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Introduction

Let BP*( ) be the Brown-Peterson homology theory localized at a prime
p^5. Its coefficient ring BP# is the polynomial ring Z(p)[vί9 v29 ..] over the inte-
gers localized at p on HazewinkeΓs generators vt of degree 2(p* — l) ([2], [3],
[4], [6]).

In the previous paper [14; Th. D, DII, D', DΊI], we constructed the spectra
realizing cyclic BP* -modules BP*l(p9 v{9 vs

2

p) at p^ 5 in the following three cases:
l^j^p, s^l, (y, s)^(p, 1); p+l^j^2p-29 p\s; p+l^j^>2p9 2p\s. In this
paper, we shall prove the following realizability theorems.

THEOREM 4.3. For p^5 and s^2, there exist spectra Ls such that

THEOREM 4.4. For p^5, s^.2 and j with p+l^j^2p9 there exist spectra
YSJ such that BP*(YSJ) = BP*/(p9 υ{ , ιγa).

Each Ls is an 8-cell complex and we define the element βsp2/(pt2) in π#(S), the
stable homotopy group of spheres, by the attaching map of the 5th cell at the 4th
cell in LS9 and similarly we define βsp2/(j) 6 π*(S) from YsJ (for the details, see
Definitions 5.1-5.2). Then using methods developed by H. R. Miller, D. C.
Ravenel, W. S. Wilson and others ([7], [8], [9]), we see that the elements βsp2/(pf2)
and βsp2i(j) of the same name in H2BP^t = E\t^BP(BP4t9 J5P#) [8] survive non-
trivially to E^ term in the Adams-Novikov spectral sequence and support the
homotopy elements of the above.

THEOREM 5.3. For p^59 s^2, the elements βsp2l(pt2) in π(sp3+sp2-p)€-2(5)
= 2(p — 1)) are nontrivial of order p2 and indecomposable. Hence the group

p)q-2(S) contains a summand isomorphic to Z/p2Z.

THEOREM 5.4. For p^5, s^2, p+ I^j^2p9 the elements βsp*/u) in
i-j)q.2(S) (q = 2(p— 1)) are indecomposable and generate cyclic sum-

mands of order p.

The known elements in π*(S) of order p2 are the elements in Im J [1] and the
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three elements φ, μ [12] and φ2 [1 1]. None of them is of degree even. Theorem
5.3 shows that Coker J contains infinitely many elements of order p2 and of degree
even. We shall also construct at the end of this paper the elements φt in Coker J

of order p2 and of degree odd, for infinitely many ί^l and all p^5, as a gener-

alization of the known elements φ = φl and φ2 (Theorem 5.5).
In §§ 1-3, we shall study the spectrum K realizing BP*/(p, t?ΐ) and the algebra

tf*(K)=Σk B?k(K)> A?k(K) = iΣkK, K], consisting of stable self-maps (Σ denotes
the suspension). K has a C ̂ -decomposition S° U β1 U epq+l U epq+2, q = 2(p-l),

and the smash product K/\K is homotopy equivalent to the wedge KM ΣK
V ΣP«+IK V Σpq+2K (see Remark 1.6 below). Moreover K is a commutative and

associative ring spectrum (Theorems 1.10 and 2.1), and the projection to the first
factor of the above decomposition is the multiplication μ± on K. These facts

are useful to study the structure of the algebra jtf*(K). Define linear maps

θ: s/k(K)-*stk+ι(K) and ψ: i^fc(K)-*.a^+M+1CK) by the compositions

θ(/) : Σk+1K = Σk(ΣK) c: ΣkK Λ K 1 A / > K A K — ̂ — > K,

c= ΣkK Λ K l Λ/ > K Λ K

for /e jtfk(K). Then, for any /ej^#(X), the element l x Λ / i s described, via the
above decomposition, with 16 elements in jtf#(K), which are written in terms of
θ and ψ (Proposition 3.3).

Let δest.^K) (Lemma 1.7) and δ'es^.^.^K) (Definition 1.9) be the
generators such that θ(δ) = ιl/(δ')= -lκ and ψ(δ) = θ(δ')=Q (Lemma 3.2), and put
^#(K) = Kerθ n Kerι/<. Simple characterizations of elements in &*(!£) will be
given in Corollary 3.4. We shall prove in § 3 the following results on the structure

of

THEOREM 3.6. (i) tf*(K) = V*(K)®E(δ, δ') = E(δ, δ')®<g*(K\ where E de-

notes the exterior algebra over Z/pZ.

(ii) J&*(K) has the two differentials θ and φ of above which are derivative
and commute to each other, i.e., 02=0, ^2=0, θψ=-~ψθ and for d = θ,ψ

THEOREM 3.7. The subalgebra &*(K) is commutative, and for any /e
, the commutators [/, 5] and [/, £'] are the elements in <

We constructed the element in jtf*(K) realizing the multiplication by vs

2

p

^2 [14; Th. CΠ]. We shall reconstruct this element so that it lies in V*(K)
(Lemma 4.2) and deduce in §4 the above realizability theorems from Theorem
3.7.
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§ 1. Spectrum K

In this paper, we shall work in the stable homotopy category of CJF-spectra.
We denote by S and M the sphere spectrum and the mod p Moore spectrum,
respectively. Here p denotes a fixed prime with p^5. Denote the cofibering
for M by

S -JU S -U M -£-> IS,

where Σ denotes the suspension functor.

We shall use the same notations as in [15], for example, [X, Y\ = \ΣkX,
Y] is the additive group of homotopy classes of maps ΣkX-+Y9 and if X and Y
are M-module spectra1^ [X, Y]^ is the subgroup of [X, 7]k of all M-maps2\
We shall abbreviate [X, X~\k to tfk(X) and [X, X]f to &k(X). By the composi-
tion product, Λ^*W=Σfc ̂ *W is a graded ring and ^*(^0=Σ*^*W is its
subring.

We shall put q = 2(p— 1). Let αe jtfq(M)=Z/pZ be a generator and denote
by K the mapping cone of the element αp 6 j/M(M), so we have a cofibering

(1.1) Σ"M -*£-> M -iU X -s

Since α is the M-map, X is an M-module spectrum by [15; Th. 4.3]. Noting
that s/1(K) = js?2(K) = Q and using [15; Th. 1.3, Prop. 5.4, Th. 4.3], we have

PROPOSITION 1.1. K is an associative M-module spectrum having the
unique M-action m = mκ: M /\K-+K and the unique right inverse n = nκ: ΣK
-»MΛ& 0 / π Λ l * associated to mκ, i.e.9mκnκ=Q,(iλlκ)mκ + n

The maps i' and π' in (1.1) are the M-maps.

