Classification Theory for Nonlinear Functional-Harmonic Spaces

Fumi-Yuki MAEDA (Received January 20, 1978)

Introduction

In the classification theory of Riemann surfaces, the basic relations involving classes of harmonic functions are given by

$$(1) O_G \subsetneqq O_{HP} \subsetneqq O_{HB} \subsetneqq O_{HD} = O_{HDB}$$

(see, e.g., [11] for notation and detailed account of the classical classification theory). The same relations have been shown to hold for the class H of solutions of the equation of the form

$$(2) \qquad \qquad \Delta u = Pu \qquad (P \ge 0)$$

on, in general, Riemannian manifolds Ω ; furthermore, for the solutions of (2), additional relations

$$(3) O_{HD} \subsetneq O_{HE} = O_{HBE}$$

hold, where E indicates the finiteness of the energy integral

(4)
$$\int_{\Omega} |\nabla u|^2 dx + \int_{\Omega} P u^2 dx \qquad (dx: \text{ the volume element})$$

(see, e.g., [9], [5]).

Here, we note that (2) is the Euler equation of the variational integral (4). Thus we may generalize the above situation as follows. For simplicity, consider the case where Ω is a domain in the euclidean space \mathbb{R}^d . Suppose the "Dirichlet integral" of a function f is given in the form

(5)
$$D[f] = \int_{\Omega} \psi(x, \nabla f(x)) dx$$

with a function $\psi(x, \tau): \Omega \times \mathbb{R}^d \to \mathbb{R}$ which is non-negative and convex in τ , and the "energy" of f is given by

(6)
$$E[f] = D[f] + \int_{\Omega} \Gamma(x, f(x)) dx$$

with another non-negative function $\Gamma(x, t): \Omega \times \mathbb{R} \to \mathbb{R}$. The Euler equation for the variational integral (6) is formally written as

(7)
$$-\operatorname{div} \nabla_{\tau} \psi(x, \nabla u(x)) + \Gamma'_{t}(x, u(x)) = 0,$$

which is an elliptic quasi-linear equation.

Let *H* be the class of all "weak solutions" of (7) on Ω . Then, we may consider classes *HP*, *HB*, *HD*, *HE*, etc. as in the classical case, where *P* means the positivity, *B* the boundedness, *D* (resp. *E*) the finiteness of D[u] (resp. E[u]) which is given by (5) (resp. (6)). Also, O_G may be replaced by O_{SHP} , where *SH* means the class of "supersolutions" of (7). In this way, we can pose a problem to find relations among null classes appearing in (1) and (3) in our general situation.

The same type of problem may be considered also for infinite networks; cf. [13] in which the class O_G is discussed for a non-linear case. Thus, we shall try to construct a theory on general locally compact spaces Ω . Given Ω , we fix a positive measure ξ on Ω and instead of ψ as described above we abstractly consider a convex mapping Ψ of a subspace X of $L^{\infty}_{loc}(\Omega; \xi)$ into $L^{1}_{loc}(\Omega; \xi)$ such that $\Psi(f) \ge 0$ for all $f \in \mathbf{X}$, $\Psi(c) = 0$ for constants c and Ψ has local property. Given $\Gamma: \Omega \times \mathbf{R} \to \mathbf{R}$ as above, we obtain a configuration $\mathfrak{H} = \{\Omega, \xi, \mathbf{X}, \Psi, \Gamma\}$. Such a configuration may be regarded as a non-linear functional space (cf. [7]), which is of local type.

In order to obtain a satisfactory theory, we shall place several conditions under which (weak) solutions of the Euler equation corresponding to the variational integral

$$\int_{\Omega} \Psi(f) d\xi + \int_{\Omega} \Gamma(\cdot, f) d\xi$$

behave like classical harmonic functions, or, at least satisfy some of the properties which are assumed in the theory of (non-linear) harmonic spaces (cf. [1]). Thus we shall call \mathfrak{H} a functional-harmonic space, or simply an FH-space.

We shall see that the relation $O_{HB} \subset O_{HD}$ cannot be expected for a general class of FH-spaces; in fact we shall see (in §6 and §7) that there are no inclusion relations between O_{HP} and O_{HD} . In §4 and §5, we give restricted classes of FH-spaces for which (1) and (3) are valid. Essential condition for an FH-space to belong to this class is the so called Orlicz' (Δ_2) -condition: $\Psi(2f) \leq C\Psi(f)$ (C: const.).

As special cases, we treat infinite networks in §6 and the case where Ω is a differentiable manifold in §7.

§1. Functional spaces

Let Ω be a locally compact Hausdorff space which is connected, σ -compact and non-compact. We consider a positive Radon measure ξ on Ω whose support is the whole space Ω .

All functions considered in this paper are real-valued ξ -measurable functions on Ω and two functions which are equal ξ -a.e. are identified. Thus, for a ξ measurable set A in Ω , " $f \ge g$ on A" (resp. "f=g on A") means that $f(x) \ge g(x)$ (resp. f(x)=g(x)) for almost all $x \in A$ with respect to ξ . For a function f on Ω , let Suppf denote the support of the measure $fd\xi$. We denote by $L^{p}_{loc}(\Omega)$ ($1 \le p$ $\le \infty$) the ordinary Lebesgue classes with respect to ξ .

We consider a space X of functions on Ω satisfying:

(X.1) X is a linear subspace of $L^{\infty}_{loc}(\Omega)$ containing all constant functions;

(X.2) X is closed under max. and min. operations.

Next, we introduce a mapping $\Psi: \mathbf{X} \rightarrow L^{1}_{loc}(\Omega)$ satisfying the following conditions:

- $(\Psi.1)$ $\Psi(c)=0$ for all constant functions c;
- $(\Psi.2)$ $\Psi(-f) = \Psi(f)$ for all $f \in \mathbf{X}$;
- (Ψ .3) (Local property) $\Psi(f) = \Psi(g)$ on the set $\{x \in \Omega | f(x) = g(x)\};$

(Ψ .4) Ψ is convex on X, i.e.,

$$\Psi(tf + (1-t)g) \leq t\Psi(f) + (1-t)\Psi(g)$$

for $t \in [0, 1]$, $f, g \in \mathbf{X}$; the equality holds for some (and hence for all) 0 < t < 1 only when f = g + const.;

(Ψ .5) For any $f, g \in \mathbf{X}$, there is $\nabla \Psi(f; g) \in L^{1}_{loc}(\Omega)$ such that

(1.1)
$$\lim_{t\to 0} \frac{\Psi(f+tg)-\Psi(f)}{t} = \mathcal{P}\Psi(f;g) \quad \text{a.e. on } \Omega.$$

REMARK. By convexity of Ψ , $\nabla \Psi(f; g)$ is uniquely determined by f and g, and Lebesgue's convergence theorem implies that the limit (1.1) can be taken in the topology of $L^1_{loc}(\Omega)$.

Finally, we consider a mapping $\Gamma: \Omega \times \mathbb{R} \to \mathbb{R}$ (\mathbb{R} : the real numbers) satisfying:

(
$$\Gamma$$
.1) $\Gamma(x, t) \ge 0$, $\Gamma(x, 0) = 0$ and $\Gamma(x, -t) = \Gamma(x, t)$ for all $x \in \Omega$, $t \in \mathbb{R}$;
(Γ .2) For each $x \in \Omega$, $\Gamma(x, t)$ is convex and continuously differentiable in $t \in \mathbb{R}$;
 $\frac{\partial \Gamma}{\partial t}(x, t)$ will be denoted by $\Gamma'(x, t)$;
(Γ .3) For each $t \in \mathbb{R}$, $\Gamma'(x, t) \in L^{1}(\Omega)$

(Γ .3) For each $t \in \mathbb{R}$, $\Gamma'(\cdot, t) \in L^1_{loc}(\Omega)$.

Fumi-Yuki MAEDA

We call $\mathfrak{H} = \{\Omega, \xi, X, \Psi, \Gamma\}$ a functional space if X, Ψ, Γ satisfy the above conditions. By $(\Gamma.3)$, we see that $\Gamma'(\cdot, f) \in L^1_{loc}(\Omega)$ for any $f \in X$, where

$$\Gamma'(\cdot, f)(x) = \Gamma'(x, f(x)).$$

Given a ξ -measurable set A in Ω , $u \in X$ is said to be totally \mathfrak{H} -harmonic (resp. totally \mathfrak{H} -superharmonic) on A if

(1.2)
$$\int_{\Omega} \nabla \Psi(u; g) d\xi + \int_{\Omega} \Gamma'(\cdot, u) g d\xi = 0 \quad (\text{resp.} \ge 0)$$

for any $g \in X$ such that Supp g is compact, $g \ge 0$ on Ω and g = 0 on $\Omega \setminus A$. In case $A = \Omega$, we shall omit the word "totally". The equality (1.2) gives the Euler equation for the variational integral

$$\int \Phi_{\mathfrak{H}}(f)d\xi = \int \Psi(f)d\xi + \int \Gamma(\cdot, f)d\xi.$$

Here

$$\Phi_{\mathfrak{H}}(f) = \Psi(f) + \Gamma(\cdot, f)$$

belongs to $L^1_{loc}(\Omega)$ for any $f \in \mathbf{X}$ by virtue of (Γ .3) and the equality $\Gamma(x, t) = \int_{0}^{t} \Gamma'(x, s) ds$.

LEMMA 1.1. (a) $\Psi(f) \ge 0$ for all $f \in \mathbf{X}$.

- (b) $\Psi(f)=0$ if and only if f=const.
- (c) $t \mapsto \Psi(tf)$ is monotone non-decreasing for $t \ge 0$.
- (d) $\Psi(f+c) = \Psi(f)$ for $f \in \mathbf{X}$ and constants c.
- (e) $g \mapsto \nabla \Psi(f; g)$ is linear.
- (f) $\nabla \Psi(f; f-g) \ge \Psi(f) \Psi(g)$; in particular $\nabla \Psi(f; f) \ge \Psi(f)$.
- (g) $\nabla \Psi(f; f-g) \ge \nabla \Psi(g; f-g)$; the equality holds only when f=g+const.
- (h) $\nabla \Psi(c; g) = \nabla \Psi(f; c) = 0$ for $f, g \in X$ and constants c.
- (i) $\nabla \Psi(f; g) = 0$ on the set $\{x \in \Omega | g(x) = 0\}$.

(j) $\nabla \Psi(f_1; g) = \nabla \Psi(f_2; g)$ on the set $\{x \in \Omega | f_1(x) = f_2(x) + c\}$ for any constant c.

PROOF. (a), (b) and (c) are easy consequences of $(\Psi.1)$, $(\Psi.2)$ and $(\Psi.4)$; and (e), (f) and (g) follow from well-known properties of convex functions (cf. [4, Chap. I, §5]). By $(\Psi.1)$ and $(\Psi.4)$, $\Psi(f+c) \leq t\Psi(t^{-1}f)$ for 0 < t < 1. For any relatively compact ξ -measurable set $A, s \mapsto \int_{A} \Psi(sf) d\xi$ is a convex function on **R**, and hence it is continuous. Hence, letting $t \to 1$, we obtain $\Psi(f+c) \leq \Psi(f)$. Then (d) follows immediately. (h), (i) and (j) are consequences of (d) and $(\Psi.3)$.

The next lemma is an immediate consequence of $(\Gamma.1)$ and $(\Gamma.2)$:

LEMMA 1.2. For each $x \in \Omega$, $\Gamma'(x, t)$ is monotone non-decreasing in $t \in \mathbf{R}$, $\Gamma'(x, t) \ge 0$ for $t \ge 0$ and $\Gamma'(x, t) \le 0$ for $t \le 0$.

PROPOSITION 1.1. Let A, A' be ξ -measurable sets in Ω .

(a) If u is totally \mathfrak{H} -harmonic (resp. \mathfrak{H} -superharmonic) on A and v=u on $A' \subset A$, then v is totally \mathfrak{H} -harmonic (resp. \mathfrak{H} -superharmonic) on A'.

(b) Non-negative constant functions are \mathfrak{H} -superharmonic on Ω .

(c) If u is totally \mathfrak{H} -superharmonic on A, then so is u + c for any non-negative constant function c.

PROOF. (a) is easily seen from the definition and Lemma 1.1(j). (b) and (c) follow from Lemma 1.1(h), (j) and Lemma 1.2.

PROPOSITION 1.2. Let A be a relatively compact ξ -measurable set in Ω . If u and -v are totally \mathfrak{H} -superharmonic on A and $u \ge v$ on $\Omega \setminus A$, then $u \ge v$ on Ω .

PROOF. For simplicity, let $\Phi = \Phi_{\mathfrak{H}}$ and $\mathcal{P}\Phi(f; g) = \mathcal{P}\Psi(f; g) + \Gamma'(\cdot, f)g$. Take $g = v - \min(u, v)$. Then $g \in \mathbf{X}, g \ge 0$ on Ω and g = 0 on $\Omega \setminus A$. Hence

$$\int_{\Omega} \mathcal{F} \Phi(u; g) d\xi \geq 0 \quad \text{and} \quad \int_{\Omega} \mathcal{F} \Phi(v; g) d\xi \leq 0.$$

On the other hand, by Lemma 1.1 (g), (i), (j) and Lemma 1.2,

$$0 \leq \nabla \Phi(v; g) - \nabla \Phi(\min(u, v); g) = \nabla \Phi(v; g) - \nabla \Phi(u; g)$$

on Ω . Hence

$$0 \leq \int_{\Omega} \{ \mathcal{P}\Phi(v; g) - \mathcal{P}\Phi(\min(u, v); g) \} d\xi$$
$$= \int_{\Omega} \mathcal{P}\Phi(v; g) d\xi - \int_{\Omega} \mathcal{P}\Phi(u; g) d\xi \leq 0,$$

so that $\mathcal{P}\Phi(v; g) = \mathcal{P}\Phi(\min(u, v); g)$. It follows that $\mathcal{P}\Psi(v; g) = \mathcal{P}\Psi(\min(u, v); g)$. Hence, by Lemma 1.1 (g), $v = \min(u, v) + c$ (const.). Since $v = \min(u, v)$ on $\Omega \setminus A$ and $\xi(\Omega \setminus A) > 0$, c = 0. Hence, $u \ge v$ on Ω .

COROLLARY. Let A be as in the above proposition. If u, v are totally \mathfrak{H} -harmonic on A and u=v on $\Omega \setminus A$, then u=v.

