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Introduction

Let V be a smooth complex projective algebraic variety of dimension n and
Z a hypersurface in V. We denote by Q}(logZ) the sheaf of germs of logarithmic
1-forms along X over V (see section 1(c)). Let f: C—V be a holomorphic map-
ping from the one dimensional complex plane C into V which will be called a
holomorphic curve in ¥, Ty(r) denote the characteristic function of f relative to
a Kihler form on V and N(r, X) the counting function for ¥ without counting
multiplicities (see section 1 (a)).

The main purpose of this paper is to establish the following result which may
be called a theorem of the second main theorem type (for the precise statement,
see Main Theorem in section 3):

Assume that there exists a system {w;};=;  .+1 0f n+1 logarithmic
1-forms w;e H(V, Q) (log X)) such that the n-forms W, A - A@;_; A@;p 1 A+ A
WOpy1, i=1, 2,..., n+1, are linearly independent over C. Then there is a posi-
tive constant k such that

@ KT((r) < Ny(r, Z) + S/r),
where S (r) is a small term such as lig'_mS (1) T(r)=0 (see (2.9)).

Let us recall the well-known case where f: C—»P" is a holomorphic curve
in the n-dimensional complex projective space P* and X a union of hyperplanes
Z, i=1,...,q,in P". Let T/(r) be the characteristic function of f relative to the
standard Kahler form on P” and N ((r, Z;) the counting function for X; with count-
ing multiplicities. Then we have the following famous theorem:

The second main theorem. Suppose that q>n+1 and X;s are in general
position, and that the image f(C) is contained in no hyperplane. Then

q
an (@g—n-DTyr) < ‘};1 Ng(r, Z;) + Sir),
where S(r) is a small term as in (D).

This theorem was first proved by Cartan [3] in 1933 and later by Ahlfors
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([1]) in 1941 who completed the work of H. and J. Weyl [21]. As mentioned in
Ahlfors [1], it is desirable to deal with holomorphic curves in a general algebraic
variety, but their methods are intrinsically based on the facts that P* and Z; are
linear. Thereby it is very difficult to generalize that theorem for holomorphic
curves in a general algebraic variety in such a complete form.

The second main theorem implies not only that f(C) intersects =L, 2,
but much more refined informations on how often the holomorphic curve f
intersects . The theory dealing with the magnitude of f~1(Z) is called ‘‘equi-
distribution theory” (cf. Wu [22, Introduction]). To understand the second
main theorem (II) from this viewpoint, one may think it to give a lower bound
of Ny(r, Z) with 2=\, Z;, contrary to

N, Z) < T(r) + 0(1)

as r—oo for each X;, which is a direct consequence of the first main theorem
(cf. [8, section 3]). Therefore one is naturally led to the following problem:

Let f:C—~V be a holomorphic curve in a complex algebraic variety V. Find
conditions for a hypersurface X in V under which there is a positive constant K such
that

(11I) KT(r) < Ny(r, 2) + S/(r),
where S (r) is a small term as in (I) (see (2.9)).

This problem may deeply relate to that of Griffiths [8, section 4 (v), Problem].

It was our first aim to obtain (IIT) for a smooth complex projective algebraic
variety V. Since N (r, £)SN(r, Z) for r=1, (I) implies (III).

The first step of the proof of Main Theorem (I) is a generalization of Nevan-
linna’s lemma on the logarithmic derivative (see (1.1) and Lemma 2.3). For this
aim we shall introduce a sheaf 2, (logZX) (=Q}(logX)) which is a sheaf of Z-
module, such that Ho(V, A, (log X)) generates HO(V, 2} (logZX)) over the complex
number field C (see section 1(b) and (c)). That generalized version of Nevan-
linna’s lemma on the logarithmic derivative (Lemma 2.3) and Ochiai’s theorem
[17, Theorem A] (cf. section 3) will play essential roles in the proof of Main
Theorem (I) in section 3.

In section 4(a) and (b) we shall verify the conditions of Main Theorem
in the classical case, i.e., V=P" and X is a union of hyperplanes. An example
given in section 4(b) shows that Main Theorem is slightly different from the
second main theorem (II) of Cartan and Ahlfors.

In section 4(c) we shall give another example which satisfies the conditions
of Main Theorem in the case where V is an Abelian variety (see Proposition 4.2).
As applications we shall obtain partial answers to the problems of Griffiths
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[7, Problem F] and Kobayashi [12, Problem D. 9] (see Theorem 4.1 in section
4(d) and Theorem 4.2 in section 4 (e)).

1. Preliminaries

(a) For a meromorphic function « in C we set

m(r, o) = Zl—ngznlog*’ la(rei®) | 46,

N(r, @) = S n2) = 10. %) gy 4 (0, ) logr,
0

where log* |a| =max {log|«|, 0}, n(t, ) denotes the number of poles of a in

A()={zeC; |z| <t} with counting multiplicities and n(0, ) the order of the

pole of « at the origin 0 when 0 is a pole of «. Nevanlinna’s characteristic func-

tion T(r, ) is defined by

T(r, &) = m(r, &) + N(r, o).

