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Introduction

Let 7 be a smooth complex projective algebraic variety of dimension n and
Σ a hypersurface in V. We denote by O^logl) the sheaf of germs of logarithmic
1-forms along Σ over V (see section 1 (c)). Let / : C-» V be a holomorphic map-
ping from the one dimensional complex plane C into V which will be called a
holomorphic curve in V, Tf(r) denote the characteristic function of / relative to
a Kahler form on V and Nf(r, Σ) the counting function for Σ without counting
multiplicities (see section 1 (a)).

The main purpose of this paper is to establish the following result which may
be called a theorem of the second main theorem type (for the precise statement,
see Main Theorem in section 3) :

Assume that there exists a system {coi}i=ί ..... π+1 of n + l logarithmic

l-forms (Oi e H°(V, Ωf(l°β^)) such that the n-forms ωί Λ ••• ^ωi.l Λω ί + 1 Λ ••• Λ
ωn+1, i = l, 2,..., n + l, are linearly independent over C. Then there is a posi-
tive constant K such that

(I) /cT/(r)

where Sf(r) is a small term such as lim Sf(r)/Tf(r) = Q (see (2.9)).

Let us recall the well-known case where / : C-*Pn is a holomorphic curve
in the n-dimensional complex projective space Pn and Σ a union of hyperplanes
Σi9 i = l,..., q9 in Pn. Let Tf(r) be the characteristic function of/ relative to the
standard Kahler form on Pn and Nf(r, Z )̂ the counting function for Σt with count-
ing multiplicities. Then we have the following famous theorem :

The second main theorem. Suppose that q>n + i and Γ/s are in general

position, and that the image f(C) is contained in no hyperplane. Then

(II) (« - * - 1) W < ΣN/r, Σύ +

where Sf(r) is a small term as in (I).

This theorem was first proved by Cartan [3] in 1933 and later by Ahlfors
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([!]) in 1941 who completed the work of H. and J. Weyl [21]. As mentioned in

Ahlfors [1], it is desirable to deal with holomorphic curves in a general algebraic
variety, but their methods are intrinsically based on the facts that Pn and Σt are

linear. Thereby it is very difficult to generalize that theorem for holomorphic

curves in a general algebraic variety in such a complete form.
The second main theorem implies not only that /(C) intersects Σ=\Jl=lΣi9

but much more refined informations on how often the holomorphic curve /
intersects Σ. The theory dealing with the magnitude of f~l(Σ) is called "equi-
distribution theory" (cf. Wu [22, Introduction]). To understand the second
main theorem (II) from this viewpoint, one may think it to give a lower bound

of Nf(r, Σ) with Σ = W?=ι Σi9 contrary to

Nf(r9 Σύ < T/r) + 0(1)

as r-»oo for each Σi9 which is a direct consequence of the first main theorem

(cf. [8, section 3]). Therefore one is naturally led to the following problem:

Let f : C-+ V be a holomorphic curve in a complex algebraic variety V. Find
conditions for a hy per surf ace Σ in V under which there is a positive constant K such
that

(IH) κTf(r)

-where Sf(r) is a small term as in (I) (see (2.9)).

This problem may deeply relate to that of Griffiths [8, section 4(v), Problem].
It was our first aim to obtain (III) for a smooth complex projective algebraic

variety V. Since Nf(r, Σ)^Nf(r, Σ) for r^ 1, (I) implies (III).

The first step of the proof of Main Theorem (I) is a generalization of Nevan-

linna's lemma on the logarithmic derivative (see (1.1) and Lemma 2.3). For this
aim we shall introduce a sheaf $IF(logΓ) (c:Ωf(logI)) which is a sheaf of Z-

module, such that H°(V9 2Iκ(logΓ)) generates H°(V9 βf(logΓ)) over the complex
number field C (see section 1 (b) and (c)). That generalized version of Nevan-

linna's lemma on the logarithmic derivative (Lemma 2.3) and Ochiai's theorem
[17, Theorem A] (cf. section 3) will play essential roles in the proof of Main
Theorem (I) in section 3.

In section 4 (a) and (b) we shall verify the conditions of Main Theorem
in the classical case, i.e., V=Pn and I1 is a union of hyperplanes. An example
given in section 4 (b) shows that Main Theorem is slightly different from the
second main theorem (II) of Cartan and Ahlfors.

In section 4(c) we shall give another example which satisfies the conditions
of Main Theorem in the case where V is an Abelian variety (see Proposition 4.2).
As applications we shall obtain partial answers to the problems of Griffiths
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[7, Problem F] and Kobayashi [12, Problem D. 9] (see Theorem 4.1 in section
4(d) and Theorem 4.2 in section 4(e)).

