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Introduction

Ahlfors and Beurling [1] introduced the notion of null sets of class ND in

the complex plane and characterized such null sets by means of the extremal

length. Hedberg [6] considered a generalization of this notion, namely, re-

movable sets for the class FDp (i<p<co) in an JV-dimensional euclidean space

RN, and characterized such removable sets by means of condenser capacities.

We can consider a class KDp of p-precise functions on RN (N g: 3) and define KDp-

null sets. In the present paper, we shall show several relations between KDP-

null sets and p-capacities of a condenser.

A real valued function u defined in a domain D of RN is called a p-precise

function, if it is absolutely continuous along p-a.e. curve in D and |gradu| belongs

to LP(D). A p-precise function u in D has a finite curvilinear limit u(y) along

p-a. e. curve y in D (see [9, Theorem 5.4]). Let α be a compact subset of dD

and ΓD(α) be the family of all locally rectifiable curves in D each of which starts

from some point of D and tends to α. Let α0, a1 be non-empty compact subsets

of dD such that α0 n <xi=0. We follow [9] in defining the p-capacity of con-

denser (α0, cci\ D):

Cp(α0, α x ; D) = inf \ \grsiάu\pdx,
u JD

where the infimum is taken over all p-precise functions u in D such that u(y) = 0

(resp. 1) for p-a. e. y e ΓD(oco) (resp. ΓD(αx)). Denote by D the Kerekjartό-

Stoϊlow compactification of D. For a condenser (α0, αx D) such that α0 and ocί

are two mutually disjoint closed subsets of D — D and a partition {βt} of D — D

— cco — ccί, we shall consider a new kind of p-capacity C*(α0, α x ; D, {βt}) as fol-

lows. Let the boundary components of D be divided into α0, αx and {/?J. We

set

C*(α0, α i ; D, {£}) = inf ( |gradϋ|*dx,
u JD

where the infimum is taken over all p-precise functions u in D such that u(y) = 0

(resp. 1) for p-a. e. y e ΓD(a0) (resp. Γ^αj)) and u(y) = aι for p-a. e. y e ΓD(βX

where each aι is a constant depending on u. On the other hand, we take an
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exhaustion {Dn} and set CJ*(α0, «i; #, {^}) = l i m ^ ^

where ain = dDn n cL4/n (i = 0, 1), v4ί/t being the component of D — Dn which con-

tains αf, and {/?ίw)} is some partition of 5 D r t - α 0 / l - α l M depending on {/?J.

In § 2, we shall give a characterization of the extremal functions for C*(α0,

«i; ^» {/U) a n d C**(α0, α x ; D, {/?,})• In §3, for some condenser (α0, oq; D)

and some partition {βt} we shall relate C**(α0, α x ; D, {/?t}) to the p-module of

the family of curves each of which connects α0 and <xί in D. This is a generaliza-

tion of Gehring's result in [4].

A compact set E in RN will be called a KDp-nul\ set with respect to an open

set G containing E, if any function in KDp(G — E; E) can be extended to a function

in KDP(G), where KDP(G) (resp. KDP{G-E\ E)) is the class of p-precise functions

u in G (resp. G — E) satisfying the following condition:

\ |grad w|p~2(grad u9 grad φ) dx = 0
JG

for all φ E CQ(G) (resp. for all φ e CQ(G) such that grad φ vanishes in some neigh-

borhood of E).

In § 4, we shall give a necessary condition for a set to be KDP-nu\l in terms

of p-capacities. In § 5, we observe some relations between KD^-null sets and

sets removable for the class FDp. In § 6, we shall give a characterization of KD2-

null sets by means of 2-capacities.

§1. Preliminaries

We shall denote by x = (xί, x2> » XN) a point in RN, and set |χ |=(χf + x\

+ + * N ) 1 / 2 For sets E and F in RN, let dist(£, F) denote the distance be-

tween E and F. We denote by dE and £ the boundary and the closure of E

respectively. Let p be a finite number such that p> 1. For an open set G in JR^,

let LP(G) be the family of functions f on G for which \f\p is integrable, and let

| | / | | p be the L^-norm. For a measurable vector field ί; = (ϋ l 5 v2i...,vN) on G,

we define |M|p by || |i;| | |p. We denote by C^iG) the family of infinitely differ-

entiable functions in G and by CQ(G) the subfamily consisting of functions with

compact support in G.

Let Γ be a family of locally rectifiable curves in RN none of which is a point.

A non-negative Borel measurable function/is called admissible in association with

Γ if ( fds ^ 1 for each y e Γ. The p-module MP(Γ) of Γ is defined by infr [f'dx,

where the infimum is taken over all functions / admissible in association with Γ.

A property will be said to hold p-almost everywhere (=jp-a.e.) on Γ if the p-

module of the subfamily of exceptional curves is zero. The following properties

are well known (see, e.g., [3, Chapter I] or [9, Chapter I]):
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(1.1) If Γ = W?=1 ΓΛ, then Mp(Γ) ^ Σ?=i Mp(ΓJ.

(1.2) Mp(Γ) = 0 if and only if there is a non-negative Borel measurable

function fe LP(RN) such that \ fds=co for every y e Γ.

(1.3) Every sequence {/„} of Borel measurable functions in an open set G

such that \ \fn\
pdx tends to zero as n->oo has a subsequence {/„.} such that

JG

limί |/Jds = 0

for p-a. e. curve y in G.

A real valued function u defined in an open set G is called a p-precise function,

if (i) it is absolutely continuous along p-a. e. curve in G, and (ii) \Vu\ belongs to

Lp(G); from (i) it follows that the gradient Fu exists almost everywhere in G.

The following results are known:

(1.4) Let u be a p-precise function in G. Then

Ί dxk ds

for any points x° and x1 on p-a.e. curve y in G, where Λ c 1 is the subarc of y

connecting x° and xι (cf. [3, Chapter III, 2] or [9, Theorem 4.16]).

(1.5) Let {un} be a sequence of p-precise functions in G and assume

lim \\r(un-uJ\\p = 0.
n,m-+oo

Then there exists a p-precise function u in G such that \\V(un — w)||p->0 as n->oo

(see [3, Theorem 14] or [9, Theorem 4.18]).

(1.6) Every p-precise function u in G has a finite curvilinear limit u(y)

along p-a. e. curve y in G (see [9, Theorem 5.4]).

(1.7) Let u be a p-precise function defined in G, and i? a p-precise function

defined in an open set G'aG such that, for p-a. e. curve y in G' terminating at a

point x of δG' Π G, lim u(y) exists and equals u(x) as y tends to x along 7. Then

the function w which is equal to v in G' and to u on G — G' is a p-precise function

in G (see [9, Theorem 5.5]).

Let D be a domain in KN and denote by D* the closure of D in the Aleksandrov

compactification RN \j {00}. Let α be a closed subset of the boundary D* — D.

We shall denote by ΓD (resp. ΓD(μ)) the family of all locally rectifiable curves in

D each of which starts from a point of D and tends to D* — D (resp. α). Let α0, α t

be non-empty closed subsets of D* — D such that α0 n αx = 0 . We shall denote by

^ ( α 0 , 0Lί; D) the family of all p-precise functions u in D such that 1/(7) = 0 for

p-a.e. 7eT D (α 0 ) and tι(y)= 1 for p-a.e. yeΓD(jxx). Following Ohtsuka [9,

§6.2], we define the p-capacity of condenser (α0, α x ; D) as
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C p ( α 0 , Λ1;D)= inf [ \Γu\"dx.

If a p-precise function u in ̂ ( α 0 , <x1; D) satisfies

then M is called an extremal function for Cp(α0, OL1; D).

Denote by D the Kerekjartό-Stoϊlow compactification of D (see [11]).