For the elementary properties of T(r, ), see Nevanlinna [13, Chap. I]. The
order of « is defined by
im log T(r, o) )
r—oo logr
Letting o’ denote the first derivative of «, we have Nevanlinna’s lemma on
the logarithmic derivative (cf. [13, Chap. IV]):

a.1 m(r, %) — O(log* T(r, %)) + O(log* r) + O(1)

for all r if « is of finite order, and otherwise except for r belonging to a union of
intervals whose total linear measure is finite.

In estimate (1.1) we abbreviated the phrase ‘“‘as r—»o00”. This abbreviation
will be done throughout the present paper.

Let M be a compact Kéhler manifold with Kéhler form Q. Let f:C—-M
be a holomorphic curve. Then the characteristic function of f relative to Q is
defined by

Ty = S;%t—gw)f*g'

Let T'(r) be the characteristic function relative to another Kahler form Q' on
M. Then there are positive constants A and A’ such that

A'T)(r) + O(1) < Tr) < AT(r) + O(1).
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Therefore the order of f

im log T'((r)
r—»o IOg r
is defined independently of the choice of Q.

In general we denote by Supp D the support of a divisor D on M and call the
irreducible components of Supp D the components of D. For an effective divisor
D on M such that f(C)& Supp D we denote by n(t, D) the sum of orders of the
divisor f*D n A(f) and by ny(0, D) the order of f*D at the origin. Without count-
ing multiplicities we define 71 ,(t, D) and 7,(0, D) in the same manner as above.
Set

Ny(r, D) = SO ns( D) - 270 D) 4y + n,y(0, D) logr,

N;(r, D) = S;’—‘f(" D) - ;0. D) 4s + 7 (0, D) log .

Then obviously
Nyr,D)<Ngr,D) for rx1.

For a hypersurface X~ in M we define N (r, 2) and N «(r, X), regarding X itself as
an effective divisor on M.

Let [D]—>M be the line bundle over M determined by D. Let  ec,(D)
(=the first Chern class ¢,([D]) of [D]) be the curvature form of a metric |- ||
in [D] and take a section ¢ € I'(M, [D]) such that the divisor (¢) equals D and
llel £1. Then we have

(1.2) Ty(r, ¢y(D)) = Ny(r, D) + my(r, D) + C,

where

7,0 @) = 4{ 1oy,

A(t)

my(r, D) = "ngnlog—L‘—de
A 27 )o lo(f(ret®)| =7

and C is a constant (cf. [9]).
Since Q is positive definite and M is compact, there is a positive constant
K such that KQ— is semi-positive definite, so that

(1.3) Tf(r, CI(D)) = KTf(r).

For simplicity we assume in the rest of this paper that f(0) is not contained
in the supports of divisors or hypersurfaces concerned, knowing that the excep-
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tional case can be treated.
Let M be a projective algebraic manifold V, that is, a smooth projective
algebraic variety which is defined over C, and 2(V) denote the field of rational

functions on V. Let {@,,..., ¢;} be a system of generators of #(V) over C such
that f*¢; are defined, and set

Tf(r) = max {T(r, f*¢_])} .
1=js!
Then there are positive constants B and B’ such that
1.4 B'T(r) + O(1) < T(r) < BT (r) + O(1).

(b) Let M be a compact Kihler manifold of dimension n and X a hyper-
surface in M. Let M (2) denote the sheaf of germs of non-zero meromorphic
functions whose zeros and poles are contained in 2 and Ay (logZX) the sheaf of

germs of meromorphic closed 1-forms dlog{ with { € M} (2). Then we have the
exact sequences:

0 — C* — B%(Z) 18, 9, (log ) —> 0,

(1.5)  HOM, ME(D)) 218, HOM, A, (log %)) —2» HY(M, C*) — ---

b

where C* denotes the multiplicative group of non zero complex numbers. One
notes that

H'(M, C*) = Hom (n,(M), C¥) = Hom (H (M), C*¥),

where n;(M) is the fundamental group of M and H,(M) the first homology group
of M with integral coefficients.

Let X, i=1, 2,..., be the irreducible components of X and fi denote the set
of regular points of Z;. In a small neighborhood U of each point of Zoi we can take
a local coordinate system (x,..., x,) so that {x;=0}=2ZX,n U. Then every global
section w € HA(M, A, (log X)) is written in U as

dx

w=vi
X1

1+7],

where v; is an integer and n does not contain the term dx,/x,. It is easy to see
that the integer v; is independent of such a local coordinate system. Since X;
is connected, v; is constant on 2;. We define the residue of w on Z; by

res(w, X)) = v;.