LEMMA 1.2. α P Λ l κ = 0 in

PROOF. The element πα^eπ^-ΛS) is divisible by p ([17], [13; §4])
and lκ is of order p [15; Prop. 1.1]. So (πα*i)Λ lx=0. Since s/pq(K)=Q and
j/p€+1(K)=0, we have m(αpΛlχ) = 0 and (αpΛlx)n = 0. Hence
n(π Λ 1*) (α* Λ lx) (i Λ lκ)m = 0.

NOTATION. For M-module spectra (X, mx) and (7, my), the smash product
X Λ 7 has the M-actions mx Λ ly and (lx Λ my)(T Λ ly), T: M Λ X-+X Λ M being

1) By an Λ/-module spectrum, we mean a CίF-spectrum A' equipped with a left inverse
/WJT: M/\X >X of / Λ l j r : X=S/\X—>M/\X; mx being called an M-action on X.

2) A map /: X—>Y between M-module spectra is called an M-map, if / is compatible with
the M-actions on X and Y, i.e., mγ(\MΛf)=fnίx.
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the switching map, defined from the ones on X and on 7, cf. [15; (1.6)]. We
shall write the former M-module spectrum as X A Y and the latter as X A Ϋ.
Similarly, we use the notations J ^ A ^ A Z , X Λ ? Λ Z , etc.

PROPOSITION 1.3. There exist elements

m' e[£ A K9 Jft A X]^ Γ) [X A £, M A-£]£,

n'e[X3r A X, £ A K]Ji+1 Π [M A £, X A £]E+1

SMC/I ί/iαί

w'O" Λ lκ) = IMΛK, (π' A 1*K = !MΛχ, mV = 0,

0" A lκ)m' + n'(π' A 1*) = W

PROOF. By (LI) and Proposition 1.1,

A X g P A l )^ί A K Γ Λ 1 > X A X *'A 1 >I^+ 1JW r A X

is a cofibering of M-module spectra and M-maps. Applying [15; Th. 4.5] to
this sequence and using Lemma 1.2, we obtain elements m ' e f K Λ X , M /\K~]%
and w'e[J&Λ£, l^AίC]^+1 satisfying the desired equalities. Since α p Λ l ,
ί ' Λ l and π ' Λ l are also M-maps with respect to M Λ J £ and Kf\fi9 it follows
from [15; Lemma 4.6] that these w' and n' are the M-maps with respect to M A &

and K Alt

DEFINITION 1.4.

μl = m*m': K A X - >X, vx = 'ϊ'ί A lx: X - >X A K,

μ2 = (π A l^)m': X A X - >ΣK, v2 = (i' A 1*K: IX - >X Λ X,

/ι3 = mκ(π' A lx): X A X - >I^+1X, v3 = n'(i A 1*): P"+1X

- > X Λ X ,

μ4 = ππ' A 1^: X A X — >I™+2X, v4 = n'^: Σ™+2K - >X A X.

The above two propositions show immediately the following

COROLLARY 1.5. ^^=1^, jUfVj = 0 for i^j, and

REMARK 1.6. These relations give a decomposition

X A X = X V IX V Σ™+IK V

Hence, the ring s/^(K/\K) is isomorphic to a subring of (4, 4)-matrices on
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by sending / to a matrix

We introduced in [15; §2] (cf. [18]) the (additive) homomorphism

for M-module spectra (Jf, mx) and (7, my). θ has the following properties [15;
Th. 2.3, Prop. 2.5, (2.2), (3.1)]:

(1.2) θ(fg) = (- l)*θ(/)0 +/%) -/or- /e [Y, Z]|f 9 e [X, Y]*;

(1.3) 0(/) = 0 if and only iff is an M-mαp;

(1.4) 02(/) = 0 for fε [X, Ύ\ if X and Y are associative, in particular θ2 = 0
on (̂M) and jtf*(K)'9

(1.5) ΘM/^g^θWΛg and Θ2(f Λ ̂  =/ Λ θ(g) for /e [X, Γ]* 0 e[A", r]z,
w/iere θt αnc/ Θ2 are the operations θ on [X ΛX\ ΓΛ 7']* and on

Λ ί'']*, respectively;

(1.6) 0(<5Af)= — IM ί'w ^/o(^)> w/tere δM=iπ is a generator of j2/

The element ap commutes with <5jy. Hence the following lemma and proposi-
tion are direct consequences of [15; Prop. 7.3, Th. 7.5].

LEMMA 1.7. There exists an element δ = δκe^^^(K) such that <52=0,

θ(δ)=-lκandδi' = i'δM.

PROPOSITION 1.8. "• j

DEFINITION 1.9. We put.. ^iVej/.^^GK). This satisfies

The following result determines the matrix corresponding to the switching

map of K Λ K.

THEOREM 1.10. Let T:K/\K-+K/\K be the map switching the factors.
Then,

// 1Γ= μ,, Tvί = v-i + v2δ + v

-μ2 + ̂ ι» Γv2 = -v2 -f v4δ
r,

-̂ 3 -MW, ^v3 t= - v3 - v4δ,

^4r=/l4""^3+*>2 + ̂ X» TV4 = V4.

/n oί/ier words, T corresponds to the lower triangular matrix
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/ 1

δ -1

δ' 0 -1

[ δ δ f δ' -δ 1

REMARK. The first equality in the above theorem means that K is a com-

mutative ring spectrum with multiplication μ± and unit i'i. By (Aίtί) of Theo-
rem 2.1 in the below, it is also associative.

Theorem 1.10 is an easy restatement of the following

LEMMA 1.11. (i) (π' Λ lχ)Γ(Γ Λ lκ) = (i Λ l*)<5'™κ + nκδ'(π Λ lx) +

(ii) m'T(if Λ ίκ) = 0' Λ lκ)mκ - nκ(π Λ lκ) + nκδmκ.

(iii) (π' Λ lκ)Tn' = -(i Λ lx)mκ + nκ(π Λ 1/c) - nκδmκ.

(iv) m'Tn' = 0.