Throughout the rest of the paper let α0 and <xί be non-empty mutually disjoint

closed sets consisting of boundary components. Divide the boundary com-

ponents of D — D — α0 — αx into mutually disjoint sets {/?J, and let ^ * ( α 0 , ocί;

D> {β,,}) t>e t n e family consisting of all w e ^ ( α 0 , OL1; D) such that w(y) = αt for

p-a.e. yeΓD(βt), where each αt is a constant depending on u. We define the

/7-capacity of condenser (α0, αA; D, {βt}) as

C ( α o , α i ; D , {/?.})= inf ί |Γtι|'Ac.
«e^*(αo,αi;ί),{/?ί})jD

If a p-precise function w in ̂ * ( α 0 , αj D, {βt}) satisfies

C * ( α o , α i ; / ) , {/U)

then w is called an extremal function for C*(α0, oίj D, {j?4}).

We shall give another definition of p-capacity. Let {βt} be as above. Let

{£>„} be an exhaustion of D, that is, each Dn is a bounded subdomain of D, each

dDn consists of a finite number of C1 -surfaces, DnczDn+1 (n = l, 2,...) and W*=iDw

= D. Let A0/l (resp. y4lπ) consist of the components oϊD-Dn each of which meets

α0 (resp. α j . We may assume AOί Π Atl=0. Set ocin = dDn Π δy4/n (z = 0, 1).

Take any boundary components /? and β' in dDn — dAOn — dAln, and let ̂ 4 and A'

be the components of D - Dn such that dA = β and dA' = β'. We say that β and β'

are in the same class if there exists some βt such that βtV[AΦ0 and βt [\ A' ΦQ.

We classify the boundary components of dDn — dAOn — dAln in this way and denote

them by {β(jn)}; these are naturally finite in number. Let B(jn) consist of the

components of D-Dn such that dB^ = β{jn). We suppose that {βt} has the

following property:

(1.8) We can take an exhaustion {Dn} such that for each βt and Dn9 if

βt n KJjίiB^φΘ then βt n AOn = 0 and βL n AlM = 0.

Let {DJ be an exhaustion of the type considered in (1.8). By property (1.7)

for any u in ^*(α O π , α l π ; Dn, {β(jn)}\ the function w in Dn+1 which is an exten-

sion of M with a suitable constant on each component of Dn+1—Dn belongs

to ^ * ( α O ( π + 1 ) , α 1 ( / J + 1 ) ; D / l + 1 , {#w + 1 )}). Therefore C*(α0w, α l n ; Dπ, { #
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(.+ i). « H , + D ; A , + I, {^B+1)}) (« = 1, 2, . ). We set

C**(α0) «,; D, {/?.}) = HmC*(α0π) α l n ; DB, {#•>}).

We note that C**(α0, o^; D, {J?t}) does not depend on the choice of exhaustion

of the type considered in (1.8). When {βt} is the canonical partition, we write

C**(α0, α i ; D, βQ) for C**(α0, α x ; D, {ft}).

§2. Extremal functions for the p-capacity of a condenser

We begin with

LEMMA 1. Let Γ be a family of curves in a domain D in RN

9 and {φn}

be a sequence of functions defined p-a.e. and tending to a finite-valued function

φ p-a.e. on Γ. Let M0, ul9 u2,... be p-precise functions such that un(y) = φn(y)

for each n ^ l and p-a.e. yeΓ and \\P(un — uo)\\p->0 as n^oo. Then there exists

a constant c such that uo(γ) = φ(y) — c for p-a.e. γeΓ.

PROOF. We may assume that M p (Γ)>0. In view of properties (1.1) and

(1.6) we may assume furthermore that φn and φ are defined everywhere on Γ,

uo(γ), Wi(y),... exist and are finite everywhere on Γ and un(y) = φn(γ) for all n ^ l

and γeΓ. By properties (1.3) and (1.4) there is a family Γ of curves in D with

Mp(Γ') = 0 and having the following properties:

(1) There exists a subsequence {un.} such that

limί \P(uHi -uo)\ds = 0
i-+cθjγ

for ally φΓ.

(2) Mll(*i) - uΛ(x0) = L ( Σ | ^ ^f)ds
Jjc°jci\k=i oxk as J

for each n = 0, 1,..., for all y ^ Γ ' and for arbitrary points x° and x1 on y.

We shall denote {un.} again by {un}.

By property (1.2) there exists a non-negative Borel measurable function h

in LP(D) such that \ hds — ao for every yeΓ'. We can find a subset Dh of D

containing almost all points of D such that for any two points x and y in Dh there

exists a curve y which passes through x and y and along which \ hds<co and such

that for p-a. e. curve y' in D it is contained in Dh and \ hds<oo (see [9, Lemma

4.6]). Take x°eDh at which all un and w0 are finite, and take any yeΓ — Γf

such that y is contained in Dh and \ hds<co. Then we can find a curve y0 in
Jy r

Dh which contains x° and some end part of y and for which \ hds<oo. Let
JYo
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x(ί), 0<t<l, be a representation of y0. Since yoφΓ\ by (2)

«„(*(/)) - „„(*•>) = f ( £ *± **f)d,
)x°x(t) \k = l VXk a s /

for any ί e (0, 1) and n = 0 , 1,.... It follows that

Wχ°) - ΦJa) - «o(*

= lim |un(x°) - MΠ(X(0)

(wπ - uo)\ds >0 as n > oo.

Since φn(y)^>φ(y) ( = a finite value), un(x°) tends to 0(y) + uo(xo)-Wo(lO Set

co = φ(y) — uo(y). Then wn(x°) tends to wo(xo) + co. Thus c 0 does not depend

on y. This proves our lemma.

Let α0, α l 5 {jSJ be as in § 1. We denote by ja/*(α0, α x ; D, {j?t}) the family

of all p-precise functions v in D such that φ ) = 0 for p-a.e. yeΓ f l (α 0 ) U Γ^αO

and ι;(y) = flt for p-a.e. yeΓD(βχ where each α, is a constant depending on i;.

First we shall show the following theorem.

THEOREM 1. Let D be a domain and divide its boundary components into
αo> αi> {βj)y=v Then there exists an extremal function w* for C*(α0, α^; D,

{βj}) and it is characterized by the condition that

\ΓU*\P~2(ΓU*, Vυ)dx = 0
D

for every v in J^*(α0, α t ; D, {βj}). Here (Fw*, Vv) means the inner product of

Pu* and Vv, and at a point x° where |Fw*(x°)| = 0 we set

\PU*(X°)\P-2(ΓU*(X% Fv(x0)) = 0.

The difference of two extremal functions is constant a.e. in D.

PROOF. In this proof we write C* and 0* for C*(α0, α x ; D, {βj}) and

^ * ( α 0 , α x ; D9 {βj}) respectively. For the existence of w*, we may assume that

M/Γ D (α ί ))>0 (i = 0, 1), for, otherwise, the constant 0 or 1 belongs to @* so that

the assertion is trivial. Choose a sequence {un} in ^ * such that UFtiJIJ tends to

C* as n-voo. By using Clarkson's inequality (see [2] or [9, Lemma 1.1]) and

the fact (un + uJI2e@*9 we see that l im Λ i M ^J |F(t t Λ -n m ) | | p = 0. Applying pro-

perty (1.5) we have a p-precise function u0 such that C * = | | F M O | | J .

We observe that M̂  = max(0, min(Mn, 1)) belongs to Θ* (see [9, Theorem

4.15]) and | |FiιJ | p^l |ΓM n | | p . Hence we may assume that 0 ^ u π ^ l for all n.

By Lemma 1 there exists a constant c such that uo(γ) + c~0 (resp. 1) p-a.e. on
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ΓD(α0) (resp. Γ^cc^). We write u0 for uo + c. Suppose wn(y) = fl" for p-a.e. γ

eΓD(βj). By choosing a suitable subsequence we may assume that {αj}*=1

converges to ay By Lemma 1 again uo(y) = (ij p-a.e. on ΓD(βj). Thus ι/oe

^ * ( α 0 , αj D, {j?,}), and hence t/0 is an extremal function.