Thus we get a divisor D= res(w, Z,)Z;. Let m: M—M be the universal cover-
ing of M with transformation group n,(M) and take a point X, € M —=~1(Supp D).
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Then the function
. X
9(X) =exp 6 n*w)
Xo

is a meromorphic function in M and dw e Hom (n,(M), C*) (see (1.5)) is repre-
sented by

dw(y) = '9,9(2’%) = exp (Sya)) e C*
for yen,(M). Therefore 9 is a theta function with constant multiplicator and it
is clear by the construction that the divisor () of 9 is equal to D. Hence D is
homologous to zero (cf. [20, Chap. V, p. 101]). Conversely, if there are integers
v; such that the divisor D= Yv,Z; is homologous to zero, then there is a unique
theta function 9, up to constant multiple, such that (9)=D and |9| is single-
valued on M (cf. [20, Chap. V, p. 101]). Setting w=dlog 9, we have

we H'(M, A,,(log)),
res(w, X)) = v,.

(c) Let Vbe a projective algebraic manifold, ¢, (resp. 2}) the sheaf of germs
of holomorphic functions (resp. 1-forms) over V. Let X be a hypersurface in V
and Q}(logZ) denote the sheaf of germs of the form X !_,x;w; with «;€ 0y,
w;eWy, (logZ)and =1, 2,..., where x € M, which is called the sheaf of germs of
logarithmic 1-forms along X (cf. Deligne [4] and Iitaka [10]). One notes that

HO(V, 2}) = HY(V, Ay(log 2)) = H(V, Qi (log 2)).

Let n: (V*, 2¥)—>(V, X) be a desingularization of X satisfying

(1) mis a composite of monoidal transformations and Z* =n"1(2),
) wlps_ge: V*¥=2*>V—1J is biholomorphic,

(3) Z* has only simple normal crossings.

LemMA 1.1. The mapping = induces an isomorphism
n*: HO(V, Ay(log X)) — HO(V*, WU,(logZ¥)).

Proor. It is clear that n* is injective. Let A: V= V* be the inverse of =
which is a meromorphic mapping, and S the singular locus of A. Then codim
§=2 and A|y_gs: V—S—-V* is holomorphic. Let w*e HO(V*, Uy.(logZ*)) and
set ' =(4]y_5)* w*e HY(V-S§, A, (logX)). It is enough to prove that w’ can be
extended in a neighborhood of each point of S as a section of A, (logX). Let
Xo € S, take a simply connected open neighborhood U of x, and x; e U—-(S U X).
Noting that U—S is simply connected, we set
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wr=0((7 )

for x e U — S, which is a meromorphic function in U—S. The zeros and poles of
g is contained in Z. Since codimS=2, g has an extension over U as a mero-
morphic function. Denote it by the same g. Then dlogg e H(U, A, (logZ))
and dlogg|y_-s=o'|y_s- Q.E.D.

Deligne [5] proved that every global section of Q}.(logZ*) is d-closed. By
Titaka [10, sections 2~4] we have

(1) HO(V*, Q)(log *) & H(V, Q}(log Z),
(2) there is a basis {w}} of the C-vector space HO(V*, Q}.(logZ*)) such
that every w¥ € HO(V*, Uy,.(log Z¥)).

Combining these with Lemma 1.1, we obtain

PROPOSITION 1.2. Let the notation be as above. Then there exists a basis
{w;} of the C-vector space H(V, Q}(log X)) such that every w; e H(V, U (log X)),
i.e., HY(V, Ay (logX)) generates HO(V, Q¥ (log X)) over C.

2. Generalization of Nevanlinna’s
“lemma on the logarithmic derivative”

Let M be a compact Kiahler manifold, ¥= U Z; hypersurface in M with
irreducible components X; and w € HY(M, A,,(logX)). Set

D, = > res (o, 2)Z;,
res(w,%;)>0
D2 = 2 — IcS ((0, Ei)z‘:i.

res(w,2;)<0
Let [D;]—M be the line bundles over M determined by D; and o; e I'(M, [D;])
such that (¢;)=D;.
Let {U,} be a finite open covering of M such that every U, is simply connected

and each restriction [D;]|y, of [D;] is trivial. Then each g; is given by a system
{61} of holomorphic functions ¢ in U;. In each U,, w is written as

2.1) o =dlogo; — dlogo, + 1),

where 7} is a holomorphic closed 1-form in U;,, We take the integral of (2.1)
in U, which is determined by modulo 2xi:

x

¥ = _ D S PO S ,
Syw = logo(x) — logo(y) + log Py log 1) +Sy11,
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(mod. 2ni) for x, ye U,. Take a metric {p;;} in each [D;] so that

llo;N? = lo;(x)*/pju(x) = 1.
Set

|
m=mn +7{d log p;; — dlog py} .

LEMMA 2.1. Let the notation be as above. Then

Re Sw = logloy ()]l — log lo; ()|

X

S
+log T or ~ o8 T R"S M

y

for x, ye U, where Re(-) denotes the real part of (-).

We fix once and henceforth a Kihler metric h and the associated form
on M.

Let f: C—»M be a holomorphic curve. To avoid tiresome arguments, as
mentioned in section 1(a), we always assume that f(0)eZ. Let Ty(r) be the
characteristic function of f relative to Q. Let we H(M, %, (logZX)) and set

f*o = {(2)dz.

