Note on KO-Rings of Lens Spaces Mod 2^{r}

Teiichi Kobayashi and Masahiro Sugawara
(Received August 26, 1977)

§ 1. Introduction

Let η be the canonical complex line bundle over the standard lens space mod p^{r} :

$$
L^{n}\left(p^{r}\right)=S^{2 n+1} / Z_{p^{r}} \quad(p: \text { prime }, r \geqq 1 ; n \geqq 0) .
$$

Then, we have the stable classes

$$
\begin{equation*}
\sigma=\eta-1 \in \widetilde{K}\left(L^{n}\left(p^{r}\right)\right), \quad r \sigma=r \eta-2 \in \widetilde{K O}\left(L^{n}\left(p^{r}\right)\right), \tag{1.1}
\end{equation*}
$$

where r is the real restriction. On the orders of the powers of these elements, the following results are proved in [1, Th. 1.1]:

$$
\begin{equation*}
\sigma^{i} \in \tilde{K}\left(L^{n}\left(p^{r}\right)\right) \text { is of order } p^{r+[(n-i) /(p-1)]} \text { for } 1 \leqq i \leqq n \text {, and } \sigma^{n+1}=0 \text {. } \tag{1.2}
\end{equation*}
$$

(1.3) If p is an odd prime, then $(r \sigma)^{i} \in \widetilde{K O}\left(L^{n}\left(p^{r}\right)\right)$ is of order $p^{r+[(n-2 i) /(p-1)]}$ for $1 \leqq i \leqq[n / 2]$, and $(r \sigma)^{[n / 2]+1}=0$.

The purpose of this note is to prove the following theorem, by using the partial result of M. Yasuo [5, Prop. (3.5)] which shows the theorem under the assumption $n \neq 1$ (4):

Theorem 1.4. In the reduced $K O$-group $\widetilde{\operatorname{KO}}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$, the order of $(r \sigma)^{i}$ is equal to

$$
\begin{aligned}
2^{r+n-2 i+1} & \text { if } n \equiv 0(2), & 2^{r+n-2 i} & \text { if } n \equiv 1(2), & & \text { for } 1 \leqq i \leqq[n / 2] ; \\
1 & \text { if } n \not \equiv 1(4), & 2 & \text { if } n \equiv 1(4), & & \text { for } i=[n / 2]+1 ;
\end{aligned}
$$

and 1 for $i \geqq[n / 2]+2$.
As an application of this theorem, we have the following corollary by the method of M. F. Atiyah using the γ-operation.

Corollary 1.5 (cf. [3, Th. C, Prop. 7.6]). The ($2 n+1$)-manifold $L^{n}\left(2^{r}\right)$ ($r \geqq 2$) cannot be immersed in the Euclidean space $R^{2 n+2 L}$ and cannot be imbedded in $R^{2 n+2 L+1}$, where

$$
L= \begin{cases}\max \left\{i \mid 1 \leqq i \leqq[n / 2],\binom{n+i}{i} \not \equiv 0\left(2^{r+n-2 i+1}\right)\right\} & \text { if } n \equiv 0(2) \\ \max \left\{i \mid 1 \leqq i \leqq[n / 2],\binom{n+i}{i} \not \equiv 0\left(2^{r+n-2 i}\right)\right\} & \text { if } n \equiv 1(2)\end{cases}
$$

§2. Some relations in $\tilde{K}\left(L^{n}\left(\mathbf{2 r}^{r}\right)\right)$

In this section, we study some relations in the reduced K-group

$$
\tilde{K}\left(L^{n}\left(2^{r}\right)\right) \quad(r \geqq 2)
$$

The element $\sigma \in \tilde{K}\left(L^{n}\left(2^{r}\right)\right)$ in (1.1) satisfies the relations

$$
\begin{equation*}
\sigma^{n+1}=0, \quad(1+\sigma)^{2 r}-1=0 \tag{2.1}
\end{equation*}
$$

(cf., e.g., [1, Prop. 2.6]). Consider the following elements in $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$:

$$
\text { (2.2) } \sigma(0)=\sigma, \sigma(s)=(1+\sigma)^{2 s}-1=2 \sigma(s-1)+\sigma(s-1)^{2} \quad(0<s \leqq r)
$$

