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Introduction

Ahlfors and Beurling [1] introduced the notion of null sets of class N in
the complex plane and characterized such null sets by means of the extremal
length. Hedberg [6] considered a generalization of this notion, namely, re-
movable sets for the class FD? (1<p<oo) in an N-dimensional euclidean space
RN, and characterized such removable sets by means of condenser capacities.
We can consider a class KD? of p-precise functions on RY (N = 3) and define KD»-
null sets. In the present paper, we shall show several relations between KD?-
null sets and p-capacities of a condenser.

A real valued function u defined in a domain D of R¥ is called a p-precise
function, if it is absolutely continuous along p-a.e. curve in D and |grad u| belongs
to LP(D). A p-precise function u in D has a finite curvilinear limit u(y) along
p-a.e. curve y in D (see [9, Theorem 5.4]). Let « be a compact subset of oD
and I'p(«) be the family of all locally rectifiable curves in D each of which starts
from some point of D and tends to a. Let g, ; be non-empty compact subsets
of D such that agna,=@. We follow [9] in defining the p-capacity of con-
denser (ag, ay; D):

C (oo o D) = infg |grad ulPdx,
u D

where the infimum is taken over all p-precise functions u in D such that u(y)=0
(resp. 1) for p-a.e.yelp(xy) (resp. p(e;)). Denote by D the Kerékjarto-
Stoilow compactification of D. For a condenser (x,, o, ; D) such that a, and «,
are two mutually disjoint closed subsets of D—D and a partition {8,} of D—D
—ao—a,, we shall consider a new kind of p-capacity Ci(ao, «;; D, {f.}) as fol-
lows. Let the boundary components of D be divided into o, o, and {f,}. We
set

CX(eor a1 D, {B.) = infg |grad ul?dx,
u D

where the infimum is taken over all p-precise functions u in D such that u(y)=0

(resp. 1) for p-a.e. yep(ag) (resp. I'p(e;)) and u(y)=a, for p-a.e.yel(B,),
where each a, is a constant depending on u. On the other hand, we take an
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exhaustion {D,} and set C¥*(ao, a;; D, {8,})=1im,_C¥(@on %15 Dy {B™}),
where «;,=0D, N 04,;, (i=0, 1), A;, being the component of D—D, which con-
tains a;, and {f"} is some partition of dD,—a,,—a,, depending on {B,}.

In §2, we shall give a characterization of the extremal functions for Cp(a,,
ay; D, {B,}) and C¥*(ap, a;; D, {f,}). In §3, for some condenser (ao, &;; D)
and some partition {f,} we shall relate C}*(xg, a;; D, {B,}) to the p-module of
the family of curves each of which connects o, and «, in D. This is a generaliza-
tion of Gehring’s result in [4].

A compact set E in RN will be called a KD?-null set with respect to an open
set G containing E, if any function in KD?(G— E; E) can be extended to a function
in KDP(G), where KD?(G) (resp. KD?(G— E; E)) is the class of p-precise functions
u in G (resp. G—E) satisfying the following condition:

S |grad u|P~%(grad u, grad ¢)dx = 0
G

for all ¢ € C3(G) (resp. for all ¢ € CF(G) such that grad ¢ vanishes in some neigh-
borhood of E).

In §4, we shall give a necessary condition for a set to be KDP-null in terms
of p-capacities. In §5, we observe some relations between KDP-null sets and
sets removable for the class FD?. In §6, we shall give a characterization of KD?-
null sets by means of 2-capacities.

§1. Preliminaries

We shall denote by x=(x;, X,,..., Xy) a point in R", and set |x|=(x?+x3
+---+x%)V2. For sets E and F in R¥, let dist(E, F) denote the distance be-
tween E and F. We denote by JE and E the boundary and the closure of E
respectively. Let p be a finite number such that p>1. For an open set G in R¥,
let LP(G) be the family of functions f on G for which |f|? is integrable, and let
Ifl, be the Lr-norm. For a measurable vector field v=(v,, v,,..., vy) on G,
we define [v]|, by || |v]],. We denote by C*(G) the family of infinitely differ-
entiable functions in G and by CZ(G) the subfamily consisting of functions with
compact support in G.

Let I" be a family of locally rectifiable curves in R¥ none of which is a point.
A non-negative Borel measurable function f is called admissible in association with

rif S fdsz1foreach yelI'. The p-module M,(I') of I is defined by inffgfl’dx,
Y

where the infimum is taken over all functions f admissible in association with I'.

A property will be said to hold p-almost everywhere (=p-a.e.) on I if the p-

module of the subfamily of exceptional curves is zero. The following properties

are well known (see, e.g., [3, Chapter I] or [9, Chapter 1]):
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(1.1) IfT =\, T, then M(I) < Y2, M(T,).

(1.2) M,TI')=0 if and only if there is a non-negative Borel measurable
function fe L?(RN) such that S fds=oo for every yerl.
?
(1.3) Every sequence {f,} of Borel measurable functions in an open set G

such that S | ful?dx tends to zero as n—oo has a subsequence {f,} such that
G

1jm5 \fulds = 0
i—=®©Jy

for p-a.e. curve y in G.

A real valued function u defined in an open set G is called a p-precise function,
if (i) it is absolutely continuous along p-a.e. curve in G, and (ii) |Pu| belongs to
LP(G); from (i) it follows that the gradient Fu exists almost everywhere in G.
The following results are known:

(1.4) Let u be a p-precise function in G. Then

u(x!) — u(x°) = Sf\,<§ Ou_ dx, )ds

WX\ Ox, ds

N
for any points x° and x! on p-a.e. curve y in G, where x%x! is the subarc of 7y
connecting x© and x! (cf. [3, Chapter III, 2] or [9, Theorem 4.16]).
(1.5) Let {u,} be a sequence of p-precise functions in G and assume

lim "V(un - um)"p =0.

Then there exists a p-precise function u in G such that ||F(u,—u)
(see [3, Theorem 14] or [9, Theorem 4.18]).

(1.6) Every p-precise function u in G has a finite curvilinear limit u(y)
along p-a.e. curve y in G (see [9, Theorem 5.4]).

(1.7) Let u be a p-precise function defined in G, and v a p-precise function
defined in an open set G’ = G such that, for p-a.e. curve y in G’ terminating at a
point x of dG’ n G, lim v(y) exists and equals u(x) as y tends to x along y. Then
the function w which is equal to v in G’ and to u on G—G’ is a p-precise function
in G (see [9, Theorem 5.5]).

Let D be a domain in RY and denote by D* the closure of D in the Aleksandrov
compactification RV U {o0}. Let o be a closed subset of the boundary D*—D.
We shall denote by I', (resp. I'p(x)) the family of all locally rectifiable curves in
D each of which starts from a point of D and tends to D*¥ — D (resp. ). Let ayg, o
be non-empty closed subsets of D* — D such that aq No; =@. We shall denote by
2(ag, o1 ; D) the family of all p-precise functions u in D such that u(y)=0 for
p-a.e. yelp(og) and u(y)=1 for p-a.e. yelp(a;). Following Ohtsuka [9,
§6.2], we define the p-capacity of condenser («g, ®;; D) as

[,—0 as n—co
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C(ag, 05 D) = inf SDIVuIde.

ue2(ao,a1;D)

If a p-precise function u in 2(«,, o;; D) satisfies
C (@, 2,3 D) = S \Pulpdx,
D

then u is called an extremal function for C,(«, a;; D).