PROOF, (i) By [5; Th. 7.10] ([18; Lemma 1.3]), the switching map TM:
M Λ M-»M Λ M satisfies the equality

(1.7) TM = (i Λ IM)^M - Mπ Λ IM) + nMδMmM,

where mM is the multiplication (M-action) on M and nM is its dual. Since i'
and π' are the M-maps, we have

(1.8) mκ(lM Λ Γ) = ΓmM, wκ/' = (1M Λ Ϊ>M, π'mx = mM(lM Λ π'), (1M Λ π')nx

Then,

(π' Λ 1)Γ(Γ Λ 1) = (1M Λ /')ΓM(1M Λ π')

- (IM Λ />M(π Λ IM)(!M Λ π')

+ (1M Λ i')nMδMmM(lM Λ π')

*= (i Λ l)i'π'mκ 4- nκi'π'(π Λ 1) + nκi'δMπ'mκ

= (i Λ l^'m^ -f nκδ'(π Λ 1) + nκδδ'mκ,

by (1.7), (1.8) and Lemma 1.7.
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(ii) By (1.7) and (1.8), m'Γ(i' Λ 1)(1MΛ 0 = m'(i' Λ *')ΓM = (1MΛ i')ΓM =
((i Λ !)WK — nκ(π Λ 1) + nκδm^) (1M Λ ΐ'). Since (1M Λ Γ)* is injective in degree 0,
(ii) is obtained.

(iii) Similarly, (1M Λ π')(π' Λ 1) Tn' = (1M Λ n')(- (i Λ l)mx + n*(π Λ 1)-
nκδmκ) and (1M Λ π')* is injective in degree 0.

(iv) Since T lies in [K ΛK, K ΛK]% ntKΛ&9 KΛK]$9m'Tn' lies in

, M Λ X]^+ 1 Π [M Λ X, M Λ K]*fq+l9 which is trivial by easy calculations.

§2. Associativity

The purpose of this section is to prove the following associative formulas.

THEOREM 2.1. (i) (Associativity of μ^

(Au) μ^κ Λ μj) = (-l)de«*'de»"μM Λ lκ)

/or i=jϊ2,i = 4, (/,;) = (2,1) or (i, j) = (3, 1) .

(A2,2) ^2(1« Λ μ2) = -μ2(V2 Λ lκ) if p ^ 7,

is an element ξ e ZjpZ{(pί^β\ Λ lχ)^'} swc^ ̂ aί

(lκ Λ μ2) = -μ2(μ2 Λ lκ) + ξμ3(^3 Λ lκ) i/ p = 5.

Λ μ, ) = (- 1)̂ M Λ lκ) + (- l)ί+de^μf(μ, Λ lχ)

/or (i, J) = (1, 2), (1, 3), (2, 4) or (3, 4) .

(A 1,4) μι(l* Λ μ4) = /UG*1 Λ lκ) + μ^ Λ lκ) -h μ3(μ2 Λ lκ) - μ2(μ3 Λ lκ).

(A2,3) μ2(lχ Λ μ3) = -μ3(μ2 Λ lκ) - ^1(^4 Λ lx) .

(A3,2) μ3(lχ Λ μ2) = μ2(μ3 Λ 1*) - μι(μ4 Λ lκ) .

(ii) (Associativity of vf)

(Aί.y) (lχ Λ v>f = (-l)i« '.d.™(V| Λ Iκ)v7

/or 1 = 7 ^ 3 , f = !,(/, 7) = (2, 4) or (i, 7) = (3, 4) .

(A3,3) (lχ Λ v3)v3 = ~(v3 Λ Ijv3 if p ^ 7,

(U Λ v>3 = -(v3 Λ ίκ)v3 - (v2 Λ Iκ)v2ξ if p = 5,

w/tere ξ is ί/ie same as in (A2f2).

(A'<fy) (ίκ Λ v>f = -(-IVXv, Λ IK)VJ - (-l)J+Λ*w(Vj Λ-l^v,
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for (i, j) = (2, 1), (3, 1), (4, 2) or (4, 3) .

(A'2>3) (lκ Λ v3)v2 = -(v2 Λ Iκ)v3 + (vt Λ Iκ)v4.

(A'3,2) (lχ Λ V2)v3 = (v3 Λ Iκ)v2 + (Vj Λ Iκ)v4.

(Ai.i) (!κ 'A v>4 = (v, Λ Iκ)v4 + (v4 Λ l^K + (v3 Λ Iκ)v2 - <v2 Λ Iκ)v3.

LEMMA 2.2. Lei θj and Θ2 be the operations θ with respect to & λK and

K Λ £, respectively. Then

(0 βiGii) = 0, 0ί(μ2) = -μlt ΘM = 0, ΘM = μ3,

β^v,) = v2, βjίvj) = 0, 0!(v3) = v4, 0i(v4) = 0;

(ii) Θ2(μύ = 0, 02(Vί) = 0 for i = 1, 2, 3, 4.

PROOF. By Proposition 1.3 and (1.3), θί(m')=0 and 0f(n') = 0. By Propo-
sition 1.1, (1.5) and (1.3), 0 ((i'Λl)=0 and 0 ((π'Λl)=0. By [15; Lemma 5.1],
Θ 1 ( i / \ ί ) = nκ and 0 1(πΛl)=-mκ. By [15; Prop. 5.4] and Proposition 1.1,
Θ1(mκ)=0 and 01(nκ)=0. We have easily Θ2(i M) = θ2(πΛl) = θ2(mκ)=θ2(nκ)
=0. From these values of θt, using (1.2) we obtain the lemma.

LEMMA 2.3. Let θ\ and θ'2 be the operations θ with respect to K Λ K Λ K
and K Λ R Λ K, respectively, and Oj and Θ2 be as above. Then

( i )

ΘΊ(μtμj Λ 1)) = (-l)d<""0M)(/i; Λ 1) + μtffa) Λ 1);

(ii) Θ'2(μί(lΛμj)) = μί(ίΛθ1(μJ)),

^(μfrj Λ 1)) = (-l)d «βι(ft)(μj Λ 1);

(Hi) 0'1((lΛv> i) = (lΛvJ.)01(v i),

β'ι((vj Λ 1K> = (- W 'Wάvj) Λ l)v, + (vj Λ 1)0!̂ );

(iv) 02((lΛv> ί) = (-l)d e 8 V l(lΛθ1(vy))v i,

(̂(v,- Λ l)v,.) = (v,. Λl^W.

PROOF. By (1.5), 0',(1 Λμ, ) = #!(!) Λμ;=0 and ^(Uv^-O. Hence (i)
and (Hi) follow easily from (1.3) and Lemma 2.2 (i). The elements μ/lΛμ,-)
and μj(μ; Λ 1) pass through K Λ K, and the 0'2-images of these elements do not
depend on M-actions on the intermediate spectrum K/\K. Considering the

M-action KΛ£, we have 0'2(ft(lΛμ;))«ft(lΛβ1(μJ))±92Oι,)(lΛ^)
^ι(^y)) by (1.2), (1.5) and Lemma 2.2 (ii). Also, considering the M-action
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we have θ'2(μ;(μ;Λ 1)) =(-l)de^01(μί)(μJ.Λ 1), and (ii) is obtained, (iv) is
similar to (ii).