Then {(z) is a meromorphic function with poles of order one and their residues are
integers. Set

G(z) = S f*0  (mod. 2i),
0

9(2) = exp(G(2)).

LEMMA 2.2. There are constants K>0, A and B such that
r 1/2 d 1/2
70, 9) s K{(55) (£ 1,00 + 4) " + 1,0} + B.
ProoF. Let z=re!® and L={te'®; 0<t<r}. Take points 0=z, zy,...,
z,=z on L so that |z;_,| <]z, f(z;))& X and the image of each closed line segment

L[z;_,, z;] of L between z;_, and z; by f is contained in some U, € {U,}, where
{U} is the covering of M taken above. It follows from Lemma 2.1 that

Re G(z) = é Re(G(z) — G(z;_,)

= 3 {logllou s - loglo,(fzi-



Here the last inequality follows from |o,| 1.
1-form n, is defined in a neighborhood of the closure U, of U,.
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1 1
+log 5 @ ~ B T (el

+ ReS f*n,i}
Llzi-1,2:]

o, (SO

L eg Lo (O
= o o 7@ * 8 oy 70p]
+ i Reg f*m,
i=1 L{zi-1,2i]

pact, there is a positive constant K such that

for any vector field X in every U,.
dz.

Im(X) = Kh(X, X)

il Reg o, < KSO /Gt dt .

L[zi-1,21]

Using the notation, Re* G(z) =max {Re G(z), 0}, we get

Hence we have

RC+G(Z) é KS; /s(te“’)dt + log ” 02( f'(lre" ))“ + 10g+ ”0'2(f(0))“

le (FODT

Q2 o S:"Rem(rew)do

Set

1

< KES:"deS;\/s—(teT’) dt + m(r, D;) + log*192L/(O)I

o (SO

< r \1/2/(2n 0 r 10 1/2
=K(—2;) (Sodgos(te )dt) + m,(r, Dy)

+192(f(0) ] - .
+ log I Gi O (by Schwarz’s inequality)

r \1/2/(2%  (r ) 2 (1 172
< K(z—) (S dHS ts(te') dt + S deg s(te') dt)
T 0 0 V] 0

lo2(£O))]
+my(r, Dy) + log" 22

We may assume that each closed
Since M is com-

Set f*h=s(z)dz®dz and f*Q=s5(z)(i/2)dz A
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A= Szndﬂgls(te“’) dt,
0 0

_ o, (f(0)]
B =log" 1 Cronl
Since SM ) rr@=r-9-T,(r), it follows from (2.2) that

23) mr g) = zl—ngzuRe"G(re“’)dO

1/2 1/2
< K(55) (rfE1,0) + 4) "+ ms0, D) + B

It is clear that
(2.4) N(r, 9) £ Nf(ra D,).
Choosing greater K and B if necessary, we have by (1.2), (1.3), (2.3) and (2.4)

10, 9) s K{(35) (rF 1,00+ 4) " +1,0) + B}

Q.E.D.
LeMMA 2.3. Let we HY(M, A, (logX)) and set f*w={(z)dz. Then
(2.5) m(r, {) < O(log* Ty(r)) + O(log* r) + O(1)

for all r if f is of finite order, and otherwise except for r belonging to a union of
intervals whose total linear measure is finite.

ProoF. Setting g(z)=exp (SZ f *a)), we have
0

2.6 =9 .

26) (=45

Suppose that f is of finite order. Then Ty(r)=0(r*) with u>0 and dT,(r)/dr=

O(r*~1). Combining these with (2.6), Lemma 2.2 and (1.1), we obtain (2.5).
In the case where f is of infinite order, by (2.6), Lemma 2.2 and (1.1) we

have

@7 mr, ©) = 0 (log" 4L-T,()) + Olog" T,()

+ O(log*r) + 0(1)

for re£ E’, where E’ is a union of intervals whose total linear measure is finite.
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It is easily verified that
d 2
@38) LT () < {T,()}

for r&£E”, where E” is a set similar to E’.
It follows from (2.7) and (2.8) that

m(r, {) = O(log* Ty(r)) + O(log* r) + O(1)
for r&E' U E". Q.E.D.

REMARK. Let M be the Riemann sphere P! with inhomogeneous coordi-
nate w and X={0, o}. Then w=dw/we H(P!, Ap:(logX)). In this case
Lemma 2.3 is nothing but Nevanlinna’s lemma on the logarithmic derivative
(cf. section 1(a)).

For a given holomorphic curve f: C—M, let us denote by S (r) a quantity
satisfying

2.9 S,(r) = O(log* Ty(r)) + O(log* r) + O(1)

for all r if f is of finite order, and otherwise except for r belonging to a union of
intervals whose total linear measure is finite.

COROLLARY 2.4. Let w and { be as above. Then
T(r, ) £ Ny(r, D) + S/(r),
where D= |res(w, Z))|Z;.

Proor. Since every pole z of ( is of order one and since z can be a pole of
{ only if f(z) e Supp D,

N(r, C) é Nf(ra D)
Hence our assertion follows from Lemma 2.3. Q.E.D.