1. Preliminaries

(a) For a meromorphic function α in C we set

N(r, α) = " > « - " > « ^ + w(0j α) logr>

Jo i

where log+ |α|=max{log|α|, 0}, n(t, α) denotes the number of poles of α in

A(i) = {zeC', \z\<t} with counting multiplicities and n(0, α) the order of the

pole of α at the origin 0 when 0 is a pole of α. Nevanlinna's characteristic func-

tion T(r, α) is defined by

T(r, α) = m(r, α) + N(r, α) .

For the elementary properties of T(r, α), see Nevanlinna [13, Chap. I]. The

order of α is defined by

ΪE5 lo8,Γ(r. α)
r->oo log/

Letting α' denote the first derivative of α, we have Nevanlinna's lemma on

the logarithmic derivative (cf. [13, Chap. IV]):

(1.1) m (r, Y) = 0(log+ Γ(r, α)) + O(log+ r) + O(l)

for all r if α is of finite order, and otherwise except for r belonging to a union of

intervals whose total linear measure is finite.

In estimate (1.1) we abbreviated the phrase "as r-»oo". This abbreviation

will be done throughout the present paper.

Let M be a compact Kahler manifold with Kahler form Ω. Let /: C-*M

be a holomorphic curve. Then the characteristic function of / relative to Ω is

defined by

Let Tf(r) be the characteristic function relative to another Kahler form Q' on

M. Then there are positive constants A and A' such that

A'T'f(r) + 0(1) < T/r) < ATf(r) + 0(1).
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Therefore the order off

is defined independently of the choice of Ω.
In general we denote by Supp D the support of a divisor D on M and call the

irreducible components of SuppD the components of D. For an effective divisor
D on M such that /(C)cχ SuppD we denote by nf(t, D) the sum of orders of the

divisor/*/) Π Δ(t) and by nf(Q, D) the order of/*D at the origin. Without count-

ing multiplicities we define nf(t, D) and (̂0, D) in the same manner as above.
Set

Nf(r9 D) = / - / . # + Λ/(0, D) log,,

Nf(r, D) = ̂ f(*,D)-*f(0,D)Λ + g/(0> D) log,.

Then obviously

JV/r, D) ̂  Nf(r, D) for r ^ 1.

For a hypersurface Γ in M we define Nf(r, Σ) and Nf(r, I), regarding I" itself as
an effective divisor on M.

Let [D]->M be the line bundle over M determined by D. Let φec^D)

( = the first Chern class Cι([D]) of [D]) be the curvature form of a metric || - 1|
in [D] and take a section σeΓ(M, [D]) such that the divisor (σ) equals D and

||σ||gl. Then we have

(1.2) 7}(r, cx(D)) = JV/r, D) + m/r, D) + C,

where

and C is a constant (cf. [9]).
Since Ω is positive definite and M is compact, there is a positive constant

K such that KΩ — φ is semi-positive definite, so that

(1.3) Tf(r,Cί(D))^KTf(r).

For simplicity we assume in the rest of this paper that /(O) is not contained

in the supports of divisors or hypersurfaces concerned, knowing that the excep-
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tional case can be treated.
Let M be a protective algebraic manifold V, that is, a smooth projective

algebraic variety which is defined over C, and @(V) denote the field of rational
functions on V. Let {φl5..., φt} be a system of generators of &(V) over C such
that f*φj are defined, and set

Then there are positive constants B and B' such that

(1.4) B'ff(r) + 0(1) < 7}(r) < Bff(r) + 0(1) .

(b) Let M be a compact Kahler manifold of dimension n and Σ a hyper-

surface in M. Let Wl^Σ) denote the sheaf of germs of non-zero meromorphic
functions whose zeros and poles are contained in Σ and $ϊM(logΓ) the sheaf of
germs of meromorphic closed 1-forms dlogζ with ζeWl%f(Σ). Then we have the

exact sequences :

0 — C* — + Wl*M(Σ) d-^ 2IM(logΓ) — » 0,

(1.5)

where C* denotes the multiplicative group of non zero complex numbers. One

notes that

Hl(M, C*) = HomfoiίM), C*) = Hom^M), C*),

where π^M) is the fundamental group of M and H^(M) the first homology group

of M with integral coefficients.