For the latter half, let w* be any extremal function for C*. For any v e ja/*(α0,

αj D, {βj})9 there exists an integrable function f(x) in D such that

\F(u* ± ευ)(x)\P - \Fu*(*)\p

ε

By Lebesgue's dominated convergence theorem,

f o r a l l ε e ( O f

(
ε-+OJD

= f ιim\rc*±™)\p- \ru*\*dχ

= ±p[ |Γuψ-2(Fu*, Fv)dx.
JD

Since M ,

( \F(u*±ευ)\Pdx ^ ( \Fu*\Pdx.
JD JD

Hence we have

[ |Fwψ-2(Fw*, Fv)dx = 0.

Conversely, suppose that u e @* satisfies the equation

( \Fu\P~2(Fu, Fv)dx = 0
JD

for every veJ^*(α0, <xι D, {βj}). Since « * - M G ^ * ( α 0 , αj D, {jSj}),

ί \FU\P-2(FU, F(w* - u))dx = 0.

JD

By using Holder's inequality, we derive that

[.\Γu\'dx£ { \Fu*\Pdx = C*.
JD JD V

This implies that u is an extremal function for C*.

Finally, let u*, v* be extremal. Since (u* + v*)/2e&*, | |F(u*- i ;*) | | p =0

by Clarkson's inequality so that u* — υ* = const, a.e. in D. This completes the
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proof of our theorem.

Let D' be a relatively compact subdomain of D with C1 boundary such that

no component of D - Df is relatively compact in D. We classify the boundary

components of dD' into u{

0

D'\ oc[Df) and {βψΊ} as we did to Dn in §1. We

extend each function of &*(OL(

O

D'\ α ^ 0 ; D\ {jS^0}) by suitable constants to

a p-precise function on D, and denote by @*(D') the family of all such functions

on D. Let A\?'\ Aψf) and Bψf) be the unions of D-D' such that dA{

Q

D>)

= oc(

o

D'\dA{D') = oL(

1

D') and dBψ'^βψ'K Let {βt} be a partition with pro-

perty (1.8). We can take some D' such that for each βt, if βt Π VJJLV Bψr)φQ

then βt n Λ ^ 0 = 0 and β t n A[D>) = 0. Let D" be such a domain. Set

and denote by ^ * * ( α 0 , α x ; D, {j8t}) the family of all p-precise functions u in D

with the following properties:

(1) For each w, there exists a sequence {ι/J in j^**(α 0, ô  D, {/?t}) such

l i m ^ ^ l l Γ K - ^ H ^ O .

(2) w(y) = 0 (resp. 1) for p-a. e. γ e ΓD(oco) (resp.

We observe that

C**( α o ,α i ; ί ) , {/».})= inf (
M 6 ^**(α 0 ,αi;D,{i3 ί }) J

We call M in ^ * * ( α 0 , α t ; D, {j8t}) an extremal function for C**(α0, α x ; Z), {jSJ)

if CJ*(α0, α t ; D, {]»,})=( | Γ M | ^ X . We denote by J^**(αo, α x ; £>, j?Q) the family

of all C°°(Z))-functions φ in D such that the support of \Fφ\ is compact in Z),

φ = 0 on U (]D for some neighborhood 1/ of α o l l ^ . Denote by ja^**(α0, α x ;

^> {)5t}) the family consisting of all φes/**(oc0, oc1; D, βQ) such that φ = const,

on each Bψ'f) n D and 0 = 0 on ( A ^ 0 U A[Dtt)) n D for some D\

Now we prove

THEOREM 2. a) TΛere ^x/sίs an extremal function w* /or C**(α0, α ^ D,

it is characterized by the condition that

ΓU*\P-2(ΓU*, Fφ)dx = 0

for every φ in S/**(OLO, α x ; D, βg). The difference of two extremal functions is

constant α. e. in D.

b) Let {βt} be a partition with property (1.8). Then there exists an

extremal function u* for C**(α0, oct; D, {βt}) and it is characterized by the

condition that
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\FU*\P~2(FU*9 Fφ)dx = 0

for every φ in j /**(a 0 , ccι; D, {/?,}). The difference of two extremal functions

is constant a. e. in D.

PROOF, a) Let {Dn} be an exhaustion of D, and u* be an extremal function

for C*(αOπ, α l M; Dm {β^}). We have seen near the end of § 1 that | |Fu*||£

= C*(αOn, α l π ; Dn9 {β^}) decreases as n->oo. As in the proof of Theorem 1,

we see that there exists a p-precise function u* in D such that

and

u*(y) = 0 (resp. 1) for p-a. e. γ e ΓD(α0) (resp.

It is easy to see that u* is an extremal function for C**(α0, OLX D, βg).

Let υ* be another extremal function. Then there exists a sequence {υn}

in ^ * * ( α 0 , α x ; D, {&}) such that \\F(vn-υ*)\\p^0. Since (u* + y*)/2e^**(α 0,

«i D, {βt}), by Clarkson's inequality we see that ||Γ(u*-i?*)||p = 0 so that u*-υ*

= const, a.e. in D.

Next, let u* be any extremal function for C**(α0, α x ; D, jSQ). Then there is

a sequence {uj in ^ * * ( α 0 , α x ; D, {)St}) such that l inv^HF(u n-w*)| | p = 0. For

any ε ( 0 < ε < l ) and φ in ja/**(ao, a x ; D, j8Q), we see that w M ± ε φ e ^ * * ( α 0 , α t ;

D, {j5t}). It follows that w* ±εφ e ^ * * ( α 0 , αi D, {jSJ). Hence, as in the latter

half of the proof of Theorem 1, we have

F u ψ - 2 ( F u * , Fφ)dx = 0.

Conversely, let u e ^ * * ( α 0 , cc1; D, {βt}) satisfy the equation

ί \FU\P-\FU, Fφ)dx = 0

for every φ in ja/**(α0, α t ; D, jSQ). Let M* be an extremal function for C**(α0,

oc1; D, βQ). Then there are two sequences {un} and {u j in J^**(α0, α ^ D ,

{J8J) such that l i m ^ l l F O ^ - t O I I ^ O and l i m ^ o o l l Γ ^ - u ^ H ^ O . Set

fn = un — un. It vanishes in a neighborhood U of α0 U α t with compact relative

boundary dUaD. We can find a function hn in C°°(D) such that hn = 0 on E7 Π D

and hn-fn = 0 on ί/ 'nD for a neighborhood V of D*-D-U. Then / π -/ i n

has a compact support in D. There exists a sequence {/j,}^! in Cg^D) such that

|
i->oo
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Since /*„+/£ e sf**(<xθ9 αx D, βQ\ we see that

\ΓU\P-2(ΓU, F(hH + f'H))dx = 0
D

[ \
JD

for all i. Using Holder's inequality and letting /-•oo, we obtain

\Γu\p-2(Γu,Γfn)dx = 0
D

for all n. Since limn_>00||F(w--w*)— F / J p = 0, Holder's inequality again gives

[ \FU\P~2(FU, F(u - u*))dx = 0.

It follows from this equality and Holder's inequality that

This implies that u is an extremal function for C**(α0, cx.λ D, βQ).

b) We note that (u + v)/! and u±εφ belong to j^**(α o , α t ; D9 {βt}) for any

w, v in j^**(α o , αx D, {j?t}) and ^ in sf **(α0, αx D, {/?t}). Then we can com-

plete the proof in the same way as a).

REMARK. In case Mp(ΓD(ot0) U ΓD(α 1))>0 two extremal functions coincide

a. e. in D.

Let us compare the results in Theorems 1 and 2. Let {βj}f=ι be a partition

with property (1.8). Let uγ and u2 be extremal functions in Theorems 1 and 2

respectively. By Lemma 1 we see that u2 e ^ * ( α 0 , αx D9 {βj}) so that C*(α0,

ocί; D, {jβy})^C**(α0, α x ; D, {βj}). We obtain the equality in a special case.

We give first

LEMMA 2 ([9, Theorem 6.16]). Let u be a p-precise function in D whose

limit along p-a.e. yeΓD vanishes. Then there exists a sequence {un} in CQ(D)

such that \\F(u — un)\\p-+0 as n->oo.