PROOF OF THEOREM 2.1. Let (i, j ) = (2, 4), (4, 2) or (4, 4). Then, by Lem-
mas 2.2-2.3, (AfJ) implies (A^j), (A^-^) and (Ai-u-i) by operating 0'1? Θ'2
and Θι02 to (A/j), respectively. So, we prove (AfJ).

Since μ4 = ππ' Λ 1, μ4(l Λ μ;) = μ/ππ' Λ 1 Λ I) = μ/μ4 Λ 1), in particular (A4t2)
and (A4>4) follow. Similarly, (1 Λμ4)(v! Λ l) = v^4 and so μ2(l A^4)(vj Λ 1) = 0.
Since 1 Λ μ4 = (μ4 Λ 1)(T Λ 1), we have μ2(l Λ μ4)(vfc Λ l) = μ2((μ4Γvfc) Λ I) = μ2(<5'
Λ l ) for fc = 2, = -μ2(<5Λl) for /c = 3, and =μ2 for /c = 4, by Theorem 1.10. By

definition, μ2((5'Λ l) = (πΛ l)m'(f Λ l)(π' Λ l) = ππ'Λ I=μ4. To prove μ 2(<5Λl)
= 0, we prepare the following

LEMMA 2.4. m'(lx Λ δ)ri = 0.

Then we have μ2(l Λ5) = (πΛ l)m'(l Λ δ ) ( i ' Λ l)mf = (πΛ l)(!MΛ5)w'= -δ(π
Λ l ) m ' = — <5μ2 and similarly μ^l Λ5) = m(lMΛ^)m' = (δm — π Λ IJm^δμj— μ2,
by Propositions 1.3, 1.1 and Lemma 1.7. Hence μ2(<5Λ l) = μ2T(l Λ^)Γ = 0 by
Theorem 1.10. Therefore μ2(l Λμ4)=Σfcμ2(l Λμ 4 )(v f c Λ l)(μkΛ l) = μ4(μ2Λ 1) +
μ 2(μ 4Λl) and (A2j4) follows. Thus, we have obtained (Aί>7 ) except for (i, j)
= (1,1), (1,2), (2,1) and (2, 2).

By using Lemma 2.3 (iii), (iv) instead of (i), (ii), we can similarly obtain
(AJ, j) except for (i, J) = (3, 3), (3, 4), (4, 3) and (4, 4).

We next consider (A2>2). We have μ2(l Λ μ2)(i' Λ 1 Λ I) = μ2(ί' Λ 1)(1Λ/ Λ μ2)
= ( π Λ l ) ( l M Λ μ 2 ) = - μ 2 ( π Λ l Λ l ) = ~ μ 2 ( μ 2 Λ l ) ( Γ Λ l Λ l ) , and hence μ 2(lΛμ 2)
= ~μ2(μ2Λl)-hξ 1 (μ 3 Λl) + ξ 2(μ 4Λl) for some ^ e [ X Λ X , K']^q.i and ξ 2

e[K/\K9 X]^, by [15; Th. 4.5]. Using exact sequences derived from (1.1),
we can compute &k(K) for small fe from the results on ^*(M) [13], and we ob-
tain the following results :

= Z/pZ, &pq(K) = 0, &pq+ ,(K) = 0,

f Z/pZ{β} for p ^ 7

(*Jl Λ lx)^} for p = 5,

where ^ satisfies π'$i' = β(l}ε@p(l-ι(M\ α1 = παieπ9_1(S), βί=nβ(ί)ίEπpq.2(S)

^ = α( (̂1))
3([13], [19]).

From these results, £1 = £3μ1 + Λ;/;fμ3 + ξμ3 + ξ4μ4 and ξ2 = ξ5μ4 for some ξ3
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\ xeZ/pZ, ξe&2pq(K)/{β}, ξ4, ξ5e&2pq+ί(K) (ξ, ξ4, £5=0 if p^7).

By (A'3t l) and (A'lf3), (v 3 Λl)v 1 =(lΛv 1 )v 3 -( l Λv3)v!, and so £3 = μ2(l Λμ2)(v3

Λl)v 1=0. The functional Pp-operation for j?(1) is nontrivial [19], and hence
x ± 0 implies P'^ 0 on ff *(X S \ K / \ K ; Z/pZ). But P1 = 0 on H*(K Z/pZ) for
i;>l and the Cartan formula shows P" = 0 on H*(KλK/\K', Z/pZ), so x must

be trivial. Thus we have

(A2,2)' μ2(l Λ jι2) = -μ2(μ2 Λ 1) + ξμ3(μ3 Λ 1) 4- ^4(̂ 3 Λ 1) + £503(04 Λ 1).

By considering 0'15 θ'2 and ΘΊ 0'2 -images of (A2>2)', we also have

(A2iι)' 02(1 Λ /O = μ!(μ2 Λ 1) + ί^afoa Λ 1),

(Aι,2)' 0ιO Λ μ2) = -μ^μ! Λ 1) + /I20^ Λ 1) + (ί5 - ^)03(03 Λ 1),

and the associativity (AM) of μ^. In case p^7, ξ, ξ4 and ζs are trivial, so (A2>2),

(A l f 2) and (A2j l) are obtained too.

In a similar manner to the above discussion on (A2>2), we obtain (A3ί3),
(A'3>4), (A4>3) and (A4>4) in case p^7, and a weak form of (A3 > 3)

(1 Λ v3)v3 = -(v3 Λ I)v3 + (v2 Λ I)v2ξ' 4- (v2 Λ l)v^4 + (Vl Λ I)v2{'5

in case p = 5. By (A4>3), (A3§3 ) and (A2§2)', μ2(μ2 Λ 1)= -μ2(l Λμ2)-ξμ3(l Λμ 3)

+ ξ4μ3(lΛ//4) + ̂ 5-ξ4K(lΛμ3) and so ξ' = μ2(μ2Λ 1)(1 Λ V3)v3= ~ξ. By

(A3>3) and (A2§1)', μι(μ2Λ Ί) = μ 2(l ΛμO + ̂ μsd Λμ3), and so ξi = 02(0ι Λ l ) ( l
A v3)v3 = ξ4. Similarly we have ξ'5 = ξ5 from (A3(3), (A2ίl)

r and (A1>2)'. We have

therefore obtained, in case p = 5,

(A'3i3)' (1 Λ V3)v3 = -(v3 Λ I)v3 - (v2 Λ I)v2{ + (v2 Λ l)v^4 + (vλ Λ I)v2{5,

(A'3 ,4)' (1 Λ V4)v3 = (v3 Λ I)v4 + (v2 Λ I)v2{4,

and (Ai§4).