PROPOSITION 1.3. Let A, A' be ξ -measurable subsets of Ω such that $A \subset A'$. If u is totally \mathfrak{H} -superharmonic on A', v is totally \mathfrak{H} -superharmonic on A, u = von A' \ A and $u \ge v$ on A, then v is totally \mathfrak{H} -superharmonic on A'.

PROOF. Let $\mathcal{P}\Phi(f; g)$ be as in the proof of the previous proposition. Let $g \in \mathbf{X}$ be such that Suppg is compact, $g \ge 0$ on Ω , g = 0 on $\Omega \setminus A'$. For each $\rho > 0$,

put $g_{\rho} = \min(g, \rho(u-v)^+)$, where $f^+ = \max(f, 0)$. Then $g_{\rho} \in \mathbf{X}$, $Supp g_{\rho}$ is compact, $g_{\rho} \ge 0$ on Ω and $g_{\rho} = 0$ on $\Omega \setminus A$. Hence

(1.3)
$$\int_{\Omega} \nabla \Phi(v; g_{\rho}) d\xi \ge 0.$$

Put $A_{\rho} = \{x \in \Omega \mid g(x) > \rho(u-v)^+(x)\}$. Then $A_{\rho} \subset A', g = g_{\rho}$ on $\Omega \setminus A_{\rho}$ and $g_{\rho} = \rho(u-v)$ on A_{ρ} . Hence, using (1.3), Lemmas 1.1 and 1.2, we obtain

$$\begin{split} \int_{\Omega} \nabla \Phi(v; g) d\xi &\geq \int_{\Omega} \nabla \Phi(v; g) d\xi - \int_{\Omega} \nabla \Phi(v; g_{\rho}) d\xi \\ &= \int_{A_{\rho}} \nabla \Phi(v; g) d\xi - \rho \int_{A_{\rho}} \nabla \Phi(v; u - v) d\xi \\ &\geq \int_{A_{\rho}} \nabla \Phi(v; g) d\xi - \rho \int_{A_{\rho}} \nabla \Phi(u; u - v) d\xi \\ &= \int_{A_{\rho}} \nabla \Phi(v; g) d\xi - \int_{A_{\rho}} \nabla \Phi(u; g_{\rho}) d\xi. \end{split}$$

Since u is totally \mathfrak{H} -superharmonic on A_{ρ} , $g-g_{\rho} \ge 0$ on Ω and $g-g_{\rho}=0$ on $\Omega \setminus A_{\rho}$, we have

$$\int_{A_{\rho}} \nabla \Phi(u; g) d\xi \geq \int_{A_{\rho}} \nabla \Phi(u; g_{\rho}) d\xi.$$

Therefore,

$$\int_{\Omega} \mathcal{F}\Phi(v;g)d\xi \ge \int_{A_{\bullet}} \{\mathcal{F}\Phi(v;g) - \mathcal{F}\Phi(u;g)\}d\xi$$
$$= \int_{A_{\bullet}\cap A^{+}} \{\mathcal{F}\Phi(v;g) - \mathcal{F}\Phi(u;g)\}d\xi,$$

where $A^+ = \{x \in A' \mid u(x) > v(x)\}$. Since $\mathcal{P}\Phi(v; g) - \mathcal{P}\Phi(u; g)$ is ξ -summable on Supp g and $A_{\rho} \cap A^+ \downarrow \emptyset$ ($\rho \to \infty$), the last integral tends to 0 as $\rho \to \infty$. Thus $\int_{\Omega} \mathcal{P}\Phi(v; g)d\xi \ge 0$, and hence v is totally \mathfrak{H} -superharmonic on A'.

COROLLARY. Let A be a ξ -measurable subset of Ω . If u, v are totally \mathfrak{H} -superharmonic on A, then so is min (u, v).

PROOF. Put $w = \min(u, v)$ and $A_1 = \{x \in A \mid u(x) > v(x)\}$. Then w = v on A_1 , so that w is totally \mathfrak{H} -superharmonic on A_1 . Since w = u on $A \setminus A_1$ and $w \leq u$ on A_1 , the above proposition implies that w is totally \mathfrak{H} -superharmonic on A.

§2. Functional-harmonic spaces and classification I

Let $\mathfrak{H} = \{\Omega, \xi, \mathbf{X}, \Psi, \Gamma\}$ be a functional space. A relatively compact ξ -

measurable set A in Ω will be said to be *resolutive* (with respect to \mathfrak{H}) if for any $f \in \mathbf{X}$ there exists $g_0 \in \mathbf{X}$ such that

$$(2.1) g_0 = f ext{ on } \Omega \setminus A, ext{ and }$$

(2.2)
$$\int_{A} \Phi_{\mathfrak{H}}(g_{0}) d\xi = \inf \left\{ \int_{A} \Phi_{\mathfrak{H}}(g) d\xi \, \Big| \, g \in \mathbf{X}, \, g = f \text{ on } \Omega \setminus A \right\}.$$

The following proposition shows that $g_0 \in X$ satisfying (2.1) and (2.2) is uniquely determined by f and A; we shall denote it by R(f; A).

PROPOSITION 2.1. Given a relatively compact ξ -measurable set A in Ω and $f \in \mathbf{X}$, there is at most one $g_0 \in \mathbf{X}$ satisfying (2.1) and (2.2). Furthermore, g_0 has the following properties (if it exists):

- (a) g_0 is totally \mathfrak{H} -harmonic on A;
- (b) If f is totally \mathfrak{H} -superharmonic on A, then $g_0 \leq f$;
- (c) If f is totally \mathfrak{H} -superharmonic on a ξ -measurable set A' containing A, then so is g_0 on A';
 - (d) $\min(0, \inf_{\Omega \setminus A} f) \leq g_0 \leq \max(0, \sup_{\Omega \setminus A} f).$

PROOF. Let $\Phi = \Phi_{\mathfrak{H}}$ and $\nabla \Phi(f; g) = \nabla \Psi(f; g) + \Gamma'(\cdot, f)g$. For any $g \in \mathbf{X}$ such that g = 0 on $\Omega \setminus A$ and for any $t \in \mathbf{R}$,

$$\int_{A} \Phi(g_0) d\xi \leq \int_{A} \Phi(g_0 + tg) d\xi.$$

It follows that $\int_{A} \mathcal{F}\Phi(g_0; g)d\xi = 0$, or $\int_{\Omega} \mathcal{F}\Phi(g_0; g)d\xi = 0$. Hence g_0 is totally 5-harmonic on A. Thus the uniqueness of g_0 follows from the corollary to Proposition 1.2. Property (b) is a consequence of Proposition 1.2, and property (c) follows from (b) and Proposition 1.3. To prove (d), put

$$m = \min(0, \inf_{\Omega \setminus A} f), \qquad M = \max(0, \sup_{\Omega \setminus A} f)$$

and

$$g_1 = \max(m, \min(g_0, M)).$$

Then $g_1 \in \mathbf{X}$, $g_1 = f$ on $\Omega \setminus A$ and $\int_A \Phi(g_1) d\xi \leq \int_A \Phi(g_0) d\xi$. Hence, by the uniqueness of g_0 , $g_1 = g_0$, so that (d) is valid.

Now, we consider the following conditions for \mathfrak{H} :

(R) There is an exhaustion $\{\Omega_n\}$ of Ω such that each Ω_n is a resolutive open set in Ω .

Here, an exhaustion means a sequence $\{\Omega_n\}$ of relatively compact open sets such that $\overline{\Omega}_n \subset \Omega_{n+1}$ for each *n* and $\cup \Omega_n = \Omega$.

(H.1) If $\{u_n\}$ is a locally uniformly bounded, monotone non-decreasing sequence of non-negative functions in X such that each u_n is totally \mathfrak{H} -harmonic on Ω_n for some exhaustion $\{\Omega_n\}$ of Ω , then $u = \lim_{n \to \infty} u_n$ is \mathfrak{H} -harmonic on Ω and

$$\int_{K} \Psi(u) d\xi \leq \liminf_{n \to \infty} \int_{K} \Psi(u_n) d\xi$$

for any compact set K in Ω .

A functional space \mathfrak{H} is called a *functional-harmonic space*, or simply an *FH-space* if it satisfies (R) and (H.1). The class of all FH-spaces will be denoted by \mathscr{F} .

Given $\mathfrak{H} = \{\Omega, \xi, \mathbf{X}, \Psi, \Gamma\} \in \mathscr{F}$, we consider the following sets of functions:

$$SH(\mathfrak{H}) = \{u \in \mathbf{X} \mid u \text{ is } \mathfrak{H}\text{-superharmonic on } \Omega\}$$

$$H(\mathfrak{H}) = \{u \in \mathbf{X} \mid u \text{ is } \mathfrak{H}\text{-monic on } \Omega\},$$

$$SHP(\mathfrak{H}) = \{u \in SH(\mathfrak{H}) \mid u \ge 0 \text{ on } \Omega\},$$

$$HP(\mathfrak{H}) = H(\mathfrak{H}) \cap SHP(\mathfrak{H}),$$

$$SHB(\mathfrak{H}) = \{u \in SH(\mathfrak{H}) \mid u \text{ is bounded on } \Omega\},$$

$$HB(\mathfrak{H}) = H(\mathfrak{H}) \cap SHB(\mathfrak{H}),$$

$$HD(\mathfrak{H}) = \{u \in H(\mathfrak{H}) \mid \int_{\Omega} \Psi(u) d\xi < \infty\},$$

$$HDP(\mathfrak{H}) = HD(\mathfrak{H}) \cap HP(\mathfrak{H}),$$

$$HDB(\mathfrak{H}) = HD(\mathfrak{H}) \cap HB(\mathfrak{H}),$$

$$HEP(\mathfrak{H}) = HE(\mathfrak{H}) \cap HP(\mathfrak{H}),$$

$$HEP(\mathfrak{H}) = HE(\mathfrak{H}) \cap HB(\mathfrak{H}).$$

Let $Q(\mathfrak{H})$ be any one of the above sets and \mathscr{G} be a subclass of \mathscr{F} . We denote by $O_Q(\mathscr{G})$ the class of all $\mathfrak{H} \in \mathscr{G}$ such that every element of $Q(\mathfrak{H})$ is a constant function. The following are trivial inclusion relations:

Classification Theory

$$(2.3) \begin{array}{c} O_{SHP}(\mathscr{F}) \subset O_{HP}(\mathscr{F}) \subset O_{HDP}(\mathscr{F}) \subset O_{HEP}(\mathscr{F}) \\ \cup & \cup & \cup & \cup \\ O_{SH} (\mathscr{F}) \subset O_{H} (\mathscr{F}) \subset O_{HD} (\mathscr{F}) \subset O_{HE} (\mathscr{F}) \\ \cap & \cap & \cap \\ O_{SHB}(\mathscr{F}) \subset O_{HB}(\mathscr{F}) \subset O_{HDB}(\mathscr{F}) \subset O_{HEB}(\mathscr{F}). \end{array}$$

THEOREM 2.1. $O_{SHP}(\mathcal{F}) = O_{SHB}(\mathcal{F})$.

PROOF. Suppose $\mathfrak{H} \in O_{SHP}(\mathscr{F})$ and $u \in SHB(\mathfrak{H})$. Let $|u| \leq M$. Then $u + M \in SHP(\mathfrak{H})$ by Proposition 1.1 (c), and hence u + M is a constant, so that u is a constant. Hence $\mathfrak{H} \in O_{SHB}(\mathscr{F})$. Conversely, suppose $\mathfrak{H} \in O_{SHB}(\mathscr{F})$ and $v \in SHP(\mathfrak{H})$. If v is non-constant, then there is c > 0 such that $\min(v, c)$ is non-constant. Since $\min(v, c) \in SHB(\mathfrak{H})$ by virtue of Proposition 1.1 (b) and the corollary to Proposition 1.3, this is a contradiction. Hence $\mathfrak{H} \in O_{SHP}(\mathscr{F})$.

REMARK. The above proof shows that this theorem remains valid for the class of functional spaces.

THEOREM 2.2. $O_{HP}(\mathcal{F}) \subset O_{HB}(\mathcal{F}), O_{HDP}(\mathcal{F}) \subset O_{HDB}(\mathcal{F})$ and $O_{HEP}(\mathcal{F}) \subset O_{HEB}(\mathcal{F})$.

PROOF. Given $\mathfrak{H} \in \mathscr{F}$, let $\Phi = \Phi_{\mathfrak{H}}$ for simplicity. By condition (R) we can choose an exhaustion $\{\Omega_n\}$ of Ω such that each Ω_n is resolutive. Let $u \in HB(\mathfrak{H})$; $|u| \leq M$. Put

$$v_n = R (\max(u, 0); \Omega_n)$$
 and $w_n = R (\min(u, 0); \Omega_n)$

 $n=1, 2, \cdots$. Since $-\max(u, 0)$ and $\min(u, 0)$ are \mathfrak{H} -superharmonic on Ω , $-v_n$ and w_n are totally \mathfrak{H} -harmonic on Ω_n , \mathfrak{H} -superharmonic on Ω ,

$$\max(u, 0) \leq v_n \leq M$$
 and $-M \leq w_n \leq \min(u, 0)$

by Proposition 2.1. It also follows from Propositions 2.1 and 1.2 that $\{v_n\}$ is monotone non-decreasing and $\{w_n\}$ is monotone non-increasing. Hence, by condition (H.1),

$$v = \lim_{n \to \infty} v_n$$
 and $w = \lim_{n \to \infty} w_n$

are \mathfrak{H} -harmonic on Ω , i.e., $v, -w \in HP(\mathfrak{H})$. Since $\int_{\Omega_n} \Phi(v_n) d\xi \leq \int_{\Omega_n} \Phi(\max(u, v)) d\xi$

0)) $d\xi$ and $v_n = \max(u, 0)$ on $\Omega \setminus \Omega_n$,

$$\int_{\Omega} \Psi(v_n) d\xi$$

$$\leq \int_{\Omega} \Psi(\max(u, 0)) d\xi + \int_{\Omega_n} \{\Gamma(\cdot, \max(u, 0)) - \Gamma(\cdot, v_n)\} d\xi$$

$$\leq \int_{\Omega} \Psi(u) d\xi$$

and

$$\int_{\Omega} \Phi(v_n) d\xi \leq \int_{\Omega} \Phi(\max(u, 0)) d\xi \leq \int_{\Omega} \Phi(u) d\xi$$

Similarly, we obtain

$$\int_{\Omega} \Psi(w_n) d\xi \leq \int_{\Omega} \Psi(u) d\xi \quad \text{and} \quad \int_{\Omega} \Phi(w_n) d\xi \leq \int_{\Omega} \Phi(u) d\xi.$$

Hence by (H.1), we see that $u \in HDB(\mathfrak{H})$ (resp $HEB(\mathfrak{H})$) implies $v, w \in HDP(\mathfrak{H})$ (resp. $HEP(\mathfrak{H})$)

Now, suppose $\mathfrak{H} \in \mathcal{O}_{HP}(\mathscr{F})$ (resp. $\mathcal{O}_{HDP}(\mathscr{F})$, $\mathcal{O}_{HEP}(\mathscr{F})$) and $u \in HB(\mathfrak{H})$ (resp. $HDB(\mathfrak{H})$, $HEB(\mathfrak{H})$). Then v and w are constant functions. Since

$$u - w = \max(u, 0) + \min(u, 0) - w \ge \max(u, 0)$$

and u - w is \mathfrak{H} -superharmonic on Ω , it follows from Proposition 1.2 that $u - w \ge v_n$ for all n, so that $u - w \ge v$. Similarly, we see that $-u + v \ge -w$. Hence u = v + w= const. Thus $\mathfrak{H} \in O_{HB}(\mathcal{F})$ (resp. $O_{HDB}(\mathcal{F})$), $O_{HEB}(\mathcal{F})$).