We shall prove

THEOREM 3. Suppose the boundary of D in RN U {oo} consists of mutually

disjoint closed sets α0, <xu βl9...9 βk. Then

C*(α0, α i D, {βj}) = C**(α0, αx D, {/?,.}).

PROOF. Take any u e ^ * ( α 0 , α x ; D, {βj}). Let {Dn} be an exhaustion.

If n is large, then each component of D — Dn contains points of only one of α0,

oίί9 βl9...9 βk. Hence, we may assume that it is so for w = l. Denote by Ai
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(resp. Bj) the union of the components of D — Dί such that Ainφ — D) = oίi

(resp. By n φ — D) = βj). For each j , 1 ̂  j ^ / c , there is a value 67 such that u(y)

= £>,- p-a. e. on ΓD(βj). We can find a C00 function υ in D which is equal to i ( = 0,

1) (resp. fey) on Λf — αt (resp. Bj — βj). Then u(y) — f(y) = O for p-a.e. y e Γ D .

By Lemma 2 there exists {un} in Cg^D) such that \\P(u — v — un)\\p->0 as n->oo.

Since ι; + uB 6 ̂ * * ( α 0 , αx D, {j8y}), u e ^ * * ( α 0 , αx D, {βj}) so that C**(α0,

o^; D, {βj})^\\Pu\\p

i as was observed before Theorem 2. We obtain the in-

equality C**(α0, oq; D, {^})^C*(α0, α x ; D, {^}) and hence the equality.

We obtain the following theorem with respect to Cp(α0, α x ; D), which is

proved in the same way as Theorem 1.

THEOREM 4 (cf. [5, Theorem 1]). Let D be a domain in RN and α0, aγ

be non-empty compact subsets of dD U {oo} such that α o f lα 1 = 0. Then there

exists an extremal function u0 for Cp(α0, ocί; D) and it is characterized by the

condition that

for every p-precise function v in D such that v(y) = 0for p-a. e. y e ΓD(oco) U /^(o^).

The difference of two extremal functions is constant a.e. in D.

REMARK 1. WeyΓs lemma shows that each of extremal functions for

C2(α0, α x ; /)), CJ(α0, α x ; D, {βj}) and Cf*(α0, α ^ D, {βt}) is equal to a harmonic

function a. e. in D.

REMARK 2. Let α0, αx be disjoint boundary components of a domain D.

In general Cp(α0, αA; D)^C*(α 0 , α x ; D, {βj}). Now we shall give an example

in which Cp(α0, α x ; Z))<C*(α0, α x ; D, {^ }). Let Ω = {x; l < | x | < 2 } and £ be a

closed ball in Ω. Set D = Ω-E, αo = {x; |x| = l}, αλ = {x; |x| = 2} and β = dE.

Suppose Cp(α0, α ^ D) = C*(α0, oq; D, jS). Let M* and u 0 be extremal functions

for C*(α0, αi D, β) and Cp(α0, αx D) respectively. Since u* e 0(α o , αx D),

from Theorem 4 it follows that u* = w0 except on a set of measure zero in D.

Then the extension w0 of u0 by a suitable constant on E belongs to ^ ( α 0 , αx Ω)

by (1.7). Since

Cp(α0, α i ; Ω) ̂  Cp(α0, α t ; D) =

u 0 is an extremal function for Cp(α0, αj Ω). It is well known that an extremal

function for Cp(α0, αx Ω) is given by

P-N P-N

[ (\x\r-i - 1)/(2P-I - 1) if pφ N
g(χ) =

{ (log |x|)/log2 if p = N.
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By T h e o r e m 4, g — ύ0 except on a set of measure zero in Ω, which is impossible

since uo = const, on E. Hence C p ( α 0 , α x ; Z ) ) < C * ( α 0 , α x ; D, β).

§ 3. Reation between the p-capacity and the p-module

Let D be a domain in RN. By a locally rectifiable chain in D we mean a

countable formal sum y = Σγi9 where each yf is a locally rectifiable curve in D.

If/is a non-negative Borel measurable function defined in D and y = Σγι is a local-

ly rectifiable chain in D9 then we set \ fds = Σ\ fds. Let Γ be a family of

locally rectifiable chains in D. A non-negative Borel measurable function / de-

fined in D is called admissible in association with Γ if \ fds ^ 1 for every γ e Γ.
c h

The p-module Mp(Γ) is defined by infj \ fpdx, where the infimum is taken over

all admissible functions / in association with Γ; if there is no such a function,

then Mp(Γ) is set to be oo.

Suppose that the boundary components of D are partitioned into non-

empty mutually disjoint closed sets α0, α l 5 βi9..., βk. Let β=\j)=ίβj. Each βj

is called a part of β. Let Γ* = Γ*(α0, α x ; D, {£,}) be the family of all chains γ

in D such that:

(1) y is a continuous mapping from a union of closed intervals [ti9 *2]

U[ί3, ί4] U ••• U [t2H.l9 t2n] into D with ί 1 < ί 2 < <ί 2 π .

(2) y(t1)eocθ9y(t2n)e<x1 and for each i=l, 2,..., n-l9 γ(t2ί) and y(ί 2 ί +i)

belong to the same part of β.
(3) y(t)eDiite\JU(t2i-ut2i).

(4) y n D is a locally rectifiable chain in D, where y n D is the restriction of

y to Z).

We define the p-module Mp(Γ*) to be the ^-module of the family of locally recti-

fiable chains obtained by restricting each chain in Γ* to D.

Now we prove

THEOREM 5 (cf. [9, Theorem 6.10]). Suppose that the boundary com-

ponents of D are partitioned into non-empty mutually disjoint closed sets α0,

α1 ? βί9...9 βk. Let Γ* be the family defined as above. Then C*(α0, ax; D, {βj})

= Mp(Γ*).

PROOF. In this proof we write &* and C* for ^ * ( α 0 , α x ; D, {βj}) and

C*((xθ9 (xί; D, {βj}) respectively. Since dist(α0, α 1 )>0, we see that @*Φ0,

and hence C*<co. Take any function u in 3>*. Then from property (1.4)

we see easily that

( \Fu\ds^l for p-a.e .yeί* .
γOD
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It follows that C* ̂  Mp(Γ*). Hence Mp(Γ*) < oo.

We note that we may restrict admissible / to belong to Lp(D) and to be con-

tinuous in defining Mp(Γ*) (see [9, Theorem 2.8]). Let / be such a function.

Given x e D, denote by Γ*(x) the family of all chains y in D of type given in the

definition of Γ*, condition y( ί 2 n) e α i being replaced by y(t2n) = x. Set

g(x) = inf \ fds.

We know that \ fds<co for p-a. e. curve y in D. If y is such a curve, then
h

for any points x and x° on y, where xx°c=y. It follows that g is absolutely con-

tinuous along p-a. e. curve in D. By Rademacher-Stepanov's theorem we have

\Fg(x)\^f(x) a.e. in D. Thus g is a ^-precise function in D. As in the proof

of [9, Theorem 6.10] (also cf. the arguments below) we see that

g(y) = 0 for p-a. e. ye ΓD(cc0)

and

g(y) ^ 1 for p-a.e. yeΓ^αO.

Let us show that g has the same curvilinear limit along p-a.e. curve in ΓD(βj).

For this, assume Mp(ΓD(βj))>0. Denote by Γ'D(βj) the subfamily of ΓD(β3)

consisting of curves y such that \ fds<oo, y tends to a point on βj and g has a
Jγ

finite curvilinear limit g(y) along y. Since Mp(ΓD(βj)-Γ'D(βj)) = 0, it suffices to

show that g(yι) = g(y2) for any curves yί and y2 i n Γ'D(βj). For any ε>0, we can

take two points xι e yv and x2 e y2 such that

\g(7d - g(xl)\ < β (/ = l, 2)

and

hi

where yj is the part of yf starting at x* and tending to j8j. Since each y'f tends to

a point in βj9 by adding these limiting points to y , we can regard y + yi + (-y 2 )

as an element of Γ*(x2) for each y e Γ*(x1), and we have

g(x2) g ^(x1) + ( fds +[ fds< g(χi) + 2ε.
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Similarly g(xι)<g(x2) + 2ε9 and hence \g{xι)-g{x2)\<2ε. It follows that

\giyύ - g(y2)\ ^ \g(yi) - g(*ι)\ + \g(*1) - <K*2)I + \g(*2) - g(y2)\ < 4β.