The proof of ξ4 = ξ5 = 0 in case p = 5 is delayed to the end of this section.

PROOF OF LEMMA 2.4. Since sfpq(K) = J3^M+1(K)=0, we can put m'(l

= nκfmκ for fe^^^K). Then (l M Λδ)w/m-n/m(l M Λ 5) = m/(l Λδ)

(ί'Λ 1X(1 Λ(5K + m'(l Λ (5X(π' Λ 1)(1 Λ <5)n' = m'(l Λ (52X = 0. Compositing
m from the left and using 0(<5)= — lκ, we have/m=0. Therefore m'(lΛ<5)n'
= n/m = 0.

The rest of this section is devoted to show ξ4 = ξs = 0. Let W be the mapping

cone of α2 e ^2ί(M), g = 2(p- 1), and denote the cofibering for W by
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(2.1)

Since j / ί ( W ) = jtf2(W) = Q, W is an M-module spectrum having the unique
associative M-action mw and its dual nw. Also, by [15; Th. 4.3], iw and πw

are the M-maps. Let L be the mapping cone of α2 = πα2z e π2q- ι(S) and

(2.2) Σ2*-lS-^S-i±+L-^Σ2l*S

be the cofibering for L. By easy calculations, JΪ2q(W) = Q9 ^29+ι(^) = 0, an^
hence α2 Λ Iw = nwfa2 Λ V)mH" Since W Λ W is the mapping cone of α2 Λ lw,
WλWis homotopy equivalent to W V(ΣL/\ W) V Σ2«+2W with the inclusions
i1:W-+WΛW9i2:ΣLΛW-+WΛW and i3: Σ

2*+2W-*W /\ W and with their
left inverses ̂  : W Λ W-+ W, p2 : W Λ W-+ΣL λWand p3:Wλ W-*Σ2«+2W such

that ί1 = / f l r ϊ Λ l H r , ί20'LΛ V) = OVΛ V>V> (^L Λ V)p2 = 'M^ Λ V) and p3 =
ππ^Λl^ Putting μw = pι, μ'w:=P2> v\v~h and V!r = ί2> we have easily the fol
lowing

PROPOSITION 2.5. TTiere are elements

which satisfy the following relations:

( i ) μw(iwi Λ 1 )̂ = ΊW9 μ'wv'w = ILΛ>F, (^w Λ iw^w = W»

μ^vV = °' ^Vfr = 0, μ'w(iwi Λ 1 )̂ = 0, μ'wvw = 0, (ππ^ Λ lw)v'w = 0;

(ii) (iwi Λ VW 4- v'^μ^ + vw(ππw Λ V) = lw^w

(iii) μ^(ιV Λ U) = mw, (πw Λ V)v^ = nW9

μ'w(iw Λ V) = (iL Λ U0(π Λ U), (πw Λ V)v^ = (ί Λ V)(πL Λ V),

(πL Λ iw)μf

w = ™w(πw Λ lw)9 v'w(iL Λ l»r) = (iw Λ l^)n^.

REMARK. From this proposition, we see that W is a ring spectrum with
multiplication μw and unit iwi. We can also prove that μw is commutative and
associative. We notice that in case p = 3 this proposition and the commutativity
of μw also hold but the associativity does not (cf. [15 Th. 6.3]). In a forthcoming
paper, we shall prove that the mapping cone Xj of aj is a ring spectrum for
p^3 andj^l except for (p,j) = (3, 1), i.e., the spectrum V(l) at p = l (cf. [18]).

LEMMA 2.6. (i) μw e [ W Λ W, W]% n \W Λ »VS W]%.

(ii) μ'wz\Wλ ft, Lt\ ψ]ίflf and βOιW=-(iLΛl1 F)μ ϊ r /or θ on
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PROOF. Let θj and Θ2 be the 0's with respect to W /\W and Wλ W, re-

spectively. Using exact sequences derived from (2.1)-(2.2), we have

[W Λ W, W], = 0 and [W Λ W, L Λ H^]0 = Z/pZ{(iL Λ VW}

from the known results on j/*(M) ([13], [19]). Hence 0 )̂ = 0 and

= Xi(iL Λ 1 tr)μ»r> xt e Z/pZ, ϊ = 1 ,. 2. By considering 0Γimages of the third equality

in (iii) of Proposition 2.5, we have x A = — 1 and x2 = 0 as desired.

By [15; Th. 4.4], there exists the M-map

(2.3) p: K - > W such that pi' = iw and πwp = α^~2π'.

LEMMA 2.7. T/tere /ιoW ί/iβ relations

μw(p f\ p) = pμi and μ'w(p Λ p) = (iL Λ V)pμ2

PROOF. By Lemma 2.2 (ii), the group [K Λ K9 W~\% is determined from

[X, fF]jf via the decomposition of Remark 1.6. From the results on

we have [K, ]̂̂  = Z/pZ{p}, [K, ίf]f = 0 for fe=l, pg + 1 and for k =

p^7, and \K,W]y^2=ZlpZ{iwζπ'} for p = 5, where C = «ι^ Λ IM

Since 01(pμ1) = 0 and 0ι(ιVC^4)^0 ^Y Lemma 2.2 (i), we obtain

IK Λ K, vr$ n [K Λ K, w~}$ = z/Pz{Pμι}.

By Lemma 2.6, the element μ^(p Λ p) lies in this group. Since μw(ρ Λ p)(i; Λ lχ)

= m^(lM λp) = pμl(i' Λ lχ), the first equality is obtained.

By computing [ K f \ K , L f \ Λ"]^, the second one is similarly obtained.

LEMMA 2.8. There hold the associative formulas:

(i) μ'wttw Λ μw) = (1L Λ μw)(μ'w Λ lw)

(ii) (1LΛ μwrXT^i.Λ l^KV A ' / x W = -(1L Λ μw)(μ'w Λ \w) + μ'w(μw/\ 1^),

w/iere T^>L: ^ΛL->LΛ W is the switching map.

PROOF. We abbreviate lw, μw and μ'w to 1, μ and μ'. By Proposition 2.5

(iii), we have

μ'(l Λ μ)(ίV Λ 1 Λ 1) = (ίL Λ l)μ(π Λ 1 Λ 1)

Λ /iXΓ^ Λ 1)(1 Λ μ')OV Λ . l Λ 1) =^ (1L Λ m^)(ΓM.L Λ 1)(1M Λ μ'),
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(μ'(μ Λ 1) - (1L Λ μ)(μ' Λ 1))OV Λ 1 Λ 1)

= μ'(mw Λ 1) - (/L Λ l)μ(π Λ 1 Λ 1),

where TML\ M Λ L - » L Λ M is the switching map. By Lemma 2.6 (ii), — (ι"LΛ l)μ

= θl(μ') = (lLΛmw)(TMfL/\l)(\MΛμ')(nwM) and hence

OL Λ WW)(TM,L Λ 1)(1M Λ //) = μ'(nv Λ 1) - (ΐL Λ l)μ(π Λ 1 Λ 1).