Let M be a projective algebraic manifold ¥ and X a hypersurface in V. Let
f:C—-V be a holomorphic curve and set f*w={(z)dz for we H(V, Q}(logZ)).

COROLLARY 2.5. T(r, )SN(r, 2)+S/r).

PrROOF. By Proposition 1.2 there are w;e HY(V, Ay(logX)) and c;eC,
j=1,..., g, such that

W = c;w; ++ W,
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Setting f*w;={;dz, we get
{=cily++cf,

We infer from Lemma 2.3 that
q
m(r, DS 3 m(r, £) +0() = S,0r).

Since any pole of { is of order one and z € C may be a pole of { only if f(z) € Z,
N(r9 C) é Nf(rs Z")
Hence

T(r’ C) = N(ra C) + m(ra C)
SNir,2)+ S/r). Q.E.D.

3. Main Theorem

Let X be a smooth irreducible quasiprojective variety of dimension n (cf.
[18]) and {w;};=y.. n+1 @ system of n+1 regular rational closed 1-forms on
X such that

{ the regular rational n-forms
3.1 Wy A A @Dy A A @yy ™, i=1,...,n+1,

Iare linearly independent (over C).
DEerFINITION. We say that a holomorphic mapping f: U-»X from a con-

nected open set U in C into X is degenerate with respect to {w;} if f(U) is con-
tained in a subvariety

n+1
{ig‘iliwl Avs A @Dy Avr A Wyyq =0}

with (4,..., 4,4,) €C*"*1—{0}. If it is not the case, f is said to be non-degener-
ate with respect to {w;}.

Now we recall Ochiai’s theorem [17, Theorem A]:

OcHIAI'S THEOREM. Suppose that there exists a system {®;};=y, n+1 Of
n+1 regular rational closed 1-forms on X satisfying (3.1). Let f: U-»X be
a holomorphic mapping from a connected open set U in C into X which is non-

x) The symbol “@;” means that w; shall be omitted.
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degenerate with respect to {w;}. Then for every rational function ¢e Z(X)
such that f*¢ is defined, the meromorphic function f*¢ is algebraic over the

field generated by {{*}, <i<n+1,0sksn—1, Where {(¥) is the k-th derivative of {;
defined by f*w;={dz.

In this section we denote by V an n-dimensional projective algebraic mani-
fold and by X a hypersurface in V. Let {®;};=y,. .+ be a system of n+1 ra-
tional closed 1-forms w; e HO(V, Q}(log X)) satisfying (3.1) (i.e., {w;|,,_;} satisfies
(3.1)in V-12).

Let f: C—V be a holomorphic curve. Then f is said to be degenerate (resp.
non-degenerate) with respect to {w;} if the restriction fl¢_,-15): C—f1(2)—
V—Z is degenerate (resp. non-degenerate) with respect to {w,|, _5}.

Let T4(r) be the characteristic function of f relative to a Kahler form on V.

MAIN THEOREM. Suppose that there exists a system {®;}i=y,. n+1 Of
n+1 rational closed 1-forms w;e HY(V, Q}(log X)) satisfying (3.1). Let f: C—
V be a holomorphic curve which is non-degenerate with respect to {®w;}. Then
there is a positive constant k such that

@ KT(r) S Ny(r, 2) + S((r),
where S(r) is defined by (2.9).

Proor. We set f*w;=(,dz. Using inductively (1.1), (1.2), (1.3) and
Corollary 2.5, we see that

(3.2) T(r, (%) £ (k + DNAr, ) + S,(r)

forall i and k. Let{¢;};=;, ; be asystem of generators of the rational function
field 2(V) over C such that all f*¢; are defined. Then by Ochiai’s theorem there
are algebraic relations

(3.3) (f*é)™ + R (f*d )™=t +---+ Ry ((F) = 0
for j=1,..., I, where R;(({®) are rational functions in {{¥), i=1,..., n+1, k=0,
1,...,n—1. We infer from (3.2), (3.3) and Valiron [19] that there is a positive
constant K such that

T(r, f*¢;) < KN}(", Z)+ Sur)
for all j. Thus we see that

3.9 T {(r) = max {T(r, f*$))} S KNr, Z) + S/(r).

The inequalities (1.4) and (3.4) yield (I). Q.E.D.



846 Junjiro NoGguUcCHI

ReEMARK 1. It seems that x is independent of each holomorphic curve f.

REMARK 2. Let us consider the case where V is a closed Riemann surface
with genus g.

If g=0, then V=P! with inhomogeneous coordinate w. Condition (3.1)
of Main Theorem implies that X contains at least three points. If ¥={0, 1, oo},
then {dw/w, dw/(w—1)} forms a basis of HO(P!, Q}:(logZX)) and so condition
(3.1) is fulfilled. Conversely, it is well known that ¥ contains at least three
points if (I) holds for any f.

If g=2, then condition (3.1) is satisfied with Z=@. This implies the well
known fact that any holomorphic mapping from C into a closed Riemann surface
with genus greater than one is a constant mapping.