Therefore g{yι)=g{y2). Thus we see that min(#, 1) belongs to 2*. Hence

It follows that C*^Mp(Γ*).

REMARK. On a compact bordered Riemann surface, Minda [8] showed

that the extremal distances are computed in terms of principal functions having

prescribed boundary behavior (see [8, Theorem 1]). We shall show later in

Theorem 12 that a principal function is extremal for CJ(α0, αA; D, {βj}) with

respect to a regular domain D. Thus, Theorem 5 is a euclidean space version of

Minda's result.

Marden and Rodin [7] gave a useful continuity lemma for extremal length

on Riemann surfaces. Here we shall establish a similar continuity lemma for

extremal length of order p on a domain D in RN.

Let D be a domain in RN and partition its boundary components into non-

empty mutually disjoint sets α0, ocί and β such that α0 and αx are closed sets in D.

Let the boundary components in β be divided into mutually disjoint closed sets

{βj}J=i with property (1.8). Let {Dn} be an exhaustion of D of the type considered

in (1.8) such that each dDn consists of a finite number of C°°-surfaces. Then,

as in § 1, the boundary components of Dn are divided into αθM, α l n and {β(jn)}JjiΓι

Let βΛ=KJJjί"}βF and Γ* = Γ*(αOrt, α l π ; Dn9 {/?<»>}). Given γeΓ* and m^n9

as in the proof of [7, Lemma IΠ.2.1] we obtain a "sequence" Co, C l v . . , Cfc such

that C o = αOm, C f c = α l m and C^..., Ck_i are distinct parts of βm and a sequence of

"stopping times" ί i < ^ < <ί i* such that y ^ i i - O e C , . ! , y O i ^ e Q (ΐ = l,...,

fe) and γ(t)eDm if ί e W^iί/ai-i, t'ld- W e define y||Dm to be the restriction of

y to [ίi, ίi]U[ί3> ίi]U — U[ί2*-i» ίifcl w h i c h w e c a l 1 t h e domain of y||Dm.

y(ίi), i = l,..., 2/c, are called stopping points for y||Dm.

Let t be the family of all locally rectifiable chains y in D such that:

(1) y is a continuous mapping of an open dense subset Jy of (0, 1) into D.

(2) If t0 <£. Jy and 0 < t0 < 1, then there exists a part β} of β such that lim,-ίoy(0

belongs to βj.

(3) Iim t-oy(0 ( r e s P l i m ^ ! ^ ) ) belongs to α0 (resp. α ^

Next, we shall define a family Γ* following Marden and Rodin [7]. A

locally rectifiable chain y in D belongs to Γ* if either y is some chain in t or if

y is a continuous mapping of an open dense subset Jy of (0, 1) into D such that:

(1) If to£Jy and 0 < * 0 < 1 , then there exist sequences {rM}, {sn} in Jy and a



On a /^-Capacity of a Condenser and KDpSu\\ Sets 137

part βj of β such that rn T ί0, ««I '0 and y(rn)-+βp y(sn)->βj. If fo = 0 (resp. 1),

we require only a sequence {sn} (resp. {rn}) from J y with sn j 0 (resp. rπ T 1) and

y(sM)->α0 (resp. y(rB)-><*!).

(2) There is an exhaustion {DM} of D such that the restriction of y to y~1[y(Jy)

Π 5 j , which we denote by y|Dπ, is a chain in /)„ and y\\Dn — (y\Dn)\\Dn eΓ* for

each ng l.

(3) If ί e J y, then there is n0 such that t belongs to the domain of y||Dn for

all

LEMMA 3 (cf. the proof of [7, Lemma IΠ.2.1]). Let f be a non-negative

continuous function on D, and {Dn} be an exhaustion of D. If yn e Γ* = Γ*(αOn,

α l M; £)„, {β(jn)}) for each n, then given ε>0, there exists y(έ) in Γ* satisfying

[ /ds^liminff fds + ε.
Jy(ε) n - ^ 0 0 Jγn

PROOF. We may assume that lim^ool fds exists and is finite. As in

the proof of [7, Lemma III.2.1] we can find a subsequence of {yn}, which we again

denote by {yj, such that for each m, all γn\\Dm (n^m) have the same sequence of

boundary components on dDm and \imn^O0x
i

nfm = xi

medDm for all i and m, where

xj,fTO (ί = l,..., fc(m)) are the stopping points for yn\\Dm. Let S(x, r) denote the

closed JV-ball of radius r and centered at x. Since δDm is smooth and/is continu-

ous, we can take rim>0 (ί = l,..., k(m)) with the following properties:

(1) For each'/, S^, ritJcDm+i and S(xJ,, r l i in) n (a/>m-CJΰ='0, where

Cι

m is the boundary component of Dm such that xί, e Cι

m.

(2) Any j e ^ x L rUm) n Dm (resp. δ S ί x L η . J - ^ , S(x<,, r ί t j n θ D J and

*« can be joined by a curve in " S(xi,, rUm) n Dm (resp. S(x/π, rUm)-Dm, S(xL r i jm)

ΠδDJ along which \fds<εl2m+2k(m).

By taking a subsequence again we may assume that |xi> w — Xml<ri,m f° r all

i, n and m with n ^ m . Denote by yi>m the subarc of yn\\Dm connecting x^m

and a point j>i.MeyJZ)m Π 3S(xi,, r j f j in S(xi, rί>m) n /)m and by y^m the subarc

of γn-γn\\Dm connecting xj,>m and a point ί i , w e ( 7 π - y J | D J n 55(xi,, r ί jm) in

5(xj,, r / m) for each m^n and i = 1,..., /c(m). For each n, we modify yn as follows:

for each m<n and Ϊ = 1,..., /c(m), replace a subarc yj,,w + 7i,,m of yrt by a curve

in S^xj,, rim) which passes through x̂ , and connects y^^ and 'J?^m and along which

\/φ<ε/2m + 1/c(m), for each ί = l,..., k(n), replace y^^ by a curve in 5(x^, rin)

f]Dn which connects x^ and y^^ and along which \fds<ε/2n+2k(n). The

modified curve will be denoted by 7*. We have

( fds£\ fds+j-.
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Letf m = {y*||Dm-7*||DO T_1; n^m} (m = l, 2,...), where Do = 0, and choose yme

Γm such that

[ fds < inf [ fds + —^ .

Then, we see

( fds < f inf ί /ds + Σ W < ( / * + -f- < ( /ds + ε.

The chain y(ε)= ΣίΓ=i7« c a n be regarded as an element of Γ* by a suitable para-

metrization (cf. the proof of [7, Lemma ΠI.2.1]). From the above inequalities

we have

\ fds = lim \ fds ^ lim \ fds 4- ε.
Jγ(ε) w-*ooJ yi + + y n n-*oojyn

Thus y(ε) satisfies all the requirements.

LEMMA 4 (cf. [7, Lemma III.2.1] and [9, Theorem 2.6]).

lim MJΓ*) = MJf).
n-*oo

PROOF. In general, M p ( f )^M p (Γ*) . So assume Mp(t)<co. As in

the proof of [7, Lemma III.2.1] we have Mp(t) = Mp(Γ*). We may restrict ad-

missible/to be continuous in D in defining Mp(Γ*) (cf. [9, Theorem 2.8]). Given

ε, 0 < ε < 1, choose a continuous function/in D which is admissible in association

with Γ* such that \ fPdx<MJΓ*) + ε. We infer that there is n0 such that
r JD

if n^n0 then \ fds7>l-ε for every γ in ΓJ. In fact, otherwise there would be
h r

nί<n2<"' and γn.eΓ*., j = l9 2,..., such that \ fds<l-ε for each . We
1 J jynj r

apply Lemma 3 and find γ(ε) in Γ* which satisfies \ fds^l—ε. This is a
Jy(β)

contradiction. Thus//(I—ε) is admissible in association with Γ*, and hence

+

for n ^ n 0 . It follows that \\mn^Mp(Γ*) = MP(Γ*). Hence we have

\imn^o0Mp{Γ*) = Mp{f).