Combining (2.3), Theorems 2.1 and 2.2, we obtain

$$(2.4) \qquad \begin{array}{l} O_{SH} (\mathscr{F}) \subset O_{H} (\mathscr{F}) \subset O_{HD} (\mathscr{F}) \subset O_{HE} (\mathscr{F}) \\ \cap & \cap & \cap \\ O_{SHP}(\mathscr{F}) \subset O_{HP}(\mathscr{F}) \subset O_{HDP}(\mathscr{F}) \subset O_{HEP}(\mathscr{F}) \\ \parallel & \cap & \cap \\ O_{SHB}(\mathscr{F}) \subset O_{HB}(\mathscr{F}) \subset O_{HDB}(\mathscr{F}) \subset O_{HEB}(\mathscr{F}) \end{array}$$

We shall see in §6 and §7 that all the above inclusion relations are strict and that other inclusion relations cannot be expected.

§3. Auxiliary conditions and their consequences

In order to obtain a class of FH-spaces for which $O_{HD} = O_{HDP}$ and $O_{HE} = O_{HEB}$ hold as in the classical case, we consider the following auxiliary conditions for $\mathfrak{H} = \{\Omega, \xi, \mathbf{X}, \Psi, \Gamma\}$:

(X.3) For any compact set K in Ω and an open set $\omega \supset K$, there exists $h \in \mathbf{X}$ such that Supp h is compact and contained in ω , $0 \leq h \leq 1$ on Ω and h=1 on K. (D) X is an algebra and

$$\nabla \Psi(f; g_1g_2) = \nabla \Psi(f; g_1)g_2 + \nabla \Psi(f; g_2)g_1$$

for all $f, g_1, g_2 \in \mathbf{X}$.

(H.2) If $\{u_n\}$ is a monotone non-decreasing sequence of non-negative functions in X such that each u_n is totally \mathfrak{H} -harmonic on Ω_n for some exhaustion $\{\Omega_n\}$ of Ω , $\lim_{n\to\infty}u_n(x)<\infty$ on a set of positive ξ -measure and $\{\int_{\mathcal{K}}\Psi(u_n)d\xi\}$ is bounded for any compact set K, then $\{u_n\}$ is locally uniformly bounded.

 (Δ_2) There is a constant C > 2 such that

$$\Psi(2f) \leq C\Psi(f)$$

for all $f \in \mathbf{X}$.

Here we give some consequences of these conditions, which will be used in the next section.

LEMMA 3.1. If (Δ_2) is satisfied, then

- (a) $\Psi(f+g) \leq (C/2) \{\Psi(f) + \Psi(g)\}$ for $f, g \in \mathbf{X}$;
- (b) $|\nabla \Psi(f;g)| \leq (C-2)\Psi(f) + \Psi(g)$ for $f, g \in \mathbf{X}$;

(c) $|\nabla \Psi(f;g)| \leq \rho^{-1}(C-2)\Psi(f) + C\rho^{p-1}\Psi(g)$ for $f, g \in \mathbf{X}$, any function $\rho \geq 1$ and any integer p such that $C \leq 2^p$.

PROOF. (a) follows immediately from the convexity of Ψ and condition (Δ_2) . By Lemma 1.1 (f), we see that $\nabla \Psi(f; f) \leq \Psi(2f) - \Psi(f)$. Hence, by (Δ_2) and Lemma 1.1 (f) again, we obtain (b). To show (c), first suppose $\rho \geq 1$ is a constant. If $2^{n-1} \leq \rho < 2^n$ (n: integer), then by (Δ_2)

$$\Psi(\rho f) \leq \Psi(2^n f) \leq C^n \Psi(f) \leq C \rho^p \Psi(f).$$

Hence, by (b),

$$\rho|\nabla \Psi(f;g)| = |\nabla \Psi(f;\rho g)| \leq (C-2)\Psi(f) + C\rho^p \Psi(g).$$

Then, we see easily that this inequality holds for any function $\rho \ge 1$.

PROPOSITION 3.1. Assume (D) and (Δ_2) . If there is an increasing sequence $\{f_n\}$ of non-negative functions in X such that $Suppf_n$ is compact for each n, $\lim_{n\to\infty} f_n(x) = \infty$ a.e. on Ω and $\left\{ \int_{\Omega} \Psi(f_n) d\xi \right\}$ is bounded, then $\mathfrak{H} \in O_{HD}(\mathscr{F})$.

PROOF. Let $u \in HD(\mathfrak{H})$ and put

$$u_m = \max(-m, \min(u, m))$$
 $(m > 0).$

Then $u_m \in \mathbf{X}$, $|u_m| \leq m$ and $\nabla \Psi(u; u_m) \geq 0$ for each *m* by Lemma 1.1. By (D), $u_m f_n \in \mathbf{X}$. Since $Supp(u_m f_n)$ is compact,

$$\int \nabla \Psi(u; u_m f_n) d\xi + \int \Gamma'(\cdot, u) u_m f_n d\xi = 0.$$

Since $\Gamma'(\cdot, u)u_m \ge 0$, the second integral is non-negative. Thus, using (D) and the above lemma, we have

$$\int_{\Omega} \nabla \Psi(u; u_m) f_n d\xi \leq - \int_{\Omega} \nabla \Psi(u; f_n) u_m d\xi$$
$$\leq m \int_{\Omega} |\nabla \Psi(u; f_n)| d\xi$$
$$\leq m \left\{ (C-2) \int_{\Omega} \Psi(u) d\xi + \int_{\Omega} \Psi(f_n) d\xi \right\}$$

Since $f_n \uparrow \infty$ a.e. and $\left\{ \int_{\Omega} \Psi(f_n) d\xi \right\}$ is bounded, it follows that $\mathcal{P}\Psi(u; u_m) = 0$ on Ω , so that $\mathcal{P}\Psi(u; u) = 0$ on the set $\{x \in \Omega \mid |u| \leq m\}$. Since *m* is arbitrary, this means that $\mathcal{P}\Psi(u; u) = 0$, so that $\Psi(u) = 0$. Hence u = const. by Lemma 1.1 (b). Therefore $\mathfrak{H} \in O_{HD}(\mathscr{F})$.

LEMMA 3.2. Assume (Δ_2) . Let A be a ξ -measurable set and $f_n, g \in \mathbf{X}$, $n=1, 2, \cdots$. If

$$\int_{A} \Psi(g) d\xi < \infty \quad and \quad \lim_{n \to \infty} \int_{A} \Psi(f_n) d\xi = 0,$$

then

$$\lim_{n\to\infty}\int_A \nabla \Psi(f_n; g)d\xi = 0.$$

PROOF. By Lemma 3.1 (b),

$$|\nabla \Psi(f_n; g)| \leq t^{-1}(C-2)\Psi(f_n) + t^{-1}\Psi(tg)$$

for each t > 0. Hence

$$\limsup_{n\to\infty}\int_{\mathcal{A}}|\nabla\Psi(f_n;g)|d\xi\leq t^{-1}\int_{\mathcal{A}}\Psi(tg)d\xi$$

for any t > 0. Since $t^{-1}\Psi(tg) \leq \Psi(g)$ for 0 < t < 1 and $t^{-1}\Psi(tg) \rightarrow 0$ as $t \rightarrow 0$, Lebesgue's convergence theorem implies that $t^{-1} \int_{\mathcal{A}} \Psi(tg) d\xi \rightarrow 0$ $(t \rightarrow 0)$. Hence we obtain the lemma.

LEMMA 3.3. Assume (X.3), (D) and (Δ_2) and let ω be an open set in Ω . If $\{u_n\}$ is a monotone non-increasing sequence of non-negative functions in X such that each u_n is totally \mathfrak{H} -harmonic on ω and $\lim_{n\to\infty} u_n = \text{const.}$, then

$$\lim_{n\to\infty}\int_K\Psi(u_n)d\xi=0$$

for any compact set K in ω .

PROOF. Let $c = \lim_{n \to \infty} u_n$. Choose $h \in X$ as in condition (X.3) for the above ω and a given $K \subset \omega$. Let p be an integer such that $C \leq 2^p$. Then $(u_n - c)h^p \in X$ by (D) and $(u_n - c)h^p = 0$ on $\Omega \setminus \omega$. Hence, u_n being totally \mathfrak{H} -harmonic on ω ,

$$\int_{\omega} \nabla \Psi(u_n; (u_n - c)h^p) d\xi + \int_{\omega} \Gamma'(\cdot, u_n) (u_n - c)h^p d\xi = 0$$

for each n. Since $u_n - c \ge 0$ and $u_n \ge 0$, $\Gamma'(\cdot, u_n)(u_n - c) \ge 0$. Hence, using (D), we have

$$\int_{\omega} \nabla \Psi(u_n; u_n) h^p d\xi \leq - p \int_{\omega} \nabla \Psi(u_n; h) (u_n - c) h^{p-1} d\xi.$$

Therefore,

(3.1)
$$\int_{\omega} \Psi(u_n) h^p d\xi \leq \int_{\omega} \nabla \Psi(u_n; u_n) h^p d\xi$$
$$\leq p \int_{A_h} |\nabla \Psi(u_n; h)| (u_n - c) h^{p-1} d\xi,$$

where $A_h = \{x \in \omega | h(x) > 0\}$. For $x \in A_h$, put

$$\rho_n(x) = \max\left\{1, 2(C-2)p(u_n(x)-c)h(x)^{-1}\right\}.$$

By Lemma 3.1 (c),

$$|\nabla \Psi(u_n; h)|(x) \le \rho_n(x)^{-1}(C-2)\Psi(u_n)(x) + C\rho_n(x)^{p-1}\Psi(h)(x)$$

for $x \in A_h$. Thus, by (3.1), we have

(3.2)
$$\int_{\omega} \Psi(u_n) h^p d\xi \leq 2p C \int_{A_h} \rho_n^{p-1} \Psi(h) (u_n - c) h^{p-1} d\xi.$$

It is easy to see that $\{\rho_n^{p-1}\Psi(h)(u_n-c)h^{p-1}\}\$ is uniformly bounded on A_h , which is relatively compact. Hence Lebesgue's convergence theorem implies that the right-hand side of (3.2) tends to zero as $n \to \infty$. Thus

$$\lim_{n\to\infty}\int_{\omega}\Psi(u_n)h^pd\xi=0,$$

which implies the assertion of the lemma.

§4. Classification II

Now, let \mathcal{F}_1 be the subclass of \mathcal{F} consisting of all $\mathfrak{H} \in \mathcal{F}$ which satisfy con-

ditions (X.3), (D), (H.2) and (Δ_2) . The relations (2.4) are valid with \mathcal{F}_1 in the place of \mathcal{F} , since $\mathcal{F}_1 \subset \mathcal{F}$.

THEOREM 4.1.
$$O_{HDP}(\mathcal{F}_1) = O_{HD}(\mathcal{F}_1)$$
 and $O_{HEP}(\mathcal{F}_1) = O_{HE}(\mathcal{F}_1)$.

PROOF. We have to show

$$O_{HDP}(\mathcal{F}_1) \subset O_{HD}(\mathcal{F}_1)$$
 and $O_{HEP}(\mathcal{F}_1) \subset O_{HE}(\mathcal{F}_1)$.

Suppose $\mathfrak{H} \in O_{HDP}(\mathscr{F}_1)$ (resp. $\in O_{HEP}(\mathscr{F}_1)$) and $\mathfrak{H} \notin O_{HD}(\mathscr{F}_1)$ (resp. $\notin O_{HE}(\mathscr{F}_1)$). Choose $u \in HD(\mathfrak{H})$ (resp. $HE(\mathfrak{H})$) which is non-constant. Let $\{\Omega_n\}$ be an exhaustion of Ω such that each Ω_n is resolutive and put

$$v_n = R(\max(u, 0); \Omega_n)$$
 and $w_n = R(\min(u, 0); \Omega_n)$

By Proposition 2.1, these are totally \mathfrak{H} -harmonic on Ω_n for each n, $\{v_n\}$ is monotone non-decreasing, $\{w_n\}$ is monotone non-increasing, $\max(u, 0) \leq v_n$, $\min(u, 0) \geq w_n$,

$$\int_{\Omega_n} \Phi_{\mathfrak{Y}}(v_n) d\xi \leq \int_{\Omega_n} \Phi_{\mathfrak{Y}}(\max(u, 0)) d\xi$$

and

$$\int_{\Omega_n} \Phi_{\mathfrak{Y}}(w_n) d\xi \leq \int_{\Omega_n} \Phi_{\mathfrak{Y}}(\min(u, 0)) d\xi.$$

Put $f_n = v_n - \max(u, 0)$. Then $f_n \in \mathbf{X}$, $f_n \ge 0$, $\{f_n\}$ is monotone non-decreasing and each Supp f_n is compact. By Lemma 3.1 (a),

$$\int_{\Omega} \Psi(f_n) d\xi \leq \frac{C}{2} \left\{ \int_{\Omega} \Psi(v_n) d\xi + \int_{\Omega} \Psi(\max(u, 0)) d\xi \right\}.$$

As in the proof of Theorem 2.2, we see that

$$\int_{\Omega} \Psi(v_n) d\xi \leq \int_{\Omega} \Psi(u) d\xi.$$

Hence

$$\int_{\Omega} \Psi(f_n) d\xi \leq C \int_{\Omega} \Psi(u) d\xi < \infty.$$

Since $\mathfrak{H} \notin \mathcal{O}_{HD}(\mathcal{F})$, Proposition 3.1 implies that

$$\xi(\{x\in\Omega\mid \lim_{n\to\infty}f_n(x)<\infty\})>0,$$

so that

$$\xi(\{x\in\Omega\mid \lim_{n\to\infty}v_n(x)<\infty\})>0.$$

Hence by (H.1) and (H.2), $v = \lim_{n \to \infty} v_n$ is \mathfrak{H} -harmonic and

$$\int_{\Omega} \Psi(v) d\xi \leq \liminf_{n \to \infty} \int_{\Omega} \Psi(v_n) d\xi.$$

It follows that $\int_{\Omega} \Psi(v) d\xi \leq \int_{\Omega} \Psi(u) d\xi < \infty$ (resp. $\int_{\Omega} \Phi_{\mathfrak{H}}(v) d\xi \leq \int_{\Omega} \Phi_{\mathfrak{H}}(u) d\xi < \infty$), so that $v \in HDP(\mathfrak{H})$ (resp. $HEP(\mathfrak{H})$). Hence v = const. Similarly we see that $w = \lim_{n \to \infty} w_n$ is a constant. Then, by the same argument as in the last part of the proof of Theorem 2.2, we derive a contradiction that u is a constant.