Let Σt, ΐ = l, 2,..., be the irreducible components of Σ and Σt denote the set

of regular points of Σt. In a small neighborhood U of each point of Σf we can take
a local coordinate system (xi9...9 xπ) so that {x1=0} = Σί Π C7. Then every global
section ωE#°(M, 9IM(logZ)) is written in ί/ as

where vf is an integer and η does not contain the term dxί/xί. It is easy to see

that the integer vf is independent of such a local coordinate system. Since Σt
o

is connected, vf is constant on Σ^ We define the residue of ω on Zf by

res (ω, Σj) = vf.

Thus we get a divisor D = Σ res(ω, Z^Γf. Let π: M^M be the universal cover-

ing of M with transformation group πx(M) and take a point x0 e M - π"1 (Supp D).
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Then the function

#(jc) = exp( \ π*ω)
\Jjco /

is a meromorphic function in M and dωeHomίπ^M), C*) (see (1.5)) is repre-

sented by

X ι e C *

for y e π^M). Therefore 5 is a theta function with constant multiplicator and it

is clear by the construction that the divisor (θ) of & is equal to D. Hence D is

homologous to zero (cf. [20, Chap. V, p. 101]). Conversely, if there are integers

V j such that the divisor D=Σv/^i is homologous to zero, then there is a unique
theta function θ, up to constant multiple, such that (3) = D and |θ| is single-

valued on M (cf. [20, Chap. V, p. 101]). Setting ω = dlogθ, we have

res(ω, Σt) = vt.

(c) Let Fbe a projective algebraic manifold, Θv (resp. £2F) the sheaf of germs

of holomorphic functions (resp. 1-forms) over V. Let Σ be a hypersurface in V

and Ωκ(logΓ) denote the sheaf of germs of the form Σy=ια7ωj with α, e 0V>je,
coy e 2ίFjJC(log Σ) and / = 1, 2,..,, where x e M, which is called the sheaf of germs of

logarithmic 1-forms along Σ (cf. Deligne [4] and litaka [10]). One notes that

H°(V9 Of) c ff°(K, 9IK(logI)) c H°(7, OKlogΣ)).

Let π: (V*9 Z*)->(K, I) be a desingularization of Γ satisfying

(1) π is a composite of monoidal transformations and Σ* = π~i(Σ)9

(2) πl^-j,: F*-I*-^F-2:isbiholomorphic,

(3) Σ* has only simple normal crossings.

LEMMA 1.1. The mapping π induces an isomorphism

π*: H°(V9 S

PROOF. It is clear that π* is injective. Let λ: V-*V* be the inverse of π

which is a meromorphic mapping, and S the singular locus of λ. Then codim

S^2 and /l |κ_ s: F-S->F* is holomorphic. Let ω*eH0(7*,'8Iκ*(logI1*)) and
set a/ = (/l|K_s)* ω* e//°(K-S, 5IK(log2;)). It is enough to prove that ω' can be

extended in a neighborhood of each point of S as a section of $lF(logI). Let

x0 e 5, take a simply connected open neighborhood U of x0 and xίeU — (S(}Σ).

Noting that U — S is simply connected, we set
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for x G U — S, which is a meromorphic function in U — S. The zeros and poles of

g is contained in Σ. Since codimSg;2, g has an extension over U as a mero-
morphic function. Denote it by the same g. Then d\oggeH°(U9 2IF(logΓ))

and dlogg\u-s = ω'\u-s. Q.E.D.

Deligne [5] proved that every global section of Ω{*»(logZ*) is d-closed. By

litaka [10, sections 2~4] we have

(1)
(2) there is a basis {αrf} of the C-vector space tf°(F*, Ωf*(logl*)) such

that every ω* e#°(F*, 9IF,(log Γ*)).

Combining these with Lemma 1.1, we obtain

PROPOSITION 1.2. Let the notation be as above. Then there exists a basis

{a>j} of the C-υector space H°(F, Q^loglJ) such that every co,- e H°(V9 9IF(logΓ)),

i.e., H°(V, 9ίF(logΓ» generates HQ(V, Ω^(\ogΣJ) over C.

2. Generalization of Nevanlinna's
"lemma on the logarithmic derivative"

Let M be a compact Kahler manifold, Σ = U Γf hyper surf ace in M with

irreducible components Σt and ωeH°(M, $IM(logΣ)). Set

res(ω,I i )>0

D2= Σ -res(ω, Ifa.
res(ω,Ii )<0

Let [Dy]->M be the line bundles over M determined by Dj and σ,. eΓ(M, [/)/])

such that (σj) = Dj.