On account of Theorem 5 and Lemma 4, we have

THEOREM 6. Suppose that the boundary components of D are partitioned
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into mutually disjoint sets α0, αA and β such that α0 and a1 are closed sets in D.

Let the boundary components in β be divided into mutually disjoint closed sets

{βj} with property (1.8). Then C**(α0, α x ; D, {£,}) = Mp(Γ).

REMARK. AS to Cp, the following result is well-known (see, e.g., [9,

Theorem 6.10] or [13, Theorem 3.8]): Let D be a domain and α0, αx be non-

empty compact subsets of dD such that α0 n ccί = 0 . Let Γ be the family of all

curves connecting α0 and ocί in D. Then Cp(α0, α t ; D) = Mp(Γ).

Finally we are concerned with the case that β is given the canonical parti-

tion throughout the rest of this paper. Let Γ* be the family of all arcs in D

connecting α0 and OL1. Mp(Γ*) is the p-module of the family of locally rectifiable

chains in D obtained by restricting each arc in Γ* to D. Since each γ in Γ can be

extended continuously to [0, 1] with values in D, Mp(Γ*) = Mp(Γ). Thus we

have

THEOREM 7. Let Γ* be the family of all arcs in D connecting α0 and aί.

Then C**(cc0, α x ; D, βG) = M p (f*).

§4. KD'-null sets

Let £ be a compact set in RN and G be a bounded open set which contains

£. We denote by Cf(G; £) the family of all functions φ in C$(G) such that Fφ

vanishes in some neighborhood of £. Let KDP(G) (resp. KDP(G-E; £)) be the

class of p-precise functions u in G (resp. G —£) satisfying the condition that

[ \FU\P~2(FU, Fφ)dx = 0
JG

for every φ in C$(G) (resp. C?(G; £)). We say that a compact set £ is a KDP-

null set with respect to G if every function u in KDp(G — E; £) can be extended to

a function belonging to KDP(G). The class of KD^-null sets with respect to G

is denoted by iV£DP. The following lemma is an easy consequence of the defini-

tion.

LEMMA 5. If Ee N%DP, then E e N%X

DP for any bounded open set Gx contain-

ing G.

Next we prove

LEMMA 6. If Ee N%DP, then RN-E is a domain.

PROOF. Suppose R" — E is not a domain, and denote by Ω the union of
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all bounded components of RN-E. Take a ring domain Gί = {x; r ^ l x - x 0 !

<r2} such that G ^ G u Ω . Let αo = {x; I x - x 0 ^ ^ } and OL1 = {X; | χ - χ ° | = r2}.

Let u0 be an extremal function for Cp(α0, OL1;G1—E\J Ω). Setting ύ = u0 on Gx

- £ U Ω and w=0 on Ω, we easily see that ueKDP(Gί-E, E) by Theorem 4.

By Lemma 5, EeN%P, so that there exists a ^-precise function ux in KD*(G{)

such that MJ = M in Gί-E. Obviously uΛ belongs to ^ ( α 0 , a1; G^. Since ut

E KDp(Gγ\ by using Lemma 2 and Holder's inequality we see that

j G i

for every p-precise function υ in Gx such that φ ) = 0 for p-a.e. 7 e Γ G l . From

Theorem 4 it follows that uγ is extremal for Cp(α0, αx Gγ). It is known that an

extremal function for Cp(α0, αx Gj) is given by

Γ / p-N P-N\ // P-JV P-JV\

M x - x O I ^ ^ - r ^ ^ y ^ ^ ϊ " - A Ί ^ Γ J i f pΦN

(4.1) ^ W - ^ ι v . _ v o | \ / ^ ^
II Ό — N.

By Theorem 4, g = u1 except for x in a set of measure zero in Gx. This is a con-

tradiction since uί = 0 on Ω. Thus we see that RN — E is a domain.

A bounded domain D is called a ring domain if it has two boundary com-

ponents. We shall show a necessary condition for EGN%DP.

THEOREM 8. If EeN%DP, then Cp(oto, α t ; D - £ ) = C**(α0, α x ; £ - £ , j8c)

/or euery r/n r̂ domain D containing G, w/zere α0 αnί/ αx are two boundary com-

ponents of D and β = dE.

PROOF. By Lemma 6 we note that Cp(α0, α x ; D — E) and C**(α0, α ^ D —£,

j9Q) are well-defined. Let u0 and w* be extremal functions for Cp(α0, acί; D-E)

and C**(α0, a^, D-E, βQ) respectively. By Lemma 5, EeN%DP. Hence there

exist two functions w0 and M* in KDP(D) such that uo = uo in D - £ and M* = M*

in £>-£. These imply that u0, w* ε ^ ( α 0 , aί D),

VUO\P-\VUO, Fφ)dx = 0
JD

for every </> in C$(D) and

( F M * | ^ - 2 ( F M * , Vφ)dx = 0

for every φ in CQ'CD). AS in the proof of Lemma 6, we conclude that u0 and M*

are extremal for C/α 0 , α^; Z>). By Theorem 4, wo = w* a.e. in £). Hence Cp(α0,
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COROLLARY 1. If EeN%DP, then the N-dimensional Lebesgue measure of

E is equal to zero.

PROOF. Take a ring domain D = {x; rί<\x-x°\<r2} such that

Let αo = {x; \x-x°\ = rί}, αx = {x, | x -x ° | = r2} and 0 = d£. In general Cp(<x0,

α x ; D - £ ) g C p ( α 0 , α ^ D)£C**(μθ9 α x ; D - £ , jSfi). By Theorem 8, we see

Cp(α0, 0Lί; D — E) = Cp(oc0, α x ; D). Let ut be the function defined by the right

hand side of (4.1). Then uί is an extremal function for Cp(α0, OL1; D) and its

restriction to D — E belongs to ^ ( α 0 , o^; D — E). Hence

A»dx = Cp(α0, α x ; D) = Cp(α0, α t ; D - £) ύ

which implies

( \Vux\*dx = 0.
E

Since IΓwJ^O on D, we conclude that the iV-dimensional Lebesgue measure of

E is equal to zero.

§ 5. Relations between AD''-null sets and FD{-nu\\ sets

In [6], Hedberg considered the following notion of null sets. For an open

set G in RN, denote by FDp(G) the class of real valued harmonic functions u

in G such that \Fu\ belongs to LP(G) and u has no flux, i.e., \ du/dvdS = 0 for all
Jc

(N— l)-cycles C in G. A compact set E is said to be removable for FDp if for some
open set G containing E every function in FDp(G — E) can be extended to a func-

tion in FDP{G). The class of removable sets for FDP is denoted by iVFDP. De-

note by W{(G) the Sobolev space of real valued functions/in Lp(G) whose deriva-

tives in the distribution sense are functions in LP(G). When G is bounded | |Γ/ | | P

is a norm on CQ(G) by the Poincare inequality, and the closure in W{(G) of

C$(G) with respect to this norm is denoted by WP(G). Hedberg proved

THEOREM A ([6, Theorem 1, b]). E e NFDP if and only if Cf(G; E) is dense

in W\(G)for some bounded open set G=>£, where q = p/(p—l).

Let D be an N-dimensional open rectangle with sides parallel to the co-

ordinate planes, £ be a compact set in D (possibly an empty set) and Gx be a

bounded open set containing D. We set

Mp(D - E) = inf [ \Fφ\pdx (i = 1,..., N),
ψ JD-E
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where the infimum is taken over all φ e Cf(Gx E) such that φ(x) = 0 on αj which

is one of the sides of D parallel to the coordinate plane Xι = 0, and φ(x)=\ on

αj which is the opposite side of α .̂ Obviously M£(D — E) does not depend on

the choice of Gx.

