Note on KO-Rings of Lens Spaces Mod 2^r

Teiichi KOBAYASHI and Masahiro SUGAWARA (Received August 26, 1977)

§1. Introduction

Let η be the canonical complex line bundle over the standard lens space mod p^r :

 $L^{n}(p^{r}) = S^{2n+1}/Z_{p^{r}}$ (p: prime, $r \ge 1$; $n \ge 0$).

Then, we have the stable classes

(1.1)
$$\sigma = \eta - 1 \in \widetilde{K}(L^n(p^r)), \quad r\sigma = r\eta - 2 \in \widetilde{KO}(L^n(p^r)),$$

where r is the real restriction. On the orders of the powers of these elements, the following results are proved in [1, Th. 1.1]:

- (1.2) $\sigma^i \in \widetilde{K}(L^n(p^r))$ is of order $p^{r+\lfloor (n-i)/(p-1) \rfloor}$ for $1 \leq i \leq n$, and $\sigma^{n+1} = 0$.
- (1.3) If p is an odd prime, then $(r\sigma)^i \in \widetilde{KO}(L^n(p^r))$ is of order $p^{r+\lfloor (n-2i)/(p-1) \rfloor}$ for $1 \leq i \leq \lfloor n/2 \rfloor$, and $(r\sigma)^{\lfloor n/2 \rfloor+1} = 0$.

The purpose of this note is to prove the following theorem, by using the partial result of M. Yasuo [5, Prop. (3.5)] which shows the theorem under the assumption $n \neq 1$ (4):

THEOREM 1.4. In the reduced KO-group $\widetilde{KO}(L^n(2^r))$ $(r \ge 2)$, the order of $(r\sigma)^i$ is equal to

$$2^{r+n-2i+1} \text{ if } n \equiv 0 (2), \quad 2^{r+n-2i} \quad \text{if } n \equiv 1 (2), \quad \text{for } 1 \leq i \leq \lfloor n/2 \rfloor;$$

$$1 \quad \text{if } n \neq 1 (4), \quad 2 \quad \text{if } n \equiv 1 (4), \quad \text{for } i = \lfloor n/2 \rfloor + 1;$$

$$\text{for } i \geq \lfloor n/2 \rfloor + 2$$

and 1 for $i \ge [n/2] + 2$.

As an application of this theorem, we have the following corollary by the method of M. F. Atiyah using the γ -operation.

COROLLARY 1.5 (cf. [3, Th. C, Prop. 7.6]). The (2n+1)-manifold $L^n(2^r)$ $(r \ge 2)$ cannot be immersed in the Euclidean space R^{2n+2L} and cannot be imbedded in $R^{2n+2L+1}$, where

Teiichi KOBAYASHI and Masahiro SUGAWARA

$$L = \begin{cases} \max\left\{i \mid 1 \le i \le [n/2], \binom{n+i}{i} \ne 0 \ (2^{r+n-2i+1})\right\} & \text{if } n \equiv 0 \ (2), \\ \max\left\{i \mid 1 \le i \le [n/2], \binom{n+i}{i} \ne 0 \ (2^{r+n-2i})\right\} & \text{if } n \equiv 1 \ (2). \end{cases}$$

§2. Some relations in $\tilde{K}(L^n(2^r))$

In this section, we study some relations in the reduced K-group

$$\widetilde{K}(L^n(2^r)) \qquad (r \ge 2).$$

The element $\sigma \in \tilde{K}(L^n(2^r))$ in (1.1) satisfies the relations

(2.1)
$$\sigma^{n+1} = 0, \quad (1+\sigma)^{2^r} - 1 = 0,$$

(cf., e.g., [1, Prop. 2.6]). Consider the following elements in $\tilde{K}(L^n(2^r))$:

(2.2)
$$\sigma(0) = \sigma, \ \sigma(s) = (1 + \sigma)^{2s} - 1 = 2\sigma(s-1) + \sigma(s-1)^2 \qquad (0 < s \le r).$$

LEMMA 2.3 ([2, Prop. 3.2]). For any integers $k_0, ..., k_{s-1} \ge 0$ and $k_s > 0$ $(0 \le s \le r)$, we have the following in $\tilde{K}(L^n(2^r))$:

 $2^{r-s+h}\prod_{t=0}^s\sigma(t)^{k_t}=0 \ if \ r-s+h\geqq 0,$

$$\prod_{t=0}^{s} \sigma(t)^{k_t} = 0 \text{ if } r - s + h < 0,$$

where $h = h(k_0, ..., k_s) = 1 + [(n - 1 - \sum_{t=0}^{s} 2^t k_t)/2^s]$.