If g=1, then Vis an elliptic curve and condition (3.1) asserts that X contains
at least two points. But it is known that (I) holds if 2 contains only one point
(cf., for example, [9, Example (6.15) and section 7] or [15, Theorem B, p. 28]).

The higher dimensional case will be discussed in the next section.

4. Examples and applications

(a) First we examine condition (3.1) of Main Theorem in the classical case
where V=P" and X is a union of hyperplanes X;={F;=0}, i=0, 1,..., . Suppose
that there exists a system of n+1 rational closed 1-forms in HO(P”, QL.(log X))
satisfying (3.1). Since n,(P")=0,

4.1) HO(P", ME.(Z)) L8, HO(P, Upn(log X)) — 0

(cf. (1.5)). The system {w;=dlog(F;/Fy)};=y,.; forms a basis of HO(P",
QL.(logX)). Hence X contains at least n+2 hyperplanes. Assume that X con-
sists of n+2 hyperplanes X;={F;=0}, i=0, 1,..., n+1. Then the system {w;=
dlog(Fi/Fy)}i=1,. n+1 satisfies (3.1). Therefore w; A+ Aw,#0. This implies
that X,,..., Z, are in general position. We may use F;, i=0, 1,..., n, as homo-
geneous coordinates in P". Set w;=F,, i=0, 1,..., n, and

Fopq = cowo + cywy +-++ cuw,,

where (cg, ¢;,..., ¢,) €C"*1—{0}. Using inhomogeneous coordinate system
(x15-..5 X,) With x;=w;/w,, we have

1
xl...x"

WA A, = dxiA - ndx,,

(__ 1)n+1—ici
XX Xp(Co + X+ +epx,)

wl/\"'/\e{)i/\""\wtﬁl =

-dx; A A dx,
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fori=1,..., n. Therefore ¢;#0 for i=1,..., n. Since the system {cy,+c¢,;x;+ -+
CuXp> X1,---» X,; Must be linearly independent, ¢,#0. Thus X, Z,,..., 2, are in
general position. Conversely, let X;={F;=0}, i=0, 1,..., n+1, be n+2 hyper-
planes in general position. Then it is clear from the above argument that the sys-
tem {w;=dlog(F;/Fo)}=1,. .+1 satisfies condition (3.1), and moreover that a
holomorphic curve f: C—P" is degenerate with respect to {w;} if and only if
f(C) is contained in a hyperplane.
We summarize the above results.

ProOPOSITION 4.1. Let X be a union of n+2 hyperplanes X, i=0, 1,...,
n+1, in P

(i) There exists a system of n+1 rational closed 1-forms in HO(P",
QL.(logY)) satisfying condition (3.1) if and only if X’s are in general posi-
tion.

(i) Let {®}i=1,. n+1 SHP", Qbn(log2)) be a system satisfying (3.1).
Then a holomorphic curve f: C—P" is degenerate with respect to {w;} if and
only if f(C) is contained in a hyperplane.

Combining Proposition 4.1 with Main Theorem, we obtain Borel’s theorem:

COROLLARYF(Borel’S theorem). Let f:C—P" be a holomorphib curve
omitting n+2 hyperplanes in general position.  Then the image f(C) is con-
tained in a hyperplane.

(b)) Let V=P" and X be a union of hyperplanes. In case n=2, the con-
dition that there exists a system {w;, ®,, w5} in HO(PZ?, QL.(logX)) satisfying
(3.1) is equivalent to that 2 contains 4 hyperplanes in general position. This
equivalence fails for n=3. In fact, let (wy, wy,..., w,) be a homogeneous coordi-
nate system in P* with n>3 and set

F,=w for i=0,1,..,n,
Foy1=wo+ wy + w,,

Foio=wi+wy+-+w,
We put
2l={Fl=0} f()r i=0, 1,...,n+2,

w; = d(log F;/F,) for i=1,..,n,

x) The examples in (b) were suggested by Professor S. Iitaka.
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0,1 = dlog(Fp i Fpy,/F§).

Then any n+2 hyperplanes in X are not in general position, but it is easily seen
that the system {®;};=;,. ,+1 satisfies (3.1).

In this case, a holomorphic curve f:C—P" is degenerate with respect to
{®w}i=1,.,n+1 if and only if f(C) is contained in a quadratic hypersurface defined
by

0 Fi(Fpp1+ Fpyp) + 0Fy(Fpyq + Fryp)
+ E3aiFiFn+1 + 0yt 1Fus1Fpi2 =0,

where (y,..., 0,4 1) €C"1—{0}.

(c) We give an example for which dlog in (1.5) is not surjective (cf. (4.1)).
Let V be an Abelian variety A of dimension n. Then there are n linearly inde-
pendent regular rational closed 1-forms w;,..., ®, on A.

Let D, and D, be effective divisors on A with no common component, which
are homologously equivalent. Then there is a theta function 3 on A4 such that
the divisor (3), of zeros of 3 equals D,, the divisor (3), of poles of 3 equals
D, and |9| is single-valued on A (cf. section 1(b)). Set X=Supp(D,+D,) and

W,+; =dlog3e HO(A, A, (logl)).

