<//ιf J^rfμ..

PROOF. (1) is proved in the same way as the proof of [6, p. 164, theoreme
du balayage]. Then (2) follows from the above theorem. (3) is trivial and (4)

is a consequence of (2.3).

PROPOSITION 4.1. For ue0>9 ui

E = ?c^i

E(u) and wβ=P^ (w).

PROOF. By (2) of the above theorem and the corollary to Theorem 3.1, we
see that U-UI

EE (TΓ^)1. Since ->Ffc is a linear space, it follows that u{

E = P^r^w).
By Lemma 1.4 (a-1), we see that M| = limu* ) and P^j(w) = lim P^(w), \yhere
limits are taken with respect to the directed sςt. of op^n sets ω containing E.
Hence ue

E = P^e

E(ύ).

COROLLARY. The mappings u-tu^ and U-*UE are additive on £P.

PROOF. Since ̂ fc, ?Γ£ are linear spaces, P ,̂ Py . are linear maps.
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PROPOSITION 4.2. If U^E^ (resp. 0>e

E) and Of^vgμ, then
(resp. 0>e

E\

PROOF. Let u = Uμ9 v=Uv and W = M-^I;. Then ι;, we^ by (2.5). Hence
by the above corollary, u = uί

E = vi

E + wi

E. Since vl

E^v, w^w and ϋ-t-w = w,
it follows that v = vi

Ee0>i

E. The proof for ̂ | is similar.

THEOREM 4.3. For u9ve& and E^X9 the following assertions (af),
), (d,) (resp. (ae), (be), (cc), (dβ)) are mutually equivalent:

(af) u* g ϋ* n.e. on E, (aβ) M* ^ t;* q.e. on £,

(b,) (ii, Uμ) ^ (v, Uμ} (be) (u9U^^(v9U^

for all Uμe^l

E9 for all Uμe0>e

E,

c/μ (cj ju*d/ι

forallU^ε&ί, forallUμe0>e

E,

(άi) M* g ι;* μ-α. e. on X (de) M* ^ ϋ* μ-α. e. on X

ror all Uμe&l

E9 for all l/μe^f.

PROOF. The equivalence of (af) and (bf) (resp. (ae) and (be)) is nothing
but Theorem 3.1. The equivalence of (bt ) and .(Cj). (resp. (be) and (cβ)) is obvious,
The implication (dj^^) (resp. (de)=>(ce)) is also trivial. We shall show (c^
=>(df) (resp. (ce)=>(de)). Put E' = {xe X', u*(x)>v*(x)} and suppose there is
UμG&E (resp. |̂) such that μ(£')>0 Put //' = ^|E'- βy the above proposi-

tion, Uf e ̂ 1

E (resp. « |̂). On the other hand, \ύ*dμ''> \v*dμ'\ which contradicts

(cj) (resp. (cj).

REMARK. We can see that (a^-^ίdf) are also equivalent to
(d{)' M* ^ υ* μ-a.e. on X for any Uμε0> with suppμc£.

As applications of Proposition 4.1, we have the following propositions.

PROPOSITION 4.3. |̂ is total in ̂ |.

PROOF. Let u eiΓ%. Since & is total in ,̂ there exists a sequence {wj in
& — & converging to u. Let un = vn — wn with rw, wπe«^. By the linearity of
P*r~e

E and Proposition 4.1, we have

Obviously P^e

E(un)-^P^e

E(u) = u. Hence « |̂ is total in

COROLLARY. OTf )f*= {w e ̂  M* == 0 ή. e. on £} .
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PROOF. We can show this in the same way as the corollary to Theorem 3.1
using the above proposition and Theorem 3.1.

PROPOSITION 4.4. 0> n ̂ jr = ^1

E & n τΓ| = ̂ f .

PROOF. Obviously, ^n^fe^^fe. If we^n^, then u = P^(w) =
P^(W)Ξ^E by Proposition 4.1. Hence ^D^^^fc. Similarly we have

PROPOSITION 4.5. Lei Ύ be a normalized contraction (see [1]). Ifu
(resp. iΓ%) and u*(x) = Ύu*(x) n.e. on E (resp. q.e. on E\ then u = Ύu.

PROOF. By the corollary to Theorem 3.1 (resp. the corollary to Proposition
4.3), u - Tw e (7Γ fe)1 (resp. (We

EY). Hence (w, u - Tw) = 0. It then follows that
u = Tw(cf. [6, p. 173, (c)]).