Lemma 2.3 ([2, Prop. 3.2]). For any integers $k_{0}, \ldots, k_{s-1} \geqq 0$ and $k_{s}>0$ $(0 \leqq s \leqq r)$, we have the following in $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$:

$$
\begin{aligned}
2^{r-s+h} \prod_{t=0}^{s} \sigma(t)^{k_{t}} & =0 \text { if } r-s+h \geqq 0, \\
\prod_{t=0}^{s} \sigma(t)^{k_{t}} & =0 \text { if } r-s+h<0,
\end{aligned}
$$

where $h=h\left(k_{0}, \ldots, k_{s}\right)=1+\left[\left(n-1-\sum_{i=0}^{s} 2^{t} k_{t}\right) / 2^{s}\right]$.
Proof. If $s=0$ and $h=n-k_{0}<0$, then the relation is obtained from σ^{n+1} $=0$ in (2.1).

Assume inductively that $h \geqq 0$ and the relation on $\alpha \sigma(s)^{k}\left(\alpha=\prod_{t=0}^{s-1} \sigma(t)^{k_{t}}\right)$ holds for $k>k_{s}$. Since $(1+\sigma(s))^{2 r-s}-1=0$ by (2.1-2), we have

$$
2^{r-s+h} \alpha \sigma(s)^{k_{s}}+\sum_{i=2}^{2^{r-s}}\binom{2^{r-s}}{i} 2^{h} \alpha \sigma(s)^{k_{s}-1+i}=0 .
$$

If $i=2^{v} j \geqq 2$ and j is odd, then $h\left(k_{0}, \ldots, k_{s}-1+i\right)=h-(i-1) \leqq h-v$. Thus the above equality and the inductive assumption imply $2^{r-s+h} \alpha \sigma(s)^{k_{s}}=0$.

Assume inductively that $s \geqq 1, h<0$ and the relation on $\alpha \sigma(s-1)^{k}(\alpha=$ $\left.\prod_{i=0}^{s=1} \sigma(t)^{k t}\right)$ holds for $k>0$. Then, by using (2.2), we see

$$
2^{r-s+h^{2}} \alpha \sigma(s)^{k_{s}}=\sum_{i=0}^{k}=\binom{k_{s}}{i} 2^{r-s+h+i} \alpha \sigma(s-1)^{2 k_{s}-i}=0
$$

as desired, since $h\left(k_{0}, \ldots, k_{s-2}, k_{s-1}+2 k_{s}-i\right) \leqq 2 h+i<h+i$.
Therefore, we have the lemma by the induction.
q.e.d.

Lemma 2.4. For any integers $k_{0}, \ldots, k_{s-1} \geqq 0$ and $k_{s}>l \geqq 0(0 \leqq s<r)$, we have the following in $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$:

$$
2^{h^{\prime}} \alpha \sigma(s)^{k_{s}}=(-1)^{l^{h^{h^{\prime}+l} \alpha \sigma(s)^{k_{s}-l}} \quad\left(\alpha=\prod_{t=0}^{s=1} \sigma(t)^{k_{t}}\right), ~}
$$

where h^{\prime} is any non-negative integer such that

$$
h^{\prime} \geqq r-s+\left[\left(n-1-\sum_{t=0}^{s} 2^{t} k_{t}\right) / 2^{s+1}\right]
$$

Proof. We see easily that $2^{h^{\prime}+l} \alpha \sigma(s)^{k_{s}-l-2} \sigma(s+1)=0$ if $k_{s}-1>l \geqq 0$, by the above lemma. Thus we have the lemma by $\sigma(s+1)=\sigma(s)^{2}+2 \sigma(s)$ in (2.2).
q.e.d.