THEOREM B ([6, Theorem 4]). EeNFDq if and only if the equalities M\fJ)

— E) — Mi

p{D\ i = l,..., N, hold for some open rectangle D=>£.

By using these theorems we shall give some results on KDp-nu\l sets.

LEMMA 7. // Cf(G; E) is dense in WP(G) for a bounded open set G, then

the N-dimensional Lebesgue measure of E is zero and RN — E is a domain.

PROOF. Choose a function φ e CQ(G) such that φ(χ) = χ1 on a neighborhood

of E for x = (xj,..., xN). By the assumption of the lemma there is a sequence

{φn} in Cf(G; E) such that

\P(φ-φn)\Pdx = 0 .
G

Then

\ dx = \ \F(φ - φn)\?dx < \ \F(φ - φnψdx.
JE JE JG

Hence [ dx = 0.
JE

Next, suppose RN — E is not a domain. Then there is a non-empty bounded

domain ΩdRN — E such that δΩczE. Take a bounded open ball Gx containing

G and a function φeCQ{Gx) such that φ = \ on Ω. Let φ(x) = x1φ(x) for x

= (x l 5..., xN). By the assumption of the lemma, we easily see that Cf(Gι; E)

is dense in W^G^. Since φ(x) e C^G^, there is a sequence {φn} in C f ^ £)

such that

limί \F(φ - φn)\pdx = 0.

We take a subdomain Ω' of Ω such that δΩ' consists of a finite number of C1-

surfaces βi 0 = 1,..., m) and φn = const, on each /?,-. By using Stokes' theorem,

we have

)Ωdxί

It follows that
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By Holder's inequality, we have

Since the right-hand side tends to zero as n-»oo, we obtain a contradiction.

Therefore RN — E is a domain.

THEOREM 9. Let q = pj{p-1). // Cf(G; E) is dense both in WP(G) and in

ty or a bounded open set G, then E belongs to N%DP.

PROOF. By Lemma 7, RN — E is a domain and the Λf-dimensional Lebesgue

measure of E is equal to zero. Moreover, since Cf(G; E) is dense in W\{G),

as in the first half of the proof of [6, Theorem 1], we see that for any u in KDP(G

-E; E) there is a function in WP(G) which is equal to u in G-E. Hence, by [9,

Theorem 4.21], there is a p-precise function u 0 in G such that uo = u and duo\dxi

= duldxι (/ = !,..., N) except on a set of measure zero in G — E. Next, since

Cf(G; E) is dense in W{{G\ for any ψ in C$(G) there is a sequence {φn} in Cf(G;

E) such that

limί \F(ψ - φn)Vdx = 0.
n-+oojG

Then, by Holder's inequality we have

\Fuo\"-\Fuo, Vφn)dx

= lim \ \Fu\p-\Fu, Fφn)dx

n->oojG-E

= 0.

Hence u0 ε KDP(G), SO that £ ε JVgDP.

THEOREM 10. IfEeN^DP, then C?(G; E) is dense in WP(G).

PROOF. By Theorems A and B it is enough to show that

Mj,(D — E) = M^D) (ί = 1,..., JV)

for some open rectangle D containing G. Take a bounded open set

First we observe by using Lemma 2 that

MiJD-E) = mϊ[ \Fu\Pdx,
u JD-E
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where the infimum is taken over all p-precise functions u defined in G0 = Gί—E

~ α j - α ΐ such that w(y) = 0 for p-a.e. yeΓGo((xi

o)\jΓGo(dGί),u(y) = l for p-a.e.

y e ΓGo(αj) and u = const, on each component of some neighborhood of E. More-

over, in the same way as in Theorem 2, we have a /^-precise function u0 defined

in D-E such that uo(y) = Ofor p-a.e. ye/"V_£(αj), uo(y) = \ forp-a.e. ye/V £ (α5),
Γ Γ

M£(Z) — £ ) = \ |Fι/ 0 | pdx and \ |Fwo |p~2(Fι/o, P\j/)dx = 0 for every ^ in

C?(D; E). By Lemma 5, we see that EeN%DP. Since uoe KDP(D-E; E\

there exists a function M0 in KDP(D) such that ί/0 = u0 in D — E. On the other hand

Mi

p(D) = Cp(oii

o, αj; D). Obviously woe^(α{), αj; D). Take </>0 in C^(D) such

that φ0 = 1 on a neighborhood of £. For any p-precise function v in D such that

v(γ) = 0 for p-a. e. y e ΓD(αj) U ΓD(oc[), we have

|Fwo |p-2(Fwo, Vυ)dx
D

\Fύo\p~2(Fuo, F(φov))dx + \ \Fύo\p~2(Fuo, F(v(l - φo)))dx.
D JD

Using Lemma 2 and the fact ύ0 6 KDP(D) we conclude that

D

From Theorem 4 it follows that ύ0 is an extremal function for Mρ{D). By

Corollary 1, we have that Mρ(D-E) = Mρ(D) for all f = l,..., JV. The proof is

completed.

COROLLARY 2. If p}>2, then EeN%DP if and only if Cf(G; E) is dense in

Wp{G).

COROLLARY 3. // p ^ 2 , then the property EeN%DP does not depend on

the choice of G.

By virtue of Corollary 3, in case p^2 we may omit the suffix G in the nota-

tion N%DP and have a notion of KDP-ΏU\\ sets. We combine these results with

Theorem A and have the following theorem.

THEOREM 11. If p^.2, then a compact set E is a KDp-null set if and only

ifE is removable for FDq, where q — plip—^)-

REMARK. In case p^2, by Corollary 2 any compact subset of a

set is a KDp-nvλ\ set. If Eί9...9 En are totally disconnected and KD^-null sets,

then so is £ f Π Ej. Hence we see that \Jn

i=ιEι e NKDP.
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§6. The casep = 2

Here we shall give a characterization of XD2-null sets. Let D be a bounded

domain with a finite number of boundary components α0, ccx and βj ( j = l,..., fe).

Denote by ^ ' = .0'(αo, α x ; D, {jβ,}) the family of all C°°(Z))-functions u in D

each of which is identically equal to 0 (resp. 1, a constant aj9j = l,...9k) in the

intersections with D of some neighborhoods of α0 (resp. al9 /?,, J = l , . . . , /c).

LEMMA 8. C*(α0, 0̂  D, {β,})= inf ί \Fu\Pdx.
ue9'JD

PROOF. Put C;= inf ( |Fw|*dx and C* = CJ(α0, α x ; D, {jS,}). Obvious-

ly, C*^Cp. For any tie ^ * ( α 0 , «! D, {βj}) there is / e ^ ' such that (u-f)(y)

= 0 for p-a.e. y e Γ D . By Lemma 2 we can take {/„}£=! in C$(D) such that

l im^ o o | |F(M-/-/ M ) | | p =0. Therefore KmH^\\r<J+fJ\\p=\\Γu\\p. Since / + / . e

In the same way as Lemma 8, we have

LEMMA 9 (cf. [9, Theorems 6.13 and 6.14]).

C p (αo,α 1 ;D) = infί |Γw
u J D

where the infimum is taken over all C°°(D)-JAuctions u each of which is identi-

cally equal to 0 and 1 in the intersections with D of some neighborhoods of α0

and ctί respectively.

Let D be a regular domain, that is a domain for which 3D consists of a finite

number of compact C^-surfaces α0, a1 and β} ( j = l,..., k). We know (cf. [11])

that there exist principal functions ht (i = 0, 1) with respect to α0, OLX and D, which

are characterized by the following properties:

(1) ht is harmonic in D and is continuous on 25;

(2) hi = 0 on α 0 and h{ = 1 on αj

(3) dho/dv = 0 on each /?,-, /i1=const. on each βj and \ dhίldvdS = 0 for

= 1,..., fc, where d/dv indicates the normal derivative and dS is the surface ele-

ment.