THEOREM 4.2. $O_{HEB}(\mathcal{F}_1) = O_{HE}(\mathcal{F}_1)$.

PROOF. By virtue of the above theorem, it is enough to show that $O_{HEB}(\mathcal{F}_1) \subset O_{HEP}(\mathcal{F}_1)$. Let $\mathfrak{H} \in O_{HEB}(\mathcal{F}_1)$ and $u \in HEP(\mathfrak{H})$. Put $u_m = \min(u, m)$ for m > 0. Then $u_m \in \mathbf{X}$, $u_m \ge 0$, u_m is \mathfrak{H} -superharmonic on Ω and

$$\int_{\Omega} \Phi_{\mathfrak{H}}(u_m) d\xi \leq \int_{\Omega} \Phi_{\mathfrak{H}}(u) d\xi.$$

Let $\{\Omega_n\}$ be an exhaustion of Ω such that each Ω_n is resolutive and put

$$v_{m,n} = R(u_m; \Omega_n).$$

By Proposition 2.1, $0 \leq v_{m,n} \leq u_m$, each $v_{m,n}$ is \mathfrak{H} -superharmonic on Ω , totally \mathfrak{H} -harmonic on Ω_n and $\{v_{m,n}\}_n$ is monotone non-increasing. By (H.1), $w_m = \lim_{n \to \infty} v_{m,n}$ is \mathfrak{H} -harmonic on Ω and

$$\begin{split} \int_{\Omega} \Phi_{\mathfrak{F}}(w_m) d\xi &\leq \liminf_{n \to \infty} \int_{\Omega} \Phi_{\mathfrak{F}}(v_{m,n}) d\xi \\ &\leq \int_{\Omega} \Phi_{\mathfrak{F}}(u_m) d\xi \leq \int_{\Omega} \Phi_{\mathfrak{F}}(u) d\xi < \infty. \end{split}$$

Obviously, $0 \le w_m \le u_m \le m$. Hence $w_m \in HEB(\mathfrak{H})$, so that w_m is a constant for each m.

Since $v_{m,n}$ is totally \mathfrak{H} -harmonic on Ω_n and $v_{m,n} = u_m$ on $\Omega \setminus \Omega_n$, we have

(4.1)
$$\int_{\Omega} \nabla \Psi(v_{m,n}; u_m - v_{m,n}) d\xi + \int_{\Omega} \Gamma'(\cdot, v_{m,n}) (u_m - v_{m,n}) d\xi = 0.$$

Since w_m is a constant and \mathfrak{H} -harmonic on Ω ,

$$\int_{\Omega} \Gamma'(\cdot, w_m) (u_m - v_{m,n}) d\xi = 0,$$

which implies

(4.2)
$$\int_{\Omega} \Gamma'(\cdot, w_m) (u_m - w_m) d\xi = 0.$$

Now, by the convexity of $\Gamma(x, t)$ in t,

$$0 \leq \Gamma'(\cdot, v_{m,n})(u_m - v_{m,n}) \leq \Gamma(\cdot, u_m) - \Gamma(\cdot, v_{m,n})$$
$$\leq \Gamma(\cdot, u_m) \leq \Gamma(\cdot, u)$$

and

$$\int_{\Omega} \Gamma(\,\cdot\,,\,u)d\xi < \infty$$

since $u \in HE(\mathfrak{H})$. Since $\Gamma'(\cdot, v_{m,n}) \rightarrow \Gamma'(\cdot, w_m)$ on Ω , it follows from Lebesgue's convergence theorem and (4.2) that

(4.3)
$$\lim_{n\to\infty}\int_{\Omega}\Gamma'(\cdot, v_{m,n})(u_m-v_{m,n})d\xi=0.$$

On the other hand, since $\int_{\Omega} \Psi(u_m) d\xi \leq \int_{\Omega} \Psi(u) d\xi < \infty$, given $\varepsilon > 0$ ($\varepsilon < 1$), there is a compact set K in Ω such that $\int_{\Omega \setminus K} \Psi(u_m) d\xi < \varepsilon$. Applying Lemma 3.1(c) with $\rho = \varepsilon^{-1/p}$, we have

(4.4)
$$\begin{cases} \left| \int_{\Omega \setminus K} \nabla \Psi(v_{m,n}; u_m) d\xi \right| \\ \leq \varepsilon^{1/p} (C-2) \int_{\Omega \setminus K} \Psi(v_{m,n}) d\xi + \varepsilon^{-(p-1)/p} C \int_{\Omega \setminus K} \Psi(u_m) d\xi \\ \leq \varepsilon^{1/p} \Big\{ (C-2) \int_{\Omega} \Phi_{\mathfrak{H}}(u) d\xi + C \Big\}. \end{cases}$$

Since $v_{m,n}$ decreases to a constant w_m as $n \to \infty$, Lemma 3.3 implies that $\lim_{n\to\infty} \int_{K} \Psi(v_{m,n}) d\xi = 0$, and hence by Lemma 3.2, we have

$$\lim_{n\to\infty}\int_{K} \nabla \Psi(v_{m,n}; u_m)d\xi = 0.$$

Hence, in view of (4.4), we obtain

(4.5)
$$\lim_{n\to\infty}\int_{\Omega} \nabla \Psi(v_{m,n}; u_m)d\xi = 0.$$

By (4.1), (4.3) and (4.5), we conclude that

$$\lim_{n\to\infty}\int_{\Omega} \nabla \Psi(v_{m,n};v_{m,n})d\xi=0,$$

or

(4.6)
$$\lim_{n\to\infty}\int_{\Omega}\Psi(v_{m,n})d\xi=0$$

for each m > 0.

Since u is \mathfrak{H} -harmonic on Ω ,

$$\int_{\Omega} \mathcal{F} \Psi(u; u_m - v_{m,n}) d\xi + \int_{\Omega} \Gamma'(\cdot, u) (u_m - v_{m,n}) d\xi = 0.$$

Noting that $\Gamma'(\cdot, u)(u_m - v_{m,n}) \ge 0$, we have

(4.7)
$$\int_{\Omega} \nabla \Psi(u; u_m) d\xi \leq \int_{\Omega} \nabla \Psi(u; v_{m,n}) d\xi.$$

By (4.6), for sufficiently large n, $\int_{\Omega} \Psi(v_{m,n}) d\xi \leq 1$ (*m* being fixed). Applying Lemma 3.1 (c) with $\rho = \left\{ \int_{\Omega} \Psi(v_{m,n}) d\xi \right\}^{-1/p} (\inf \int_{\Omega} \Psi(v_{m,n}) d\xi \neq 0)$, we obtain

$$\int_{\Omega} \mathcal{F} \Psi(u; v_{m,n}) d\xi$$

$$\leq \left\{ \int_{\Omega} \Psi(v_{m,n}) d\xi \right\}^{1/p} \left\{ (C-2) \int_{\Omega} \Psi(u) d\xi + C \right\}.$$

Thus, by (4.6),

$$\lim_{n\to\infty}\int_{\Omega} \nabla \Psi(u; v_{m,n})d\xi = 0,$$

so that by (4.7),

$$\int_{\Omega} \nabla \Psi(u; u_m) d\xi = 0.$$

Hence $\mathcal{P}\Psi(u; u_m) = 0$ on Ω (note that $\mathcal{P}\Psi(u; u_m) \ge 0$ by Lemma 1.1). Since this is true for any m > 0, it follows that $\mathcal{P}\Psi(u, u) = 0$, which implies that $\Psi(u) = 0$, i.e., u = const. Thus the theorem is proved.

Summing up, we have obtained

$$\begin{array}{ccc} O_{SH}(\mathcal{F}_{1}) & \subset & O_{H}(\mathcal{F}_{1}) \\ & \cap \\ O_{SHP}(\mathcal{F}_{1}) \\ & \parallel \\ (4.8) & O_{SHB}(\mathcal{F}_{1}) \end{array} \end{array} \right\} \begin{array}{c} \cap \\ & \cap \\ O_{HP}(\mathcal{F}_{1}) & \subset \\ O_{HP}(\mathcal{F}_{1}) & \subset \\ O_{HDP}(\mathcal{F}_{1}) \end{array} \\ \left(\begin{array}{c} O_{HE}(\mathcal{F}_{1}) \\ & \cap \\ O_{HB}(\mathcal{F}_{1}) \end{array} \right) \\ O_{HB}(\mathcal{F}_{1}) & \subset \\ O_{HDB}(\mathcal{F}_{1}) \end{array} \\ \left(\begin{array}{c} O_{HE}(\mathcal{F}_{1}) \\ & \parallel \\ O_{HEP}(\mathcal{F}_{1}) \\ & \parallel \\ O_{HEB}(\mathcal{F}_{1}) \end{array} \right) \end{array}$$

The special cases in 6 and 7 show that all inclusion relations in (4.8) are strict, except

$$O_{HDP}(\mathcal{F}_1) \subset O_{HDB}(\mathcal{F}_1).$$

We do not know whether this inclusion is strict or not; for the class of linear FH-spaces we have the equality (cf. [5], [6], [9]). In the next section, we shall consider a subclass \mathscr{F}_2 of \mathscr{F}_1 , which contains all linear FH-spaces, and show that $O_{HDP}(\mathscr{F}_2) = O_{HDB}(\mathscr{F}_2)$.

§5. Classification III

We consider the following condition for Ψ , which is the dual of (Δ_2) :

 (Δ_2^*) There is a constant $C^* > 2$ such that

$$C^*\Psi(2f) \leq \Psi(C^*f)$$

for all $f \in \mathbf{X}$.

We denote by \mathscr{F}_2 the class of all $\mathfrak{H} \in \mathscr{F}_1$ satisfying (Δ_2^*) . Then we have

THEOREM 5.1. $O_{HDB}(\mathcal{F}_2) = O_{HD}(\mathcal{F}_2)$.

PROOF. It is enough to show that

$$O_{HDB}(\mathcal{F}_2) \subset O_{HDP}(\mathcal{F}_2)$$

by virtue of Theorem 4.1. Suppose $\mathfrak{H} \in O_{HDB}(\mathscr{F}_2)$ and $u \in HDP(\mathfrak{H})$. Let u_m , $\{\Omega_n\}$, $v_{m,n}$ and w_m be as in the proof of Theorem 4.2. Then

(5.1)
$$\int_{\Omega} \nabla \Psi(v_{m,n}; v_{m,n} - u_m) d\xi + \int_{\Omega} \Gamma'(\cdot, v_{m,n}) (v_{m,n} - u_m) d\xi = 0$$

and

(5.2)
$$\int_{\Omega} \nabla \Psi(u; u_m - v_{m,n}) d\xi + \int_{\Omega} \Gamma'(\cdot, u) (u_m - v_{m,n}) d\xi = 0.$$

Since $\int_{\Omega} \nabla \Psi(u; u_m) d\xi \ge 0$ and

$$\Gamma'(\cdot, u)(u_m - v_{m,n}) \geq \Gamma'(\cdot, v_{m,n})(u_m - v_{m,n}),$$

it follows from (5.1) and (5.2) that

(5.3)
$$\int_{\Omega} \nabla \Psi(v_{m,n}; v_{m,n}) d\xi \leq \int_{\Omega} \{ \nabla \Psi(v_{m,n}; u_m) + \nabla \Psi(u; v_{m,n}) \} d\xi.$$

Applying Lemma 3.1 (c) with $\rho = 4C$, we have

(5.4)
$$\begin{cases} \int_{\Omega} | \mathcal{F} \Psi(v_{m,n}; u_m)| d\xi \\ \leq 4^{-1} C^{-1} (C-2) \int_{\Omega} \Psi(v_{m,n}) d\xi + 4^{p-1} C^p \int_{\Omega} \Psi(u_m) d\xi \\ \leq 4^{-1} \int_{\Omega} \Psi(v_{m,n}) d\xi + 4^{p-1} C^p \int_{\Omega} \Psi(u) d\xi. \end{cases}$$

Note that $\int_{\Omega} \Psi(v_{m,n}) d\xi < \infty$, since $\int_{\Omega} \Psi(u_m) d\xi \leq \int_{\Omega} \Psi(u) d\xi < \infty$ and $v_{m,n} = u_m$ on $\Omega \setminus \Omega_n$. Lemma 3.1 (b) and condition (Δ_2^*) imply

$$\begin{aligned} |\mathcal{F}\Psi(u; v_{m,n})| &= 2^{-1}C^* |\mathcal{F}\Psi(u; 2C^{*-1}v_{m,n})| \\ &\leq 2^{-1}C^* \{ (C-2)\Psi(u) + \Psi(2C^{*-1}v_{m,n}) \} \\ &\leq 2^{-1}C^* (C-2)\Psi(u) + 2^{-1}\Psi(v_{m,n}) \,, \end{aligned}$$

so that

(5.5)
$$\begin{cases} \int_{\Omega} |\nabla \Psi(u; v_{m,n})| d\xi \\ \leq 2^{-1} C^* (C-2) \int_{\Omega} \Psi(u) d\xi + 2^{-1} \int_{\Omega} \Psi(v_{m,n}) d\xi \end{cases}$$