PROOF. If s=0 and $h=n-k_0<0$, then the relation is obtained from $\sigma^{n+1}=0$ in (2.1).

Assume inductively that $h \ge 0$ and the relation on $\alpha \sigma(s)^k$ ($\alpha = \prod_{t=0}^{s-1} \sigma(t)^{k_t}$) holds for $k > k_s$. Since $(1 + \sigma(s))^{2^{r-s}} - 1 = 0$ by (2.1-2), we have

$$2^{r-s+h}\alpha\sigma(s)^{k_s}+\sum_{i=2}^{2^{r-s}}\binom{2^{r-s}}{i}2^{h}\alpha\sigma(s)^{k_s-1+i}=0.$$

If $i=2^{\nu}j \ge 2$ and j is odd, then $h(k_0,...,k_s-1+i)=h-(i-1)\le h-\nu$. Thus the above equality and the inductive assumption imply $2^{r-s+h}\alpha\sigma(s)^{k_s}=0$.

Assume inductively that $s \ge 1$, h < 0 and the relation on $\alpha \sigma (s-1)^k$ $(\alpha = \prod_{t=0}^{s-1} \sigma(t)^{k_t})$ holds for k > 0. Then, by using (2.2), we see

$$2^{r-s+h}\alpha\sigma(s)^{k_s} = \sum_{i=0}^{k_s} \binom{k_s}{i} 2^{r-s+h+i}\alpha\sigma(s-1)^{2k_s-i} = 0,$$

as desired, since $h(k_0, ..., k_{s-2}, k_{s-1} + 2k_s - i) \leq 2h + i < h + i$.

Therefore, we have the lemma by the induction.

q.e.d.

LEMMA 2.4. For any integers $k_0, ..., k_{s-1} \ge 0$ and $k_s > l \ge 0$ $(0 \le s < r)$, we have the following in $\tilde{K}(L^n(2^r))$:

$$2^{h'} \alpha \sigma(s)^{k_s} = (-1)^l 2^{h'+l} \alpha \sigma(s)^{k_s-l} \quad (\alpha = \prod_{t=0}^{s-1} \sigma(t)^{k_t}),$$

where h' is any non-negative integer such that

$$h' \ge r - s + [(n - 1 - \sum_{t=0}^{s} 2^{t}k_{t})/2^{s+1}].$$

PROOF. We see easily that $2^{h'+l}\alpha\sigma(s)^{k_s-l-2}\sigma(s+1)=0$ if $k_s-l>l\geq 0$, by the above lemma. Thus we have the lemma by $\sigma(s+1)=\sigma(s)^2+2\sigma(s)$ in (2.2). q. e. d.

LEMMA 2.5. If 0 < s < r, $d \ge 0$, k > 0 is even and $n < d + 2^{s}k$, then we have the following in $\tilde{K}(L^{n}(2^{r}))$ $(r \ge 2)$:

$$2^{r-s-2+k} \sum_{t=0}^{s} 2^{k(2^{t}-1)} \sigma^{d} \sigma(s-t) = 0.$$

PROOF. For any $0 < t \leq s$, we show the equality

(*)
$$2^{r-s-1}\sigma^d(\sigma(s-t+1)^{2^{t-1}k} - \sigma(s-t)^{2^tk}) = 2^{r-s-2+2^tk}\sigma^d\sigma(s-t).$$

By (2.2), the left hand side of (*) is equal to

$$\sum_{i=1}^{2^{t-1}k} \binom{2^{t-1}k}{i} 2^{r-s-1+i} \sigma^d \sigma(u)^{2^t k-i} \qquad (u=s-t \ge 0) \,.$$

If $i = 2^{v}j$ and j is odd, then we see easily from $n < d + 2^{s}k$ that

$$r - u - 1 + 1 + [(n - 1 - d - 2^{u}(2^{t}k - i))/2^{u+1}]$$

$$\leq r - s - 1 + i + t - v.$$

Thus, by the above lemma and the assumption that k is even, the above sum is equal to

$$\sum_{i=1}^{2^{t-1}k} (-1)^{i-1} \binom{2^{t-1}k}{i} 2^{r-s-1+i+2^{t}k-i-1} \sigma^{d} \sigma(u),$$

which is equal to the right hand side of (*).