Denote by D the Kerékjarté-Stoilow compactification of D (see [11]).
Throughout the rest of the paper let o, and «,; be non-empty mutually disjoint
closed sets consisting of boundary components. Divide the boundary com-
ponents of D—D—a,—a, into mutually disjoint sets {B,}, and let 2*(a, a;;
D, {B,}) be the family consisting of all u € 2(o, «;; D) such that u(y)=a, for
p-a.e. ye I'p(B,), where each a, is a constant depending on u. We define the
p-capacity of condenser (g, a; D, {8,}) as

Chaoas D (B = inf  puleds.

ue?*(ao,a1;D,{B.})

If a p-precise function u in 2*(ay, a,; D, {B,}) satisfies
Chao, a5 D, (B.) = { Puleax,
D

then u is called an extremal function for Cx(, 2,3 D, {B,}).

We shall give another definition of p-capacity. Let {f,} be as above. Let
{D,} be an exhaustion of D, that is, each D, is a bounded subdomain of D, each
oD, consists of a finite number of C!-surfaces, D,<D,,, (n=1, 2,...) and U%, D,
=D. Let A,, (resp. A,,) consist of the components of D— D, each of which meets
oo (resp. a;). We may assume Aq; NA;;=9@. Set o,=0D,ndA,;, (i=0, 1).
Take any boundary components f and f’ in D,—0A,,—0A,,, and let 4 and A’
be the components of D— D, such that 4= and 0A’=p'. We say that f and f’
are in the same class if there exists some B, such that B, n A#@ and B,n A'#0.
We classify the boundary components of dD,— 0A4,,— 0A4,, in this way and denote
them by {B{"}; these are naturally finite in number. Let B{” consist of the
components of D—D, such that dB{”=g". We suppose that {B,} has the
following property:

(1.8) We can take an exhaustion {D,} such that for each f, and D, if
B.n Ui BW £ @ then B, n Ag,=D and B, n 4,,=0.

Let {D,} be an exhaustion of the type considered in (1.8). By property (1.7)
for any u in 2*(og,, 1,5 D,, {B}), the function @ in D,,, which is an exten-
sion of u with a suitable constant on each component of D,,,—D, belongs
10 D*(Aom+1) *1(n+1)5 Dnt1s {ﬂS-"“’})- Therefore  Cp(cton, ®1n; Dy {ﬂ§")})§
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C:(aO(n+l)9 O yn+1)s Dut1s {B(j"+l)}) (n=1,2,...). We set

C:*(ao’ al; D, {BL}) = ’}i_’rgcz‘(aOm 0(ln; Dm {ﬁf]n)}) .

We note that C}*(a, a,; D, {8,}) does not depend on the choice of exhaustion
of the type considered in (1.8). When {B,} is the canonical partition, we write
Cy*(ao, a5 D, Bo) for C3*(ag, @45 D, {B.}).

§2. Extremal functions for the p-capacity of a condenser

We begin with

LEMMA 1. Let I' be a family of curves in a domain D in R¥, and {¢,}
be a sequence of functions defined p-a.e. and tending to a finite-valued function
¢ p-a.e. on I'. Let ugy, uy, U,,... be p-precise functions such that u,(y)=¢,(y)
for eachn=1 and p-a.e. yeI and |F(u,—u,)ll,—0 as n—co. Then there exists
a constant ¢ such that uy(y)=¢(y)—c for p-a.e. yerI.

Proor. We may assume that M, (I')>0. In view of properties (1.1) and
(1.6) we may assume furthermore that ¢, and ¢ are defined everywhere on I,
ug(y), u1(p),... exist and are finite everywhere on I' and u,(y)=¢,(y) for all n>1
and yeI'. By properties (1.3) and (1.4) there is a family I’ of curves in D with
M (I'")=0 and having the following properties:

(1) There exists a subsequence {u,,} such that

limg P (uy, — o)lds = 0
i—00 bd

for all yeI'.

@) ui(x1) = u,(x9) = | en XNy

x0x1\k=1 axk ds

for each n=0, 1,..., for all yeI"" and for arbitrary points x° and x! on y.
We shall denote {u,} again by {u,}.
By property (1.2) there exists a non-negative Borel measurable function h

in L?(D) such that S hds=oo for every yeI'. We can find a subset D, of D
containing almost all ypoints of D such that for any two points x and y in D, there
exists a curve y which passes through x and y and along which |\ hds< oo and such
that for p-a.e. curve y' in D it is contained in D, and S ‘hds< go (see [9, Lemma
4.6]). Take x°e D, at which all u, and u, are ﬁnitey, and take any yel' -TI"
such that y is contained in D, and S hds<oo. Then we can find a curve 7y, in

Y
D, which contains x° and some end part of y and for which S hds<oo. Let
Yo
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x(t), 0<t<1, be a representation of y,. Since yo&I”’, by (2)

U (¥(0)) = up(x°) =§N(§ 0y 4% g

x0x(7) \k=1 axk

for any te(0, 1) and n=0, 1,.... It follows that
[1,(x%) — u(y) — uo(x°) + uo(»)l

= lim Ju,(x°) — u,(x(1)) — uo(x°) + uo(x(D)|

gg \P(u, — ug)lds — 0 as n—s oo.
Yo

Since ¢,(y)—d(y) (=a finite value), u,(x°) tends to @(y)+ug(x®)—ug(y). Set
co=¢(y)—ug(y). Then u,(x°) tends to uy(x%)+co. Thus ¢, does not depend
on y. This proves our lemma.

Let o, oy, {B,} be as in §1. We denote by &*(ag, a,; D, {8,}) the family
of all p-precise functions v in D such that v(y)=0 for p-a.e. ye I'p(ao) U I'p(ty)
and v(y)=a, for p-a.e.yelp(B,), where each a, is a constant depending on v.

First we shall show the following theorem.

THEOREM 1. Let D be a domain and divide its boundary components into
g, 3, {B;}7=1. Then there exists an extremal function u* for Cy(ao, o;; D,
{B;}) and it is characterized by the condition that

S \Pu*|P=2(Pu*, Po)dx = 0
D

for every v in o*(ay, 13 D, {B;}). Here (Fu*, Fv) means the inner product of
Vu* and Vv, and at a point x° where |Fu*(x°)|=0 we set

[P u*(x0)P=2(F u*(x°), Fv(x°)) = 0.
The difference of two extremal functions is constant a.e. in D.

ProOF. In this proof we write C¥ and 2* for C}(ao, a;; D, {#;}) and
D*(ao, 215 D, {B;}) respectively. For the existence of u*, we may assume that
M (I'p(2))>0 (i=0, 1), for, otherwise, the constant 0 or 1 belongs to 2* so that
the assertion is trivial. Choose a sequence {u,} in 2* such that [Fu,| tends to
C» as n—oo. By using Clarkson’s inequality (see [2] or [9, Lemma 1.1]) and
the fact (u,+u,)/2e€ 2*, we see that lim,,, .|V (u,—u,)|,=0. Applying pro-
perty (1.5) we have a p-precise function u, such that C}=|Fu,|?5.

We observe that u,=max (0, min(u,, 1)) belongs to 2* (see [9, Theorem
4.15]) and ||Pu,l,=|Vu,|,. Hence we may assume that 0<u,<1 for all n.
By Lemma 1 there exists a constant ¢ such that uy(y)+c=0 (resp. 1) p-a.e. on
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I'p(0p) (resp. I'p(x;)). We write uy for ug+c. Suppose u,(y)=a’} for p-a.e.y
€I'p(B;). By choosing a suitable subsequence we may assume that {a”}y,
converges to a;. By Lemma 1 again uy(y)=a; p-a.e. on I'y(B;). Thus uge
2*(2o, 2,5 D, {B;}), and hence u,, is an extremal function.

