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§0. Introduction

The theory of differential calculus in Banach spaces has been already
established (cf. e.g., J. Dieudonné [1, Ch. VIII]), and there have been various
attempts to construct differential calculus in more general linear spaces. For ex-
ample, A. Fréhlicher and W. Bucher [2] have studied in linear spaces with limit
structures based on filters, H. H. Keller [3] has studied the notion of CP-mappings
in locally convex spaces, and S. Yamamuro [7] has introduced the notion of equi-
continuous differentiability in topological linear spaces.

In this paper, we try to develop differential calculus in linear ranked spaces.
The notion of ranked spaces was first introduced by K. Kunugi [4]; and M.
Yamaguchi [6] considered differentiation in linear ranked spaces. Using a
modified formulation of linear ranked spaces given in M. Washihara [5, II],
we shall study differentiation further than [6] and show that many important
results in differential calculus can be included in our theory. In many respects,
our construction of the theory and the methods of proofs are analogous to those
in [2] and [7], though the underlying structures of the spaces are different.

We prepare in §1 some notions and results on linear ranked spaces. We
define the notion of R-differentiability in §2, and prove the chain rule (Theorem
2.2) and the mean value theorem (Theorem 3.1). Further we study the Gateaux
differentiability in §4, and the invertibility of differentiable mappings in §5
(Theorems 5.2-5). Finally in § 6, the higher derivatives are considered.

The author would like to thank Professors M. Sugawara and F-Y. Maeda
for their many helpful comments in reading the whole manuscripts.

§1. Linear ranked spaces

Let E be a linear space over the real field R. Suppose that a sequence
{B,}2, of families of subsets in E is given to satisfy the following condition
(E.1):

(E.1) OeV for any Ve B=\U2oB,, E€B,; and for any Ve B and for any
integer n20, there are another integer m>n and U € B,, such that UcV.

Sets in B, are called preneighborhoods of the origin 0 with rank n.
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A sequence {V,}2, of subsets of E is called a fundamental sequence at 0,
if

QD VioV,o-o V>, and

2 VeB, (k=1,2,..)withn; Sn, <--Sn S+ —> ©.

Hereafter, we simply call any fundamental sequence at 0 a f.s.. Given a f.s.
{Vi}, let

E({V,}) = {x € E|for each k, there is 4, > O such that x e 1,V,}.

If (E, {8,}) satisfies the following conditions (E.2-5) in addition to (E.1),
then E=(E, {8,}) is called a linear ranked space (cf. K. Kunugi [4], M.
Washihara [5] and M. Yamaguchi [6]):

(E.2) For any two fs.’s {V,} and {U,}, there is another f.s. {W,} such that

Vi+ U, W, for each k.

~(E.3) For any fs. {V,} and 2>0, there are integers 1=m(1)Sm(2)<---—©
and ko= 1 such that AV, <V, for k=k,.

(E.4) For any Ve®B and |A|£1, AV V.

(E.5) For any x€E, there is a f.s. {V,} such that x e E{V,}).

ReMARK 1.1. (E.4) follows from the condition that AVcV for 0<AZ1
and the symmetricity —V=V. We assume condition (E. 4), since the symmetricity
is essential for the study in this paper.

A linear ranked space E is said to be T¥, if

(TH NiEVe={0}  forany fs. {Vi}.

DeriNITION 1.1.  Given a fis. {V}, a sequence {x,} in E is said to be {V,}-
convergent to x€E, in symbols x,—x({V,}), if for any k there is n, such that
n2n, implies x,ex+V,. Also, {x,} is said to be R-convergent to x, in symbols
x,—X(R), if x,—x({V,}) for some f.s. {V,}; and then x is called an R-limit of {x,}.

ProrosiTiON 1.1. If E is a T¥ linear ranked space, then an R-limit of a
sequence {x,} is unique if it exists.

Proor. Suppose x,—x({V,}) and x,—x'({U.}), and choose a f.s. {W,}
such that V,+ U,< W, by (E.2). Then there is some n, such that n=n, implies
x,€x+V; and x,€x'+ U, and so x—x'€ V,+ U, W, since —V,=V, by (E.4).
Thus x—x" € N, W,, and hence x=x' since E is T¥.

LemMA 1.1. (a) Let {V,} bea f.s.. Then for any A>0 and k, there is k'
such that AV, > V.

(b) If {V,} is a convex f.s., then for each k, there is k' such that Vi, +V,
<V (Here, we say that a f.s. {V}} is convex, if each V; is convex.)
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Proor. (a) By (E.3), there are integers 1=<m(1)£m(2)<:--—o0 and
ko=1 such that A=V, <=V, for k=k,. Thus, for each k, choosing k' =k, with
m(k") = k, we obtain AV, 2 AV, 2 V.

(b) If V, is convex, then 271V, +2"1¥V,<V,. Thus we see (b) by (a).

LemMA 1.2. Let {V,} be af.s.. Then there are a sequence {),} of positive
numbers and a sequence {N,} of positive integers such that

Md0 and V;c AV, if j= N,

ProofF. Put j;=1. By induction, using Lemma 1.1(a) we can choose
{ji} such that kV; <V, _ and j,<j,<--. Put A;=1/kif j<j<jps; (A41=1).
Then ;1 0. For each k, choose the smallest m=2 such that k< j,_; and put
N.=j.. If j=N,, then j,<j<j+, for some IZm. Then k=<j,-1=j,-1, SO
that A;1V;=1V;clV; cV,_,cW.

J 1-1

Lemwa 1.3. (a) For any fs.’s {V,} and {U,}, let {W,} be a f.s. as in
(E.2). Ifx,»x({Wi}) and y,—y({Us}), then x,+ y,—x+ y({W:}).

@) If x,»x(R) and y,—y(R), then x,+ y,—x+ y(R).

(b) Let {V;} be a f.s.. If x,»x({V;}) and A>0, then Ax,—Ax({V,}).

(¢c) If x,»x(R) and 2,—A(4,, A€ R), then A,x,—Ax(R).

(d) If x,»0{V:}) and {A,} is a bounded sequence of real numbers, then
AXn = O({Vi})-

Proor. We see easily (a) and (a’) by definition, and (b) using Lemma 1.1
(.

() Assume x,—x({V;}). Then Aox,—1,x({V;}) by (b), where A,=sup|4i,l.
Hence for each k there is n,(k) such that n=n,(k) implies Ayx, € lox+ V; and so
A(x,—x) € L, A5V, =V, by (E.4). Also, choose a f.s. {U,} such that x e E({U,}),
ie., xepuU, for some p,>0, by (E.5). Since 4,—4, there is n,(k) such that n
>n,(k) implies |A,—A| <1/ and so (A,—A)x e (4,— AU, = U, by (E.4). Then
n=max (n,(k), ny(k)) implies

AXy — Ax = A%y, — X) + (A, — Dx eV, + U, < W,

where {W,} is a f.s. in (E.2). Thus 4,x,—Ax(R).
(d) follows easily from Lemma 1.1 (a) and (E. 4).

LemMA 1.4. Let x,—0({V,}) for some f.s. {V,}. Then there is a sequence
{w} of positive numbers such that p, t 0o and p,x,—0({V;}).

Proor. By Definition 1.1, there are positive integers m(1)<m(2)<---
such that n=m(k) implies x, € V;,. Choose sequences {1} and {N,} as in Lemma
1.2, and put j,=m(N,) and
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ﬂn=1 fOI‘ 1 én<j1, ﬂ”=1/lNk fOI’ jk§n<jk+1 (k= 1, 2,...).

Then p,t . Also, we see that u,x,eV, if j,<n<j,.,, which implies u,x,

—0({V}).