Thus, we see that the desired relations hold if (iw Λ 1 Λ 1)* is injective on [_W Λ W Λ

From the results on ĵ *(M), we have j/0(*F) = Z/pZ{l}, j^2q.l(W) = Z/

pZ{α 2Λl} and j^k(^) = 0 for k=l, 29 2q9 2q + l, 2q + 2, 2q + 39 4q + l, 4q + 2,

4q + 3. Therefore [M Λ W Λ W9 L Λ ^]2q = 0, and so OVΛ 1 Λ 1)* is injective as

desired.

PROOF OF THEOREM 2.1 (continued). To accomplish the theorem, it suf-

fices to show £4 = £5=0 in case p = 5. By Lemma 2.7, we have

O'L Λ l)p/ι2U Λ μO = μ'(l Λ μ)(p Λ p Λ p),

O'L Λ I)p/iι(μ2 Λ 1) = (1L Λ μ)(μ' Λ l)(p Λ p Λ p),

O'L Λ l)p^!(l Λ μ2) = (1L Λ μ)(TfΓfL Λ 1)(1 Λ μ')(p Λ p Λ p),

(iL Λ I)pμ2(^ι Λ 1) = μ'(μ Λ l)(p Λ p Λ p),

where 1 = 1^ or lκ, μ = μw and μ' = μ'w. By Lemma 2.8 (i) and (A2fl)', we have

0'ι,Λ l)p^3(/^3 Λ 1) = 0, and by Lemma 2.8 (ii) and (A1>2y, (iLΛ l)p(<£5- ̂ 4)^3(^3
Λ 1) = 0. Hence, (/ L Λ l)p£/ = 0 for j = 4, 5.

Since [X, W]%pq+ί=Q for p^7, =Z/pZ{iwηπf} for p = 5, where ^

= α(<5M^(i))3, and since [K, ^]^p-2)β+2 = 0, we see that ((ϊ'LΛl)p)* is injective
on &2pq+ί(K). Therefore ξ4 = ξ5 = 0, and the theorem holds entirely.

§3. Algebra st* (K)

DEFINITION. We define a linear map

by the formula ψ(f) = μι(lχ Λ /)v3.

LEMMA 3.1. (i) ̂  = 0.

(ii) ψθ= -θψ.

PROOF, (i) By (A'3>3) of Theorem 2.1, ••(μιΛl)(l.Λv3)v3=Q. Hence, by

r(A l p l) of Theorem 2.1, '.φψ(f) = μl(ί Λμjα-Λ .1 Λ/)(l Λ v3)v3 =p1(μ1 Λ 1).(1 Λ 1
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Λ V3)v3=^(l Λ/)(μ, Λ 1)(1 Λv3)v3 =
(ii) By (1.5), 0(lΛ/)=lΛθ(/) for θ on [X Λ X, X Λ X]*. Then, 0<K/)

= 00ί1(lΛ/)v3)=(-l)d'*>'/ι1(lΛ0(/))v3=-.AΘ(/) by (1.2) and Lemma 2.2(ii).

LEMMA 3.2. ι/<<5) = 0, ι/<<5') = - 1 κ

PROOF. The first equality is immediate from Lemma 2.4. By Theorem

1.10, φ(δ')=μιT(i' Λ l)(π' Λ l)Tv3= -lκ.

PROPOSITION 3.3. Letfejtfk(K). Then

Λ/)vy = 0 /or />;;

'/ far i = l,4

.(-I)*/ /or i = 2, 3;

1*2(1 Λ /)v3 = o, /ί2(i Λ />4 = - ( - 1)

other words, lκ Λ /corresponds to a triangular matrix

(-!)*/ 0

PROOF. We put ^tj(f)=μj(lκ Λ/)vy, in particular ι/Ί3(/)=^(/). From
the relations

m'(l Λ/)(i' Λ 1) = (-l)*(π' Λ 1)(1 Λ/X = 1M Λ/,

m(lM Λ/)(i Λ 1) = (-l)*(π Λ 1)(1M Λ/)n =/,

(π' Λ 1)(1 Λ/)(ί' Λ 1) = 0, (π Λ 1)(1M Λ/)(i Λ 1) = 0,

we see easily that ψtj(f) = Q for i>;, </Ή(/)=(- !)*""""/ and ψ12(f)

The homomorphism ι^23 satisfies

because ^23(0/0 = Σί^2i(^)^i3 (Λ) = 0 22(9)^2^) + ̂ 23(9)^33^ By Proposition
1.8 and [15; Th. 7.5], any element /can be written as f=θ(g) + θ(h)δ for some
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g,hej/t(K). Then ^
I)v2)=0 by Theorem 2.1 (A2 1) and (A'3>2). By Lemma 2.4, ψ23(δ) = Q. Hence

*23(/) = Oby(»).
Considering the M-action K/\K, we have 0^(/)=μ1(l Λ/)01(v3)±01Ou1)(l

Λ/)v3 = ιA14(/) by (1.2), (1.5) and Lemma 2.2 (i). Similarly we have 0 = 0^23(/)

= ̂ 24(/) + (-l)*lM/),so ^24(/)=-(-l)W) Thus, the proposition is
proved.

We shall introduce a subalgebra of &

DEFINITION. <#k(K) = ̂ fc(K) n Ker ,̂

From the above proposition, we see that fe&k(K) if and only if 1 K Λ / cor-
responds to a diagonal matrix, and hence

COROLLARY 3.4. Let
to each other.

(i) f lies in Vk(K).

(ϋ)

(iii)

(iv)

(v)

. The following statements are equivalent

and μ3(lκ Λ/) = (-

(lκ Λ/)v3 = (-

REMARK 3.5. For fe^k(K\ the element / Λ l x is not a diagonal matrix,
in fact, / Λ lκ corresponds to the triangular matrix

(-I)*/

0

where [ , ] denotes the commutator: [/, 0]=/0-(-l)deg/deg0 ^/. Also, the
elements δ Λ lχ and δ'-Λ lx correspond to

ί ° '
0 0

0

V

\

0

0 -1

0 0
/

and

/

0

0

\

1 0

0 1

0

/
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respectively. By Theorem 3.6 (i) below, the matrix corresponding to / Λ l *
for any fe <tfk(K) is computed from the above matrices.