PROPOSITION 4.2. The system {w}i=1,. n+1 < H%A, W (logX)) given
above satisfies condition (3.1) if D, and D, are ample®).

ReMARK. In the case where D, and D, are linearly equivalent, this propo-
sition was shown in the proof of Theorem 12-1 of the original draft of Ochiai
[17]. His method works for the above system {w;}.

Since this proposition has a meaning different from Ochiai’s in the sense that
it gives an interesting example for our Main Theorem, and since the proof is not
so long, we shall prove it.

ProoF. Assume that there is a non-trivial linear relation
n+1 -
“4.2) AW A AD; A A Dpyq = 0.
i=1

Set w, 1= i ¢w;. Then (4.2) implies that
i=1

B (0 + 2y =0

x) A divisor D is called ample if the cohomology class ¢,(D) contains a positive definite (1, 1)-
form.
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We may assume that A, #0. Then

4.3) Opey = (- Drlrtig 4 3 éj{wj + (= l)fjiwl}.
Ay Jj=2 Ay
Set
al = (111) (1)1,

aj = w‘, + (—l)j—j'la)l,j = 2,..., n.
1
Then ay,..., o, are linearly independent and there is a lattice I" in C* such that
n:C"—->C"|I = A,
n*a; =dz;, j=1,.,n,

where (z,,..., z,) is the natural coordinate system in C*. It follows from (4.3)
that

n*(wn+1)(£l') = Ant1.

This implies that

a3 _
E = Ap+19.
Therefore & is written as
(4'4) ‘9(21"“9 Z") = \90(22,-.., Zn)e;'"+1z"

where 3, is a meromorphic function in z,,..., z,.

Let a(t) be the one parameter group of transformations generated by 8/0z;.
Then we infer from (4.4) that the zeros and the poles of 3 are a(t)-invariant. Let
B be the connected component of 0 € 4 of the group

{xEA;x+DJ=DJ fOI' J=1,2}.

Then dimB>1. This is absurd since D; are ample (cf. Weil [20, Corollary 3,
p. 115]). Q.E.D.

(d) Let M=C"T be a complex torus and Q=(i/2n)Y dz; A dZ; the natural
flat Kdhler form on M. Let f: C—M be a holomorphic curve and Ty(r) the char-
acteristic function relative to €.

LemMA 4.3. Let f:C—»M be a non-constant holomorphic curve. Then
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there is a positive constant c such that
T(r) 2 cr*  for all large r.

PrROOF. Let f: C—>C" be a lifting of f and set f=(fi,...,f,). By definition

7,0 =4 % 1f@14dz naz,

0 4(t) i=1

where z is the natural coordinate in C. Take a point z,eC so that Y |fi(z,)|?
=C>0. Let ¢ be a conformal mapping of A(t) with ¢t>|z,| defined by

z=¢w)=r 2t

t2 + Zow
Then we have
S ANTN -
Sdm .21 | fi(2)|? 5 dz A dZ
=\ > 200 18+ 2w — wEy — |z0|2]2 i _
SA(:) igl Ifl(¢(w))l t It2 ¥ 20WI4 o dw A dw.

The subharmonicity of the integrand yields

n , . ~ 12— 22 t2
S )Y Ifi(z)|221—ndz/\z; C(_tzlﬁi-)_gcT

A(t) i=1

for t=./2|zo|. Hence

T (r) 2 52 =21 201%) + T, (/2 | zo])

for r2 /2 |z Q.E.D.

In general, a holomorphic curve is called algebraically degenerate if the
image is contained in a proper subvariety.

THEOREM 4.1. Let D; and D, be effective divisors on M with no common
component which are homologously equivalent. Then any holomorphic curve
f:C—>M omitting Supp (D, + D,) is necessarily algebraically degenerate.

Proor. By Weil [20, Chap. VI], there are an Abelian variety 4 of positive
dimension, a surjective homomorphism 1: M—A4 and ample divisors Z, and Z,
on A4 such that D;=A*Z;, j=1, 2. Therefore Z, and Z, have no common com-
ponent and are homologously equivalent. It is enough to prove that the holo-
morphic curve g=Aof: C—»A—Supp(Z,+Z,) is algebraically degenerate.
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Assume that g is not algebraically degenerate. It follows from Main Theo-
rem and Proposition 4.2 that there is a positive constant x such that

4.5) KT (r) < N(r, Zy + Z,) + S,(7).

By the assumption, Ny(r, Z, +Z,)=0. From (4.5), (2.9) and Lemma 4.3 we ob-
tain a contradiction

0 <k < lim S,(/T,(r) = .
Q.E.D.

ReMARK. This theorem gives a partial answer to the following conjecture
due to S. Lang (cf. [7, Problem F1]):

If a holomorphic curve f: C—C*/I" omits a hypersurface in a complex torus
C"|I', then f is algebraically degenerate.