DerINITION 1.2. Given a f.s. {V}}, a sequence {x,} in E is called a Cauchy
sequence by {V,}, if for each k there is n, such that m>n=>=n, implies x,,—x, € V,.
A sequence {x,} in E is called an R-Cauchy sequence if it is a Cauchy sequence by
some f.s. {V;}. Also, E is said to be R-complete, if for each Cauchy sequence
{x,} by {V,} there is x € E such that x,—x({V,}).

LemMA 1.5. If x,—x(R), then {x,} is an R-Cauchy sequence.

Proor. If x,—»x({V,}) and {U,} is a f.s. such that V,+ V, < U,, then we see
easily that {x,} is a Cauchy sequence by {U,}.

Now, we consider the following additional assumptions for a linear ranked
space E=(E, {8,}), which will be assumed frequently:

(A.1) For each fs. {V,}, there is kg such that V;,cE({V,}).

(A.2) Let {V,} beafs.. Ifx,»0R)and {x,} <E({V,}), then x,—0({V;}).
(A.3) Let {V,} beaf.s.. Then for each k and x €V, there is m such that x+V,,
.

The following are some examples of linear ranked spaces which satisfy

(A.1-3) (cf. [4], [5], [6D).

ExAMPLE 1. Normed linear spaces. Let E be a normed linear space, and
let V(e)={x€E||x| <¢e} for e>0. Put
B, ={V(ele>1} U{E}, B,={V(E)|1/(n+1)<e=1/n}
n=1,2,.).
Then (E, {$8,}) is a T¥ linear ranked space. Hereafter we shall always regard
a normed linear space as a linear ranked space with this structure. The R-
convergence coincides with the norm-convergence, and any R-Cauchy sequence

is a Cauchy sequence with respect to the norm. Hence E is R-complete if and only
if E is a Banach space. It is easy to see that E satisfies (A. 1-3).

EXAMPLE 2. The Schwartz space 2. Let R™ be the n-dimensional
Euclidean space and put Q,={xeR"||x|<l} (|(x15..., X)|=(F+ -+ +x2)1/2),
For integers m=0, >0 and a real number ¢>0, let

Uim, L e)={peD|suppp = Q, |[D*p| <&

for all multi-indices o with |o| < m}.
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Put B,={U(O, 1, &)|I1=1, 2,...; e>1} U {2} and
B,={Um, Lell=12..;1/(n+1)<e=Z1/n} n=1,2,.).

Then (2, {8,}) is a T¥ linear ranked space. For a sequence {¢,} in 2, ¢,—~0(R)
means that supp ¢, is contained in a fixed bounded set and |D*¢,|—0 uniformly
for each a. 2 is R-complete and satisfies (A. 1-3).

EXAMPLE 3. Inductive limits of metrizable topological vector spaces.
Let {(E,, d,)} be a sequence of metrizable topological vector spaces such that d,
is an invariant absorbing metric of E, for each n, E;<E,&--- and d,,,(x, 0)
<d,x,0) for xeE,. Consider the inductive limit E=\U2,E,, and put B,
={V(;¢]|l=1,2,..; e>1}U{E} and B,={V(;¢)|l=1,2,..;1/(n+1)<e
=<1/n} (n=1, 2,...), where V(I; e)={x € E;|d(x, 0)<e}. Then (E, {8B,})is a T¥
linear ranked space satisfying (A. 1-3), and x,—O0(R) if and only if there is some k
such that {x,} < E, and di(x,, 0)—»0 (n—>0). Also, if each (E,, d,) is complete,
then E is R-complete. The space 2 of the above example is a special case.

Now, we define several notions for a linear ranked space E=(E, {%8,}).

DerFINITION 1.3. For a subset S of E and a f.s. {V}} in E, the {V,}-closure
S({Vi}) of S is the set of all x € E such that there is {x,} in S with x,—x({V,}).

S=u{S{VDI{Vi} isafs.in E}

is called the R-closure of S. S is said to be {V;}- or R-closed if S=S({V,}) or
S=S8. Also, a set DcE is said to be R-open if E\ D is R-closed.

Lemma 1.6. (a) xe S{V,}) if and only if (x+V,)nS#¢ for each k.

(@) xe8 if and only if there is some f.s. {V;} such that (x+V)NnS#¢
for each k.

(b) AS{V.H=AS({V.}), AS=AS, for any A>0.

(c) G+S({V)=x+8(V}), x+S=x+3S, for any xE.

(d) If {V} is a convex f.s., then S({V,}) is {V;}-closed.

(e) If{V,}is a convex f.s. and S is convex, then S({V,}) is also convex.

(e") If S is convex, then so is S.

Proor. We see easily (a)-(c) by the above definition and Lemma 1.3 (b).

(d) Let T=S8({V,}). Then T({V,)}>Tis obvious. For each k, choose m
such that V,,+V,cV, by Lemma 1.1(b). If xe T({V,}), then (a) implies that
there exist x’e(x+V, )N T and x"e(x'+V,)nS. Hence x"ex+V,+V,,cx+V,
and x"e S, and so xe T. Thus T{V,})<=T.

(e) and (¢’) are seen easily by (a) and (E. 2).

Lemma 1.7. If {V,} is a convex f.s., then V,({V,}) <AV, for any A>1 and n.
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Proor By Lemma 1.1(a), there is an integer m such that (A—1)V, oV,
If xe V,({V,}), then there exists x'e(x+V,)nV, by Lemma 1.6(a). Thus x
=x—x"+x"eV,+V,c(A-1)V,+ V,=AV, since V, is symmetric and convex.

DerFINITION 1.4. Let {V;} be a fs. in E. A subset ScE is said to be
{Vi}-bounded if there is a sequence {4,} of positive numbers such that Sci, ¥V,
for each k. ScE is said to be R-bounded if it is {V},}-bounded for some f.s. {V}}.
A sequence {x,} in E is called a {V,}-quasi bounded sequence ({V}-q.b.s.) if
Ax,—0({V,}) for any sequence {4,} of positive numbers such that 1,—0 (n— o).
{x,} is called an R-quasi bounded sequence (R-q.b.s.) if it is a {V,}-q.b.s. for some
f.s. {Vi} (cf. [6, II]).

REMARK 1.2. If E is a normed linear space, then S is R-bounded if and
only if it is norm-bounded, and a sequence {x,} is an R-q.b.s. if and only if it is
norm-bounded (cf. Lemma 1.10 below).

Lemma 1.8. (@) If S, and S, are R-bounded, then so are S;US, and
S;+8,.

(b) Any finite set is R-bounded.

(c¢) If S is R-bounded and 1>0, then AS is R-bounded.

(d) Let {V,} be a convex f.s.. IfS is {V,}-bounded, then so is S({V;}).

Proor. (a) We see easily that if S; and S, are R-bounded, then so is S,
+S,, by using (E.2). Thus S,US, is R-bounded since S;US,<=(S;U {0})
+(S, U {0}).

(b) By (E.5), given x e E there is a f.s. {V,} such that xe E({V,}). Then
{x} is {V}}-bounded and so R-bounded. Thus we see (b) by (a).

(c) is obvious from definition, and (d) is immediate from Lemma 1.7.

LemMma 1.9. (a) If {x,} and {y,} are R-q.b.s.’s, then so is {x,+ y,}.
(b) If {x,} is an R-q.b.s. and {o,} is a bounded sequence of non-negative
numbers, then {«,x,} is an R-q.b.s..

Proor. (a) follows from Lemma 1.3 (a) and definition.
(b) If 4,0 (n—0), then A,0,—0 (n—00). Thus we have (b).