THEOREM 3.6. (i) j**(K) = V+(K)®E(δ, δ') = E(δ,

(ii) **/*(£) has the two differentials Θ and ψ of above which are derivative,

i. e., for d=θ, ψ, there hold d2 = 0 and

d(fg) = (- 1M00 +/d(flf), /e rfk(K\ g

Furthermore, θψ = — ψθ.

PROOF, (i) By Proposition 1.8, it suffices to show
= E(δ')®V*(K\ which follows from Lemmas 3.1 (i), 3.2 and Definition 1.9
in the same way as [15; Th. 7.5].

(ii) By (1.2), (1.4) and Lemma 3.1, it suffices to show that ψ is derivative.

We have ψ(fg)= ΣiΆi C/^A aG?)* where \l/u are the same as in the proof of Propo-
sition 3.3, and hence ψ(fg) = ( — l ) l ψ ( f ) g + f ψ ( g ) by Proposition 3.3.

THEOREM 3.7. The subalgebra ^^(K) is commutative and

[*Φ(K), a] c <rφ(κ), [<rφ(K), δ7] c y φ(x> ,

where \_A,f~\ denotes the subgroup generated by commutators [α,/] for a e A.

PROOF. Let /e ^k(X), g e ̂ (X) and put h =fδ' e &k-pq- ̂ K). Then
μ ι ( Λ Λ l ) v 3 = μ 1 T ( l Λ Λ ) Γ v 3 = -μt(l Λ ̂ -^(l Λ H)v4δ = - ^(Λ) - (θφ(h))δ =f
by Theorem 1.10, Proposition 3.3 and Theorem 3.6 (ii). Then, μι(hλg)v3

=μl(hΛl)(lΛg)v3 = Σμι(hΛl)viμi(lλg)v3=μί(hΛl)v3ψM and
similarly /ι 1(ftΛ^)v3 = (-l)<*-1>l/ι1(l Λ g)(h f\ I)v3 = (-iyk~^lgf. Therefore
gf=(-l)klfg as desired. Since θ(δ) = \l/(δ')= ~lx, ^(δ) = θ(δ') = 0 and Θ and ̂
are derivative, we have θ[/, (5] = ιA[/, δ] = 0, θ[/, 5'] = ̂ [/, ^']=0 for any /e

COROLLARY 3.8. Lei / be any element in ^^(K) of even degree. Then
fp commutes with any element in j

PROOF. By the second half of Theorem 3.7, fδ-δf and fδ'-δ'f are in
<ΓΦ(X), and hence (fδ-δf)f=f(fδ-δf) and (fδ'-δr f)f=f (fδ'-δ'f ) by the
commutativity of &*(K). By the induction, we have fkδ — δfk = k(fkδ —
fk~lδf) SLndfkδ'-δ'fk = k(fkδ'-fk-lδ'f) for fc^l. In particular, f'δ-δf'
= 0 and fpδf — δ'fp=Q. Therefore, fp commutes with any element in s
by Theorems 3.6-3.7.

PROPOSITION 3.9. The following homomorphisms are isomorphic:
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PROOF. For/e [M, K]Jf, we have /'*tK/π') = —/by easy calculations using
Theorem 1.10. Hence f * is a split epimorphism and —ψπ'* is its right inverse.
Next, let feVk(K) n Kerf*. Then f=gπ' for some 0e[M, K]j&p<1+1 by [15;
Th. 4.5]. Since ί'* is onto, g = hi' for some hetfk+pq+ί(K). Then 0 = ̂ (/)
= ψ(hδ')= —h and /=0. Hence ί'* is isomorphic. The second half is similar.

§4. Realizing 5 ̂ -modules

Let Xj be the mapping cone of OLJ e&jq(M\ j^l (Xp = K and X2 — W in
§2), and

(4. 1) Σ**M r*L>M^-+Xj ^-+ Σ**+Λ M

be the cofibering for Xj (ip~if, πp = π' in (1.1), i2 — iw>π2 = π

w in (2.1)). By
[15; Th. 4.3], Xj is the M-module spectrum and ij and π7 are the M-maps. By
[15; Th. 4.4], there exist the M-maps λ = λj\ ΣqXj.ί-^Xj and ρ = p;: XJ-^XJ,l

such that

(4.2) λij-\ = tyχ, π;A = ττ,_ j ρ\j = ij- 19 π, _ ̂  = απ;.

(λ = A and p=β in [14], and the element p in (2.3) is equal to p3 . p.p).
Let M' be the mod p2 Moore spectrum S° U pie1. It is homotopy equivalent

to the mapping cone of <5M, and so there is a cofibering

(4.3) M -**L> M' J^L, M.

Since ap5M = ̂ Ma^, there exists a': ΣpίlM'-+Mr such that α/AA f==AMαp and pMα'
= αPPM [13; §4]. The mapping cone K' of αr is homotopy equivalent to the one
of δ = δκ. We therefore have the following two cofiberings:

(4.4) (i) l-iK .-ί-ί.K JJL,K'; - .

(ϋ) M/-L%X/-^UI^1M/.

Notice that all spectra and maps in (4.3)-(4.4) are M'-module spectra and M' -
maps.

Now, we shall consider the Brown-Peterson homology of the above spectra
and maps. It is clear that

= BPJ(p),

By L. Smith [16],
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α, = »! : BPJ(p) — + BPφ/(p),. αi = .«?.: BPΦ/(p2) — BP*/(p2)

for a suitable choice of α'. From (4.1)-(4.4), we have immediately

LEMMA 4.1. (i) BP*(Xj) = BPJ(p, v{\ BP*(K') = BP*l(p\ ι>?).
(ii) -(ij)t and i* are surjective, (π/)*=0 and π# = 0.
(iii) λ+^Vί and p* is surjective.

(iv) ω* = j>.

The following lemma is an improvement of [14; Th. DII],

LEMMA 4.2. For s^2, there exist elements fsetfsp(p+1)q(K) such that

ω*= *y.
PROOF. By [14; Th. C, D], there is the M-map

such that (Rp-ι)* = vp

2. By the relation (*) in the proof of [14; Th. CΠ] and
by [15; Th. 4.5], there are M-maps

such that gsλ=λ(Rp. 0
s. Write gs=hs+h'sδ' for hs, h's e V*(K). Then (hsλ)*

= (^Λ* = ̂ ι^2p by Lemma 4.1, and hence (hs)^ = vs

2

p mod W^-BP+Kp, vp^
= B. In degree 2p(p+l)^, B = 0 and (Λ2)* = ̂ ip In degree 3p(p+l)q, B is
generated by vp

i^
ivp

2-
iv3. Put (Λ3)* = vlp + α^Γll7Γlί;3 Then the ideal (p,

»?, t;|p+αt;?~1ι;5""1^3) is invariant under the coaction of BP*BP, and hence we see
that a must be trivial ([10], cf. [3; §7]). Hence we can take /2s=(Λ2)

s and

THEOREM 4.3. For p^5, s^2, there exist M'-maps

> K'

induce the multiplications by vs

2

p2, and hence the mapping cone Ls of
Fs satisfies BPJ|t(Ls) = BP#/(p2, vp

ί9 v*2

p2).