For the latter half, let u* be any extremal function for C¥. For any v e o*(a,,
oy; D, {B;}), there exists an integrable function f(x) in D such that

|7 (u* + ev)(x)|P — |Fu*(x)|?
£

<f(x) forall ¢€ (0, 1).
By Lebesgue’s dominated convergence theorem,

lim

e—0

=S lim |7 (u* £ ev)|? — lV“*|pdx
D &0 €

S [P (u* + ev) [P — [Fu*|? ;.
D &

+ pl |Purle27ut, Fo)dx.
Since u*+eve 2%,

SDIV(u* + ev)|Pdx 2 SDIVu*de.
Hence we have

SDIVu*IP‘z(Vu*, Pv)dx = 0.
Conversely, suppose that u € 2* satisfies the equation
[ iput=27u, Porax =0

for every ve &/*(a, 2,3 D, {B;}). Since u*—ue*(ap, 2,5 D, {B,}),

SDIVuI"'Z(Vu, 7(u* — u))dx = 0.
By using Hélder’s inequality, we derive that

SDIVull’dx < SDIVu*ll’dx = Cy.
This implies that u is an extremal function for Cj.

Finally, let u*, v* be extremal. Since (u*+v*)/2e 2*, |F(u*—v*)|,=0
by Clarkson’s inequality so that u* —v*=const. a.e. in D. This completes the
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proof of our theorem.

Let D’ be a relatively compact subdomain of D with C! boundary such that
no component of D—D’ is relatively compact in D. We classify the boundary
components of oD’ into «{P”, a{?” and {B{"} as we did to D, in §1. We
extend each function of 2*(afP”, a{P”; D', {f*"}) by suitable constants to
a p-precise function on D, and denote by 2*(D’) the family of all such functions
on D. Let AP’ A®) and B{®’ be the unions of D—D’ such that 94"
=afP), 0AP)=a{®’ and OB =pP). Let {B,} be a partition with pro-
perty (1.8). 'We can take some D’ such that for each B,, if B, n\UIB’ BP)#0
then B, N AP =@ and B, n 4"’ =@. Let D” be such a domain. Set

G**ao, 413 D, {B.}) = \J 2¥D"),
and denote by 2**(a,, a,; D, {B,}) the family of all p-precise functions u in D
with the following properties:

(1) For each u, there exists a sequence {u,} in F**(ay, ;; D, {B,}) such
that lim, o || 7 (u,—u)| ,=0.

(2) u(y)=0 (resp. 1) for p-a.e. y € I'p(ag) (resp. I'p(ey)).

We observe that

Ci*@o @ D, )= inf | |pulrdx.
D

ue9**(ao,a1;D,{B.})

We call u in 2**(ay, ay; D, {B,}) an extremal function for Cy*(ao, o5 D, {B.})
if C3*(ao, a4 D, {[3,})=S [Fulpdx. Wedenote by &/**(«y, a;; D, Bg) the family
D

of all C®(D)-functions ¢ in D such that the support of |F¢| is compact in D,
¢=0 on UnD for some neighborhood U of a, Ua;. Denote by «/**(ay, a;;
D, {B.}) the family consisting of all ¢ € o#**(ay, a;; D, Bp) such that ¢=const.
on each B® n D and ¢=0 on (4" U AP") n D for some D".

Now we prove

THEOREM 2. a) There exists an extremal function u* for Cy*(a, ;; D,
Bo) and it is characterized by the condition that

SDIVu*IP'z(Vu*, Pé)dx =0

for every ¢ in of**(ay, a;; D, By). The difference of two extremal functions is
constant a.e. in D.

b) Let {B.} be a partition with property (1.8). Then there exists an
extremal function u* for C}*(ao, ay; D, {B,}) and it is characterized by the
condition that
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g (Pu*P-2(Pu*, P d)dx = 0
D

for every ¢ in o/**(ay, ay; D, {B,}). The difference of two extremal functions
is constant a.e. in D.

ProoF. a) Let {D,} be an exhaustion of D, and u* be an extremal function
for C¥(ctom %15 Dy {BS”}). We have seen near the end of §1 that [FuX|?
=C*(dtop %155 Dy {B”}) decreases as n—oo. As in the proof of Theorem 1,
we see that there exists a p-precise function u* in D such that

lim [P (uy — u*)|, =0
and
u*(y) = 0 (resp. 1) for p-a.e.yel'p(ay) (resp. I'p(a,y)).

It is easy to see that u* is an extremal function for C}*(ao, o;; D, By).

Let v* be another extremal function. Then there exists a sequence {v,}
in J**(ay, ay5 D, {B,}) such that ||F(v,—v*)|,—0. Since (u*+v*)/2€ 2**(ay,
a;; D, {B.}), by Clarkson’s inequality we see that ||/ (u*—0v*)|,=0 so that u*—v*
=const. a.e. in D.

Next, let u* be any extremal function for Cy*(ao, o, ; D, Bg). Then there is
a sequence {u,} in F**(ay, o;; D, {B,}) such that lim,_q|F(u,—u*)|,=0. For
any ¢ (0<e<1) and ¢ in &**(ay, o;; D, By), we see that u,tep e T**(oy, a3
D, {B,}). It follows that u*+ep e 2**(ay, a;; D, {B,}). Hence, as in the latter
half of the proof of Theorem 1, we have

S Pu*e=XPu*, 7 d)dx = 0.
D
Conversely, let u e 2**(ay, ay; D, {B,}) satisfy the equation
g P ulp=2(Pu, P d)dx = 0
D

for every ¢ in &/**(ay, a;; D, Bp). Let u* be an extremal function for C}*(ao,
ay; D, Bg). Then there are two sequences {u,} and {#,} in T**(ay, a; D,
{B.}) such that lim, . ||F(u,—u)l,=0 and lim, |V(i,—u*)|,=0. Set
fo=u,—ii,. It vanishes in a neighborhood U of oy Ua, with compact relative
boundary 0U =D. We can find a function h, in C®(D) such that h,=0 on Un D
and h,—f,=0 on U'nD for a neighborhood U’ of D¥*—D—-U. Then f,—h,
has a compact support in D. There exists a sequence {fi}2, in CF(D) such that
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Since h,+f} € o/ **(0g, 15 D, Bp), we see that
{ 1pulr=2ru, 7, + pipax = 0
for all i. Using Hélder’s inequality and letting i— oo, we obtain
[ 1pulr=2u, 7 fax = 0
for all n. Since lim,,q|F(u—u*)—7F f,],=0, Holder’s inequality again gives
[, 1pule=27u, P — wax = o.

It follows from this equality and Holder’s inequality that
IPully = [Fu*ly = C3*(ao, 215 D, By).
This implies that u is an extremal function for C}*(xo, a;; D, Bo).

b) We note that (u+v)/2 and u+e¢ belong to F**(a,, a,; D, {B,}) for any
u, v in F**(ay, a3 D, {B,}) and ¢ in **(ay, a;; D, {B,}). Then we can com-
plete the proof in the same way as a).

REMARK. In case M (I'p(og) U I'p(a;))>0 two extremal functions coincide
a.e.in D.