Lemma 1.10. (a) Given a f.s. {V;}, any {V;}-bounded sequence is a {V;}-
q.b.s..

(@) Any R-bounded sequence is an R-q.b.s. .

(b) Conversely, if {x,} is a {V;}-q.b.s. and {x,} <E({V,}), then {x,} is
{Vi}-bounded.

(b") If E satisfies (A.1) and {x,} is a {V;}-q.b.s., then {x,},>n, is {Vi}-
bounded for some n.

(b") If E satisfies (A.1), then any R-q.b.s. is R-bounded.
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Proor. (a), (a’) Suppose {x,} is {V;}-bounded. Then there is a sequence
{w} of positive numbers such that x, e u, V; for all n, k. Let {1,} be a sequence
of positive numbers such that 1,—0 (n—>o0). For each k there is an integer
n(k) such that n > n(k) implies 1,<1/u,. Hence n=n(k) implies 4,x, € 2,14V < Vi
Hence 1,x,—»0({V,}). Thus {x,} is a {V;}-q.b.s..

(b) Assume that {x,} <E({V,}) and {x,} is not {V;}-bounded. Then there
is k such that {x,}Z AV, for all 1>0, and we can choose n; such that x, & jV;
for each j=1, 2,.... Since {x,} <E({V,}), we see that {jln;=n} is a finite set.
Hence {n;} is unbounded, so that we can choose a subsequence {n;}, n;, <nj;,
<.-—00. Since j—o0, we can choose {4,} such that 1, =1/j for j=j, =1,
2,..., and 4,-0 (n—c0). Then 4,x, &V, if j=j, (I=1, 2,...), and hence 1,x,+0
({%)). Thus {x,} is not a {V;}-q.bss..

(b') Assume that {x,} is a {V;}-q.b.s.. By (A.1), there is k, such that
ViocE({V:}). Since n~'x,—0 ({V,}), there is n, such that n=n, implies n~!x,
€ Vi i€, x, € E({Vi}). Then {x,},2,, is {V;}-bounded by (b).

(b”) follows from (b’) and Lemma 1.8 (a), (b).

LemMA 1.11. (a) Each R-convergent sequence is an R-q.b.s..
®) If x,—0 ({Vi}), then {x,} is a {V;}-q.b.s..

Proor. (a) follows from Lemma 1.3(c); and (b) from Lemma 1.3 (d).

The continuity of a mapping between two linear ranked spaces is defined as
follows.

DerINITION 1.5. Let E=(E, {8,}) and F=(F, {18,}) be two linear ranked
spaces and D be a subset of E. A mapping f: D—F is said to be R-continuous at
a e D (relative to D) if for each f.s. {V;} in E, there is a f.s. {W,} in F such that

f((@a+ V) nD)cf(a)+ W, foreach k.

If f is R-continuous at every a € D' =D, then we say that f is R-continuous on D’
(relative to D).
Let L(E, F) be the set of all R-continuous linear mappings from E to F.

LeEMMA 1.12. Let Eo D and F be as in Definition 1.5.

(@) If f: D>F is R-continuous at aeD and x,—a(R) with x,eD, then
JGn)—f(a)(R).

(b) If f: D-F and g: D—F are R-continuous at ae D and if >0, then
f+g and Af are R-continuous at a € D.

(¢) Let D be a linear subspace of E. Iff: D—F is linear and R-continuous
at 0, then f is R-continuous on D.

(d) Let f: E-F be a linear R-continuous mapping. If S is R-bounded
in E, then so is f(S) in F. If {x,} is an R-q.b.s. in E, then so is { f(x,)} in F.
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Proof. This lemma is seen easily by definition.

ReEMARK 1.3. If E and F are both normed linear spaces, then the R-con-
tinuity coincides with the continuity with respect to norms.

DEFINITION 1.6. Let E=(E, {8,}) and F=(F, {18,}) be two linear ranked
spaces. For the product linear space E x F, we take

X,={Vx W|VeB, Wel,, min(l, m) = n}
as the family of preneighborhoods of rank n.

Lemma 1.13. (a) If {Vi} and {W,} are f.s.’s in E and F, respectively,
then {V,x W,} is a f.s. in EXF.

(b) If {Vi,xW} is a f.s. in ExF, then there exist f.s’s {V¥} in E and
{W¥} in F such that V,c Ve {V,} and W,c W} e {W,} for each k.

Proor. (a) is obvious by definition.

(b) Assume V,xW,eX,, V,eB,, W,eW, with n,=min(l, my). De-
fine k(j) inductively as follows: Let k(1)=1. Choose k(j+ 1)> k(j) such that
Li+1y> Uy and my;iy>myy. Then k(j)=j and {Vi;}j, {Wig}; are f.s’s
in E, F, respectively. Put V=V, and Wg=W,,;, if k(j)Sk<k(j+1). Then
{V¥} and {W}} are the desired f.s.’s.

THEOREM 1.1 (cf. [6,I]). ExF=(ExF, {X,}) is a linear ranked space.

Proor. Let {V,xW,} and {V; x W;} be f.s.’s in ExF. Then by Lemma
1.13(b), there are f.s.’s {V§}, {Vi*} in E and {W}}, {W*} in F such that V,
cVE VicVi* and W,cW§, WicWi*. Also, by (E.2) for E and F, there are
f.s’s {Vi} in E and {W}} in F such that V¥+V;*<V}; and Wi+ W * Wy for
each k. Then {Vi;x Wy} isafs. in Ex F by Lemma 1.13(a), and

Vix W+ Vix W=+ Vi)x (Wi + W) Vi x Wi for each k.

Thus (E x F, {X,}) satisfies (E. 2).

Let {V,xW,} beafs.in ExF and A>0. Choose f.s.’s {V¥} in E and {W}}
in F asin Lemma 1.13(b). Then, by (E. 3) for E and F, there are integers 1 <m(1)
=Sm2)<->0, 1ZSI1)=ZI2)L--+—»0 and k, such that AVEc Vi, AWE
c Wiy for k2ky. Thus AV, x W)=V, x AW, < V) X Wiy, for k=ko, where
n(k)=min (m(k), I(k)). These show (E.3) for (ExF, {¥X,}).

(E.4) and (E.S) for (E x F, {X,}) are verified easily.

LemMmA 1.14. (a) If E and F are both T%, then so is ExF.
(®) (%, y)>OR) in Ex F if and only if x,—»O(R) in E and y,—O(R) in F.
(¢) IfE and F both satisfy (A.1), (A.2) or (A.3), then so does ExF.
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(d) IfE and F are R-complete, then so is ExF.

() S=S,%xS,(S,<E, S,cF) is R-bounded in ExF if and only if S,
and S, are R-bounded in E and F, respectively.

(f) The projections p,: Ex F-E and p,: Ex F—F are R-continuous.

Proor. Let {U}={V,xW,} be a f.s. in ExF, and choose f.s.’s {V}¥} in
E and {W}} in F such that V,cV¥e{V,} and W,cW}¥e{W,} for each k, by
Lemma 1.13(b). Then we see easily that E({U,})=E{Vi¥x WiH=E({V¥}D
xB{WED.

(@) Since N U, =(N V) x (N IF), we see ().

(b) If (x,, y»—0({U,}), then x,—0({V¥}) and y,—»O0({W§}). This shows
the ‘only if” part. The ‘if” part is clear by Lemma 1.13(a).

(¢) If E and F satisfy (A.1), then there is k, such that V¥ cE({V}¥}) and
WE cE({W§}). Put k'=max(k,, k,), where V¥ =V,, and W§ =W,,. Then
U=V x W, cE{VED X E{W5§}H)=E{U,}). Thus E x F satisfies (A.1).