Let {t/J be a finite open covering of M such that every [7Z is simply connected

and each restriction [β/llί/j of [D7 ] is trivial. Then each σ,- is given by a system
{σ/J of holomorphic functions σ7 z in ί/z. In each l/z, ω is written as

(2.1) ω = dlogσ l z - dlogσ2l + η'l9

where f/J is a holomorphic closed 1-form in Ut. We take the integral of (2.1)

in Ul which is determined by modulo 2πi:

^x) - logσiί(y) + log -
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(mod. 2m) for x, y e l/j. Take a metric {pβ} in each [D ]̂ so that

K WII 2 = \

Set

LEMMA 2.1. Lei ί/ie notation be as above. Then

for x, ye 17Z, where Re( ) denotes the real part of( ).

We fix once and henceforth a Kahler metric h and the associated form Ω
on M.

Let/:C->M be a holomorphic curve. To avoid tiresome arguments, as
mentioned in section l(a), we always assume that /(0)<£I. Let Tf(r) be the
characteristic function of /relative to Ω. Let ωe#°(M, ^(log!1)) and set

/*ω = ζ(z)dz.

Then C(z) is a meromorphic function with poles of order one and their residues are
integers. Set

G(z)= f*ω (mod. 2πi),
Jo

0(z) = exp(G(z)).

LEMMA 2.2. ΓΛerc are constants K>0, A and B such that

T(r9 g) <, K{(-^l2(r^-Tf(r) + A^* + Γ/r) } + B.

PROOF. Let z = rβ/β and L = {teiθ; O^ί^r}. Take points 0 = z0, zlf...,
zfc = z on L so that Iz f . j l < [zj, /(z^^Γ and the image of each closed line segment
L[zj_ l5 zf] of L between z^! and zf by /is contained in some Uιte{Uι}9 where

is the covering of M taken above. It follows from Lemma 2.1 that

= ΣRe(G(zί)-G(zί_1))

= Σ {logIM/^))!! -logIkiC/fe-ι))ll
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, i ί ι 1
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L[Zί-l,2ί]

Here the last inequality follows from HσJ ^1. We may assume that each closed
1-form ηt is defined in a neighborhood of the closure Ul of Ut. Since M is com-
pact, there is a positive constant K such that

for any vector field X in every 17,. Set/*/ι = s(z)dz®dz and/*Ω = s(z)(i/2)</zΛ
dz. Then

Using the notation, Re+ G(z)=max {Re G(z), 0}, we get

Re+GW ^ Jf fβ>^P5Λ + log +

Hence we have

(2.2)

/ ,. \ l /2/Γ2π Γr

'̂(•έ ) 0. ^Je

l/2

\\σι\j(y))\\
(by Schwarz's inequality)

l/2 1/2

Set
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Γ2π f l
A=\ dθ\ s(teίβ)dt,

Jo Jo

Since ί f*Ω = r-~fΓ Tf(r\ it follows from (2.2) that

(2.3) m(r, g) = -~—\ R<

It is clear that

(2.4) JV(r,0)

Choosing greater K and 5 if necessary, we have by (1.2), (1.3), (2.3) and (2.4)

T(r, g) ϊ κ{(^Y(r-^Tf(r) + A)^ + T,(r) + B} .

Q. E. Ό.

LEMMA 2.3. Let ωe#°(M, 9IM(logI)) and set f*ω = ζ(z)dz. Then

(2.5) m(r, ζ) ^ 0(log+ 7}(r)) + 0(log+ r) + 0(1)

for all r i f f i s of finite order, and otherwise except for r belonging to a union of

intervals whose total linear measure is finite.

PROOF. Setting #(z) = expΠ /*ωj, we have

(2.6) «*>-

Suppose that / is of finite order. Then T/(r) = O(r^) with μ>0 and dTf(r)/dr =
O(r^~l). Combining these with (2.6), Lemma 2.2 and (1.1), we obtain (2.5).

In the case where / is of infinite order, by (2.6), Lemma 2.2 and (1.1) we
have

(2.7) m(r, ζ) = O (log+ -j£- Γ/r)) + 0(log+ Tf(r))

for r£E'9 where Ef is a union of intervals whose total linear measure is finite.
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It is easily verified that

(2.8) WTf(^ = ί7*/')}2

for r^E", where E" is a set similar to E'.

It follows from (2.7) and (2.8) that

m(r, 0 = 0(log+ τχr» + O(log+ r) + 0(1)

forr<£E'UE". Q.E.D.