Let us compare the results in Theorems 1 and 2. Let {$;}7-, be a partition
with property (1.8). Let u, and u, be extremal functions in Theorems 1 and 2
respectively. By Lemma 1 we see that u, € 2%(a, ay; D, {f;}) so that Cj(x,
ay; D, {B;})SC¥*(ao, a5; D, {B;}). We obtain the equality in a special case.
We give first

LemMMA 2 ([9, Theorem 6.16]). Let u be a p-precise function in D whose
limit along p-a.e. yeTI'j, vanishes. Then there exists a sequence {u,} in C3(D)
such that |V (u—u,)|,—0 as n—co.

We shall prove

THEOREM 3. Suppose the boundary of D in RN U {0} consists of mutually
disjoint closed sets ag, oy, Bys..., Bx- Then

Cr(ao, 215 D, {B;}) = C3*(ato» 15 D, {B}).

Proor. Take any ue 2%(ay, «y; D, {f;}). Let {D,} be an exhaustion.
If n is large, then each component of D— D, contains points of only one of «,,
oy, Bis...» Br. Hence, we may assume that it is so for n=1. Denote by A,
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(resp. B;) the union of the components of D—D, such that 4;n(D—D)=q
(resp. B; n (ﬁ—D)=Bj). For each j, 1 = j<k, there is a value b; such that u(y)
=b; p-a.e. on I'p(B;). We can find a C* function v in D which isequal to i (=0,
1) (resp. b;) on A;—oa; (resp. B;—pf;). Then u(y)—uv(y)=0 for p-a.e.yerl),.
By Lemma 2 there exists {u,} in C3(D) such that |F(u—v—u,)|,~0 as n—co.
Since  v+u,€ F**(ay, ay; D, {B;}), ue D2**(0g, #,; D, {B;}) so that C¥*(o,
o5 D, {B;})=1Pullf as was observed before Theorem 2. We obtain the in-
equality CF*(xo, 15 D, {B;})=Cy(xo, a;; D, {B;}) and hence the equality.

- We obtain the following theorem with respect to C,(xo, a;; D), which is
proved in the same way as Theorem 1.

THEOREM 4 (cf. [5, Theorem 1]). Let D be a domain in RN and o, o,
be non-empty compact subsets of DU {0} such that ayno,=@. Then there

exists an extremal function uy for C,(ag, ®,; D) and it is characterized by the
condition that

g |V uq|P~2(FP ug, Po)dx = 0
D

for every p-precise function v in D such that v(y)=0 for p-a.e. ye I'p(ag) U I'p(ey).
The difference of two extremal functions is constant a.e. in D.

REMARK 1. Weyl’s lemma shows that each of extremal functions for
C,(ag, ;5 D), C3(xg, oy D, {B;}) and C¥*(ag, a5 D, {B,}) is equal to a harmonic
function a.e. in D.

REMARK 2. Let aq, «, be disjoint boundary components of a domain D.
In general C,(ao, ;3 D)SCy(xg, @3 D, {B;}). Now we shall give an example
in which C (o, ;5 D)< CH(ag, 5 D, {B;}). Let Q={x; 1<|x|<2} and E be a
closed ball in Q. Set D=Q—E, ay={x; [x|=1}, a;={x; |x|=2} and B=0E.
Suppose C,(ag, ®;; D)=Cp(xt, ®y; D, p). Let u* and u, be extremal functions
for Cy(og, 15 D, f) and C,(xo, a;; D) respectively. Since u*e D(xo, a;; D),
from Theorem 4 it follows that u*=u, except on a set of measure zero in D.
Then the extension i, of u, by a suitable constant on E belongs to 2(ay, a,; Q)
by (1.7). Since

C(aton 015 Q) = C,(tos ty; D) = S P uglrdx = S |7 iig|edx,
D 9]

iy is an extremal function for C,(ag, oy; 2). It is well known that an extremal
function for C (o, a;; Q) is given by

P—N P=N .
l (|x|p~T — 1)/(2p"T — 1) if p#N
X =

(log [x])/log 2 if p=N,
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By Theorem 4, g=ii, except on a set of measure zero in 2, which is impossible
since #ig=const. on E. Hence C,(ag, ;5 D)< Cy(atg, ®;; D, B).

§3. Reation between the p-capacity and the p-module

Let D be a domain in RY. By a locally rectifiable chain in D we mean a
countable formal sum y=2Xy, where each y; is a locally rectifiable curve in D.
If f is a non-negative Borel measurable function defined in D and y=27; is a local-

fds=ZS fds. Let T be a family of
locally rectifiable chains in D. A non-neygative Boyrlel measurable function f de-
fined in D is called admissible in association with I' if S fds=1 for every yel.

The p-module M,(I') is defined by inf fg fPdx, where thye infimum is taken over
D

ly rectifiable chain in D, then we set S

all admissible functions f in association with I'; if there is no such a function,
then M (I) is set to be oo.

Suppose that the boundary components of D are partitioned into non-
empty mutually disjoint closed sets «, ay, fy,..., f. Let f=\U%_;B;. Each g;
is called a part of B. Let I'*=I*(ay, a;; D, {f;}) be the family of all chains y
in D such that:

(1) 1y is a continuous mapping from a union of closed intervals [t,, t,]
ULts, t4J U= U tzn_1, t2n] into D with t; <ty <--- <ty

2) y(t))eag, y(tan)€a, and for each i=l1, 2,..., n—1, p(t;;) and y(t3;4,)
belong to the same part of f.

(3) yeDifte Uk (tyi-y, t2)-

(4) ynDis a locally rectifiable chain in D, where y n D is the restriction of
y to D.

We define the p-module M ,(I'*) to be the p-module of the family of locally recti-
fiable chains obtained by restricting each chain in I'* to D.
Now we prove

THEOREM 5 (cf. [9, Theorem 6.10]). Suppose that the boundary com-
ponents of D are partitioned into non-empty mutually disjoint closed sets ay,
1, Biseee Bie  Let I'* be the family defined as above. Then C}(ag, %15 D, {B;})
=M (I'*).

Proor. In this proof we write 2* and C} for 2*(ao, a,; D, {B;}) and
C¥(xo, o013 D, {B;}) respectively. Since dist(ag, a;)>0, we see that 2*#0,
and hence Cj<oo. Take any function u in 2*. Then from property (1.4)
we see easily that

S [Pulds = 1 for p-a.e.yerl™.
ynD



On a p-Capacity of a Condenser and XD?-Null Sets 135

It follows that Cy =M ,(I'*). Hence M (I'*)< .

We note that we may restrict admissible f to belong to L?(D) and to be con-
tinuous in defining M (I'*) (see [9, Theorem 2.8]). Let f be such a function.
Given x € D, denote by I'*(x) the family of all chains y in D of type given in the
definition of I'*, condition y(t,,) € a, being replaced by y(t,,)=x. Set

g(x) = inf SMD fds.

yel*(x)

We know that S fds< oo for p-a.e. curve y in D. If y is such a curve, then
Y
l9() = 9GOl = { , fds

for any points x and x° on 7, where ;xﬁcy. It follows that g is absolutely con-
tinuous along p-a.e. curve in D. By Rademacher-Stepanov’s theorem we have
[Pg(x)|< f(x) a.e. in D. Thus g is a p-precise function in D. As in the proof
of [9, Theorem 6.10] (also cf. the arguments below) we see that

g(y) =0 for p-a.e. yelp(ag)

and
gy =1 for p-a.e. yelp(a;).