From (5.3), (5.4) and (5.5), it follows that $\left\{\int_{\Omega} \Psi(v_{m,n}) d\xi\right\}_{n,m}$ is bounded. Hence by (H.1),

$$\int_{\Omega} \Psi(w_m) d\xi \leq \liminf_{n \to \infty} \int_{\Omega} \Psi(v_{m,n}) d\xi < \infty,$$

so that $w_m \in HDB(\mathfrak{H})$, which implies $w_m = \text{const.}$

Given $\varepsilon > 0$ ($\varepsilon < 1$), choose a positive integer l such that $\int_{\Omega} \Psi(v_{m,n}) d\xi \leq \varepsilon 2^{l-1}$ for all m, n. Since $\int_{\Omega} \Psi(u) d\xi < \infty$, there is a compact set K in Ω such that

$$\int_{\Omega\setminus K}\Psi(u)d\xi\leq 2^{l-1}C^{*-l}(C-2)^{-1}\varepsilon.$$

By Lemma 3.1(b) and the repeated use of condition (Δ_2^*) (cf. the computation above yielding (5.5)) we obtain

(5.6)
$$\left| \int_{\Omega \setminus K} \nabla \Psi(u; v_{m,n}) d\xi \right| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

On the other hand, by Lemma 3.3, $\lim_{n\to\infty} \int_K \Psi(v_{m,n}) d\xi = 0$. Applying Lemma

3.1 (c) with
$$\rho = \left(\int_{K} \Psi(v_{m,n}) d\xi \right)^{-1/p}$$
 for large *n*, we have
(5.7)
$$\begin{cases} \left| \int_{K} \nabla \Psi(u; v_{m,n}) d\xi \right| \\ \leq \left\{ \int_{K} \Psi(v_{m,n}) d\xi \right\}^{1/p} \left\{ (C-2) \int_{\Omega} \Psi(u) d\xi + C \right\} \\ \rightarrow 0 \qquad (n \rightarrow \infty). \end{cases}$$

From (5.6) and (5.7) it follows that

$$\lim_{n\to\infty}\int_{\Omega} \nabla \Psi(u; v_{m,n})d\xi = 0.$$

Hence, by (5.2),

$$0 \leq \int_{\Omega} \nabla \Psi(u; u_m) d\xi \leq \int_{\Omega} \nabla \Psi(u; v_{m,n}) d\xi \to 0 \qquad (n \to \infty),$$

so that $\mathcal{P}\Psi(u; u_m) = 0$ on Ω for each m. It then follows that u is a constant.

REMARK 5.1. The above proof shows that the equality $O_{HDB} = O_{HD}$ can be proved without using Royden boundary or Green potentials in the linear case (cf. [6], [9]).

By (4.8) and Theorem 5.1, we obtain

$$\begin{array}{ccc} O_{SH}(\mathscr{F}_2) & \subset O_H(\mathscr{F}_2) \\ & & \\ (5.8) & \begin{array}{c} O_{SHP}(\mathscr{F}_2) \\ & \\ & \\ O_{SHB}(\mathscr{F}_2) \end{array} \end{array} \xrightarrow{\begin{subarray}{c} O_{HP}(\mathscr{F}_2) \\ & \\ O_{HP}(\mathscr{F}_2) \end{array} \subset \begin{array}{c} O_{HB}(\mathscr{F}_2) \\ & \\ O_{HDP}(\mathscr{F}_2) \\ & \\ O_{HDB}(\mathscr{F}_2) \end{array} \xrightarrow{\begin{subarray}{c} O_{HE}(\mathscr{F}_2) \\ & \\ O_{HEP}(\mathscr{F}_2) \\ & \\ O_{HEB}(\mathscr{F}_2) \end{array}$$

All inclusion relations (5.8) are known to be strict in the linear case (cf. the next two sections).

REMARK 5.2. If we consider the class

$$\mathscr{F}'_1 = \left\{ \mathfrak{H} \in \mathscr{F}_1 \middle| \int_{\Omega} \Gamma(x, t) d\xi(x) < \infty \text{ for every } t \in \mathbf{R} \right\},$$

then, in almost the same way as in the proof of Theorem 4.2, we see that

$$O_{HEB}(\mathscr{F}_1') \subset O_{HDP}(\mathscr{F}_1').$$

Thus, in view of (4.8), we have

$$\begin{array}{ccc} O_{SH}(\mathscr{F}_{1}') & \subset & O_{H}(\mathscr{F}_{1}') \\ & \cap & & \\ (5.9) & O_{SHP}(\mathscr{F}_{1}') \\ & & & \\ O_{SHB}(\mathscr{F}_{1}') \end{array} \right\rangle \xrightarrow{\cap} & \\ C & O_{HP}(\mathscr{F}_{1}') & \subset & O_{HB}(\mathscr{F}_{1}') \end{array} \subset \begin{array}{c} O_{HD}(\mathscr{F}_{1}') = & O_{HE}(\mathscr{F}_{1}') \\ & & \\ & & \\ O_{HDP}(\mathscr{F}_{1}') = & O_{HEP}(\mathscr{F}_{1}') \\ & & \\ & & \\ O_{HDB}(\mathscr{F}_{1}') = & O_{HEB}(\mathscr{F}_{1}') \end{array}$$

§6. Quasi-linear networks

In this section, we consider a special class of FH-spaces, namely, the class of quasi-linear networks.

Let X and Y be countable (infinite) sets and let K be a function on $X \times Y$ satisfying the following conditions:

(K.1) The range of K is $\{-1, 0, 1\}$; (K.2) For each $y \in Y$, $e(y) \equiv \{x \in X \mid K(x, y) \neq 0\}$ consists of exactly two points x_1 and x_2 and $K(x_1, y)K(x_2, y) = -1$;

(K.3) For each $x \in X$, $Y(x) \equiv \{y \in Y \mid K(x, y) \neq 0\}$ is a non-empty finite set;

(K.4) For each $x, x' \in X$, there are $x_1, \dots, x_k \in X$ and $y_1, \dots, y_{k+1} \in Y$ such that $e(y_j) = \{x_{j-1}, x_j\}, j = 1, \dots, k+1$, with $x_0 = x$ and $x_{k+1} = x'$.

Then $G = \{X, Y, K\}$ is called a (connected, locally finite) infinite graph (cf. [13]).

For each $y \in Y$, we consider a set S_y and a bijection j_y of S_y onto the open unit interval (0, 1) and let

$$\Omega = \Omega_{\{X,Y\}} = X \cup \bigcup_{y \in Y} S_y$$

be a disjoint union. A topology is introduced on Ω as follows: $\omega \subset \Omega$ is open if (and only if) $j_y(\omega \cap S_y)$ is open in (0, 1) for each y, $j_y(\omega \cap S_y)$ contains an interval of the form $(0, \varepsilon)$ ($\varepsilon > 0$) in case $x \in \omega$ and K(x, y) = -1 and it contains an interval of the form $(1 - \varepsilon', 1)$ ($\varepsilon' > 0$) in case $x \in \omega$ and K(x, y) = 1. Then Ω is a connected, non-compact, σ -compact, locally compact Hausdorff space. For each $y \in Y$, j_y is extended to be a homeomorphism of $\overline{S}_y = S_y \cup e(y)$ onto [0, 1].

Let μ_y be the measure on S_y induced by j_y from the Lebesgue measure on (0, 1) and let v be the counting measure on X. We define $\xi = \xi_G$ by

$$\xi = v + \sum_{y \in Y} \mu_y,$$

which is a positive Radon measure on Ω whose support is the whole space Ω .

Let

Fumi-Yuki MAEDA

$$\mathbf{X} = \mathbf{X}_G = \left\{ f: \Omega \to \mathbf{R} \middle| \begin{array}{c} f \text{ is continuous on } \Omega, f \circ j_y^{-1} \text{ is} \\ \text{Lipschitz continuous on } (0, 1) \text{ for each } y \end{array} \right\}.$$

It is easy to see that this X satisfies conditions (X.1) and (X.2) in §1, and also (X.3) in §3. If $f \in \mathbf{X}$, then $(f \circ j_y^{-1})'$ exists a.e. on (0, 1). For simplicity, we write f'(z) for $(f \circ j_y^{-1})'(j_y(z))$ in case $z \in S_y$.

Next, we consider two functions $\phi: Y \times \mathbb{R} \to \mathbb{R}$ and $\gamma: X \times \mathbb{R} \to \mathbb{R}$ satisfying the following conditions:

- (ϕ .1) $\phi(y, t) = -\phi(y, -t)$ for all $y \in Y$ and $t \in \mathbf{R}$;
- (ϕ .2) For each $y \in Y$, $\phi(y, t)$ is continuous and strictly increasing in t;
- (y.1) $\gamma(x, t) = -\gamma(x, -t)$ for all $x \in X$ and $t \in \mathbf{R}$;

(y.2) For each $x \in X$, $\gamma(x, t)$ is continuous and monotone non-decreasing in t.

Put $\psi(y, t) = \int_0^t \phi(y, s) ds$,

$$\Psi(f)(z) = \begin{cases} 0, & \text{if } z \in X \\ \\ \psi(y, f'(z)), & \text{if } z \in S_y \end{cases}$$

for $f \in \mathbf{X}$ and

$$\Gamma(z, t) = \begin{cases} \int_0^t \gamma(x, s) ds, & \text{if } z = x \in X \\ 0, & \text{if } z \notin X \end{cases}$$

for $z \in \Omega$, $t \in \mathbf{R}$.

We see that $\Psi(f)$ is defined ξ -a.e. on Ω and $\Psi(f) \in L^1_{loc}(\Omega)$ for any $f \in \mathbf{X}$. It is easy to verify that this Ψ satisfies conditions $(\Psi.1) \sim (\Psi.5)$ in §1 and

From this, we see that condition (D) in §3 is also valid. Obviously, Γ defined above satisfies $(\Gamma.1) \sim (\Gamma.3)$ in §1 with

$$\Gamma'(z, t) = \begin{cases} \gamma(x, t), & \text{if } z = x \in X \\ 0, & \text{if } z \notin X. \end{cases}$$

Thus $\mathfrak{H} = \{\Omega_{\{X,Y\}}, \xi_G, \mathbf{X}_G, \Psi, \Gamma\}$ is a functional space, which we shall call a *quasi-linear network*. It will be often denoted by $\mathfrak{H} = [G, \phi, \gamma]$. We denote by \mathcal{N} the class of all quasi-linear networks.

For an open set $\omega \subset \Omega$, let

$$X(\omega) = \{x \in X \cap \omega \mid S_y \subset \omega \quad \text{for all} \quad y \in Y(x)\}.$$

An open set ω will be said to be regular if $X(\omega) = X \cap \omega$. Obviously, Ω is regular. We shall say that a function f on Ω is linear on S_{ν} if $f \circ j_{\nu}^{-1}$ is linear on (0, 1).

LEMMA 6.1. Let $\mathfrak{H} = [G, \phi, \gamma] \in \mathcal{N}$.

(a) If ω is a regular open set and $u \in \mathbf{X}$ is totally \mathfrak{H} -harmonic on ω , then u is linear on S_y for every $y \in Y$ such that $S_y \subset \omega$ and

(6.1)
$$\sum_{y \in Y(x)} K(x, y)\phi(y, \sum_{x' \in X} K(x', y)u(x')) + \gamma(x, u(x)) = 0$$

for all $x \in X \cap \omega$.

(b) If $u \in \mathbf{X}$ is linear on every S_y , $y \in Y$, and satisfies (6.1) for all $x \in X$, then u is \mathfrak{H} -harmonic on Ω .

PROOF. Obviously, u is totally \mathfrak{H} -harmonic on S_y if and only if $\phi(y, u'(z)) = \text{const. on } S_y$, that is, $u'(z) = \text{const. on } S_y$, or equivalently, u is linear on S_y .

For $x \in X$, let $U(x) = \{x\} \cup \bigcup_{y \in Y(x)} S_y$. Suppose $u \in X$ is linear on each S_y , $y \in Y(x)$. Then we see that u is totally \mathfrak{H} -harmonic on U(x) if and only if

$$\sum_{\mathbf{y}\in Y(x)} K(x, y)\phi(y, u'(z_y)) + \gamma(x, u(x)) = 0,$$

where z_y is any point on S_y . Since $u'(z_y) = \sum_{x' \in X} K(x', y)u(x')$, this equality is nothing but (6.1). Hence our lemma follows.

PROPOSITION 6.1. $\mathcal{N} \subset \mathcal{F}$, i.e., every quasi-linear network is an FH-space; each $\mathfrak{H} \in \mathcal{N}$ satisfies conditions (X.3), (D) and (H.2).

PROOF. We have already seen that each $\mathfrak{H} \in \mathcal{N}$ is a functional space and satisfies (X.3) and (D).

Since there is an exhaustion of Ω consisting of regular open sets, to show (H.1) and (H.2) we may assume that each Ω_n is regular. Then (H.1) is easily seen from Lemma 6.1. Let $\{u_n\}$ be a sequence as described in condition (H.2). Then there is $x_0 \in X$ such that $\{u_n(x_0)\}$ is bounded. For each $x \in X$, we find by (K.4) $x_1, \dots, x_k \in X$ and $y_1, \dots, y_{k+1} \in Y$ such that $e(y_j) = \{x_{j-1}, x_j\}, j = 1, \dots, k+1$ with $x_{k+1} = x$. Let $F = \bigcup_{j=1}^{k+1} \overline{S}_{y_j}$. Then F is a compact set in Ω and

$$\int_{F} \Psi(u_{n}) d\xi = \sum_{j=1}^{k+1} \psi(y_{j}, u_{n}(x_{j}) - u_{n}(x_{j-1})).$$

Since $\left\{ \int_{F} \Psi(u_n) d\xi \right\}$ is bounded and $\psi(y, t) \to \infty$ as $|t| \to \infty$ for each t, it follows that $\{u_n(x)\}$ is bounded. Hence $\{u_n\}$ is locally uniformly bounded on Ω . Thus (H.2) is satisfied.