Since $n < d + 2^{s}k$ by the assumption, we see that $2^{r-s-1}\sigma^{d}\sigma(s)^{k} = (-1)^{k-1}2^{r-s-2+k}\sigma^{d}\sigma(s)$ by the above lemma and that $\sigma^{d+2^{s}k} = 0$ by (2.1). Therefore, we obtain the desired equality by summing up the equalities (*). *q.e.d.*

LEMMA 2.6. If 0 < s < r, $d \ge 0$, $k \ge 3$ is odd and $n < d + 2^{s}k$, then we have the following in $\tilde{K}(L^{n}(2^{r}))$ $(r \ge 2)$:

$$2^{r-s-2+k} \{ \sigma^d \sigma(s) + \sum_{t=1}^{s} 2^{(k-1)(2^t-1)-1} \sigma^{d+2^s} \sigma(s-t) + \sigma^{d+2^{s-1}} \sigma(s) \} = 0,$$

where $2^{r-s-2+k}\sigma^{d+2^{s-1}}\sigma(s) = 0$ if $n+2^{s-1} \leq d+2^{s}k$.

PROOF. We see easily that

$$2^{r-s-1}\sigma^{d}\sigma(s)^{k} = \sum_{i=0}^{2^{s}-1} {\binom{2^{s}}{i}} 2^{r-s-1}\sigma^{d+2^{s}-i}\sigma(s)^{k-1} \qquad (by (2.2))$$
$$= -2^{r-s-1}\sigma^{d+2^{s}}\sigma(s)^{k-1} + 2^{r-s}\sigma^{d+2^{s-1}}\sigma(s)^{k-1}$$

by the assumption $n < d + 2^{s}k$ and Lemma 2.3. Hence we have

$$2^{r-s-2+k}\sigma^{d}\sigma(s) = 2^{r-s-3+k}\sigma^{d+2s}\sigma(s) - 2^{r-s-2+k}\sigma^{d+2s-1}\sigma(s),$$

by Lemma 2.4. Since $n < d+2^s+2^{s}(k-1)$ and k-1>0 is even, this implies the desired equality by the above lemma, where the last term is zero if $n+2^{s-1} \le d+2^{s}k$ by Lemma 2.3. q.e.d.

§3. Proof of Theorem 1.4

To study some relations in $\widetilde{KO}(L^n(2^r))$, we use the following result due to M. Yasuo [5, (A. 13)]:

(3.1) The complexification $c: \widetilde{KO}(L^n(2^r)) \to \widetilde{K}(L^n(2^r))$ is monomorphic if $n \equiv 3$ (4).

LEMMA 3.2. For the real restriction $r\sigma(s) \in \widetilde{KO}(L^n(2^r))$ of $\sigma(s)$ in (2.2), we have

$$r\sigma(s+1) = 4r\sigma(s) + (r\sigma(s))^2 \qquad (0 \le s < r).$$

PROOF. Since $1 + \sigma(s) = \eta^{2^s}$ is a complex line bundle, we see that

(3.3)
$$cr\sigma(s) = -2 + (1 + \sigma(s)) + 1/(1 + \sigma(s)) = \sigma(s)^2/(1 + \sigma(s)).$$

Therefore, by the fact that c is multiplicative and (2.2), it holds that

$$c(4r\sigma(s) + (r\sigma(s))^2) = (2\sigma(s) + \sigma(s)^2)^2/(1 + \sigma(s))^2 = cr\sigma(s+1).$$

Thus we have the desired equality for $n \equiv 3(4)$ by (3.1) and so for any *n* by the naturality. *q.e.d.*

LEMMA 3.4. For any integers $k_0, ..., k_{s-1} \ge 0$ and $k_s > 0$ $(0 \le s \le r)$, we have the following in $\widetilde{KO}(L^n(2^r))$ $(n \le 4m+3)$:

$$2^{r-s+k}\prod_{t=0}^{s}(r\sigma(t))^{k_t} = 0 \text{ if } r-s+k \ge 0, \quad \prod_{t=0}^{s}(r\sigma(t))^{k_t} = 0 \text{ if } r-s+k < 0,$$

where $k = 1 + [(4m+2-\sum_{t=0}^{s}2^{t+1}k_t)/2^s].$

PROOF. By (3.3) and Lemma 2.3, the *c*-image of the left hand side is zero in $\tilde{K}(L^{4m+3}(2^r))$. Thus we see the equality for n=4m+3 by (3.1) and so for $n \leq 4m+3$ by the naturality. *q.e.d.*

LEMMA 3.5. For any integers $k_0, ..., k_{s-1} \ge 0$ and $k_s > l \ge 0$ $(0 \le s < r)$, we have the following in $\widetilde{KO}(L^n(2^r))$ $(n \le 4m + 3)$:

$$2^{k'}\prod_{t=0}^{s-1}(r\sigma(t))^{k_t}\{(r\sigma(s))^{k_s} - (-1)^l 2^{2l}(r\sigma(s))^{k_s-l}\} = 0,$$

where k' is any non-negative integer such that

$$k' \ge r - s + \left[(4m + 2 - \sum_{t=0}^{s} 2^{t+1} k_t) / 2^{s+1} \right].$$

PROOF. We see the lemma using Lemmas 3.4 and 3.2, by the same way as Lemma 2.4. q.e.d.