Let us show that g has the same curvilinear limit along p-a.e. curve in I'p(8)).
For this, assume M, (I'p(8;))>0. Denote by I'p(f;) the subfamily of I'n(B))

consisting of curves y such that |\ fds<oo, y tends to a point on B; and g has a

Y
finite curvilinear limit g(y) along y. Since M (I'(B;)—TI'p(B;))=0, it suffices to
show that g(y,)=g(y,) for any curves y, and y, in I'p(8;). For any £>0, we can
take two points x! €y, and x2 €y, such that

lg(v) —g(x)l <e (i=1,2)

and

S'fds<s (i=1,2),

Yi

where y; is the part of y; starting at x* and tending to ;. Since each y; tends to
a point in B;, by adding these limiting points to y;, we can regard y+7;+(—73)
as an element of I'*(x?) for each y e I'*(x!), and we have

g(x?) < g(x!) + S fds + S fds < g(x') + 2e.
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Similarly g(x!)<g(x?)+2e, and hence |g(x!)—g(x?)]<2e. It follows that

l9(71) = g(2)l = 1g(y1) — g(xH| + lg(x") — g(x?)| + |g(x?) — g(y,)| < 4e.

Therefore g(y,)=g(y,). Thus we see that min(g, 1) belongs to 2*. Hence
¢y = | |PImin(g, DIrdx < | frds.
D D

It follows that Cy < M (I'*).

REMARK. On a compact bordered Riemann surface, Minda [8] showed
that the extremal distances are computed in terms of principal functions having
prescribed boundary behavior (see [8, Theorem 1]). We shall show later in
Theorem 12 that a principal function is extremal for C3(xo, «;; D, {B;}) with
respect to a regular domain D. Thus, Theorem 5 is a euclidean space version of
Minda’s result.

Marden and Rodin [7] gave a useful continuity lemma for extremal length
on Riemann surfaces. Here we shall establish a similar continuity lemma for
extremal length of order p on a domain D in RY.

Let D be a domain in RY and partition its boundary components into non-
empty mutually disjoint sets &, o, and f such that a, and o, are closed sets in D.
Let the boundary components in f be divided into mutually disjoint closed sets
{B;} %=1 with property (1.8). Let {D,} be an exhaustion of D of the type considered
in (1.8) such that each dD, consists of a finite number of C®-surfaces. Then,
as in § 1, the boundary components of D, are divided into ag,, ®;, and {"}i.
Let B,=\iW B and I'*=I*(ag,, 1,5 D, {f%}). Given yel'* and m=<n,
as in the proof of [7, Lemma III1.2.1] we obtain a ‘‘sequence” C,, C,,..., C; such
that Co=aq,, Cy =0, and Cy,..., C,_, are distinct parts of f,, and a sequence of
‘“‘stopping times” tj<ty<:--<tjy, such that yp(t5,_))eC;_,, y(t5)eC; (i=1,...,
k) and y(t)eD,, if te \ Uk (t5;_;, t5;). We define y||D,, to be the restriction of
y to [ty, 5] U [t5, t4] U «-- U [thx—y, 3], which we call the domain of y|D,,.
y(t)), i=1,..., 2k, are called stopping points for y|D,,.

Let I’ be the family of all locally rectifiable chains y in D such that:

(1) 1y is a continuous mapping of an open dense subset J, of (0, 1) into D.

(2) IftoeJ,and 0<t,<1, then there exists a part f; of f such that lim,_,,y(f)
belongs to f;.

(3) lim,_qoy(?) (resp. lim,_ y(¢)) belongs to a, (resp. «,).

Next, we shall define a family I'* following Marden and Rodin [7]. A
locally rectifiable chain y in D belongs to I'* if either y is some chain in I" or if
y is a continuous mapping of an open dense subset J, of (0, 1) into D such that:

(1) If to&J, and 0<ty<1, then there exist sequences {r,}, {s,} in J, and a
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part f8; of B such that r, 1 t, s, | to and y(r,)—B;, ¥(s,)—B;. If t,=0 (resp. 1),
we require only a sequence {s,} (resp. {r,}) from J, with s, | O (resp. r, 1 1) and
Y(s)) > 0tg (resp. y(r,)—>ay).

(2) There is an exhaustion {D,} of D such that the restriction of y to y~![y(J,)
n D,], which we denote by 9|D,, is a chain in D, and y|D,=(y|D,)|D,e I'* for
each n=>1. _

(3) If teJ,, then there is n, such that ¢ belongs to the domain of y|D, for
all n=n,,.

LeMMA 3 (cf. the proof of [7, Lemma II1.2.1]). Let f be a non-negative
continuous function on D, and {D,} be an exhaustion of D. If y,eI'¥=I*(a,,,
a1, Dy {BY}) for each n, then given £>0, there exists y(e) in I'* satisfying

S fds < lim infg fds + .
y(e) Tn

n—o

Proor. We may assume that lim,_.,\ fds exists and is finite. As in

the proof of [7, Lemma I11.2.1] we can find a?s'ixbsequence of {y,}, which we again
denote by {y,}, such that for each m, all y,||D,, (n=m) have the same sequence of
boundary components on 0D, and lim,_,,x% ,=xi € 0D, for all i and m, where
xi m (i=1,..., k(m)) are the stopping points for y,|D,. Let S(x, r) denote the
closed N-ball of radius r and centered at x. Since dD,, is smooth and f is continu-
ous, we can take r; ,>0 (i=1,..., k(m)) with the following properties:

(1) For eaCh i’ S(xrim ri,m)CDm+1 and S(X,i", ri,m) n (6Dm—C:n)=01 Where
Ci, is the boundary component of D,, such that xi e Ci.

(2) Any y Eas(xrim ri,m) n Dm (resp' as(xrlm ri,m)—ﬁm’ S(xtim ri,m) n al)m) and
xi, can be joined by a curve in S(xi, r;,) N D, (resp. S(x%, i) — D, S(Xk, 7y
noD,) along which S Fds <e/2m+2k(m).

By taking a subsequence again we may assume that |x} ,—xi|<r;, for all
i,n and m with n=zm. Denote by i, the subarc of y,|D,, connecting xi ,
and a point yi  €v,|D,, ndS(x}, r;,) in S(xi, r;,)nD, and by i ,, the subarc
of y,—7.ID,, connecting x} , and a point i, €(y,—7,ID,)NnaS(xi, r;,) in
S(xt, 1) foreachm<nand i=1,..., k(m). For each n, we modify y, as follows:
for each m<n and i=1,..., k(m), replace a subarc y! , +7 , of y, by a curve
in S(x%, r;,,) which passes through xi, and connects y! , and ! , and along which
fds<eg[2m*1k(m), for each i=1,..., k(n), replace yi , by a curve in S(xi, r;,)
n D, which connects xi and yi{ , and along which S fds<eg[2"*2k(n). The
modified curve will be denoted by y*. We have

S fdsgg fds + £
™ In
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Let I',,={y*|D,,—y*|D,,—;; n=m} (m=1, 2,...), where Dy=@, and choose 7, €
I, such that

S fds < mfg fds + 2m+1
Fm

yelm

Then, we see

Jfds < f infgfds+ 2"2_”184.—1<S fds+-§~<g fds + e.
m=1 " Yn

Sil+?z+"'+?n m=1 yel,Jy

The chain y(e)= Y 2,7, can be regarded as an element of I'* by a suitable para-
metrization (cf. the proof of [7, Lemma 1I1.2.1]). From the above inequalities
we have

S fds = limS fds < limg fds + ¢.
y(e) Fitetin Yn

Thus y(e) satisfies all the requirements.
LEMMA 4 (cf. [7, Lemma I11.2.1] and [9, Theorem 2.6]).

lim M (I'¥) = MD).