Lemma 2.5. If $0<s<r, d \geqq 0, k>0$ is even and $n<d+2^{s} k$, then we have the following in $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$:

$$
2^{r-s-2+k} \sum_{t=0}^{s} 2^{k\left(2^{t-1}\right)} \sigma^{d} \sigma(s-t)=0 .
$$

Proof. For any $0<t \leqq s$, we show the equality

$$
\begin{equation*}
2^{r-s-1} \sigma^{d}\left(\sigma(s-t+1)^{2 t-1} k-\sigma(s-t)^{2 t k}\right)=2^{r-s-2+2 t^{t} k} \sigma^{d} \sigma(s-t) \tag{*}
\end{equation*}
$$

By (2.2), the left hand side of (*) is equal to

$$
\sum_{i=1}^{2 t-1 k}\binom{2^{t-1} k}{i} 2^{r-s-1+i} \sigma^{d} \sigma(u)^{2^{t} k-i} \quad(u=s-t \geqq 0)
$$

If $i=2^{v} j$ and j is odd, then we see easily from $n<d+2^{s} k$ that

$$
\begin{aligned}
& r-u-1+1+\left[\left(n-1-d-2^{u}\left(2^{t} k-i\right)\right) / 2^{u+1}\right] \\
& \leqq r-s-1+i+t-v .
\end{aligned}
$$

Thus, by the above lemma and the assumption that k is even, the above sum is equal to

$$
\sum_{i=1}^{2 t-1} k(-1)^{i-1}\binom{2^{t-1} k}{i} 2^{r-s-1+i+2^{t} k-i-1} \sigma^{d} \sigma(u)
$$

which is equal to the right hand side of (*).
Since $n<d+2^{s} k$ by the assumption, we see that $2^{r-s-1} \sigma^{d} \sigma(s)^{k}=$ $(-1)^{k-1} 2^{r-s-2+k} \sigma^{d} \sigma(s)$ by the above lemma and that $\sigma^{d+2 s_{k}}=0$ by (2.1). Therefore, we obtain the desired equality by summing up the equalities (*). q.e.d.

Lemma 2.6. If $0<s<r, d \geqq 0, k \geqq 3$ is odd and $n<d+2^{s} k$, then we have the following in $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$:

$$
2^{r-s-2+k}\left\{\sigma^{d} \sigma(s)+\sum_{t=1}^{s} 2^{(k-1)\left(2^{t-1}\right)-1} \sigma^{d+2 s} \sigma(s-t)+\sigma^{d+2^{s-1}} \sigma(s)\right\}=0,
$$

where $2^{r-s-2+k} \sigma^{d+2^{s-1}} \sigma(s)=0$ if $n+2^{s-1} \leqq d+2^{s} k$.
Proof. We see easily that

$$
\begin{aligned}
2^{r-s-1} \sigma^{d} \sigma(s)^{k} & =\sum_{i=0}^{2 s-1}\binom{2^{s}}{i} 2^{r-s-1} \sigma^{d+2 s-i} \sigma(s)^{k-1} \\
& =-2^{r-s-1} \sigma^{d+2 s} \sigma(s)^{k-1}+2^{r-s} \sigma^{d+2 s-1} \sigma(s)^{k-1}
\end{aligned}
$$

by the assumption $n<d+2^{s} k$ and Lemma 2.3. Hence we have

$$
2^{r-s-2+k} \sigma^{d} \sigma(s)=2^{r-s-3+k} \sigma^{d+2 s} \sigma(s)-2^{r-s-2+k} \sigma^{d+2 s-1} \sigma(s),
$$

by Lemma 2.4. Since $n<d+2^{s}+2^{s}(k-1)$ and $k-1>0$ is even, this implies the desired equality by the above lemma, where the last term is zero if $n+2^{s-1}$ $\leqq d+2^{s} k$ by Lemma 2.3.
q.e.d.

§3. Proof of Theorem 1.4

To study some relations in $\widetilde{\mathrm{KO}}\left(L^{n}\left(2^{r}\right)\right)$, we use the following result due to M. Yasuo [5, (A. 13)]:
(3.1) The complexification $c: \widetilde{K O}\left(L^{n}\left(2^{r}\right)\right) \rightarrow \tilde{K}\left(L^{n}\left(2^{r}\right)\right)$ is monomorphic if $n \equiv 3$ (4).