When fis a group homomorphism, this was proved by Ax [2].
Theorem 4.1 was proved by Ochiai [17, section 5] when D; and D, are
linearly equivalent.

(e) Let Vbe a projective algebraic manifold and D an effective ample divisor
on V (see the footnote at p. 848).

LemMMA 44. Let V and D be as above. Let f:C—V be a non-constant
holomorphic curve. Then the closure f(C) of f(C) intersects Supp D.

ProOF. Assume that f(C)nSuppD=@. Take a positive integer v so that
the mapping

T:Vax — (64(x),..., ox(x)) € P¥
is an embedding, where {0y,..., oy} is a basis of I'(¥V, [vD]) and (6,)=vD. Set

5 = lool?
[Gol2 -+ 0N’

which is a smooth function on V. Since f(€C)n Supp D=, there is a constant
¢ such that

s=e>0 on f(C).

Then the holomorphic functions «;=(a;°f)/(do°f), j=1,..., N satisfy |o;|2<1/e.
Thus o; are constants. Since T'is an embedding, fis constant. This is absurd.
Q.E.D.
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The following conjecture was posed by Griffiths (cf. Griffiths [7, Problem F,
p. 381] and Kobayashi [12, Problem D. 9, p. 404]):

Let A be an Abelian variety and D an effective ample divisor on A. If a holo-
morphic curve f: C— A omits Supp D, then f is constant.

We shall prove this in a special case.

THEOREM 4.2. Let A be an Abelian surface and D;, j=1, 2, effective ample
divisors on A with no common component which are homologously equivalent.
Then any holomorphic curve f: C— A omitting Supp (D, + D,) is constant.

Proor. By Theorem 4.1 there is a curve X in A such that f(C)=X. By
Lemma 4.4, X nSuppD;#@ for j=1,2. Therefore we have a holomorphic
curve

f:€C—> X — Supp(D, + D,).

Since the genus of X is greater than zero, f must be constant (cf., for example, [9,
Example (6.15)]). Q.E.D.

RemARK. Green [6] proved the above conjecture in the case where Supp D
contains no non-trivial complex subtorus, by showing that A—SuppD is com-
pletely hyperbolic and hyperbolically embedded in A in the sense of Kobayashi

(cf. [12]).

References

[1] L. V. Ahlfors, The theory of meromorphic curves, Acta Soc. Sci. Fennicae Nova
Ser. A. 3 (1941), 3-31.

[2] J. Ax, Some topics in differential algebraic geometry II:  On the zeros of theta func-
tions, Amer. J. Math. 94 (1972), 1205-1213.

[3] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes don-
nées, Mathematica 7 (1933), 5-31.

[4] P. Deligne, Equations différentielles & points singuliers réguliers, Lecture Notes
in Math. 163, Springer, Berlin, 1970.

[5] ———, Théorie de Hodge II, Inst. Hautes Etudes Sci. Publ. 40 (1971), 5-57.

[6] M. L. Green, Holomorphic maps to complex tori, preprint.

[71 P. Griffiths, Holomorphic mappings: Survey of some results and discussion on
open problems, Bull. Amer. Math. Soc. 78 (1972), 374-382.

[8] ————, Differential geometry and complex analysis, Proc. Symp. Pure Math.
Amer. Math. Soc. 27 (1975), 43-64.
[9] ————and J. King, Nevanlinna theory and holomorphic mappings between alge-

braic varieties, Acta Math. 130 (1973), 145-220.
[10] S. Iitaka, Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect.
IA Math. 23 (1976), 525-544.



[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]
[19]

[20]
[21]
[22]

Holomorphic Curves in Algebraic Varieties 853

, On logarithmic Kodaira dimension of algebraic varieties, Complex Analysis
and Algebraic Geometry, pp. 175-189, Iwanami, Tokyo, 1977.
S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull.
Amer. Math. Soc. 82 (1976), 357-416.
R. Nevanlinna, Le théoréme de Picard-Borel et la théorie des fonctions méromor-
phes, Gautheir-Villars, Paris, 1939.
J. Noguchi, Meromorphic mappings of a covering space over C™ into a projective
variety and defect relations, Hiroshima Math. J. 6 (1976), 265-280.

, Holomorphic mappings into closed Riemann surfaces, Hiroshima Math.
J. 6 (1976), 281-291.

,  Meromorphic mappings into a compact complex space, Hiroshima Math. J.
7 (1977), 411-425.
T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity,
to appear in Invent. Math.
1. R. Shafarevich, Basic algebraic geometry, Springer, Berlin, 1974.
G. Valiron, Sur la dérivée des fonctions algébroides, Bull. Soc. Math. France 59
(1931), 17-39.
A. Weil, Introduction a I’étude des variétés kihleriennes, Hermann, Paris, 1958.
H. and J. Weyl, Meromorphic curves, Ann. of Math. 39 (1938), 516-538.
H. Wu, The equidistribution theory of holomorphic curves, Ann. Math. Studies,
no. 64, Princeton Univ. Press, Princeton, N. J., 1970.

Department of Mathematics,
Faculty of Science,
Hiroshima University