Now, we are ready to prove Theorem 1.4.

LEMMA 3.6. The following holds in $\widetilde{KO}(L^{4m+1}(2^r))$ $(r \ge 2, m > 0)$:

$$2^{r+4m+1-2i}(r\sigma)^{i} = 0$$
 for $1 \le i \le 2m$.

PROOF. By applying the above lemma for s=0, $k_0=2m$, k'=r+1, we see that $2^{r+1}(r\sigma)^{2m}=(-1)^i2^{r+1+2(2m-i)}(r\sigma)^i$ for $1 \le i \le 2m$. Hence, it is sufficient to show the equality for i=1, which is a consequence of

(*)
$$2^{r+2m-2}r\sigma(1) + 2^{r+4m}r\sigma = 0$$
 in $KO(L^{4m+3}(2^r))$,

(**)
$$2^{r+2m-2}r\sigma(1) + 2^{r+4m-1}r\sigma = 0$$
 in $\widetilde{KO}(L^{4m+1}(2^r))$.

By Lemma 2.5 for n=4m+3, s=1, d=0 and k=2m+2, we have

$$2^{r+2m-1}\sigma(1) + 2^{r+4m+1}\sigma = 0$$
 in $\tilde{K}(L^{4m+3}(2^r))$.

This and Lemmas 2.3–4 show the equality

$$2^{r+2m-2}\sigma(1)^2 + 2^{r+4m}\sigma^2(1+\sigma) = 0 \quad \text{in} \quad \tilde{K}(L^{4m+3}(2^r)).$$

Multiplying this by $1/(1+\sigma)^2$, we obtain the *c*-image of (*) by (3.3), and hence (*) by (3.1).

By Lemma 2.6 for n=4m+1, s=1, d=0 and k=2m+1, we have

 $2^{r+2m-2}\sigma(1) + 2^{r+4m-3}\sigma^3 = 0$ in $\tilde{K}(L^{4m+1}(2^r))$.

Thus, we see by Lemma 2.4 that

$$2^{r+2m-2}\sigma(1) + 2^{r+4m-1}\sigma = 0$$
 in $\tilde{K}(L^{4m+1}(2^r))$,

whose *r*-image is (**).

q.e.d.

PROOF OF THEOREM 1.4. By [5, Prop. (3.5)], it is sufficient to prove the theorem for the case n = 4m + 1.

Since $c(r\sigma)^i = \sigma^{2i}/(1+\sigma)^i$ by (3.3), we see immediately that $(r\sigma)^i \in \widetilde{KO}(L^{4m+1}(2^r))$ $(r \ge 2, m > 0)$ is of order $2^{r+4m+1-2i}$ for $1 \le i \le 2m$, by the above lemma and (1.2).

Now consider the commutative diagram

for $m \ge 0$, where $L_0^{4m+2} = L^{4m+1}(2^r) \cup e^{8m+4}$ is the (8m+4)-skeleton of $L^{4m+2}(2^r)$ and π is the restriction of the natural projection $\pi: L^{4m+2}(2^r) \to CP^{4m+2}$ onto the complex projective space CP^{4m+2} . It is proved by B. J. Sanderson [4, Th. (3.9)] that the image of $\widetilde{KO}(S^{8m+4}) = Z$ by the upper j^1 is generated by $2y^{2m+1}$, where y is the real restriction of the stable class of the canonical complex line bundle over CP^{4m+2} . Hence $(r\sigma)^{2m+1} = i^1\pi^1y^{2m+1} \in \widetilde{KO}(L^{4m+1}(2^r))$ is of order 2, since the lower sequence in the above diagram is exact. q.e.d.

References

- [1] T. Kawaguchi and M. Sugawara: K- and KO-rings of the lens space $L^n(p^2)$ for odd prime p, Hiroshima Math. J., 1 (1971), 273–286.
- [2] T. Kobayashi, S. Murakami and M. Sugawara: Note on J-groups of lens spaces, Hiroshima Math. J., 7 (1977), 387-409.
- [3] T. Kobayashi and M. Sugawara: K_A -rings of lens spaces $L^n(4)$, Hiroshima Math. J., 1 (1971), 253–271.
- B. J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3), 14 (1964), 137–153.
- [5] M. Yasuo: γ -dimension and products of lens spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, **31** (1977), 113–126.

Department of Mathematics, Faculty of Science, Hiroshima University