Lemma 3.2. For the real restriction $r \sigma(s) \in \widetilde{K O}\left(L^{n}\left(2^{r}\right)\right)$ of $\sigma(s)$ in (2.2), we have

$$
r \sigma(s+1)=4 r \sigma(s)+(r \sigma(s))^{2} \quad(0 \leqq s<r) .
$$

Proof. Since $1+\sigma(s)=\eta^{2 s}$ is a complex line bundle, we see that

$$
\begin{equation*}
\operatorname{cr\sigma }(s)=-2+(1+\sigma(s))+1 /(1+\sigma(s))=\sigma(s)^{2} /(1+\sigma(s)) . \tag{3.3}
\end{equation*}
$$

Therefore, by the fact that c is multiplicative and (2.2), it holds that

$$
c\left(4 r \sigma(s)+(r \sigma(s))^{2}\right)=\left(2 \sigma(s)+\sigma(s)^{2}\right)^{2} /(1+\sigma(s))^{2}=c r \sigma(s+1) .
$$

Thus we have the desired equality for $n \equiv 3(4)$ by (3.1) and so for any n by the naturality.

Lemma 3.4. For any integers $k_{0}, \ldots, k_{s-1} \geqq 0$ and $k_{s}>0(0 \leqq s \leqq r)$, we have the following in $\widetilde{K O}\left(L^{n}\left(2^{r}\right)\right)(n \leqq 4 m+3)$:
$2^{r-s+k} \prod_{t=0}^{s}(r \sigma(t))^{k_{t}}=0$ if $r-s+k \geqq 0, \quad \prod_{t=0}^{s}(r \sigma(t))^{k_{t}}=0$ if $r-s+k<0$, where $k=1+\left[\left(4 m+2-\sum_{t=0}^{s} 2^{t+1} k_{t}\right) / 2^{s}\right]$.

Proof. By (3.3) and Lemma 2.3, the c-image of the left hand side is zero in $\tilde{K}\left(L^{4 m+3}\left(2^{r}\right)\right)$. Thus we see the equality for $n=4 m+3$ by (3.1) and so for n $\leqq 4 m+3$ by the naturality.
q.e.d.

Lemma 3.5. For any integers $k_{0}, \ldots, k_{s-1} \geqq 0$ and $k_{s}>l \geqq 0(0 \leqq s<r)$, we have the following in $\widetilde{K O}\left(L^{n}\left(2^{r}\right)\right)(n \leqq 4 m+3)$:

$$
2^{k^{\prime}} \prod_{t=0}^{s-1}(r \sigma(t))^{k_{t}}\left\{(r \sigma(s))^{k_{s}}-(-1)^{l 2} 2^{2 l}(r \sigma(s))^{k_{s}-l}\right\}=0,
$$

where k^{\prime} is any non-negative integer such that

$$
k^{\prime} \geqq r-s+\left[\left(4 m+2-\sum_{t=0}^{s} 2^{t+1} k_{t}\right) / 2^{s+1}\right] .
$$

Proof. We see the lemma using Lemmas 3.4 and 3.2, by the same way as Lemma 2.4.

Now, we are ready to prove Theorem 1.4.
Lemma 3.6. The following holds in $\widetilde{K O}\left(L^{4 m+1}\left(2^{r}\right)\right)(r \geqq 2, m>0)$:

$$
2^{r+4 m+1-2 i}(r \sigma)^{i}=0 \quad \text { for } \quad 1 \leqq i \leqq 2 m
$$

Proof. By applying the above lemma for $s=0, k_{0}=2 m, k^{\prime}=r+1$, we see that $2^{r+1}(r \sigma)^{2 m}=(-1)^{i} 2^{r+1+2(2 m-i)}(r \sigma)^{i}$ for $1 \leqq i \leqq 2 m$. Hence, it is sufficient to show the equality for $i=1$, which is a consequence of

$$
\begin{align*}
2^{r+2 m-2} r \sigma(1)+2^{r+4 m} r \sigma=0 & \text { in } \quad \widetilde{K O}\left(L^{4 m+3}\left(2^{r}\right)\right), \tag{*}\\
2^{r+2 m-2} r \sigma(1)+2^{r+4 m-1} r \sigma=0 & \text { in } \widetilde{K O}\left(L^{4 m+1}\left(2^{r}\right)\right) . \tag{**}
\end{align*}
$$