Finally, we shall verify (R). Let ω be a relatively compact regular open set in Ω and let $f \in \mathbf{X}$. Then $M = \max_{z \in \overline{\omega}} |f(z)|$ is finite. Let Fumi-Yuki MAEDA

$$\mathbf{D} = \{g \in \mathbf{X} \mid g = f \text{ on } \Omega \setminus \omega\}$$

and

$$\mathbf{D}^* = \left\{ \begin{array}{c} g \in \mathbf{D} \\ and |g| \leq M \text{ on } \omega \end{array} \right\}$$

For each $g \in \mathbf{D}$, we can find $g^* \in \mathbf{D}^*$ such that

$$g^*(x) = \max\left(-M, \min\left(g(x), M\right)\right)$$

for all $x \in X \cap \omega$. It is easy to see that

$$\int_{\omega} \Phi_{\mathfrak{H}}(g^*) d\xi \leq \int_{\omega} \Phi_{\mathfrak{H}}(g) d\xi.$$

Hence,

$$\alpha \equiv \inf \left\{ \int_{\omega} \Phi_{\mathfrak{H}}(g) d\xi \, \Big| \, g \in \mathbf{D} \right\} = \inf \left\{ \int_{\omega} \Phi_{\mathfrak{H}}(g) d\xi \, \Big| \, g \in \mathbf{D}^* \right\}.$$

Since $X \cap \omega$ is a finite set and $\{g(x)|g \in \mathbf{D}^*\}$ is bounded for each $x \in X \cap \omega$, we can find a sequence $\{g_n\} \subset \mathbf{D}^*$ such that $\{g_n(x)\}$ is convergent for every $x \in X \cap \omega$ and

$$\lim_{n\to\infty}\int_{\omega}\Phi_{\mathfrak{F}}(g_n)d\xi=\alpha.$$

Then $g_0 = \lim_{n \to \infty} g_n$ exists and belongs to **D**^{*}. We see easily that $g_0 = R(f; \omega)$. Hence (R) is satisfied.

By virtue of this proposition, inclusion relations (2.4) hold with \mathcal{N} in the place of \mathcal{F} . Furthermore, if we put

$$\mathcal{N}_1 = \mathcal{N} \cap \mathcal{F}_1 = \{ \mathfrak{H} \in \mathcal{N} \mid \mathfrak{H} \text{ satisfies } (\Delta_2) \}$$

and

$$\mathcal{N}_2 = \mathcal{N} \cap \mathcal{F}_2 = \{ \mathfrak{H} \in \mathcal{N} \mid \mathfrak{H} \text{ satisfies } (\Delta_2) \text{ and } (\Delta_2^*) \},\$$

then inclusion relations (4.8) hold with \mathcal{N}_1 in the place of \mathcal{F}_1 and (5.8) hold with \mathcal{N}_2 in the place of \mathcal{F}_2 . Note that conditions (Δ_2) and (Δ_2^*) for $\mathfrak{H} \in \mathcal{N}$ may be written as follows:

 $(\Delta_2)_{\mathcal{N}}$: There is a constant c > 1 such that

$$\phi(y, 2t) \leq c\phi(y, t)$$
 for all $y \in Y, t \geq 0$.

 $(\Delta_2^*)_{\mathscr{N}}$: There is a constant $c^* > 1$ such that

$$2\phi(y, t) \leq \phi(y, c^*t)$$
 for all $y \in Y, t \geq 0$.

Note that the network considered in [13] belongs to \mathcal{N}_2 ($\phi(y, t) = r(y) |t|^{p-2}t$, r(y) > 0, $1 and <math>\gamma(x, t) \equiv 0$).

Now, we shall show by special quasi-linear networks that inclusion relations in (2.4) and (5.8) are all strict.

PROPOSITION 6.2. $O_H(\mathcal{N}_2) \not\subset O_{SHP}(\mathcal{N}_2)$.

PROOF. Let $X = \{x_0, x_1, \dots\}$, $Y = \{y_1, y_2, \dots\}$, $K(x_n, y_n) = 1$ and $K(x_{n-1}, y_n) = -1$, $n = 1, 2, \dots, K(x_n, y_m) = 0$ if $m \neq n+1$, n. Then $G = \{X, Y, K\}$ is an infinite graph. Let

$$\phi(y_n, t) = n^2 t, \qquad n = 1, 2, \cdots, t \in \mathbf{R}$$

and $\gamma \equiv 0$. Then $\mathfrak{H} = [G, \phi, \gamma]$ belongs to \mathcal{N}_2 . Since $u \in H(\mathfrak{H})$ if and only if u is linear on each S_{y_n} and

$$0 = \phi(y_1, u(x_0) - u(x_1)) = \dots = \phi(y_n, u(x_{n-1}) - u(x_n)) = \dots,$$

 $H(\mathfrak{H})$ consists only of constant functions, i.e., $\mathfrak{H} \in O_H(\mathcal{N}_2)$. On the other hand, if we define v to be linear on each S_{y_n} and

$$v(x_n) = 2 - \sum_{k=1}^n k^{-2}, \quad n = 1, 2, \cdots,$$

then $v \in SHP(\mathfrak{H})$. Hence $\mathfrak{H} \notin O_{SHP}(\mathcal{N}_2)$.

COROLLARY.
$$O_{SH}(\mathcal{N}_2) \neq O_H(\mathcal{N}_2)$$
 and $O_{SHP}(\mathcal{N}_2) \neq O_{HP}(\mathcal{N}_2)$.

PROPOSITION 6.3. $O_{HD}(\mathcal{N}_2) \not\subset O_{HB}(\mathcal{N}_2)$.

PROOF. Let $X = X_1 \cup X'_1$ with

 $X_1 = \{x_n \mid n \in \mathbb{Z}\}$ and $X'_1 = \{x'_n \mid n \in \mathbb{Z}\},\$

where Z is the set of all integers, and let $Y = Y_1 \cup Y_1' \cup Y_2$ with

$$Y_1 = \{y_n \mid n \in \mathbb{Z}\}, Y_1' = \{y_n' \mid n \in \mathbb{Z}\} \text{ and } Y_2 = \{z_n \mid n = 0, 1, \cdots\}.$$

We define K(x, y) on $X \times Y$ as follows:

$$K(x_n, y_n) = K(x'_n, y'_n) = 1, \ K(x_{n-1}, y_n) = K(x'_{n-1}, y'_n) = -1 \quad (n \in \mathbb{Z}),$$

$$K(x_n, z_n) = 1$$
, $K(x'_n, z_n) = -1$ $(n = 0, 1, \dots)$ and

K(x, y) = 0 for any other pair $(x, y) \in X \times Y$.

Then $G = \{X, Y, K\}$ is an infinite graph. Let

Fumi-Yuki MAEDA

$$\phi(y_n, t) = \phi(y'_n, t) = 2^n t, \quad n = 1, 2, \cdots,$$

$$\phi(y_{-n}, t) = \phi(y'_{-n}, t) = \phi(z_n, t) = t, \quad n = 0, 1, \cdots$$

and $\gamma \equiv 0$. Then $\mathfrak{H} = [G, \phi, \gamma] \in \mathcal{N}_2$. If $u \in HB(\mathfrak{H}) \cup HD(\mathfrak{H})$, then $u(x_{-n}) = u(x_0)$ and $u(x'_{-n}) = u(x'_0)$ for all $n = 1, 2, \cdots$. If we put $a_n = u(x_n) - u(x'_n)$, $n = 0, 1, \cdots$, then

(6.2)
$$2^{n}(a_{n}-a_{n-1})-2^{n+1}(a_{n+1}-a_{n})+2a_{n}=0$$
 $(n=0, 1, \cdots).$

Hence

(6.3)
$$a_{n+1} = a_n + 2^{-n} \sum_{k=0}^n a_k, \quad n = 0, 1, \cdots$$

Any sequence $\{a_n\}$ satisfying (6.3) is bounded. Since

$$u(x_n) = \frac{1}{2} \{ u(x_0) + u(x'_0) + a_n \}$$
 and $u(x'_n) = \frac{1}{2} \{ u(x_0) + u(x'_0) - a_n \},$

 $n=0, 1, \cdots$, we see that $HB(\mathfrak{H})$ contains non-constant functions, i.e., $\mathfrak{H} \notin O_{HB}(\mathcal{N}_2)$. On the other hand, if $a_0 \neq 0$, then $|a_n| \ge |a_0|$ for all $n=1, 2, \cdots$, so that

$$\int_{\Omega} \Psi(u) d\xi \geq \sum_{n=0}^{\infty} \psi(z_n, u(x_n) - u(x'_n)) = \frac{1}{2} \sum_{n=0}^{\infty} a_n^2 = \infty.$$

Hence $u \in HD(\mathfrak{H})$ implies $a_0 = 0$, i.e., u = const. Therefore $\mathfrak{H} \in O_{HD}(\mathcal{N}_2)$.

COROLLARY. $O_H(\mathcal{N}) \neq O_{HD}(\mathcal{N}), O_{HP}(\mathcal{N}_1) \neq O_{HDP}(\mathcal{N}_1)$ and $O_{HB}(\mathcal{N}_1) \neq O_{HDB}(\mathcal{N}_1)$.

PROPOSITION 6.4. $O_{HE}(\mathcal{N}_2) \not\subset O_{HDB}(\mathcal{N}_2)$.

PROOF. Let G be as in the proof of Proposition 6.2 and let $\phi(y_n, t) = 2^{n-1}t$, $n=1, 2, \cdots$ and $\gamma(x_n, t) = t, n=0, 1, \cdots$. Then $\mathfrak{H} = [G, \phi, \gamma] \in \mathcal{N}_2$. For $u \in H(\mathfrak{H}, \mathfrak{H})$, put $a_{-1} = 0$ and $a_n = u(x_n)$, $n=0, 1, \cdots$. Then $\{a_n\}$ satisfies (6.2) and hence (6.3) in the proof of the previous proposition. Thus, any $u \in H(\mathfrak{H})$ is bounded. Furthermore,

$$\int_{\Omega} \Psi(u) d\xi = \sum_{n=1}^{\infty} 2^{n-2} (a_n - a_{n-1})^2 = \sum_{n=1}^{\infty} 2^{-n} \left(\sum_{k=0}^{n-1} a_k \right)^2$$
$$\leq (\sup_n |a_n|^2) \sum_{n=1}^{\infty} 2^{-n} n^2 < \infty.$$

Hence $H(\mathfrak{H}) = HDB(\mathfrak{H})$, which contains non-constant functions. Therefore $\mathfrak{H} \notin O_{HDB}(\mathcal{N}_2)$.

On the other hand, if $a_0 \neq 0$, then $|a_n| \ge |a_0|$ for all *n*, so that

$$\int_{\Omega} \Gamma(\cdot, u) d\xi = \frac{1}{2} \sum_{n=0}^{\infty} a_n^2 = \infty.$$

Hence $HE(\mathfrak{H}) = \{0\}$, so that $\mathfrak{H} \in O_{HE}(\mathcal{N}_2)$.

COROLLARY. $O_{HD}(\mathcal{N}) \neq O_{HE}(\mathcal{N}), O_{HDP}(\mathcal{N}) \neq O_{HEP}(\mathcal{N}) \text{ and } O_{HDB}(\mathcal{N}_1) \neq O_{HEB}(\mathcal{N}_1).$

PROPOSITION 6.5. $O_{SHP}(\mathcal{N}_2) \not\subset O_H(\mathcal{N}_2)$ and $O_{HB}(\mathcal{N}_2) \not\subset O_{HP}(\mathcal{N}_2)$.

PROOF. Let $X = \{x_n | n \in Z\}$, $Y = \{y_n | n \in Z\}$, $K(x_n, y_n) = 1$ and $K(x_{n-1}, y_n) = -1$ for $n \in Z$ and $K(x_n, y_m) = 0$ if $m \neq n+1$, n. Then $G = \{X, Y, K\}$ is an infinite graph. Let $\phi(y_n, t) = c_n t$ $(c_n > 0)$, $n \in Z$, and $\gamma \equiv 0$. Then $\mathfrak{H} = [G, \phi, \gamma] \in \mathcal{N}_2$. We easily see that

(i) $\mathfrak{H} \notin O_H(\mathcal{N}_2);$

(ii) $\mathfrak{H} \in O_{SHP}(\mathcal{N}_2)$ as well as $\mathfrak{H} \in O_{HP}(\mathcal{N}_2)$ if and only if

$$\sum_{n=1}^{\infty} c_n^{-1} = \sum_{n=-1}^{-\infty} c_n^{-1} = \infty;$$

(iii) $\mathfrak{H} \in O_{HB}(\mathcal{N}_2)$ if and only if $\sum_{n=-\infty}^{\infty} c_n^{-1} = \infty$. Then the assertions of the proposition immediately follow.

COROLLARY. $O_{SH}(\mathcal{N}_2) \neq O_{SHP}(\mathcal{N}_2)$ and $O_H(\mathcal{N}_2) \neq O_{HP}(\mathcal{N}_2)$.

REMARK. The quasi-linear networks given in the proofs of Propositions 6.2, 6.3, 6.5 all belong to \mathscr{F}'_1 (see, Remark 5.2), and hence provide examples to show that all inclusion relations in (5.9) are strict.

PROPOSITION 6.6. $O_{SHP}(\mathcal{N}) \not\subset O_{HE}(\mathcal{N})$.

PROOF. Let G be as in the proof of the previous proposition and let $\phi(y_n, t) = |t|^{n^2}t$, $n \in \mathbb{Z}$, $\gamma \equiv 0$. Then $\mathfrak{H} = [G, \phi, \gamma] \in \mathcal{N}$ (but $\mathfrak{H} \notin \mathcal{N}_1$). Let $v \in SHP(\mathfrak{H})$ and put

$$b_n = |v(x_n) - v(x_{n-1})|^{n^2} \{v(x_n) - v(x_{n-1})\}, \qquad n \in \mathbb{Z}.$$

Then $b_n \ge b_{n+1}$ for all $n \in \mathbb{Z}$. It follows that v cannot be non-negative unless b_n are all zero. Hence $\mathfrak{H} \in O_{SHP}(\mathcal{N})$. On the other hand, if $u(x_n) = n$ for all $n \in \mathbb{Z}$ and u is linear on each S_{y_n} , then $u \in HD(\mathfrak{H}) = HE(\mathfrak{H})$. Hence $\mathfrak{H} \notin O_{HE}(\mathcal{N})$.