In case p = 2, by Green's formula and Lemmas 8 and 9, we have

T H E O R E M 12. Let D be a regular domain with dD = <x0 U α x U βι U ••• U βk.

Then C?(α0, α x ; D, {£,•})=( \Fht\
2dx and C2(α0, « ! ; / ) ) = ( \Fho\

2dx.
JD JD
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We note by Theorem 11 that the notion of KD2-nul\ sets coincides with the

notion of KD-null sets defined in [12]. The author showed in [12, Theorem 3]

a relation between NKD and the span for the canonical partition of E. By this

result and Theorem 12, we obtain the following theorem.

THEOREM 13. EeNKD2 if and only if C2(α0, α t ; D - £ ) = Cf*(α0, α x ;

D — E, j?Q) for every unbounded domain D such that DZDE and 3D consists of

two disjoint compact boundary components α0, α l 5 where β = dE[) {oo}.

PROOF. Suppose EeNKD2. Let D be an unbounded domain such that

D D £ and dD consists of two disjoint compact boundary components α0, oc1.

Let u0 and u* be the extremal functions for C2(α0, o^; D—E) and C|*(α 0 , ccί;

D — E, βQ) respectively. Take a bounded domain G such that G=>£ and RN — G

z>α0, α x. Since u0, u*eKD2(G — £ ; £ ) , there exist 2-precise functions ύ0, ύ*

in KD2(G) such that uo = ύo in G-E and w* = β* in G-E. Let

I «0

and

in

in

in

in

G

D-

G

D-

G

G.

We take φ0 e CQ(G) such that ψo = l on a neighborhood of E. We extend φ0

by 0 to RN-G. Let ^ be any function in C^iD) such that the support of \Fφ\

is bounded and ψ = 0 on α0 U α t . Then we have

ί (Fu*,

ί Γw*, F(φφo))dx

= ί (Γw*, Γ(ιA(l - ΦoWx + ί (Γfi , F(φφo))dx.
JD-E JG

Since φφoeCo(G), the last integral vanishes. Since φ(l — φ0) is a function in

C°°(D-£) such that the support of |F0Kl-ιAo))l i s b ° u n d e d > Ά(l~^o) = °

on α0 U αx and φ(l-φo) = O on a neighborhood of £, we have \ (Fw*,

c:=0. Hence

ί (Fίί*, FiA)^ = 0.
JD
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Let ΓD(oo) be the family of all locally rectifiable curves in D each of which starts

from a point of D and tends to the point at infinity. By [9, Theorem 9.12],

u* — M0 has a finite constant limit along 2-a. e. curve in ΓD(oo). By using Lemma

2 and Holder's inequality, we have

[ *9 F(w* - ύo))dx = 0.
JD

From this we see that

\ \ ^ [ \Γuo\
2dx.

D JD

By Corollary 1 to Theorem 8,

[ \ΓuQ\2dx.
)D-E JD-E

Since the converse inequality is trivial, we conclude that

C2(α0, ax D - E) = CJ •(«<» «i *> - £ /*e).

Conversely we suppose that C2(α0, α x ; D —£) = Cf*(α0, α x ; D —£, j5Q) for

every D as in the theorem. Take distinct two points x°, x 1 in the domain RN — E

( = £ c ) and balls S°, S} of radius r, with centers at x°, x 1 and with disjoint clo-

sures in Ec. Let {£>„} be an exhaustion of Ec such that Dt =>S°, S}. Denote by

J?7 ( j = l,...,j(n)) the boundary components of Dn. We know (cf. [11]) that there

exist principal functions Pin (i = 0, 1) with respect to x°, x1 and Dn9 which are

characterized by the following properties:

(1) Pin is harmonic in Dn-({x0} U {x1});

(2) Pi » = - i 1

 Q I N - 2 + hi n on Sζ9

P - 1
Γi,n "~ Λ I v γ l IJV-2

where σ is the surface area of unit sphere in RN, and hin and fin are harmonic in

5? and SJ respectively and/ ί>π(x1) = 0;

(3) dP0Jdv = 0 on δDπ, P 1 > n = const, on each ^ and [ dPuJdvdS = 0 for

j βj

We see that the limits

^ = lim /iί>n, /f = lim/i>π (i = 0, 1)

exist and the convergences are uniform on every compact subset of Ec. Set
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α 0

an = maxPO t / f(x), a'n = minP 0 > n (x),
xeoίQ jceαo

b; = maxP0 > l l(x), bπ = minP 0 , n W;
xeαi xεαi

Λ, = {*; Λ>,»(*) ^ an}, A'n = {x; P 0, n(x)

and

cc'ίn =

For sufficiently small r, we easily see that

C 2(α 0 π, α i«; Dn~An- Bn) g C 2(α 0, α t ; DM - S?

By Theorem 12, (Λ n -P 0 , n )/(α n -fc π ) is extremal for C 2 (α 0 n , α l π ; D I I - i4 l l -B I I ) .

Therefore we have

From this we derive that

max h0%n - min/ 0 > π = an -bn — σ r N ~ 2

N-2

Similarly,

mm hOtn - max/O f W = c ( , , . D ., __ ,. - N_2 .

From the above inequalities we see

, . . . JV-2 2
max nOtn — min/O ί Π g ^ - - — α . $ ^ §o ̂ ^i\ ~~ ~^p^τ

^ min h0$n - max /OfI l.

Letting π-> oo, we have

max h0 — mm/o ^ ^-r κc — S^ - S1) "" ~ — ^ 2 " — m i n ° "" m a x / o
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In the same way we have

N — 2 2

max hx - min/i ^ ^ ( ψ ^ β , - — ^ ^ min/^ - max/ l t

By assumption the equality

C2(α0, α i ; £ ' - S? - SJ) = cr(«o, «i £ c - Sf- S£ βQ)

holds for every small r>0. Hence

max/i0 — min/ 0 ^ min/ii —
xεαo jceαi xeαo Jcεαi

and

max/ίi - min/i ^ min/i0 - max/0.
xeαo xεαi xeαo xεαi

Since/ ί(x1) = 0 (i = 0, 1), letting r-^0 we have that ho(x°) = hι(x°). This means

that the span is equal to zero for all couples (x°, x1) of distinct points in Ec,

so that by [12, Theorem 3], we conclude that EeNKD2. The proof is com-

pleted.

REMARK. This theorem is a euclidean space version of Rodin's result on

Riemann surfaces in [10].

References

[1] L. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets,
Acta Math. 83 (1950), 101-129.

[ 2 ] J. A. Clarkson: Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[ 3 ] B. Fuglede: Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
[ 4 ] F. W. Gehring: Extremal length definitions for the conformal capacity of rings in space,

Michigan Math. J. 9 (1962), 137-150.
[5] F. W. Gehring: Rings and quasiconformal mappings in space, Trans. Amer. Math.

Soc. 103 (1962), 353-393.
[ 6 ] L. I. Hedberg: Removable singularities and condenser capacities, Ark. Mat. 12 (1974),

181-201.
[7] A. Marden and B. Rodin: Extremal and conjugate extremal distance on open Riemann

surfaces with applications to circular-radial slit mappings, Acta Math. 115 (1966),
237-269.

[8] C D . Minda: Extremal length and harmonic functions on Riemann surfaces, Trans.
Amer. Math. Soc. 171 (1972), 1-22.

[ 9 ] M. Ohtsuka: Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima
Univ., 1973.

[10] B. Rodin: Extremal length and removable boundaries of Riemann surfaces, Bull. Amer.
Math. Soc. 72 (1966), 274-276.



150 Hiromichi YAMAMOTO

[11] B. Rodin and L. Sario: Principal functions, D. Van Nostrand, Princeton, 1968.

[12] H. Yamamoto: On KD-null sets in N-dimensional cuclidean space, J. Sci. Hiroshima

Univ. Ser. A-l Math. 34 (1970), 59-68.

[13] W. P. Ziemer: Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43-51.

Department of Mathematics,

Faculty of Science,

Kόchi University