PROPOSITION 4.6. Let ue&. In order that P^- .̂(M) = P^(M) (resp.
pr.«(M) = P^(w)), it is necessary and sufficient that w e ^ + ί^fe)1 (resp. &

PROOF. Since P -̂̂ , is linear and Py-l

E(w) = Q if we (^fe)1, the sufficiency

follows from Proposition 4.1. Now, suppose ^^Jiu) = P^E(u). Then u =

-^)

1(M) = P^(i/)-fP(r.^)-
L(M)e^-f ί̂ )1. Similarly, we see that

(w) if and only if w

§ 5. Characterizations of inner and outer capacities

First, we give characterizations of sets of inner or outer capacity 0.

THEOREMS.!. For a set EaX, the following assertions (li)~(6i) (resp.
(le)~(6J) are equivalent:

(1,) Cf(£) = 0, (IJ

(2,) n = W, (2J |̂ = {0},

(3|) ^fc.i =0, (3.) |̂,ι =0,

(40 ^fe = {0}, (4J τΓ|={0},

(5,) ^ = ,̂ (5.) «T| = ̂ f

(6f) ^1

E ) 1=^, (6e) ^1,!=^.

PROOF. The equivalence of (lf) and (5f) (resp. (lβ) and (5e)) as well as the
equivalence of (lf) and (6$) (resp. (le) and (6e)) is trivial. Equivalences
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(resp. (2β)o(5β)) and (3^0(6^ (resp. (3β)o(6β)) are consequences of Theorem 3.1
and (1.3). (2^0(4^ follows from Lemma 3.1 and (2e)o(4e) follows from Propo-
sition 4.3.

Next, we give characterizations of sets whose inner or outer capacities are
infinite.

THEOREM 5.2. For a set EcX, the following assertions (iι)~(ivd (resp.
(ie)~(ive)) are equivalent:

(ϋi) ^*,ι3θ, (ίί.) ^ f f l 3 θ ,

(iii,) ^k,ι = 0, (Hie) *i,ι = 0>

PROOF, (11)0(11̂ ) (resp. (ίe)o(iiie)) is given by Corollary 2 to Proposition
3.2. (π^o îi,.) (resp. (iQoCiϋe)) follows from Theorem 3.1 and (1.5). (iv^^iij)
(resp. (ivj=>(iij) is clear. If we assume (iif), then there exists a sequence {UμJ
such that supp μn is compact and contained in E, μn(X)^.l and 'l/μn->0 strongly
as n->oo. Let L/μe ̂  and suppμ be compact and contained in £. Considering

UVn=Uμ+ Uμn, weseethat l/μe^(1. Therefore ^fe = u KC^JC^ ̂ £, i Hence
(ii^^ivj). (ϋβ)=>(ive) is easily seen from (ii^^ivj).

By the above two theorems we see that if Cf(£)>0 (resp. Ce(£)>0), then

^£,ι^0 (resP ^I,ι^0) and if Cl(E)«X) (resp. Ce(£)<oo), then ^i f l^0
(resp. ^|,i7^0). When Cf(JE:)<oo (resp. Cβ(£)<oo), we call P^^tl(0) (resp.
P^* ^0)) the inner (resp. outer) capacitary potential of E and denote it by /l

Etί

(resp. /f,ι). By Lemma 1.3 (b) and Theorem 3.1, these are pure potentials.
The associated measures of /l

Eti and /|tl are denoted by λl

Eti and A|> 1 5 re-
spectively. Lemma 1.3 (b), Theorem 3.1 and Corollary 2 to Proposition 3.2
yield

THEOREM 5.3. 7/0 < O(E) < oo, then C(E) = | | / f e f l | |
2 =

7/0 < C'(E) < oo, then C (£) = ||/|§1||
2 = ||P^

We obtain the following properties of inner and outer capacitary potentials

ofE.

THEOREM 5.4. (1) / fc, i ̂  1 and /I, λ ̂  1.

(2) (/i,ι)*(x)=l n.e. on E and (/f f l)*(jc) = l 9.*. 0w E.
(3) T/iβ supports of λ^Λ and λe

EΛ are contained in E.

PROOF. (1) is proved in the same way as the proof of [6, p. 162, theoreme
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d'equilibre]. Then (2) is trivial. (3) follows from Lemma 1.3 (b) and Theorem
3.1.