Suppose that E and F satisfy (A.2). If (x,, y,)—0(R) in E x F, then x,—0(R)
in E and y,—»0(R) in F by (b). If (x,, y,) e E{U,}) for all n in addition, then
x, € E({V¥}) and y,e E{W{}), and so x,~0({V¥}) and y,—O({W{}) by (A.2)
for E and F. Thus we see that (x,, y,)=>0({U}).

Finally suppose E and F satisfy (A. 3), and (x, y)e U=V, x W,. Then, there
is m such that x+ V%<V, and y+ WXcW, by (A.3) for E and F. Thus (x, y)
+U,c(x, y)+(Vix W¥<U,, and (A.3) holds for ExF.

(d) Suppose E and F are R-complete. If {(x,, y,)} is a Cauchy sequence by
{U,}, then we see easily by definition that {x,} and {y,} are Cauchy sequences by
{V¥} and {W}}, respectively. Thus there are xe E and yeF such that x,—
x({V¥}) and y,»y({W¥}), and hence (x,, y,)—(x, »)({U,}). Hence EXF is
also R-complete.

(e) and (f) are seen easily by definition.

LeMMA 1.15. Let E, F be linear ranked spaces and let T be an R-con-
tinuous bilinear mapping of the product linear ranked space E?=E x E into
F. Then for any f.s.’s {V,} and {U,} in E, there is a f.s. {W,} in F such that

T(xm yn) - O({ I/Vk})
for any sequence {x,} with x,—»0({V,}) and any {U,}-q.b.s. {y,}.

Proor. Since {V;xU,} is a f.s. in E2 by Lemma 1.13(a), the R-continuity
of Tat 0=(0, 0) implies that there is a f.s. {W,} in F with

TV, x Uy = W, for each k.

If x,—»0({V,}), then there is a sequence {u,} such that u,>0, u, 1 o and y,x,
—0({V;}) by Lemma 1.4. Thus if {y,} is a {U,}-q.b.s., then we see T(x,, y,)
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= T(UyXp Uy Yw)—~>0({W,}) as desired.

§2. Differentiation

In the sequel, let E and F be linear ranked spaces and let D be a non-empty
R-open subset of E (cf. Definition 1.3).

DEFINITION 2.1 (cf. [6, V]). A mapping f: D—F is said to be R-differ-
entiable at x € D, if there exists an R-continuous linear mapping I: E—F for which

21) r:D—-x—F, r(h=f(x+h)—fx)—I(h) (heD-x).

satisfies the following condition:

(2.2) For any f.s. {V;} in E, there exists a f.s. {U,,} in F such that
A1r(A,h,) — 0({U})

for each {V,}-q.b.s. {h,} in E and each sequence {4,} of positive numbers with
Ay—0 (n—0).

ReMARK 2.1. Since D is R-open, for each xe D and each f.s. {V;}, there
is ko such that k=k, implies V,cD—x by Lemma 1.6(a’). Hence, if {h,} is a
{Vi}-q.b.s. and 4,—0 (1,>0), then 1,h,—0({V;}) and so A,h, € D—x for large n.

LemMmA 2.1. If (2.2) holds, then for any sequence {A,} of positive numbers
with 2,—0 and for any m, there is k, such that

Ar(V) < U,,  foreach k = k.

Proor. Suppose there are m, and a sequence {/,} with 1,>0, 4,—0 such that
for each k there is k' > k with A;}r(A. V)& U,,,. Then we can choose k; <k, <::-
and hj €V, such that

Agtr(yhpe¢U,,  foreach j.

Thus h;—0({V;}) and so {h;} is a {V;}-q.b.s. by Lemma 1.11(b). Also, 4, —0
(j—00), but ;1r(4,h))»0({U,}), which contradicts (2.2).

THEOREM 2.1. If f: D—>F is R-differentiable at xe D, then it is R-con-
tinuous at x.

Proor. Let a fis. {V;} in E be given. By Lemma 1.2, there exist {4}
A1=1,0<X4=1, 41 0) and {N,} (N;=1, N; t 00) such that V;cA;V; if j=N,.
If we put k(j)=max {k|j=N,} and V;=V,;, then we see that {V}} is a f.s. in
E and V;cA;Vj for all j. Let le L(E, F) and r be as in Definition 2.1. By
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@,
S+ Vo nD)ycf(x)+ V) +rVin (D - x),

where V, =D —x for large k, by Remark 2.1. By Lemma 2.1, there is a f.s. {U,,}
in F such that

A5tr(A;V5) < U, if j=j(m),
for some sequence { j(m)} of integers with j(m) 1t co. Hence
r(V) < r(AVy) < 4;U, < U, if j=jlm).

Put m(j)=max{m|j= j(m)} (m(j)=0 if j<j(im) for all m) and U;=U,
(Uo=F). Then {Uj}isafs.in F. On the other hand, since ! is R-continuous
at 0, there is a f.s. {U,} in F such that I(V;)c U for each j. Choose a f.s. {W;}
in F such that U+ Uj< W, by (E.2). Then

F(G+ V) 0 D) € f(0) + (V) + r(V)) = f() + U} + U < f(x) + W,
for large j. Hence f is R-continuous at x.

LeMMA 2.2. If F is T¥ and if f: D—F is R-differentiable at xe D, then
le L(E, F) in Definition 2.1 is uniquely determined.

Proor. Let !, I, € L(E, F),
rih) =f(x+h) = f(x) = 1(h) (heD—-x), j=1,2,

and suppose r; and r, both satisfy (2.2).

For any heE, we can find a f.s. {V;} in E such that he E({V,}) by (E.5).
Then {h} is {V,}-bounded and hence is a {V,}-q.b.s. by Lemma 1.10(a). Thus
by (2.2), there are f.s.’s {U,(1)} and {U,,(2)} in F such that

Atk — 0 ({U.(DYH (=12

for any sequence {A,} with 1,>0, A,—»0. Then for any m, there is n such that
MiriA,h)eU,(j) (j=1,2). Let {W,} be a fs. in F such that U,(1)+U,(2)
cW,,. Then

li(h) = L,(h) = 431 {1,(A,h) — 1,(A,h)}
= A;1{ri(4,h) — ra(h)} e U (1) + Up(2) = W,
This implies I,(h)=1,(h) as desired, since F is T¥, i.e., N\,,W,,={0}.

DEeriNITION 2.2. Suppose F is Tf¥ and a mapping f: D—»F is R-differ-
entiable at xe D. Then the unique /e L(E, F) in Definition 2.1 is called the



280 Yasujird NAGAKURA

R-derivative of f at x and is denoted by f'(x).
Hereafter, we shall always assume that F is T%.

REMARK 2.2 (cf. [6, V]). If E and F are normed linear spaces, then R-
differentiability of f: E—F with E and F being regarded as linear ranked spaces
coincides with Fréchet differentiability of f and f’(x) is the Fréchet derivative of
f at x (see Theorem 2.3 below).

LeMMA 2.3. Any R-continuous linear mapping le L(E, F) is R-differ-
entiable at every a € E and I'(a) (x)=I(x).

Proor. Since l(a+x)—l(a)=1(x), we see immediately the lemma by defini-
tion.

THEOREM 2.2. Let E be a linear ranked space, F and G be T¥ linear ranked
spaces. Let D, and D, be R-open subsets of E and F, respectively. Suppose
f:D,—Fandg: D,—G are R-differentiable at a € D, and f(a) € D,, respectively,
and f(D,)=D,. Then the composed mapping gof : D;—G is R-differentiable
ataeD, and

(gof) (@) = g'(f(@)f"(@).