By Lemma 2.5 for $n=4 m+3, s=1, d=0$ and $k=2 m+2$, we have

$$
2^{r+2 m-1} \sigma(1)+2^{r+4 m+1} \sigma=0 \quad \text { in } \quad \tilde{K}\left(L^{4 m+3}\left(2^{r}\right)\right) .
$$

This and Lemmas 2.3-4 show the equality

$$
2^{r+2 m-2} \sigma(1)^{2}+2^{r+4 m} \sigma^{2}(1+\sigma)=0 \quad \text { in } \quad \tilde{K}\left(L^{4 m+3}\left(2^{r}\right)\right)
$$

Multiplying this by $1 /(1+\sigma)^{2}$, we obtain the c-image of $(*)$ by (3.3), and hence (*) by (3.1).

By Lemma 2.6 for $n=4 m+1, s=1, d=0$ and $k=2 m+1$, we have

$$
2^{r+2 m-2} \sigma(1)+2^{r+4 m-3} \sigma^{3}=0 \quad \text { in } \quad \tilde{K}\left(L^{4 m+1}\left(2^{r}\right)\right)
$$

Thus, we see by Lemma 2.4 that

$$
2^{r+2 m-2} \sigma(1)+2^{r+4 m-1} \sigma=0 \quad \text { in } \quad \tilde{K}\left(L^{4 m+1}\left(2^{r}\right)\right),
$$

whose r-image is $(* *)$.
q.e.d.

Proof of Theorem 1.4. By [5, Prop. (3.5)], it is sufficient to prove the theorem for the case $n=4 m+1$.

Since $c(r \sigma)^{i}=\sigma^{2 i} /(1+\sigma)^{i}$ by (3.3), we see immediately that $(r \sigma)^{i} \in$ $\widetilde{K O}\left(L^{4 m+1}\left(2^{r}\right)\right)(r \geqq 2, m>0)$ is of order $2^{r+4 m+1-2 i}$ for $1 \leqq i \leqq 2 m$, by the above lemma and (1.2).

Now consider the commutative diagram

for $m \geqq 0$, where $L_{0}^{4 m+2}=L^{4 m+1}\left(2^{r}\right) \cup e^{8 m+4}$ is the $(8 m+4)$-skeleton of $L^{4 m+2}\left(2^{r}\right)$ and π is the restriction of the natural projection $\pi: L^{4 m+2}\left(2^{r}\right) \rightarrow C P^{4 m+2}$ onto the complex projective space $C P^{4 m+2}$. It is proved by B. J. Sanderson [4, Th. (3.9)] that the image of $\widetilde{K O}\left(S^{8 m+4}\right)=Z$ by the upper j^{1} is generated by $2 y^{2 m+1}$, where y is the real restriction of the stable class of the canonical complex line bundle over $C P^{4 m+2}$. Hence $(r \sigma)^{2 m+1}=i^{\prime} \pi^{\prime} y^{2 m+1} \in \widetilde{K O}\left(L^{4 m+1}\left(2^{r}\right)\right)$ is of order 2, since the lower sequence in the above diagram is exact.
q.e.d.

References

[1] T. Kawaguchi and M. Sugawara: K-and KO-rings of the lens space $L^{n}\left(p^{2}\right)$ for odd prime p, Hiroshima Math. J., 1 (1971), 273-286.
[2] T. Kobayashi, S. Murakami and M. Sugawara: Note on J-groups of lens spaces, Hiroshima Math. J., 7 (1977), 387-409.
[3] T. Kobayashi and M. Sugawara: K A_{A} rings of lens spaces $L^{n}(4)$, Hiroshima Math. J., 1 (1971), 253-271.
[4] B. J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3), 14 (1964), 137-153.
[5] M. Yasuo: γ-dimension and products of lens spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 31 (1977), 113-126.

Department of Mathematics,
Faculty of Science,
Hiroshima University