Next we give a relation between &1

EΛ and 0>'1E (resp. 0>e

EΛ and |̂). We

put Px.i^WμG&' * μP0^1}< In Theorem 5.2 we have already seen that
^£,ι= ^£ (resP ^ί,ι=^£) in case Cί(£) = oo (resp. Ce(£)=oo). Further-
more we have

LEMMA 5.1. // O(E)< oo (resp. O(£)<oo), then

PROOF. If C'(£) = 0 (resp. Ce(£) = 0), then the conclusion is clear by
Theorem 5.1. Let 0<Cί(£)<oo. Given UμG0>l

Etl, Theorems 3.1 and 5.4
imply

Hence ^£,ιc:^n^fl. Conversely let ί/μe«^^ and μ(X)^i. There exists
a sequence '{[/μjc^ such that suppμrt is compact and contained in £ and Uμn

-*C/μ strongly as n->oo. We have μ(X)^limμ,l(Ar) = fy. Taking a subsequence if
. ' - .. . «-*oo

necessary, we may assume μn(X)-*η as n-> oo. We put vn = μn/μn(X). Then
l7V ne^^ f l. Since 0^^£>1 by Theorem 5.2, we see that ?/ is finite. Therefore
tyι/ = lim l/ V Λ €^ t l . Since ̂ 1, U^ηUμ/ηe 0>l

Eii. Thus ^^ Π ^x,ιc:^£>1

Next let 0 < C *(E) < oo . Then we have

&E ft&xtι = r\ ' 0>l

ω r\0>Xtl= r\ (0*ω n & X t l )ω^>E ω=>E
C(ω)<oo C(ω)<oo

= r\ ί?lΛ = &ιtί.ω=)£
C(eo)<oo

Now we obtain a result corresponding to Theorem 4.3.

THEOREM 5.5. For ue& and E^X with C/(£)<oo (resp. Cβ(£)<oo),
the following assertions (af), (b£) and (cf) (res/?. (ae), (be) and (cj) are mutually
equivalent:

(af) M*(X) ^ 1 n. "e. on £, (ae) M*(X) ^l q.e. on E,

(bi) M*(X) ^ 1 μ-α. e. on X (be) M*(X) ^ 1 μ-a. e. on X

for all Uμ e ̂ £> r, /or all Uμ e &1Λ,

(Cί) (u, C/μ) ^ 1 /or flίί ΐ/μ (ce) (u, ί/μ) ^ if or all Uμ
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PROOF, (a^ofo) and (ajo(ce) are nothing but Theorem 3.1. Since (w,

L/μ)=\M*c/μ, (bf)^^) and (be)=>(ce) are trivial. Assume (cf) (resp. (cj). Put

£' = {xeX; M*(x)<l} and suppose that there is l/μe«^jr,ι (resp. ^|fl) such
that μ(£')>0. Since ;0"^Jsfl (resp. Q$&%ti) by Theorem 5.2, we see that
μ(X).is finite. Put μ' = μ(E')~ίμ\E>. Then by Proposition 4.2 and Lemma 5.1,

we see that U^e^^ (resp. 0>e

EΛ). On the other hand, (u, C7μO=\w*Φ'<l ?

which contradicts (q) (resp. (c )̂). Hence (c^^fy) (resp. (cβ)=ί>(be)).

§6. Balayable sets

We shall say that a set E is 0-capacitable if E n ω is capacitable for any open
set ω, and balayable if ^j^^f. We shall investigate relations between these

notions. First, from Lemma 5.1 and Theorem 5.2, we obtain

PROPOSITION 6.1. A set E is balayable if and only if ^'1EΛ = &E,I

COROLLARY. A balayable set is capacitable.

REMARK. A capacitable set is not necessarily balayable (cf. [3, 35. 1.

Example]).
We obtain the strong sub-additivity of outer capacity by virtue of Theorems

5.3 and 5.4 (cf. [6, p. 163] for proofs). Hence the union of two capacitable sets
is again capacitable (cf. [3, p. 219]).

THEOREM 6.1. An 0-capacitable set is balayable.

PROOF. Let E be an 0-capacitable set. By Lemma 1.1 and Theorem 3.1,

(^)° = ̂ jr and (^f)° = ̂ f. Hence it is sufficient to prove ^jr = ̂ f. Ob-
viously ^IG^J,. Let we^jr . We put F={xe£; w*(x)<0}. Then Cf(F) = 0.
From the quasi-continuity of w*, for any ε>0, there exists an open set ω such that
C(ω)<ε and w*|ωc is continuous. Then ω' = ω U {xeω c; w*(x)<0} is an open
set. Since F U ω — (E n ω') U ω, F U ω is capacitable by the assumption of the
theorem. Hence, by Lemma 2.2,

Ce(F) ^ Ce(F U ω) = O(F U ω) ^ C(F) + C(ω) = C(ω) < ε.

Thus Ce(F) = 0, and hence u εWe

E.

COROLLARY. Any K-analytic set is balayable.

PROOF. A K-analytic set is obviously 0-capacitable (cf. [3, p. 139]).
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