Proor. Consider the remainders
ri(x)=f(a+x)—f(a - (@) (xeD, —a),
r(y) = g(f(a) + y) — g(f(@) — g'(f(a)(») (yeD, — f(a)).

Then we see easily that
(2.3)  r(x)=(g°f)(a+ x) — (g°f)(@) — (9'(f(a)f"(a)) ()
=g9'(f@)(r1(x) + r(f @ (x) + r(x))  (xeDy — a).
Let {V,} be a f.s. in E. Choose a f.s. {U,} in F such that
Az1r4(A,h,) — 0 (U}

for any {V,}-q.b.s. {h,} and any sequence {4,} with 4,>0, 1,—0. Since f'(a)
is R-continuous at 0, there is a f.s. {U},} in F such that f’'(a)(V,)<U,, for each
m. Let {U,} be a fs. in F such that U,+ U, cU,, for each m. By the R-
differentiability of g, there is a f.s. {W;} in G such that

An'T3(Aak,) — O ({W1})

for any {U}}-q.b.s. {k,} and any sequence {1,} with 1,>0, 1,—0. Also, since
g9'(f(a)) € L(F, G), there is a f.s. {W}} in G such that g'(f(a))(U;)<= W] for each
I. Choose a f.s. {W7} in G such that W,+ W;< WY for each I.

Now, let {h,} be a {V;}-q.b:s. in E and {A,} be a sequence such that 1,>0,
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4,—0.  Since 4717, (Ah)—0 ({U,}), we see that
(2.4) A3'9'(f(@)) (ri(A,hy) = g'(f(@) (47174 (A,h0)) —> O ({W3}).
Next, we shall show that the sequence {k,} given by
ky = f'(a)(hy) + A7'ry(Ayhy)

is a {Us}-q.b.s.. For any sequence {u,} with p,>0 and p,—0, u,h,—0({V,})
by definition, so that

Haf (@) (hy) = f'(@) (shy) — O ({UL}).

On the other hand, p,A;'r,(4,h,)—0({U,}) by Lemma 1.3(d). Hence p,k,
—-0({U.}) by Lemma 1.3(a). Thus {k,} is a {U,}-q.b.s.. Therefore,

(2.5) Aztra(f(@) (Auhy) + 14(A,h,)) = A71r5(A.k,) — O({W1}).
By (2.3-5) and Lemma 1.3 (a), we have
Aatr(Aghy) — O{W7}).
Hence we have proved the theorem.
In the case that E is a normed linear space, we have the following

THEOREM 2.3. Let E be a normed linear space, D be an open subset of E
and F be a T¥ linear ranked space. Then f: D—F is R-differentiable at xe D
with E being regarded as a linear ranked space, if and only if there exists
le L(E, F) such that

(2.6) for any sequence {h,} in E with h,—0, h,#0,
hall=tr(hy) —> O(R)  (r(h) = f(x + h) — f(x) — U(h)).

Proor. The necessity follows immediately from Definition 2.1; note that
{h,/llh,]l} is an R-q.b.s..

Conversely, suppose (2.6) holds. If {h,} is an R-q.b.s. in E, then {h,} is
bounded by Remark 1.2 (cf. Lemma 1.10(b")), and so 4,h,—0 for any {4,} with
2,>0, A,—»0. Thus [A,h,]"tr(4,h,)—>0R) by (2.6), which implies A,1r(4,h,)
—0(R) by Lemma 1.3(d). Hence fis R-differentiable at x.

CoROLLARY 2.4. If E=R in the above theorem, then (2.6) is the following:
(2.6") For any sequence {3,} with 6,0, 6,#0,

6 (f(x + 8,) — () — I(1) (R).
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In this case, we denote I(1)=f'(x)(1) by f'(x). Obviously f'(x)(A)=Af"(x)
for all Ae R.

§3. The mean value theorem

TuaeoreM 3.1 (cf. [2, §5.1], [7, (1.3.1)]). Let E be a T% linear ranked
space satisfying (A.2). Let a<pf and let f:[a, f]—=E and ¢:[a, f1>R satisfy
the following conditions:

(a) fand ¢ are R-continuous on [a, f];

(b) fand ¢ are R-differentiable at each point te(«, )\ D,, where D, is at
most countable;

(c) ¢ is monotone non-decreasing.

Furthermore, let {V,} be a convex f.s. in E and B be a subset of E satisfying

@ f([x BD = f(@ + EGW), f (e, B\ Dy) = E({Vi});

(e) B is {V,}-closed and convex, and B n E({V,})# ¢.

If f*(®)e @ (9)B for all te(a, p)\ D,, then

(B —f(@)e(o(B) — o(®)B.

Proor. First remark that E({V,}) is a linear subspace, since each V, is
symmetric and convex. Thus, we may assume without loss of generality that
a=0, ¢(0)=0 and f(0)=0. Furthermore, for x,e€ B nE({V,}), consider f,(f)
=f(t)— @(t)x, and Bj=B—x,. Then B, is convex and {V,}-closed by Lemma
1.6 (c), f; satisfies (a), (b) and (d) and 0e B, n E({V,}). Therefore, we may assume
that 0e B. For simplicity, let S¢=S({V,}) for each S(cE). Note that if S is
convex, then so is S% (Lemma 1.6(e)). Also (S%)*=_S* (Lemma 1.6(d)).

Now, to prove f(B) € p(B)B, it is enough to show

fBeoB) (Vi + By*  foreach k, if ¢(f)+#0;
fBeW)* foreach k, if ¢(B)=0.

For, in case ¢(f)=0, (3.1), Lemma 1.7, Lemma 1.1(a) and (T%) for E imply that
f(B)=0€e @(B)B. In case @(B)#£0, if f(B)& ¢(B)B, then there would exist k'
such that (¢(B)~'f(B)+Vi)NnB=¢ by Lemma 1.6(a), since B is {V}-closed.
Then there would exist k such that (o(B)~1f(B)+ V) n(B+V,)=¢ by Lemma
1.1(b), or ()~ f(B)(B+ V,)* by Lemma 1.6(a), which contradicts (3.1).

To prove (3.1), fix k and set V=V,. Let ¢>0 be arbitrary and fixed for a
while. Let D,={p,, ps,...} and consider the function

X)) =o(s) +es +e¥,< 2" (0=s=p).

Then x(0)=0 and x(s)>0if s>0. Put
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A= {te[0, Bllf(s)ex(s)(V + B)* for all se[O, 1]}.
Obviously, 0e 4 and [0, t]cA if te A. We shall show that
(3.2) y=supAdeA and y=Pp, ie, A=][0,f].

If y>0 and ¢, 1y, then x(¢,) T x(y)>0 by definition, and f(¢,)—f(y) (R) since
f is R-continuous at y. Hence x,=x(t,) " 1f(t)—x(y)"1f(y)=0(R) by Lemma
1.3(c). Since E({V,}) is a linear subspace, {x,} = E({V,}) by the first condition of
(d). Thus

X, = 0({Vi}), ie, x(t)71f(t) — MWD

by (A.2). Hence x(y)"'f(y)e(V+B)*)*=(V+B)* and yeA. If y=0, then
ye A is clear. Thus we see y=supA e A. Next we shall prove that y=4.
Suppose y<p and ye&D,. Set

ri)=f@+h)—f@)—=hf @), ry(h)= 0@+ h — o) — ho'(®).

If h,»0 (0<h,<B—7y), then h;'r,(h,)—>0(R) by Theorem 2.3. Thus h;'r,(h,)
-0({Vi}) by (A.2), since {r,(h,)}<E({V;}) by (d). Obviously, h;'r,(h,)—0.
Hence, we can find h>0 (h<f—7y) such that

h=lri(h)eeV/2 and |h~tr(h)| < gf2.