COROLLARY. $O_{HD}(\mathcal{N}) \neq O_{HDP}(\mathcal{N})$ and $O_{HE}(\mathcal{N}) \neq O_{HEP}(\mathcal{N})$.

PROPOSITION 6.7. $O_{HB}(\mathcal{N}) \not\subset O_{HEP}(\mathcal{N})$.

PROOF. Let G be as in the proof of Proposition 6.5 (and Proposition 6.6), let

Fumi-Yuki MAEDA

$$\phi(y_n, t) = \begin{cases} |t|^{n^2}t, & t \in \mathbf{R}, \quad n = 0, 1, 2, \cdots \\ n^2t, & t \in \mathbf{R}, \quad n = -1, -2, \cdots \end{cases}$$

and $\gamma \equiv 0$. Then $\mathfrak{H} = [G, \phi, \gamma] \in \mathcal{N} (\mathfrak{H} \notin \mathcal{N}_1)$. If $u \in H(\mathfrak{H})$, then

$$\begin{aligned} |u(x_n) - u(x_{n-1})|^{n^2} \{ u(x_n) - u(x_{n-1}) \} &= u(x_0) - u(x_{-1}) \\ &= m^2 \{ u(x_m) - u(x_{m-1}) \} \end{aligned}$$

for all $n=1, 2, \cdots$ and $m=-1, -2, \cdots$. If $u \in HB(\mathfrak{H})$, then $u(x_0)-u(x_{-1})=0$, and hence u = const. Therefore $\mathfrak{H} \in O_{HB}(\mathcal{N})$. On the other hand, if we define u_0 by

$$u_0(x_n) = \begin{cases} 3+n, & n = -1, 0, 1, \cdots \\ 2 - \sum_{k=1}^{|n+1|} k^{-2}, & n = -2, -3, \cdots, \end{cases}$$

then $u_0 \in HDP(\mathfrak{H}) = HEP(\mathfrak{H})$. Hence $\mathfrak{H} \notin O_{HEP}(\mathcal{N})$.

COROLLARY. $O_{HDP}(\mathcal{N}) \neq O_{HDB}(\mathcal{N})$ and $O_{HEP}(\mathcal{N}) \neq O_{HEB}(\mathcal{N})$.

§7. FH-spaces on differentiable manifolds

In this section, we are concerned with FH-spaces defined on C^1 -manifolds.

Let Ω be a connected, σ -compact (or, equivalently, para-compact), noncompact C^1 -manifold of dimension $d (\geq 1)$ and let $\{(V_\lambda, \chi_\lambda)\}_{\lambda \in A}$ be a locally finite system of coordinate neighborhoods such that each V_λ is relatively compact and $\overline{V}_{\lambda} \subset U_{\lambda}$ for some coordinate neighborhood $(U_{\lambda}, \tilde{\chi}_{\lambda})$ such that $\tilde{\chi}_{\lambda}|V_{\lambda}=\chi_{\lambda}$. Let ξ be a positive Radon measure on Ω such that $d\xi = h_{\lambda}d\mu_{\lambda}$ on U_{λ} for each $\lambda \in A$ with a positive C^1 -function h_{λ} on U_{λ} , where μ_{λ} is the measure on U_{λ} induced by $\tilde{\chi}_{\lambda}$ from the Lebesgue measure on \mathbb{R}^d . Next, we consider a system $\{\psi_{\lambda}\}_{\lambda \in A}$ of functions $\psi_{\lambda}: \chi_{\lambda}(V_{\lambda}) \times \mathbb{R}^d \to \mathbb{R}$ satisfying the following conditions:

 $(\psi.0) \quad \text{If } V_{\lambda} \cap V_{\lambda'} \neq \phi, \text{ then for each } z \in V_{\lambda} \cap V_{\lambda'} \text{ and } \tau \in \mathbb{R}^d,$

$$\psi_{\lambda}(\chi_{\lambda}(z), \tau) = \psi_{\lambda'}(\chi_{\lambda'}(z), J_{\lambda}^{\lambda'}(z)\tau),$$

where $J_{\lambda}^{\lambda'}(z)$ is the Jacobian matrix of the transformation $\chi_{\lambda} \circ \chi_{\lambda}^{-1}$ at $\chi_{\lambda'}(z)$. (This means that $\{\psi_{\lambda}\}_{\lambda \in \Lambda}$ defines a real function on the cotangent bundle over Ω .) $(\psi.1) \quad \psi_{\lambda}(x, \tau) \ge 0, \ \psi_{\lambda}(x, 0) = 0$ and $\psi_{\lambda}(x, \tau) = \psi_{\lambda}(x, -\tau)$ for all $\lambda \in \Lambda, \ x \in \chi_{\lambda}(V_{\lambda}), \ \tau \in \mathbb{R}^{d}$.

(ψ .2) For each $\lambda \in \Lambda$ and $x \in \chi_{\lambda}(V_{\lambda})$, $\psi_{\lambda}(x, \tau)$ is strictly convex and continuously differentiable in $\tau \in \mathbb{R}^{d}$.

(ψ .3) For each $\lambda \in \Lambda$ and $\tau \in \mathbb{R}^d$, $\nabla_{\tau} \psi_{\lambda}(\cdot, \tau)$ is measurable on $\chi_{\lambda}(V_{\lambda})$.

(ψ .4) With some p>1, the following holds: for each $\lambda \in \Lambda$ there are constants

Classification Theory

 $\alpha_{\lambda} > 0, \ \beta_{\lambda} > 0$ and functions $a_{\lambda} \in L^{p'}(\chi_{\lambda}(V_{\lambda})), \ b_{\lambda} \in L^{p''}(\chi_{\lambda}(V_{\lambda}))$ with

$$p' = \begin{cases} \max(d, p)/(p-1) & \text{if } p \neq d \\ d/(d-1) + \varepsilon & \text{if } p = d(\varepsilon > 0) \end{cases}; \quad p'' = \begin{cases} d/p + \varepsilon' & \text{if } p \leq d(\varepsilon' > 0) \\ 1 & \text{if } p > d, \end{cases}$$

such that

$$\begin{split} |\mathcal{F}_{\tau}\psi_{\lambda}(x,\,\tau)| &\leq \alpha_{\lambda}|\tau|^{p-1} + a_{\lambda}(x)\,,\\ \langle \mathcal{F}_{\tau}\psi_{\lambda}(x,\,\tau),\,\tau\rangle &\geq \beta_{\lambda}|\tau|^{p} - b_{\lambda}(x) \end{split}$$

for all $\lambda \in \Lambda$, $x \in \chi_{\lambda}(V_{\lambda})$ and $\tau \in \mathbb{R}^{d}$, where \langle , \rangle denotes the ordinary inner product in \mathbb{R}^{d} .

(ψ .5) For each $\lambda \in \Lambda$ and for any positive numbers δ , ρ such that $0 < \delta < 1 < \rho$, there are $r = r(\lambda, \delta, \rho) > 1$ and $\eta = \eta(\lambda, \delta, \rho) > 0$ such that if $\delta \le \max(|\tau|, |\tau'|) \le \rho$ then

$$\langle \mathcal{P}_{\tau}\psi_{\lambda}(x,\tau)-\mathcal{P}_{\tau}\psi_{\lambda}(x,\tau'),\tau-\tau'\rangle \geq \eta|\tau-\tau'|^{r}$$

for all $x \in \chi_{\lambda}(V_{\lambda})$.

Finally, let $\Gamma: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfy $(\Gamma.1) \sim (\Gamma.3)$ in §1 and

(Γ .4) With p>1 and p'' given in (ψ .4), for each $\lambda \in \Lambda$ there is $e_{\lambda} \in L^{p''}(\chi_{\lambda}(V_{\lambda}))$ such that

$$|\Gamma'(\chi_{\lambda}^{-1}(x), t)| \leq e_{\lambda}(x)(|t|^{p-1}+1)$$

for all $\lambda \in \Lambda$, $x \in \chi_{\lambda}(V_{\lambda})$ and $t \in \mathbb{R}$.

With p>1 given in $(\psi.4)$, let $\mathbf{X} = W_{loc}^{1, p}(\Omega) \cap L_{loc}^{\infty}(\Omega)$, i.e.,

$$\mathbf{X} = \{ f \in L^{\infty}_{\text{loc}}(\Omega) \mid | \mathcal{V}(f \circ \chi_{\lambda}^{-1}) | \in L^{p}(\chi_{\lambda}(V_{\lambda})) \text{ for every } \lambda \in \Lambda \}.$$

By $(\psi.0) \sim (\psi.4)$, we see that

(7.1)
$$\Psi(f)(z) = \psi_{\lambda}(\chi_{\lambda}(z), \nabla(f \circ \chi_{\lambda}^{-1})(\chi_{\lambda}(z))) \quad \text{for} \quad z \in V_{\lambda}$$

defines a function belonging to $L^{1}_{loc}(\Omega)$ for each $f \in \mathbf{X}$.

The class of $\mathfrak{H} = \{\Omega, \xi, \mathbf{X}, \Psi, \Gamma\}$ defined as above will be denoted by \mathscr{V} . Then we have

PROPOSITION 7.1. $\mathscr{V} \subset \mathscr{F}$, i.e., each $\mathfrak{H} \in \mathscr{V}$ is an FH-space. Furthermore, each $\mathfrak{H} \in \mathscr{V}$ satisfies (X.3), (D) and (H.2) in § 3.

PROOF. Conditions (X.1) and (X.3) for X are obviously satisfied. Conditions (Ψ .1) and (Ψ .2) for Ψ are immediate consequences of (ψ .1) and (7.1); and (Ψ .4) follows from (ψ .2). Since $\mathbb{P}(f \circ \chi_{\lambda}^{-1}) = 0$ a.e. on the set { $x \in V_{\lambda} | f(x) = 0$ }

if $f \in \mathbf{X}$ (cf., e.g., [3, Théorème 3.2]), (Ψ .3) and (X.2) are seen to be valid. By virtue of (ψ .3) and (ψ .4), we see that (Ψ .5) is satisfied with

(7.2)
$$\nabla \Psi(f; g)(z) = \langle \nabla_{\tau} \psi_{\lambda}(\chi_{\lambda}(z), \nabla(f \circ \chi_{\lambda}^{-1})(\chi_{\lambda}(z))), \nabla(g \circ \chi_{\lambda}^{-1})(\chi_{\lambda}(z)) \rangle$$

for $z \in V_{\lambda}$. From the definition of **X** and (7.2), condition (D) is easily verified.

By applying the standard variational method (see, e.g., [8, Chap. 5, Theorem 2.1]), we can show that any relatively compact open set is resolutive. Thus condition (R) is satisfied. Condition (H.2) follows from [12, Theorems 5, 6 and 9] in view of (ψ .4) and (Γ .4).

Thus, what remains to show is the verification of (H.1), which will be given in the Appendix.

Conditions (Δ_2) and (Δ_2^*) for $\mathfrak{H} \in \mathscr{V}$ may be written as follows:

 $(\Delta_2)_{\psi}$ There is C > 2 such that

$$\psi_{\lambda}(x,\,2\tau) \leq C\psi_{\lambda}(x,\,\tau)$$

for all $\lambda \in \Lambda$, $x \in \chi_{\lambda}(V_{\lambda})$ and $\tau \in \mathbb{R}^{d}$. $(\Delta_{2}^{*})_{\psi}$ There is $C^{*} > 2$ such that

$$C^*\psi_{\lambda}(x, 2\tau) \leq \psi_{\lambda}(x, C^*\tau)$$

for all $\lambda \in \Lambda$, $x \in \chi_{\lambda}(V_{\lambda})$ and $\tau \in \mathbb{R}^{d}$.

Thus if we put

$$\mathscr{V}_1 = \{ \mathfrak{H} \in \mathscr{V} \mid \mathfrak{H} \text{ satisfies } (\varDelta_2)_{\psi} \}$$

and

$$\mathscr{V}_2 = \{ \mathfrak{H} \in \mathscr{V}_1 \mid \mathfrak{H} \text{ satisfies } (\Delta_2^*)_{\psi} \},\$$

then $\mathscr{V}_1 = \mathscr{V} \cap \mathscr{F}_1$ and $\mathscr{V}_2 = \mathscr{V} \cap \mathscr{F}_2$ by virtue of Proposition 7.1. Hence, inclusion relations (2.4), (4.8) and (5.8) are valid with \mathscr{V} , \mathscr{V}_1 and \mathscr{V}_2 in the place of \mathscr{F} , \mathscr{F}_1 and \mathscr{F}_2 , respectively.

REMARK. If Ω is a Riemannian manifold with Riemannian metric (g_{ij}) , ξ is the corresponding volume element, $\mathbf{X} = W_{1\circ}^{i,2}(\Omega) \cap L_{1\circ\circ}^{\infty}(\Omega), \psi_{\lambda}(x, \tau) = \Sigma g^{ij}(x)\tau_i\tau_j$ on V_{λ} and $\Gamma(x, t) = P(x)t^2$ with $P \in L_{1\circ\circ}^q(\Omega)$ $(q > d/2, q \ge 1), P \ge 0$, then $\mathfrak{H} = \{\Omega, \xi, \mathbf{X}, \Psi, \Gamma\} \in \mathscr{V}_2$, where Ψ is defined by (7.1) from the above $\{\psi_{\lambda}\}_{\lambda \in \Lambda}$. In this case, $H(\mathfrak{H})$ is the space of weak solutions of $\Delta u = Pu$ (Δ : the Laplace-Beltrami operator), and thus the classification theory given in [5], [9] as well as the classification theory of Riemann surfaces are included in the classification theory for \mathscr{V}_2 . In particular, non-inclusion relations

$$(7.3) O_{HD}(\mathscr{V}_2) \not\subset O_{HB}(\mathscr{V}_2),$$

(7.4)
$$O_{HE}(\mathscr{V}_2) \not\subset O_{HDB}(\mathscr{V}_2),$$

(7.5)
$$O_{SHP}(\mathscr{V}_2) \not\subset O_H(\mathscr{V}_2),$$

$$(7.6) O_{HB}(\mathscr{V}_2) \not\subset O_{HP}(\mathscr{V}_2)$$

are known; in fact, (7.3), (7.5) and (7.6) are classical (see [11, Chap. III, 4H] for (7.3), [11, Chap. IV, 3C] and [11, Appendix 3A] for (7.6); also see [10]) and (7.4) is shown in [10].