Proor. In general, M (F)SM,(I'*). So assume M, ([)<ow. As in
the proof of [7, Lemma I11.2.1] we have M p(f )=M,(I'*). We may restrict ad-
missible f to be continuous in D in defining M (I'*) (cf. [9, Theorem 2.8]). Given
&, 0<e<1, choose a continuous function f in D which is admissible in association
with I'* such that S frdx<M(I'*)+e. We infer that there is n, such that
if n=n, then S fds >D1-s for every y in I'*. In fact, otherwise there would be
ny<ny<-- and Ym; €%, j=1,2,..., such that S fds<1—e for each j. We
apply Lemma 3 and find y(¢) in I'* which satisfies fds<1—¢. Thisis a

v(2)
contradiction. Thus f/(1—¢) is admissible in association with I'¥, and hence

1

M) £ 2 a),S frdx < g (My(T*) + 9)

for nzn, It follows that lim,  M,(I'y)=M,I'*). Hence we have
lim, , M (I'})=M l,(f ).

On account of Theorem 5 and Lemma 4, we have

THEOREM 6. Suppose that the boundary components of D are partitioned
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into mutually disjoint sets ag, a, and B such that a, and o, are closed sets in D.
Let the boundary components in 8 be divided into mutually disjoint closed sets
{B;} with property (1.8). Then C**(ao, ay; D, {B;})=M(I).

REMARK. As to C,, the following result is well-known (see, e.g., [9,
Theorem 6.10] or [13, Theorem 3.8]): Let D be a domain and oy, ; be non-
empty compact subsets of 0D such that ¢y Na;=@. Let I' be the family of all
curves connecting oy and a; in D. Then Cj(ag, ;; D)=M ().

Finally we are concerned with the case that f is given the canonical parti-
tion throughout the rest of this paper. Let [* be the family of all arcs in D
connecting o, and a;. M p(f *) is the p-module of the family of locally rectifiable
chains in D obtained by restricting each arc in ['* to D. Since each y in I can be
extended continuously to [0, 1] with values in D, M(F*)=M (). Thus we
have

THEOREM 7. Let ['* be the family of all arcs in D connecting o, and «;.
Then C}*(ay, a;; D, BQ)=Mp(f*).

§4. KDpr-null sets

Let E be a compact set in RY¥ and G be a bounded open set which contains
E. We denote by CP(G; E) the family of all functions ¢ in CP(G) such that F¢
vanishes in some neighborhood of E. Let KD?(G) (resp. KD?(G—E; E)) be the
class of p-precise functions u in G (resp. G— E) satisfying the condition that

SGIVul"‘Z(Vu, Pé)dx = 0

for every ¢ in C¥(G) (resp. CY(G; E)). We say that a compact set E is a KD»r-
null set with respect to G if every function u in KD?(G—E; E) can be extended to
a function belonging to KD?(G). The class of KD?P-null sets with respect to G

is denoted by N§,,. The following lemma is an easy consequence of the defini-
tion.

LemMMA 5. If E€ N§p», then E € N§, for any bounded open set G, contain-
ing G.

Next we prove

LemMA 6. If E€ N§p,, then RN—E is a domain.

ProoF. Suppose R¥—E is not a domain, and denote by Q the union of
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all bounded components of R¥—E. Take a ring domain G,={x; r; <|x—x9|
<r,} such that G;2GU Q. Letoay={x; |x—x%=r,} and a,={x; |[x—x° =r,}.
Let u, be an extremal function for C(ay, 2,5 G, —EU Q). Setting #i=u, on G,
—EUQ and #=0 on Q, we easily see that # € KD?(G,—E; E) by Theorem 4.
By Lemma 5, Ee N§b,, so that there exists a p-precise function u, in KD?(G,)
such that u; =4 in G;—E. Obviously u, belongs to 2(ay, 2;; G;). Since u,
€ KD?(G,), by using Lemma 2 and Holder’s inequality we see that

SG |Pu|P~2(Fuy, Po)dx =0
for every p-precise function v in G, such that v(y)=0 for p-a.e. yel';,. From

Theorem 4 it follows that u, is extremal for C,(ag, ®;; G;). It is known that an
extremal function for C(ay, a;; G,) is given by

=N P=N P=N. =N .
(o)) i e
Ix—X°l> I if p=
1<log . /logr1 if p=N.

By Theorem 4, g=u, except for x in a set of measure zero in G,. This is a con-
tradiction since u; =0 on 2. Thus we see that R¥—E is a domain.

(4.1) g(x) =

A bounded domain D is called a ring domain if it has two boundary com-
ponents. We shall show a necessary condition for E e N§p,.

THEOREM 8. If E€N§p,, then Cy(ag, a;; D—E)=C}*(a, a5 D—E, Bg)
for every ring domain D containing G, where oy and a, are two boundary com-
ponents of D and f=0E.

ProoF. By Lemma 6 we note that C,(xg, «;; D—E) and C}*(atp, 2;; D—E,
Bo) are well-defined. Let u, and u* be extremal functions for C,(ao, a;; D—E)
and C}*(ao, a;; D—E, fy) respectively. By Lemma 5, E€ N2p,. Hence there
exist two functions @, and @* in KD?(D) such that fiy=u, in D—E and #*=u*
in D—E. These imply that &, ii* € 2(ao, o,; D),

S P iig|P=(V iy, P d)dx = O
D
for every ¢ in C§(D) and
S \Pa*r-AP %, P $)dx = 0
D

for every ¢ in CP(D). As in the proof of Lemma 6, we conclude that i, and #*
are extremal for C,(«o, ®;; D). By Theorem 4, #,=d* a.e. in D. Hence Cj(x,
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o;; D—E)=C}*(ag, 01; D—E, Bg).

COROLLARY 1. If E€e N§p», then the N-dimensional Lebesgue measure of
E is equal to zero.

Proor. Take a ring domain D={x; r, <|x—x° <r,} such that D>G.
Let og={x; |[x—x%=r}, 0y ={x, |[x—x%=r,} and B=0E. In general C,(x,,
ay; D=E)SC(ag, a3 D)SCy*(0tg, 215 D—E, Bg). By Theorem 8, we see
Cy(ag, a;; D—E)=Cj(ag, «;; D). Let u, be the function defined by the right
hand side of (4.1). Then u, is an extremal function for C,(«o, a;; D) and its
restriction to D—E belongs to 2(ag, o;; D—E). Hence

[ IPuipax = €0, 25 D) = ooy 0 D= By < | (Puyleax,
which implies
S \Pu,lpdx = 0.
E

Since |Fu,|#0 on D, we conclude that the N-dimensional Lebesgue measure of
E is equal to zero.

§5. Relations between KDP?-null sets and FDP-null sets

In [6], Hedberg considered the following notion of null sets. For an open
set G in RN, denote by FDP(G) the class of real valued harmonic functions u

in G such that |Fu| belongs to L?(G) and u has no flux, i.e., S ou/ovdS=0 for all
C

(N—1)cycles Cin G. A compact set E is said to be removable for FD? if for some
open set G containing E every function in FD?(G — E) can be extended to a func-
tion in FD?(G). The class of removable sets for FD? is denoted by Npp,. De-
note by W¥(G) the Sobolev space of real valued functions fin LP(G) whose deriva-
tives in the distribution sense are functions in L?(G). When G is bounded ||F f||,
is a norm on CJ(G) by the Poincaré inequality, and the closure in W(G) of
C®(G) with respect to this norm is denoted by W2(G). Hedberg proved

THEOREM A ([6, Theorem 1, b]). E€ Ngp, if and only if CP(G; E) is dense
in W4(G) for some bounded open set G>E, where q=p/(p—1).