REMARK. Let M be the Riemann sphere P1 with inhomogeneous coordi-

nate w and I = {0, oo}. Then ω = dw/weH°(P1, 9ίPι(logΓ)). In this case

Lemma 2.3 is nothing but Nevanlinna's lemma on the logarithmic derivative

(cf. section 1 (a)).

For a given holomorphic curve /: C->M, let us denote by Sf(r) a quantity

satisfying

(2.9) SχΓ) = 0(log+ rχr)> + 0(log+ r) + 0(1)

for all r i f/is of finite order, and otherwise except for r belonging to a union of

intervals whose total linear measure is finite.

COROLLARY 2.4. Let ω and ζ be as above. Then

where D=Σ Ires (ω, I

PROOF. Since every pole z of ζ is of order one and since z can be a pole of

ζonly if/(z)eSupρD,

Hence our assertion follows from Lemma 2.3. Q. E. D.

Let M be a projective algebraic manifold V and Σ a hypersurface in V. Let

/: C->Fbe a holomorphic curve and set /*ω = ζ(z)dz for ωeίf°(F, Ωf(log2Γ)).

COROLLARY 2.5. Γ(r, ζ) ̂  Nf( r, Σ) + Sf(r).

PROOF. By Proposition 1.2 there are ωJ 6//°(K, 2lκ(logΓ)) and c/eC,

7 = 1,..., q, such that

ω = c^i + ----- h c ω .
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Setting f*ωj = ζjdz, we get

C = *ιCι +-+*«£,.

We infer from Lemma 2.3 that

m(r,0^ Σm(r,C J ) + 0(l) = 5/(r).j=ι

Since any pole of ζ is of order one and zeC may be a pole of ζ only if /(z) e Γ,

JV(r,0^ffXM).

Hence

Γ(r, 0 = ΛΓ(r, 0 + m(r, 0

I) + sχr). Q-E.D.

3. Main Theorem

Let X be a smooth irreducible quasiprojective variety of dimension n (cf.

[18]) and {ωί}ί=1>..MΠ+1 a system of n-f 1 regular rational closed 1-forms on

X such that

(3.1)

the regular rational n-forms

ωί Λ ••• Λ ώι Λ •-• Λ ωπ+1

#), i = 1,..., n + 1,

are linearly independent (over C).

DEFINITION. We say that a holomorphic mapping /: Ό^X from a con-

nected open set U in C into X is degenerate with respect to {ωj if /([/) is con-

tained in a subvariety

rt+l ^{ Σ Λ-i^l Λ ••• Λ CO; Λ ••• Λ Cΰn+ι = 0}

with (A lv.., ^+i)eCw+1 — {0}. If it is not the case, / is said to be non-degener-

ate with respect to

Now we recall Ochiai's theorem [17, Theorem A] :

OCHIAI'S THEOREM. Suppose that there exists a system {ωf}ί==1>>>Mfl+1 of

n + 1 regular rational closed l-forms on X satisfying (3.1). Let f: U-+X be

a holomorphic mapping from a connected open set U in C into X which is non-

*) The symbol "(V means that wt shall be omitted.
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degenerate with respect to {ωj. Then for every rational function φ
such that f*φ is defined, the meromorphic function f*φ is algebraic over the

field generated by {ζ(jk)}ι^π+ι,o^k^n-ι» where ζ^k) is the k-th derivative of ζt

defined by f*ωi = ζidz.

In this section we denote by V an n-dimensional projective algebraic mani-
fold and by I1 a hypersurface in F. Let {ωjί=1>>e >π+1 be a system of n + 1 ra-
tional closed 1-forms ωteH0(V9 Ωf(logΓ)) satisfying (3.1) (i.e., {ωj^.j} satisfies
(3.1) in F-Γ).

Let/: C-»Fbe a holomorphic curve. Then / is said to be degenerate (resp.

non-degenerate) with respect to {ωj if the restriction /|c-/-i(i): ^~/~1(^)~>

V— Σ is degenerate (resp. non-degenerate) with respect to {ω^.j}.
Let 7}(r) be the characteristic function of /relative to a Kahler form on V.

MAIN THEOREM. Suppose that there exists a system {ωjί=1 ..... n+1 of
n + 1 rational closed 1-forms ω^H^V, Ω^(logΣ)) satisfying (3.1). Let f: C->
V be a holomorphic curve which is non-degenerate with respect to {ωj. Then
there is a positive constant K such that

(I) κTχr)£ffχr,Σ) + Sχr),

where Sf(r) is defined by (2.9).