Since ye A4, i.e., f(y)€ x(y)(V+B)* and (V+B)* is convex by (e), by using the
assumption f"(y) € ¢ (y)B, we have

f@+ =50 +hf' ¢+ r(h)
e x(»)(V + B)* + ho'(y)B + ¢hV/2
< (@) + he’(») + h/2)(V + B)“.
By the definition of x and (c),
0<x(y) +he'(y) +eh/2 = 0(y) + &y + eX,,<,27" + ho'(y) + eh/2
=@+ h) +ely +h) +eX, 27" —ry(h) — eh/2 < x(y + h).

Hence f(y+h) e x(y+h)(V+B)4, i.e., y+he A, which contradicts y=sup A.
Suppose y<f and y=p, € D,. By the R-continuity of f at y, the condition
(d) and (A.2), we can choose >0 (§ <min (B —7y, y)) such that

fO —f(eev2m  for [& -y <é.
Let y<&<y+d. Since 0<y(y)+e/2m<x(&) and f(y) € x(y) (V+ B)?, we have

J@ = - fO) +feeV2" + x(»)(V+ B)y* = x(O(V + B,
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so that £ € A, which contradicts y=sup 4 again. Thus we have shown (3.2).

Now, we prove (3.1). If ¢(8)=0, then ¢(¢)=0 by (c), so that ¢ (t)=0 for all
te(0, f). Hence f'(t)=0 for te (0, f)\D, by the assumption f () e ¢ (¢¥)B, so
that the above arguments are valid with B={0}. Hence by (3.2),

fBexBVe cep + Ve,

Choosing £>0 such that ¢(f+1)<1, we obtain (3.1).
If (f)>0, then 0< y(B)< o(B)+e(f+1), so that

F(B) e(o(B) + &B + 1))(V + B).
Let ¢,>0 and ¢, 0. Then, since f(f) € E({V,}), we see that
(1 + &B + Do) B~ f(B) — (B~ f (B {Vi})

by Lemma 1.3(c) and (A.2). Thus @(B)~1f(B)e((V+B)*)*=(V+B)* and we
obtain (3.1). Therefore, Theorem 3.1 is proved completely.

§4. Gateaux differentiation

DerFINITION 4.1. Let D be an R-open subset of a linear ranked space E,
and f: D—F be a mapping into a T# linear ranked space F. Then we say that
fis Gdteaux R-differentiable at x € D if there exists | € L(E, F) such that

r:D—x—>F,rh)=f(x+ h) — f(x) — I(h) (heD - x),
satisfies the following condition:
(4.1) For each h#0, there is a f.s. {U,,} in F such that
for each sequence {4,} of positive numbers with 4,—0.
As in the case of the R-differentiation, if f is Gateaux R-differentiable, then
le L(E, F) in the above definition is uniquely determined, and is denoted by f(x).

If E and F are normed linear spaces, then Gateaux R-differentiability coin-
cides with ordinary Géateaux differentiability.

Obviously, R-differentiability implies Giteaux R-differentiability and f'(x)
=f4(x). In order to state a condition under which the inverse is valid, we intro-
duce

DErFINITION 4.2. Let E, F and G be linear ranked spaces and DcE. A
mapping T: D-L(F, G) is said to be R-hypo-continuous at ae€D, if for any
fs’s {V,} in E and {U,} in F, there is a f.s. {W;} in G satisfying the following
condition:
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(4.2) For any {U,}-q.b.s. {y;} and any I, there is k, such that
xe(D —a)n YV, implies T(a + x)(y;) — T(a)(y;)e W, foreach j.

DEFINITION 4.3. We say that a linear ranked space F is convex, if each pre-
neighborhood of 0 in F is convex.

TueoreMm 4.1 (cf. [7, (1.4.4)]). Let E be a linear ranked space satisfying
(A.1) and F be a convex T¥ linear ranked space satisfying (A.1-2). Let D be
an R-open subset of E, and a mapping f: D—>F be Gdteaux R-differentiable
at every point of D. Suppose that for any f.s. {V,} in E, there are ko and a f.s.
{W,} in F such that f(Dn(a+V,,)<E({W,}) and that f,: D—>L(E, F) is R-
hypo-continuous at ae D. Then f: D—F is R-differentiable at ae D.

Proor. Let a f.s. {V,} in E be given. By assumption, there are k, and a
f.s. {W,} in F such that a4V, <D, f(a+V,,)<E({W,}). Also, by the R-hypo-
continuity of f at a, there is a f.s. {W,,} in F having the following property:

(4.3) For any {V,}-q.b.s. {h;} and any m, there is k,, such that
xe(D —a)nV, implies [fy(a+ x)—fy(a)]({h;}) = W,

Since f(a) is R-continuous at 0, there is a f.s. {W,} in F such that f(a) (V)= W}
for each k. Choose a f.s. {U,,} in F such that W,+ W,,+ Wi, < U, for each m by
(E. 2).

Now, let {h;} be a {V;}-q.b.s. and {A;} be a sequence such that 1;>0, ,-0.
Since A;h;—0({V,}), there is j, such that

0=A=<A; implies Ah;eV,, and h;e E({W}) for j = jo,
by (A.1) for E. For j= j,, put
gi(d) =f(a+ ih) — f(a) — Afy(@)(h) (0= A= 2y.

Then f(a+Ah)—f(a)e E{W,}). Also, f(a)(h)eE({W,}), since fy(a)(Vy)
c Wy and h;e E({V,}). Thus

gj([oa Aj]) < E{U,.)).
On the other hand, if 0SA<4; and 0<1+&=<4;, then
9,4 + &) — g,A) = e[ fo(a + Ahy) — fy(a)] (hy) + r(eh)),

where r(h)=f(a+Ah;+h)—f(a+Ah))—f(a+Ah;)(h). By Definition 4.1, there
is a f.s. {U,,} in F such that if ¢,—0 (g,>0), then

&'re,h) — 0({U,))  (n— ).
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Thus, we see by Corollary 2.4 that g;: [0, 2;]—F is R-continuous on [0, ],
R-differentiable at 1€ (0, 4;) and

4.4) 95D = [fy(a + Ahy) — f(@)1(h)).

By (A.1) for F, there is m, such that m=m, implies U,<E({U,}). Given
mz2my, since A;h;—0({V,}), there is j,=j, such that j= j, implies A;h;eV, ,
so that Ah;e V, for 0A<A;, where k, is the one in (4.3). Then by (4.4) and
(4.3),

9;,M)eW, U, <E({U,}) for 0SA=41;j2)m
Apply Theorem 3.1 with p(A)=A(0SA<4;) and B=TU,({U,}). Then we obtain
954) — 9,0 e ;U ({Un})  (J ZJjm
or  A7Y{f(a+ A;hp) — f(a) = f @)k} e U({Un})  (J ZJm)-

In view of Lemma 1.7 and Lemma 1.1(a), this means that f is R-differentiable
at a.

§5. Invertible mappings

DEeFINITION 5.1. Let E be a linear ranked space and DcE. f:D—E is
called an R-contraction if for any f.s. {V,}, there is a sequence {L,} of positive
numbers such that 0<L,<1 and

a—beV, implies f(a)— f(b)eL,V, for each k.

THEOREM 5.1 (cf. [7, (3.3.4)]). Let E be convex R-complete T linear
ranked space. If ueL(E, E) is an R-contraction, then I—u (I is the identity
mapping) has the inverse (I—u)~': E-E,

I - u)i(x)= X2u"(x)(R) forevery xeE,

where u°=I, u"=uo---ou (n-times, n=1), and y=Y2u"(x)(R) means
L _ou"(x)=>y(R)(I->0). If E satisfies (A.1) in addition, then (I—u)le
L(E, E).