Let D be an N-dimensional open rectangle with sides parallel to the co-
ordinate planes, E be a compact set in D (possibly an empty set) and G, be a
bounded open set containing D. We set

M,‘,(D—E):infg \PyPpdx (i =1,..,N),
v JD-E
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where the infimum is taken over all € C?(G, ; E) such that y/(x)=0 on «f which
is one of the sides of D parallel to the coordinate plane x;=0, and Y(x)=1 on
ai which is the opposite side of aj. Obviously Mi(D—E) does not depend on
the choice of G,.

THEOREM B ([6, Theorem 4]). E € Npp. if and only if the equalities Mi(D
—E)=M;',(D), i=1,..., N, hold for some open rectangle D> E.

By using these theorems we shall give some results on KDP-null sets.

LeEMMA 7. If CP(G; E) is dense in W2(G) for a bounded open set G, then
the N-dimensional Lebesgue measure of E is zero and R¥N—E is a domain.

Proofr. Choose a function ¢ € CP(G) such that ¢(x)=x, on a neighborhood
of E for x=(xy,..., xy). By the assumption of the lemma there is a sequence
{¢,} in C{(G; E) such that

tim { 7(6 = gIedx = 0.

Then

[ ax={ 1r@ = gorax < 176 - dyrax.

Hence Sde=O.

Next, suppose R¥N—E is not a domain. Then there is a non-empty bounded
domain Q< R¥—E such that dQ<E. Take a bounded open ball G, containing
G and a function Y € CP(G,) such that y=1 on Q. Let ¢(x)=x,y¥(x) for x
=(xy,..., Xy). By the assumption of the lemma, we easily see that CP(G,; E)
is dense in W2(G,). Since ¢(x)e CP(G,), there is a sequence {¢,} in C(G,; E)
such that

lim g I7($ — p,)lPdx = 0.

We take a subdomain Q' of Q such that 0Q’ consists of a finite number of C!-
surfaces #; (j=1,..., m) and ¢,=const. on each f;. By using Stokes’ theorem,
we have

0, 4. _ S b 4. _
Sa B, dx = o O dx = 0.

It follows that

Sﬂdx = Sn ———a(¢a;l¢") dx.
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By Holder’s inequality, we have
1/p
[ ax=cfl 17es - g1eax]™
Q o)

Since the right-hand side tends to zero as m—oo, we obtain a contradiction.
Therefore R¥N —E is a domain.

THEOREM 9. Let q=p/(p—1). If C¥(G; E) is dense both in W¥G) and in
W4(G) for a bounded open set G, then E belongs to N§p,.

Proor. By Lemma 7, RN—E is a domain and the N-dimensional Lebesgue
measure of E is equal to zero. Moreover, since CP(G; E) is dense in Wi(G),
as in the first half of the proof of [6, Theorem 1], we see that for any u in KD?(G
—E; E) there is a function in W¥(G) which is equal to u in G—E. Hence, by [9,
Theorem 4.21], there is a p-precise function u, in G such that ug=wu and du,/0x;
=0u/0x; (i=1,..., N) except on a set of measure zero in G—E. Next, since
C?(G; E) is dense in WE(G), for any ¥ in CP(G) there is a sequence {¢,} in C*(G;
E) such that

lim Scww — pp)lrdx = 0.

Then, by Holder’s inequality we have
[ I7uole=27uo, Py
= lim SGIVuOIP‘Z(VuO, 7 dn)dx

- limg \Pulp=2(Pu, 7 d,)dx
—-E

n—=o0JG
= 0.
Hence u, € KD?(G), so that Ee N§p,.
THEOREM 10. If E € N§p,, then CP(G; E) is dense in W3(G).
Proofr. By Theorems A and B it is enough to show that
MiD — E)=MiD) (i=1,.,N)

for some open rectangle D containing G. Take a bounded open set G,>D.
First we observe by using Lemma 2 that

Mi(D — E) = infg \Pulpdx,
u D-E



144 Hiromichi YAMAMOTO

where the infimum is taken over all p-precise functions u defined in Go=G; —E
—ab—at such that u(y)=0 for p-a.e. yelg(ad) UT;,(0G,), u(y)=1 for p-a.e.
y € I'g,(a}) and u=const. on each component of some neighborhood of E. More-
over, in the same way as in Theorem 2, we have a p-precise function u, defined
in D= E such that uy(y)=0for p-a.e. y e I'p_(ad), ug(y)=1for p-a.e. ye I'p_g(al),
M;',(D—E)=SD_EIVu0|de and SD_EIVuOIP‘Z(Vuo, Py)dx=0 for every ¥ in
C?(D; E). By Lemma S5, we see that Ee NR,,. Since u,e KD?(D—E; E),
there exists a function i, in KD?(D) such that ii,=u, in D—E. On the other hand
Mi(D)=C(a}, ai; D). Obviously iiye 2(aj, ai; D). Take ¢, in CF(D) such
that ¢, =1 on a neighborhood of E. For any p-precise function v in D such that
v(y)=0 for p-a.e. ye I'p(af) U I'p(a}), we have

SD|Vﬁo|n-2(Vﬁ0, P o)dx

= [ 1raglz=2rao, r(goondx + 1717270, 7(o(1 = $o))dx.
Using Lemma 2 and the fact 4, € KD?(D) we conclude that
Sbwao|r-2(mo, Pv)dx = 0.

From Theorem 4 it follows that &, is an extremal function for M}(D). By
Corollary 1, we have that Mi(D—E)=M}(D) for all i=1,..., N. The proof is
completed.

COROLLARY 2. If p=2, then Ee N§p, if and only if C{(G; E) is dense in
WE(G).

COROLLARY 3. If p=2, then the property Ee N§p, does not depend on
the choice of G.

By virtue of Corollary 3, in case p=2 we may omit the suffix G in the nota-
tion N¢p, and have a notion of KDP-null sets. We combine these results with
Theorem A and have the following theorem.

THEOREM 11. If p>2, then a compact set E is a KDP-null set if and only
if E is removable for FD4, where q=p/(p—1).

REMARK. In case p=2, by Corollary 2 any compact subset of a KD?P-null
set is a KDr-null set. If E,,..., E, are totally disconnected and KD?-null sets,
then so is E; N E;. Hence we see that \UJ_,E; € Ngp,.
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§6. The case p=2

Here we shall give a characterization of KD2-null sets. Let D be a bounded
domain with a finite number of boundary components oy, a; and B; (j=1,..., k).
Denote by 2'=2'(ap, 2,; D, {B;}) the family of all C*(D)-functions u in D
each of which is identically equal to O (resp. 1, a constant a;, j=1,..., k) in the
intersections with D of some neighborhoods of aq (resp. a,, 8;, j=1,..., k).

LemMMA 8. CX(oo, 9,3 D, {ﬂj})=infg \Pulrdx.
ue2’'JD

Proor. Put C,= infg |FulPdx and C}=C}(ao, ;5 D, {B;}). Obvious-
ue2’'JD
ly, C}<C,. For any ue 2*(ao, a;; D, {B;}) thereis fe 2’ such that (u—f)(y)
=0 for p-a.e.yeI',, By Lemma 2 we can take {f,}>, in CF(D) such that
lim,, o |P (u—f—f)l,=0. Therefore lim, |V (f+f)l,=IIFul, Since f+f,e
2', C,=C}.
In the same way as Lemma 8, we have -

LemMA 9 (cf. [9, Theorems 6.13 and 6.14]).
Cylog, #y; D) = infg |Pulrdx,
u D

where the infimum is taken over all C*(D)-functions u each of which is identi-
cally equal to O and 1 in the intersections with D of some neighborhoods of a,
and o, respectively.