PROOF. We set /*ω, = C,dz. Using inductively (1.1), (1.2), (1.3) and
Corollary 2.5, we see that

(3.2) T(r, Cίfc)) ^ (fc + l)JVXr, Σ) + Sf(r)

for all i and fc. Let {φj}j=ιίtmmj be a system of generators of the rational function
field ̂ (F) over C such that all f*φj are defined. Then by Ochiai's theorem there
are algebraic relations

(3.3) (f*φ^ι + RjMi^ΓΦj^-1 +- + Rjmjm = 0

for j=l,..., /, where Rjv(ζlk)) are rational functions in ζ[k\ ι = l,..., n + 1, k = 0,
1,..., n — 1. We infer from (3.2), (3.3) and Valiron [19] that there is a positive
constant K such that

for all j. Thus we see that

(3.4) Tχr> = max {T(r, /*φ, )} ^ KNf(r9 1) + sχr> .

The inequalities (1.4) and (3.4) yield (I). Q. E. D.
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REMARK 1. It seems that K is independent of each holomorphic curve/.

REMARK 2. Let us consider the case where V is a closed Riemann surface

with genus g.
If 0 = 0, then V=Pl with inhomogeneous coordinate w. Condition (3.1)

of Main Theorem implies that Σ contains at least three points. If Σ= {0, 1, oo},

then {dw/w, dw/(w-l)} forms a basis of H°(P\ Ωj»ι(logl)) and so condition

(3.1) is fulfilled. Conversely, it is well known that Σ contains at least three

points if (I) holds for any /.

If 0^2, then condition (3.1) is satisfied with Γ = 0. This implies the well
known fact that any holomorphic mapping from C into a closed Riemann surface

with genus greater than one is a constant mapping.

If 0 = 1, then Fis an elliptic curve and condition (3.1) asserts that Σ contains

at least two points. But it is known that (I) holds if Σ contains only one point
(cf., for example, [9, Example (6.15) and section 7] or [15, Theorem B, p. 28]).

The higher dimensional case will be discussed in the next section.

4. Examples and applications

(a) First we examine condition (3.1) of Main Theorem in the classical case

where V=Pn and Σ is a union of hyperplanes Σί = {Fί = 0}, i = 0, !,.';., /. Suppose

that there exists a system of n + 1 rational closed 1-forms in H°(Pn, Ω

satisfying (3.1). Since π1(Pπ) = 0,

(4. 1) #°(P", m$n(Σ)) ίϊ°«> H°(P», UPn(log Σ)) - > 0

(cf. (1.5)). The system {ωi = dlog(FiIF0)}i=ί ..... , forms a basis of H°(Pn,

ΩJ»R(logΣ)). Hence Σ contains at least n + 2 hyperplanes. Assume that Σ con-

sists of n + 2 hyperplanes Σi = {Fi = 0}9 i = 0, 1,..., n + 1. Then the system {ωt =

dlog(F£/F0)}|=1 ..... B+1 satisfies (3.1). Therefore ωx Λ ••• Λω^O. This implies
that Σ09...9ΣΛ are in general position. We may use Fh ί = 0, 1,..., n, as homo-
geneous coordinates in Pn. Set wt = Fi9 z' = 0, 1,..., n, and

fn+ι = c0w0 + cίwί +-+ cnwn9

where (c0, cl9. . ., cn) e Cn+ί — {0}. Using inhomogeneous coordinate system

(*!,..., xn) with x—wJwQy we have

dxi Λ ... Λ dχn9

• dxί Λ .. Λ dxn
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for ι = l,..., n. Therefore c^Ofor ι = l,..., n. Since the system {c0 + c 1x 1H ----- h
cnxn, xl9...,xu} must be linearly independent, c0^0. Thus Σ09 Σl9...9Σn+l are in
general position. Conversely, let Σi = {Fi = 0}9 / = 0, 1,..., n + 1, be n + 2 hyper-
planes in general position. Then it is clear from the above argument that the sys-
tem {ωί = dlog(F ί/F0)} ί=lM>>M+1 satisfies condition (3.1), and moreover that a
holomorphic curve /: C-»Pn is degenerate with respect to {ωj if and only if
/(C) is contained in a hyperplane.

We summarize the above results.

PROPOSITION 4.1. Let Σ be a union of n + 2 hyperplanes Σi9 z' = 0, 1,...,
n + 1, inPn.

(i) There exists a system of n + l rational closed l-forms in H°(Pn,
ΩpnζlogΣJ) satisfying condition (3.1) if and only if Σt

9s are in general posi-

tion.
(ii) Let {ωi}i=ίi_tn+lcιH0(Pn

9Ω
1

pn(\ogΣ)) be a system satisfying (3.1).
Then a holomorphic curve f : C-+P" is degenerate with respect to {ωj if and
only iff(C) is contained in a hyperplane.