PROOF. By Lemma 4.2 and Corollary 3.8, (fs)
pδ = δ(fs)

p. Hence, by
(4.4) (i) and [15; Th. 4.5], there are M'-maps gs such that gsλκ = λκ(fs)

p. By
Lemmas 4.1 (iv) and 4.2, (gά* = *f* mod (p) BP*l(p2, r?). For s = 2, 3, if
(P2

9v$9'v%2 + px)9 dQgx = sp2(p+ϊ)q, is invariant, then x is a multiple of vs

2

p2.
Hence (gs)* = (l + asp)vs

2

p2, aseZ/pZ, for s = 2, 3, and we can take Fs = (l-asp)gs

for s = 2, 3, F2s = (F2)
s and

REMARK. R. S. Zahler [20] showed that the ideal (p2, vp

ί9 u2) is invariant
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if and only if p2\t. Hence, BPJ(p2

9 vp

ί9 v*2)9 p^5, ί^p2, is realizable if and

only if p2\t. We do not fenow the realizability of BP*/(p2, vp

ί9 vp

2).

THEOREM 4.4. For p ̂  5, s ̂  2, p + 1 ̂  j ^ 2p9 there exist maps

such that (GStj)* = vs

2

p2, and hence the mapping cone YStj of GsJ satisfies BP+(Ysj)

PROOF. By Lemma 4.2 and Corollary 3.8, (fs)
pδ' = δ'(fs)

p. In the same way

as [14; Th. C'], we can construct maps gStjestsp2(p+l}q(Xj) such that gsjλ

= λgsj.ί and gs,p+ιλ = λ(fs)
p. Similar discussions on the in variance of (p, υ{,

vs£2 + υ{~lx) as in the proofs of Lemma 4.2 and Theorem 4.3 imply (gsj)+ = v^2

for s=2, 3 by replacing gStp+2 suitably. Then, we can take G2sj = (g2,j)

§5. Constructing homotopy elements

DEFINITION 5.1. For p^5, s^2, we define elements j?Sp2/(pf2) in π*(S) by

where ϊ: S-+M' is the inclusion and π: M'-+ΣS is the projection. Each βsp2/(pt2)

is of degree (sp3 + sp2 -p)q-2 and satisfies P2βsp2/(pt2) = 0.

DEFINITION 5.2. For p^5, s^2, p+l^j^2p, define j8sp2/ω e π*(S) by

The degree of jSSp2/(y) is (sp3 -f sp2 -j)q - 2 and there holds pβsp2/(j) = 0.

We shall consider the Adams-No vikov spectral sequence for BP :

E2(X) = H*(BP*(X)) =»

where H*M = ExtJPφBP(J5P#, M) for a BP^BP-comodule M. The following

is useful to prove the nontriviality of the elements of Definitions 5.1-5.2.

THEOREM ([7 Th. 1.7], [9; Lemma 2.10]). Let W-+X^Y^-+ΣW be a

cofiber sequence of finite CW-spectra such that Λ*=0 in BP homology. De-

note by δ: H*BP +(¥)-+ Ht+1BP*(W) the connecting homomorphism associated

to the short exact sequence O-^BP^W^BP^X^BP^Y^O. If xeE2(Y)

converges to an element α e π+(Y\p), then δ(x)eE2(W) converges to &„,(<%) e
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Let δ^WBPJ(p2

9^-^H^lBP^/(p2) and 62:H
tBP*/(p2)-

be the connecting homomorphisms associated to the exact sequences

0 ̂  BPtKp2) ^U BPJ(p2) —» BP*/G>2, fcf ) — -> 0,

0 — > BP -£*.«> - > BPlip2)— > 0.

Since (FJ'^ = υ¥2eHQBP*l(p2, X)r the element vs

2

p 2 e £§• *(K') converges
to Fsi"ϊeπ*(K'\p). Since (π")* = 0 and π^O, the above theorem shows that

(p2) = £^*(M/) converges to π"Fsί"ϊEπ*(M'\p) and c^iOf2)
) converges to βp2/(p,2) e π^S)(p}.

Recently, H. R. Miller, D. C.Ravenel and W. S. Wilson ([8], [9]) have
completely determined Ή2BP*. In particular, δ2S\(υs^2) = βsp2l(pt2) is nontrivial
and generates a summand Z/p2Z. Since any element in £f»*(S) can not be hit
'by-' a ' differential, S$i(v*2

p2) survives nontrivially to E^, and hence βsp2l(pt2)^^
in π*(S). Since βsp2/(pt2) in H2BP* is indecomposable, βsp2/(p>2) i

n ^*(̂ ) gener-
ates a summand Z/p2Z and is indecomposable. Thus, we have obtained

THEOREM 5.3. The elements βsp2^pt2)9 s^2, of Definition 5.1 are indecom-
posable and generate cyclic summands of order p2 in

In the same way as above, we also obtain

THEOREM 5.4. The elements, /?sp2/α), s^2, p + l^j^2p, of Definition 5.2
are indecomposable and generate cyclic summands of order p in

At the end of this section, we notice that the results of H. R. Miller, D. C.
Ravenel and W. S. Wilson on H3BP* imply the existence of infinitely many ele-
ments in π*(S) of order p2 and of degree = —3 mod q. In [14; Cor. 7.6], we have
proved the relation α1j5ίp = p0ί mπ(tp2+tp)q-3(S) for p^.5 and ί^l. φt is of order
p2 if α^p^O, Hence, by [9; Th, 2>13]

THEOREM 5.5. Let p^5, n^0,j?^s^l, and assume that s^έ-lmodp,
S Ξ — lmodp n + 3 or s = p—l. Then, the element φspn in π(spn^2+spn+i)q-3(S)
is nontrivial of order p2.

Note added in proof . In the previous paper [15], Theorem 4.5 is incorrect, and we have used
this theorem in the prpofs of Prop. 1.3, Th. 2.1, Prop. 3.9, Lemma 4.2 and Th. 4.3. But these
results can be proved without this erroneous theorem. The details will be seen in the correction
of [15]. We would like to appreciate Professor Z. Yόsimura who kindly pointed out the error

of the proof of '{Ϊ5;.Th*; 45, Lemma 4.6].
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