Let D be a regular domain, that is a domain for which dD consists of a finite
number of compact C!-surfaces oy, a; and B; (j=1,..., k). We know (cf. [11])
that there exist principal functions h; (i=0, 1) with respect to a,, o, and D, which
are characterized by the following properties:

(1) h; is harmonic in D and is continuous on D;

(2) h;=0o0nayand h;=1on a,;

(3) 0hy/dv=0 on each B;, h, =const. on each f; and S 0h,/ovdS=0 for j
=1,..., k, where d/dv indicates the normal derivative and dlg is the surface ele-
ment.

In case p=2, by Green’s formula and Lemmas 8 and 9, we have

THEOREM 12. Let D be a regular domain with 0D=oay,Ua; U, U - U B,
Then C%(og, o;; D, {ﬂ_,-})=SDIVh1|2dx and Cy(og, 0,3 D)= SDIVholzdx.
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We note by Theorem 11 that the notion of KD2-null sets coincides with the
notion of KD-null sets defined in [12]. The author showed in [12, Theorem 3]
a relation between Ny, and the span for the canonical partition of E. By this
result and Theorem 12, we obtain the following theorem.

THEOREM 13. E€Ngp: if and only if Cy(ag, #;; D—E)=C¥*(ag, o;;
D—E, By) for every unbounded domain D such that DoE and 0D consists of
two disjoint compact boundary components o, oy, where f=0E U {o0}.

Proor. Suppose E€ Ngp:. Let D be an unbounded domain such that
DoE and 0D consists of two disjoint compact boundary components o, o;.
Let uy and u* be the extremal functions for C,(ag, oy ; D—E) and C3*(a, oy}
D—E, By) respectively. Take a bounded domain G such that GoE and R¥—-G
Dag, #;. Since uy, u*e€ KD*(G—E; E), there exist 2-precise functions 1, fi*
in KD*G) such that ug=1#, in G—E and u*=%* in G—E. Let

o in G
170 =
uo in D - G

and

[ fi* in G
i* =

u* in D-G.

We take Y, € CF(G) such that Yy,=1 on a neighborhood of E. We extend ¥,
by 0 to R¥N—G. Let ¢ be any function in C®(D) such that the support of |Fy|
is bounded and Y =0 on oy Ua;. Then we have

| ram, rwax
D
= [ i P = yonax + | 7iv, Pwpo)ax

= 0w P — yomdx + § (7%, 7 (o

Since Yo € CP(G), the last integral vanishes. Since Y(1—y,) is a function in
C®(D—E) such that the support of |F(Y(1—y,))| is bounded, Y(1—y4)=0

on oy Ua, and Y(1—y,)=0 on a neighborhood of E, we have S Pu*, F(Yy(1
D-E
—y¥o)))dx=0. Hence

S (Pi*, Py)dx = 0.
D
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Let I')(o0) be the family of all locally rectifiable curves in D each of which starts
from a point of D and tends to the point at infinity. By [9, Theorem 9.12],
#* — i, has a finite constant limit along 2-a.e. curve in I'p(c0). By using Lemma
2 and Holder’s inequality, we have

S (Pa*, P(@* — dig))dx = 0.
D
From this we see that
S |Pa*|2dx < S |7y 2dx.
D D
By Corollary 1 to Theorem 8§,
S Puripax < {(Puol2dx.
D-E D-E
Since the converse inequality is trivial, we conclude that
CZ(“O’ o, D - E) = C;*(aOs ®ys D — E’ ﬂQ)

Conversely we suppose that C,(xg, «,; D—E)=C3*(ag, ®;; D—E, Bg) for
every D as in the theorem. Take distinct two points x0, x! in the domain RN—E
(=E°) and balls S?, S} of radius r, with centers at x° x! and with disjoint clo-
sures in E¢. Let {D,} be an exhaustion of E¢ such that D, >S?, S!. Denote by
B; (j=1,..., j(n)) the boundary components of D,. We know (cf. [11]) that there
exist principal functions P;, (i=0, 1) with respect to x% x! and D,, which are
characterized by the following properties:

(1) P, is harmonic in D,—({x°} U {x'});

2 pP,= ;rlxoﬁfz +h,, on S

=1 3+ fin on S},

Pi,n=o-|x_xliN—

where ¢ is the surface area of unit sphere in R¥, and h;, and f;, are harmonic in
S? and S} respectively and f; ,(x1)=0;
(3) 0Py ,/0v=0 on dD,, P, ,=const. on each B; and S 0P, ,/ovdS=0 for
By

j=1,..., j(n).
We see that the limits

h=limh,, f,=lmf, (@i=0,1)

exist and the convergences are uniform on every compact subset of Ec. Set
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oy = 0S?, a, = 0S};

a, = max Py ,(x), a, = min P, ,(x),
XEXQ X€EXQ

b, = max P ,(x), b, = min P, ,(x);

Ay = {X; Pop(x) 2 a5}, A;, = {x; P (x) 2 a},
B, = {x; Po,(x) < b, B, = {x; Po,() < by}
and '
0, = 0A,, o, = 04, «,, = 0B,, o}, = 0B,,.
For sufficiently small r, we easily see that
Cy(aton %1p3 Dy — 4, — B,) £ C2(°‘0a a3 D, — 8 —S})
< Cy(%ms @ins Dy — A, — By).

By Theorem 12, (a,— P, ,)/(a,—b,) is extremal for C,(ag,, %;,; D,—A,— B,).
Therefore we have

. N=2
CZ(aOna Ains Dn - An - Bn) = a, — b" .
From this we derive that
. 2
max ko, , — min f, , = a, — b, — 5=z
XEXO Xeay
_ N-2 _ 2
C2(a0m Lins Dn - An - Bn) orh=2 "
Similarly,
. _ N-2 2
Town or = o = €43 D, — Ay = By T
From the above inequalities we see
. N-2 2
max — min = - =
xeao ho_,, xeay fO,n - Cz(aOa Qg5 Dn - 3_9 - E'i) orh=?

= min hy , — max f .
1

XEaQ X€ea

Letting n— oo, we have

. N-=-2 .
max Ay, — min fo = = — —- = min A, — max f,.
x€ap ’0 X€xy Cz(aO’ al; Ec - :STP - }) a’N 2 X€Eado 0 Xeay fO



On a p-Capacity of a. Condenser and KD?-Null Sets 149

In the same way we have

. N-—2
max h; — min f; = =
Xeao ! xeay fl - C;*(am Oy EC_'E?— 11-9 BQ)

By assumption the equality
Cy(ap, o5 E€ —~ §§— §;1‘) = C¥*(0p, 0015 E€ — S?.— S_r19 Bo)
holds for every small r>0. Hence

max hy — min f, = min h; — max f,

XEXQ Xeay XEx0 XeExy

and

max h; — min f; = min hy — max f,.

Xeao xeay Xeao Xeay
Since f(x1)=0 (i=0, 1), letting r—0 we have that hy(x%)=~h,(x%). This means
that the span is equal to zero for all couples (x°, x!) of distinct points in E¢,
so that by [12, Theorem 3], we conclude that Ee€ Ngp.. The proof is com-
pleted.

ReMARK. This theorem is a euclidean space version of Rodin’s result on
Riemann surfaces in [10].
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