Combining Proposition 4.1 with Main Theorem, we obtain BoreΓs theorem:

COROLLARY (BoreΓs theorem). Let /:C-»PM be a holomorphic curve
omitting n + 2 hyperplanes in general position. Then the image /(C) is con-
tained in a hyperplane.

(b)** Let V=Pn and Σ be a union of hyperplanes. In case n = 29 the con-
dition that there exists a system {ω1? ω2, ω3} in H°(P2, Ω^2(logl)) satisfying
(3.1) is equivalent to that Σ contains 4 hyperplanes in general position. This
equivalence fails for n^3. In fact, let (w0, w l v.., vvπ) be a homogeneous coordi-
nate system in Pn with n ̂  3 and set

Fi = Wi for i = 0, 1,..., n,

Fn+ι = w0 + W i + w2,

Fn + 2 = W! + W2 +.-+ Ww.

We put

^ = {̂  = 0} for i = 0, l,...,n + 2,

n+2
Σ = \J Σί9

ί=0

for i = l,...,n,

*) The examples in (b) were suggested by Professor S. litaka.
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ωn+l=dlog(Fn+1Fn+2/F$.

Then any n + 2 hyperplanes in Σ are not in general position, but it is easily seen
that the system {coi}i=ΐlt_in+ί satisfies (3.1).

In this case, a holomorphic curve / : C-+Pn is degenerate with respect to
{ωjί=:1 ..... π+1 if and only if /(C) is contained in a quadratic hypersurface defined

by

1 + Fn+2)

+2 = 0,

where (α1,...,απ+1)eCΛ+1~{0}.

(c) We give an example for which dlog in (1.5) is not surjective (cf. (4.1)).
Let V be an Abelian variety A of dimension n. Then there are n linearly inde-
pendent regular rational closed 1-forms ωl9..., ωn on A.

Let D! and D2 be effective divisors on A with no common component, which
are homologously equivalent. Then there is a theta function θ on A such that
the divisor (5)0 of zeros of $ equals Dί9 the divisor ($)«, of poles of 5 equals
D2 and |θ| is single-valued on A (cf. section l(b)). Set Σ=Supp(Dl+D2) and

PROPOSITION 4.2. The system {ωjί=1 ..... π+1 c H°(A, 9lA(logΣ))
above satisfies condition (3.1) ι/Dι and Z)2 are ample*).

REMARK. In the case where D± and D2 are linearly equivalent, this propo-
sition was shown in the proof of Theorem 12-1 of the original draft of Ochiai
[17]. His method works for the above system {ωj.

Since this proposition has a meaning different from Ochiai's in the sense that
it gives an interesting example for our Main Theorem, and since the proof is not
so long, we shall prove it.

PROOF. Assume that there is a non-trivial linear relation

π+l
(4.2) Σ^i Λ Λώ| Λ Λ ωn+1 = 0.

Set ωπ+ ! = Σ {jω,. Then (4.2) implies that

*) A divisor D is called ample if the cohomology class Cι(D) contains a positive definite (1, 1)-
form.
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We may assume that λ^ ^0. Then

(4.3) ωw+1 = (- 1)» ^flω! + Σ
Λ1 j=2

Set

(-1)"= v

 λ >

Then α !,..., αrt are linearly independent and there is a lattice Γ in Cn such that

π*Λj = dzp j = 1,..., n,

where (zl5..., zn) is the natural coordinate system in Cn. It follows from (4.3)
that

This implies that

Therefore 9 is written as

(4.4) 9(z1,...,zπ) = θ0(z2,...,.

where 50 is a meromorphic function in z2,..., zn.
Let α(ί) be the one parameter group of transformations generated by 3/5zlβ

Then we infer from (4.4) that the zeros and the poles of 5 are α(0-invariant. Let
B be the connected component of 0 e A of the group

{xeA;x + Dj = Dj for j =1,2}.

Then dimB^l. This is absurd since Dj are ample (cf. Weil [20, Corollary 3,
p. 115]). Q.E.D.

(d) Let M = C"/Γ be a complex torus and Ω = (i/2π)Σ^iΛdzί the natural
flat Kahler form on M. Let /: C->M be a holomorphic curve and Tf(r) the char-
acteristic function relative to Ω.