Proor. Let x€eE, and choose a f.s. {V;} such that x e E({V,}). Then there
is {B,} such that §,>0, x e B, V; for each k. Since u is an R-contraction, there
is a sequence {L;} such that 0<L,<1 and u(V,)<L,V, for each k. Then u"(x)
€ L2V, for each n. Put s(x)=3}_ou"(x). Choose I(1)<l(2)<--- such that
BiXciwy+1Li 1. Then, since V, is convex, sp(x)—s(x)eV; for U'>1=I(k).
Hence {s(x)} is a Cauchy sequence by {V,}. Since E is R-complete, there is f(x)
€ E such that sy (x)—f(x) {Vi}).
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Then u(s(x))—u(f(x))(R) since u is R-continuous. Also u*(x)—0(R) since
u"(x) e B, L2V,. Thus, in view of Proposition 1.1, the equalities

(I — wsi(x) = s(x — u(x)) = x — u'*'(x)
imply (I —u)f(x)=f(x—u(x))=x, so that
wou"(x) = f(x) = I —u)"'(x)  (x€E).

It is easy to see that fis linear. To show that fis R-continuous, let {U,} be
any f.s. in E. Since u is an R-contraction, there is a sequence {A,} such that
0<<1 and uw(U)<AU, for each k. By Lemma 1.1(a) and (A.1), choose
1=j(1)< j(2)<-:- such that

Ujay = 271 = AU, and Ujyy < E{UD) for each k.

Let xeUjy,. Then by the above proof, s(x)—f(x)({U,}) since xeE({U,}),
and also §;(x)=Xl_ou"(x)e2 1 (1—-2)X} -oAjU,=2"1U,. Thus, by Lemma
1.7, f(x)e2'U({U))=U,. Hence

f(U;a) = U, foreach k.

If we choose a f.s. {W,} in E so that W,=E if 1<n< j(1) and W,=U, if j(k)<n
< j(k+1), then f(U)<= W, for each k. Hence f=(I—u)~! is R-continuous.

DErINITION 5.2. Let E and F be linear ranked spaces and D be an R-open
subset of E. Then f: D—F is called an R-q.b. preserving mapping at aeD,
if for any f.s. {V;} in E there exists a f.s. {U,,} in F satisfying the following condi-
tion:

(5.1) If {h,} is a {V;}-q.b.s. and {4,} is a sequence such that 1,—0, 1,>0 and
a+Ah, €D, then {A;1(f(a+A,h,)—f(a))},is a {U,}-q.bs..

We see easily that if f: Do F is R-differentiable at a € D, then it is R-q.b.
preserving at a € D.

DEFINITION 5.3. Two linear ranked spaces E and F are said to be R-
isomorphic if there exists a bijective linear mapping T: E—F such that for any
f.s. {Vi} in E, {T(V,)} is a f.s. in F, and for any f.s. {U;} in F, {T-Y(U))} is a f.s.
in E. In this case, T is called an R-isomorphism of E onto F.

In the rest of this section, let E and F be two R-isomorphic T¥ linear ranked
spaces, D be an R-open subset of E, and

5.2) : : f:D—F

be a mapping such that f(D) is R-open in F. 'We shall study a (local) inverse of f
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under suitable assumptions.

THEOREM 5.2 (cf. [7, (3.2.4)]). Suppose that f of (5.2) is R-differentiable
at ae D and f'(a) is an R-isomorphism of E onto F. If in addition f is injective
and f~1: f(D)—E is R-q.b. preserving at f(a), then f~! is R-differentiable at
f(a) and

(@) = f'(a).
ProoOF. Let b=f(a), and put
rthy=f@a+h —f@-f(@®k (heD—a),
Ry =f71b+ k) —f'(b) - f'(@7'(k)  (kef(D)— D).

Given a f.s. {U,} in F, since f~! is R-q.b. preserving at b, there is a f.s. {V}} in
E such that if {k,} is a {U,}-q.b.s. and 4,>0, 4,—0, then {h,} given by

hy = 251(f7H(b + A4k,) — (D))

is a {V;}-q.b.s.. Note that the above equality implies a+A,h,=f"1(b+ ,k,),
or

ky = 2} (f(a + A.h,) — f(@) = f'(@) (hy) + A5 r(A,h,) .
Since f is R-differentiable at a, there is a f.s. {U,,} such that
kn — f'(@) (hy) = 251 r(A,hy) — O({U}}) .
Let Vi =f'(a)"Y(U;). Since f'(a)~! is an R-isomorphism, {V}} is a f.s. in E and
f'(@)7(ky) = by — O({Vi}).

Now, f'(a)~'(k,)—h,=—A,'R(4,k,). Hence A;'R(4,k)—0({V:}). Thus f-1
is R-differentiable at b and (f~1)'(b)=f"(a)~1.

THEOREM 5.3 (cf. [7, (3.4.4)]). Let E and F be convex and satisfy (A.1-2).
Suppose that f: D—F of (5.2) is R-differentiable at every point of D and injec-
tive. Let ae D and suppose in addition that f=1 is R-continuous at f(a), f'(a)
is an R-isomorphism of E onto F and g=f'(a) 1o f: D—E satisfies the following
condition (5.3):

(5.3) Foranyf.s.’s {V;}, {U,} in E, there exist ko, a f.s. {W,} in E and a sequence
{L,} such that a+V,,=D, U,cW, for each k, 0<L,<1 and

[g(a+x)—II(W)<L,W, forall xeV,, n=1,2,...
Then f~1: f(D)—E is R-differentiable at f(a).



Differential Calculus in Linear Ranked Spaces 289

ReMARK 5.1. In case E and F are normed linear spaces, if f: D—F is R-
differentiable at every point of D and f’: D—L(E, F) is continuous at a € D, then
g satisfies (5.3).

ProoF oF THEOREM 5.3. By Lemma 2.3 and Theorem 2.2, g: D—-E is
R-differentiable at every x e D and

9'(x) = f(a)y ' f"(x),

in particular g'(a)=1€ L(E, E). g is obviously injective and g(D)=f'(a)"*(f(D))
is R-open since f’(a) is an R-isomorphism. We shall show that g~! is R-q.b.
preserving at b=g(a). Then, by the above theorem, we conclude that g~! is
R-differentiable at b, and again by Lemma 2.3 and Theorem 2.2, f~l=g~1o
f'(a)~! is R-differentiable at f'(a)(b)=f(a).

Let {V,} be any f.s. in E. Since f~! is R-continuous at f(a) and f’(a) is an
R-isomorphism, g~!=f"1of’(a) is R-continuous at b. Hence there is a fs.
{V%} in E such that

(5.4) g b+ V)N gD)ca+ Vi foreach k.

Also, since f, and hence g, is R-continuous at a, there is another f.s. {V;} in E
such that

(5.5) g((@a+ Vi) nD)cg(a)+ Vi for each k.

By condition (5.3) and (E.2), there exist ko, a f.s. {W,} in E and a sequence {L,}
such that a+V; <D, V,+V+ Vi<W, for each k, 0<L,<1 and

(5.6) [g'(a+ x)—g'(@]W,) =L,W, forall xeV;,, n=1,2,...

Let {h,} be a {V,}-q.b.s. and {4,} be a sequence such that 1,>0, 1,—-0 and A,h,
€ g(D)—b, and put

In = A';l{g-l(b + A'nhn) - g—l(b)}’ n=1,2,...