As for \mathscr{V} , modifying the proofs of Propositions 6.6 and 6.7, we obtain

PROPOSITION 7.2. $O_{SHP}(\mathscr{V}) \not\subset O_{HE}(\mathscr{V})$ and $O_{HB}(\mathscr{V}) \not\subset O_{HEP}(\mathscr{V})$.

PROOF. Let $\Omega = \mathbf{R}$, ξ be the Lebesgue measure on \mathbf{R} ,

 $\mathbf{X} = \{ f : \mathbf{R} \to \mathbf{R} \mid \text{locally absolutely continuous and } f' \in L^2_{\text{loc}}(\mathbf{R}) \},$ $\Gamma(x, t) \equiv 0,$

$$\psi_0(x, \tau) = \begin{cases} (2+x^2)^{-1} |\tau|^{2+x^2}, & \text{if } |\tau| \le 1, \ x \in \mathbf{R} \\ \\ 2^{-1} |\tau|^2 + (2+x^2)^{-1} - 2^{-1}, & \text{if } |\tau| > 1, \ x \in \mathbf{R} \end{cases}$$

and

$$\psi_1(x, \tau) = \begin{cases} \psi_0(x, \tau), & \text{if } x \ge 0, \ \tau \in \mathbf{R} \\\\ 2^{-1}(1+x^2) |\tau|^2, & \text{if } x < 0, \ \tau \in \mathbf{R}. \end{cases}$$

Then, $\{\Omega, \xi, \mathbf{X}, \Psi_0, \Gamma\} \in O_{SHP}(\mathscr{V}) \setminus O_{HE}(\mathscr{V})$ and $\{\Omega, \xi, \mathbf{X}, \Psi_1, \Gamma\} \in O_{HB}(\mathscr{V}) \setminus O_{HEP}(\mathscr{V})$, where $\Psi_0(f) = \psi_0(\cdot, f')$ and $\Psi_1(f) = \psi_1(\cdot, f')$. Note that these spaces satisfy $(\psi.4)$ and $(\psi.5)$ with p = r = 2.

APPENDIX. In order to verify (H.1) for $\mathfrak{H} \in \mathscr{V}$, it is enough to prove the following theorem.

THEOREM A. Let Ω be a bounded open set in \mathbb{R}^d and ξ be the Lebesgue measure on \mathbb{R}^d . Suppose $\psi: \Omega \times \mathbb{R}^d \to \mathbb{R}$ satisfies conditions $(\psi.1) \sim (\psi.5)$ with $\{\psi_{\lambda}\}_{\lambda \in A} = \{\psi\} \ (V_{\lambda} = \Omega, \ \chi_{\lambda} = the identity mapping)$ and $\Gamma: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies $(\Gamma.1) \sim (\Gamma.4)$. Let $\mathfrak{H} = \{\Omega, \xi, \mathbf{X}, \Psi, \Gamma\}$, where $\mathbf{X} = W_{1oc}^{1,p}(\Omega) \cap L_{1oc}^{\infty}(\Omega)$ with p>1 given in $(\psi.4)$ and $\Psi(f) = \psi(\cdot, \nabla f)$ for $f \in \mathbf{X}$. If $\{u_n\}$ is a uniformly bounded convergent sequence of \mathfrak{H} -harmonic functions on Ω , then $u = \lim_{n \to \infty} u_n$ is \mathfrak{H} -harmonic on Ω and $\int_{\mathbb{R}} \Psi(u) d\xi \leq \liminf_{n \to \infty} \int_{\mathbb{R}} \Psi(u_n) d\xi$ for any compact set K in Ω .

A similar result is obtained in B. Calvert [2]. But our assumptions, and hence proofs, are slightly different from those in [2]. We prove Theorem A in four steps.

PROOF OF THEOREM A:

(I) $\left\{ \int_{K} |\mathcal{V}u_{n}(x)|^{p} dx \right\}$ is bounded for any compact set K in Ω .

This can be proved in the same way as [2, Lemma 2], and we omit the proof.

(II) For any compact set K in Ω ,

$$\int_{K} \langle \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_n) - \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_m), \mathcal{P} u_n - \mathcal{P} u_m \rangle dx \to 0 \qquad (n, m \to \infty).$$

PROOF. Let ϕ be a C^1 -function with compact support in Ω such that $\phi \ge 0$ and $\phi = 1$ on K. Then,

$$\int_{\Omega} \langle \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_k), \mathcal{P}[(u_n - u_m)\phi] \rangle dx$$
$$+ \int_{\Omega} \Gamma'(\cdot, u_k) (u_n - u_m)\phi dx = 0$$

for any k, n, m. Thus

$$\begin{split} I_{n,m} &\equiv \int_{\Omega} \langle \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_n) - \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_m), \mathcal{P} u_n - \mathcal{P} u_m \rangle \phi dx \\ &= -\int_{\Omega} \langle \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_n) - \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_m), \mathcal{P} \phi \rangle (u_n - u_m) dx \\ &- \int_{\Omega} \{ \Gamma'(\cdot, u_n) - \Gamma'(\cdot, u_m) \} (u_n - u_m) \phi dx. \end{split}$$

The last integral is non-negative. Hence, by $(\psi.4)$ $(\alpha = \alpha_{\lambda}, a = a_{\lambda})$,

$$\begin{split} I_{n,m} &\leq \alpha \int_{\Omega} (|\nabla u_n|^{p-1} + |\nabla u_m|^{p-1}) |\nabla \phi| |u_n - u_m| dx \\ &+ 2 \int_{\Omega} a |\nabla \phi| |u_n - u_m| dx \\ &\leq \alpha (J_n + J_m) \left\{ \int_{K'} |\nabla \phi|^p |u_n - u_m|^p dx \right\}^{1/p} \\ &+ 2 \int_{K'} a |\nabla \phi| |u_n - u_m| dx, \end{split}$$

where $K' = \operatorname{Supp} \phi$ and $J_n = \left\{ \int_{K'} |\mathcal{V}u_n|^p dx \right\}^{1/p^*}$, $p^* = p/(p-1)$. Hence, by (I) and Lebesgue's convergence theorem, we conclude that $I_{n,m} \to 0$ $(n, m \to \infty)$, from which (II) follows immediately.

(III) For any compact set K in Ω ,

$$\int_{\mathbf{K}} |\mathbf{F} u_n - \mathbf{F} u_m| dx \to 0 \qquad (n, \ m \to \infty).$$

PROOF. Let $0 < \delta < 1 < \rho$. Fix *n* and *m* for the time being and put

$$\begin{split} E_0 &= \{ x \in K \mid |\mathcal{V}u_n(x)| \leq \delta, \ |\mathcal{V}u_m(x)| \leq \delta \} ,\\ E_1 &= \{ x \in K \mid |\mathcal{V}u_n(x)| > \rho \}, \ E_1' = \{ x \in K \mid |\mathcal{V}u_m(x)| > \rho \} ,\\ E_2 &= K \setminus (E_0 \cup E_1 \cup E_1') . \end{split}$$

Obviously,

(A.1)
$$\int_{E_0} |\mathcal{V}u_n - \mathcal{V}u_m| dx \leq 2\delta\xi(K).$$

By (I), there is M > 0 such that $\int_{K} |\nabla u_k|^p dx \leq M$ for all k. Then,

$$\rho\xi(E_1) \leq \int_{E_1} |\nabla u_n| dx \leq M^{1/p}\xi(E_1)^{1/p^*},$$

so that $\xi(E_1) \leq \rho^{-p} M$. Similarly, $\xi(E'_1) \leq \rho^{-p} M$. Hence

(A.2)
$$\begin{cases} \int_{E_1 \cup E'_1} |\nabla u_n - \nabla u_m| dx \leq \int_{E_1 \cup E'_1} |\nabla u_n| dx + \int_{E_1 \cup E'_1} |\nabla u_m| dx \\ \leq 2M^{1/p} \{\xi(E_1) + \xi(E'_1)\}^{1/p^*} \leq 4M\rho^{1-p}. \end{cases}$$

By (ψ.5),

$$\begin{split} & \int_{E_2} |\mathcal{V}u_n - \mathcal{V}u_m| dx \\ & \leq \eta^{-1/r} \int_{E_2} \langle \mathcal{V}_\tau \psi(\cdot, \mathcal{V}u_n) - \mathcal{V}_\tau \psi(\cdot, \mathcal{V}u_m), \mathcal{V}u_n - \mathcal{V}u_m \rangle^{1/r} dx \\ & \leq \eta^{-1/r} \xi(K)^{(r-1)/r} (I_{m,n})^{1/r}, \end{split}$$

where

$$I_{n,m} = \int_{K} \langle \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_n) - \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_m), \mathcal{P} u_n - \mathcal{P} u_m \rangle dx.$$

.

Hence, together with (A.1) and (A.2), we have

$$\int_{K} |\mathcal{V}u_{n} - \mathcal{V}u_{m}| dx \leq 2\delta\xi(K) + 4M\rho^{1-p} + \eta^{-1/r}\xi(K)^{(r-1)/r}(I_{n,m})^{1/r}$$

for any n, m. Since $I_{n,m} \rightarrow 0$ $(n, m \rightarrow \infty)$ by (II),

$$\limsup_{n,m\to\infty}\int_{K}|\mathcal{V}u_{n}-\mathcal{V}u_{m}|dx\leq 2\delta\xi(K)+2M\rho^{1-p}.$$

Letting $\delta \rightarrow 0$ and $\rho \rightarrow \infty$, we obtain (III).

(IV) By (I) and pointwise convergence of $\{u_n\}$, we see that $u \in W_{loc}^{1,p}(\Omega) \cap L_{loc}^{\infty}(\Omega)$. By (III), we can choose a subsequence $\{u_{n_j}\}$ such that $\nabla u_{n_j} \to \nabla u$ a.e. on Ω . Then

$$\nabla_{\tau}\psi(x, \nabla u_{n_i}(x)) \to \nabla_{\tau}\psi(x, \nabla u(x)) \quad \text{a.e. on} \quad \Omega$$

by $(\psi.2)$. On the other hand, by (I) and $(\psi.4)$, $\{\mathcal{V}_{\tau}\psi(\cdot, \mathcal{V}u_{n_j})\}_j$ is bounded in $(L^{p^*}(\omega))^d$ for any relatively compact open set ω such that $\overline{\omega} \subset \Omega$. Hence, there is another subsequence $\{u_{m_j}\}$ of $\{u_{n_j}\}$ such that $\mathcal{V}_{\tau}\psi(\cdot, \mathcal{V}u_{m_j})|\omega \to \mathcal{V}_{\tau}\psi(\cdot, \mathcal{V}u)|\omega$ weakly in $(L^{p^*}(\omega))^d$ for any ω as above. Hence

(A.3)
$$\int_{\Omega} \langle \mathcal{F}_{\tau} \psi(\cdot, \mathcal{F} u_{m_j}), \mathcal{F} g \rangle dx \to \int_{\Omega} \langle \mathcal{F}_{\tau} \psi(\cdot, \mathcal{F} u), \mathcal{F} g \rangle dx$$

for any $g \in W^{1,p}(\Omega)$ with compact support in Ω . On the other hand,

(A.4)
$$\int_{\Omega} \Gamma'(\cdot, u_n) g dx \to \int_{\Omega} \Gamma'(\cdot, u) g dx$$

for any $g \in L^{\infty}(\Omega)$ with compact support in Ω by Lebesgue's convergence theorem. Since

$$\int_{\Omega} \langle \mathcal{P}_{\tau} \psi(\cdot, \mathcal{P} u_n), \mathcal{P} g \rangle dx + \int_{\Omega} \Gamma'(\cdot, u_n) g dx = 0$$

for any $g \in \mathbf{X}$ with compact support in Ω , it follows from (A.3) and (A.4) that

$$\int_{\Omega} \langle \mathcal{F}_{x} \psi(\cdot, \mathcal{F} u), \mathcal{F} g \rangle dx + \int_{\Omega} \Gamma'(\cdot, u) g dx = 0$$

for any $g \in \mathbf{X}$ as above, i.e., u is \mathfrak{H} -harmonic on Ω .

Furthermore, given a compact set K, we could choose $\{u_{n_i}\}$ to satisfy

$$\lim_{j\to\infty}\int_K\Psi(u_{n_j})d\xi=\liminf_{n\to\infty}\int_K\Psi(u_n)d\xi.$$

Since $\Psi(u_{n_j})(x) = \psi(x, \nabla u_{n_j}(x)) \to \psi(x, \nabla u(x)) = \Psi(u)(x)$ a.e. on Ω , Fatou's lemma implies

$$\int_{K} \Psi(u) d\xi \leq \liminf_{n \to \infty} \int_{K} \Psi(u_{n}) d\xi.$$

Added in proof: It is possible to prove Theorem A in the appendix without condition $(\psi, 5)$, so that this condition is not necessary for the discussions in §7.

References

- [1] B. Calvert, Elements of Brelot type potential theory without linearity, to appear in Math. Chronicle, Univ. of Auckland.
- B. Calvert, Harnack's theorems on convergence for nonlinear operators, Atti Accad. Naz. Lincei, Rend. 52 (1972), 364–372.
- [3] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305-370.
- [4] I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland, Amsterdam, 1976.
- [5] M. Glasner, R. Katz and M. Nakai, A remark on classification of Riemannian manifolds with respect to $\Delta u = Pu$, Bull. Amer. Math. Soc. 77 (1971), 425–428.
- [6] M. Glasner and M. Nakai, Riemannian manifolds with discontinuous metrics and the Dirichlet integral, Nagoya Math. J. 46 (1972), 1–48.
- [7] N. Kenmochi and Y. Mizuta, The gradient of a convex function on a regular functional space and its potential theoretic properties, Hiroshima Math. J. 4 (1974), 743-763.
- [8] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasi-linear elliptic equations, Academic Press, New York London, 1968.
- [9] M. Nakai, Dirichlet finite solutions of $\Delta u = Pu$, and classification of Riemann surfaces, Bull. Amer. Math. Soc. 77 (1971), 381–385.
- [10] M. Nakai, The equation $\Delta u = Pu$ on E^m with almost rotation free $P \ge 0$, Tôhoku Math. J. 23 (1971), 413-431.
- [11] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer-Verlag, Berlin, 1970.
- [12] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302.
- [13] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7 (1977), 135–146.

Department of Mathematics, Faculty of Science, Hiroshima University