LEMMA 4.3. Let /:C->M be a non-constant holomorphic curve. Then
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there is a positive constant c such that

Tf(r) ^ cr2 for all large r.

PROOF. Let / : C-»C" be a lifting of / and set /= (fv , . . . , /„). By definition

Γ/W = \r^-\ ± \fi(z)\2-^dz Λ dii
Jo * J Δ(t) i=l zπ

where z is the natural coordinate in C. Take a point z0 eC so that Σ l/Kzo)l2

= C>0. Let φ be a conformal mapping of A(t) with t> |z0| defined by

Then we have

Δ(t) i=l

Σ l/i .i=ι μ + ^owl

The subharmonicity of the integrand yields

(f2 _ I 7 I 2\ 2(t ' zoi )Γ n j

Σ ι/ίω i2-^
Jj(ί) i=l Zπ

*

for ί^ ^"lzol Hence

for r^ V^l zol Q.E.D.

In general, a holomorphic curve is called algebraically degenerate if the
image is contained in a proper subvariety.

THEOREM 4.1. Let Dί and D2 be effective divisors on M with no common

component which are homologously equivalent. Then any holomorphic curve

f:C-+M omitting Supp(jD1+D2)
 zs necessarily algebraically degenerate.

PROOF. By Weil [20, Chap. VI], there are an Abelian variety A of positive
dimension, a surjective homomorphism λ: M-+A and ample divisors ZΛ and Z2

on A such that Dj = λ*Zj9j = l, 2. Therefore Zt and Z2 have no common com-

ponent and are homologously equivalent. It is enough to prove that the holo-
morphic curve g = λ°f: C->^~Supp(Z1 + Z2) is algebraically degenerate.
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Assume that g is not algebraically degenerate. It follows from Main Theo-
rem and Proposition 4.2 that there is a positive constant K such that

(4.5) κTg(r) < Ng(r9 Z, + Z2) + S/r) .

By the assumption, Ng(r, Zt +Z2) = 0. From (4.5), (2.9) and Lemma 4.3 we ob-
tain a contradiction

Q.E.D.

REMARK. This theorem gives a partial answer to the following conjecture

due to S. Lang (cf. [7, Problem F]):

If a holomorphic curve /: C-+Cn/Γ omits a hypersurface in a complex torus

Cn/Γ9 then /is algebraically degenerate.

When /is a group homomorphism, this was proved by Ax [2].

Theorem 4.1 was proved by Ochiai [17, section 5] when D{ and D2 are

linearly equivalent.

(e) Let Fbe a projective algebraic manifold and D an effective ample divisor
on F(see the footnote at p. 848).

LEMMA 4.4. Let V and D be as above. Let /:C->F be a non-constant

holomorphic curve. Then the closure f(C) of f(C) intersects Supp/λ

PROOF. Assume that /(C) n SuρpD = 0. Take a positive integer v so that
the mapping

T-.VBX —> (σ0(x), ., σN(x)) e P^

is an embedding, where {σ0,..., σN} is a basis of Γ(F, [vD]) and (σ0) = vD. Set

kol 2

which is a smooth function on V. Since f(C) n Supp D = 0, there is a constant

ε such that

s ^ ε > 0 on /(C).

Then the holomorphic functions αy = (σyo/)/(c70o/), 7 = !,..., N satisfy |αj|2^l/ε.

Thus α, are constants. Since T is an embedding, / is constant. This is absurd.

Q.E.D.
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The following conjecture was posed by Griffiths (cf. Griffiths [7, Problem F,
p. 381] and Kobayashi [12, Problem D. 9, p. 404]):

Let A be an Abelian variety and D an effective ample divisor on A. If a holo-

morphic curve/: C-*A omits SuppD, then/is constant.

We shall prove this in a special case.

THEOREM 4.2. Let A be an Abelian surface and Dp j = 1, 2, effective ample
divisors on A with no common component which are homologously equivalent.

Then any holomorphic curvef:C-*A omitting Supp(Di+D2) is constant.

PROOF. By Theorem 4.1 there is a curve X in A such that f(C)cX. By
Lemma 4.4, XnSuppDj^0 for j = 1,2. Therefore we have a holomorphic
curve

f:C >X-Supp(Dί+D2).

Since the genus of X is greater than zero, /must be constant (cf., for example, [9,
Example (6.15)]). Q.E.D.

REMARK. Green [6] proved the above conjecture in the case where SuppD
contains no non-trivial complex subtorus, by showing that A — SuppD is com-
pletely hyperbolic and hyperbolically embedded in A in the sense of Kobayashi
(cf. [12]).
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