If we show that {y,} is a {W;}-q.b.s., then we can conclude that g~! is R-q.b.
preserving at b.
The above equality implies

(5.7 Ahy = g(a + Ay, — g(a), n=1,2,....

Since 1,h,—0({V,}), for each k there is n(k) such that n=n(k) implies 1,h,€ V;.
Thus, by (5.4), if n=n(k), then g~1(b+A,h,)ea+ Vi, ie., A,y,€Vi. Therefore,
if n2n(k,) and te [0, 4,], then a+ty,ea+V; =D. Put

F () =ty,—g(a+1ty,)+g(a), tel0,4], n=nko).
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Each F, is R-continuous on [0, 4,], R-differentiable at each te (0, 4,) and
(5.8) F,(0)=y,—g'(a+ty,)(va) =[g'(@—g'(a + ty)](ya)-

By (A.1), there is k,; =k, such that W, cE({W;}). If n=n(k,), then a+ty,€
(a+Vi)nD, so that gla+ty,)—g(a)eVy, by (5.5). Hence F,(f)eV;, +Vy,
< W, <E({W,}) for te[0, 4,1, n=n(k,).

Next, let @ (y)=inf{A>0|1"1y e W,} be the Minkowski functional for W,.
Since y, e E{W,}) for n=n(k,), o(y,) is finite for each k and n=n(k,). Thus
VYn € (0r(y,) + &)W, for any >0, n=n(k,). Hence, by (5.6) and (5.8), we see that

F,)eL(o(y) + W, O0<t<i, nznky), k=1,2,.,

for any e>0. In particular, F,(t)e E{W,}) for 0<t<A,, n=n(k,). Hence we
can apply Theorem 3.1 and obtain ‘

Fy(As) = F,(0) € L, Li(@u(yn) + OW({Wi}),  n 2z n(ky), k=1,2,..,

for any ¢>0. Since F,(4,)—F,(0)=A1,y,—g(a+2,y,)+g(a)=21,(y,—h,) by (5.7),
this shows

(5-9) In — hne(qu)k(Yn) + E)VV)‘U n g n(kl)’ k = 19 2)~“’

for any ¢>0, by Lemma 1.7.
If pu,>0 and p,—0, then p,h,—0({W,;}) since {h,} is a {V;}-q.b.s. and V,c W,
(k=1, 2,...). Hence for each k there is m(k) such that n=m(k) implies p,h,
€2 1(1—L,)W, by Lemma 1.1(a). Thus if n=max (m(k), n(k,)), then by (5.9)
.unyn € .unhn + (ﬂnLk¢k(y n) + ﬂns)ka
< [27Y(1 — L) + Lyps(nyn) + pn€1Wso
which implies
(Pk(tunyn) é 2_1 + 8I‘Ln(l - Lk)_l
for any ¢>0. Hence it follows that
Uyn €W,  for n = max(m(k), n(k,)),
which means that {y,} is a {W,}-q.b.s..

DEeFINITION 5.4. Let E and F be linear ranked spaces, F be T#¥ and D be an
R-open subset of E. f: D—F is called a C'-mapping at ae D, if f is R-differen-
tiable at every point of D and further f': D—L(E, F) is R-hypo-continuous at a.

THEOREM 5.4 (cf. [7, (3.4.4)]). Let E and F be convex, R-complete and
satisfy (A.1-2). Suppose f: D—F of (5.2) is a C'-mapping at every point of D,
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[ is injective, f~1 is R-continuous on f(D), f'(a) is an R-isomorphism of E onto
F for every aeD and g=f'(a)~'of : D—E satisfies condition (5.3) for each ae D.
Then f~1: f(D)—E is a C'-mapping at every b e f(D).

ProoOF. By the above theorem we have to prove that
(f~Y:f(D) — L(F, E)

is R-hypo-continuous at every bef(D). Fix ae D and let b=f(a). Since g'(z)
=f'(a)~1of'(z) for z € D, Theorem 5.2 implies

U@ =g@ of (@7, zeD.

Since f’(a) is an R-isomorphism, in order to prove that (f~!)’ is R-hypo-continu-
ous at b, it is enough to show the following: Given a f.s. {V,}in E and a f.s. {U,}
in F, there is a f.s. {W,;} in E satisfying

(5.10) for any {V;}-q.b.s. {h,} and for each I, there is k(I) such that a+xeD
and f(a+x)—f(a) € Uy, imply

[g'(a + x)"1 — g'(a)~1](h,) e W, for all n.

Thus, let a f.s. {V;} in E and a f.s. {U,} in F be given. Since f~! is R-
continuous at f(a), there is a f.s. {V;} in E such that

(5.11) U (f@+U)nfD)<a+V; for each k.

Since f is a C'-mapping at a, g': D—L(E, E) is R-hypo-continuous at a. Hence
there is a f.s. {V}} in E such that for any {V,}-q.b.s. {h,} and for each I, there is
k'(]) such that

(5.12) xe(D — a) n Vi, implies [g'(a + x) — g'(a)](h,) e V] for all n.

By (5.3), there exist ko, a f.s. {W,} in E and a sequence {L,} such that a+ V} <D,
VicW, 0<L,<1 for each k and

(5.13) [g'(a+ x)—I11(W,) = LW, forall xeV;, k=1,2,...

By (A.1), we may assume that W, cE({W,}). We shall show that with this {W,},
(5.10) is satisfied.

Let {h,} be a {V;}-q.b.s.. By (5.12), for each I there is k"(I)= k'(l) such that
(5.14) xe(D—a)n Vi, implies [g'(a + x) — I1(h,) =271 — L)V}

for all n. 'We may assume that k"(1)<k"(2)<.--. Let k(l)=max (ky, k"(1)). If
X€E V;c(l)’ then .

[g'(a + x) = I1(h) e Vi = W; = E({W})
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by (5.12). Hence, in view of (5.13), as in the proof of Theorem 5.1, we see that
Zi=1(—1D'lg’(a + x) — IT*(h,)
— —g'(a+x)[g'(a+x) —I1(h,) = [g'(a + )™ — IT(hy) (Wi})

as m— oo, for each xe V};, and n. Furthermore, by (5.14) and (5.13), if xe
Viqy, then

Zre(=D'g'(a + x) = IT"(h)e27(1 — L)(1 — L)~'W, = 27'W,
for all m and n, so that
[g'(a + )"t = I1(h)e2'W({W}) =W, forall n,

by Lemma 1.7. Since a+xeD and f(a+x)—f(a)e Uy, imply xe Vi, by
(5.11), we have shown that (5.10) is satisfied.

LeMMA 5.1. Let E and F be linear ranked spaces and suppose F is convex
and satisfies (A.2). Let D be an R-open subset of E and f: D—F be R-continu-
ousataeD. If{U,}isafs.inE and {V,}is afs. in F, then for each k there is
m(k) such that

f@+ Unay) 0 [f(a) + E{ViD] < f(@) + Ve

Proor. Suppose the contrary. Then there are k, and a sequence {x,}
in E such that

Xn €Uy, a + x,,€D, f(a + x,) — f(a) e E{Vi)\V,, for all m.

Since f is R-continuous, f(a+x,)—f(a)(R). Since f(a+x,)—f(a)eE{V:}),
fla+x,)-f(@)({Vi}) by (A.2), which contradicts f(a+ x,,)—f(a)& Vy,.

THEOREM 5.5 (cf. [7, (3.4.5)]). Let E and F be convex, R-complete and
satisfy (A.1-2). Suppose that f: D—-F of (5.2) is R-differentiable at every
point of D and f'(a): E-F is an R-isomorphism at a given aeD. Suppose
furthermore that g=f'(a)~' of and a f.s. {W,} in E satisfy the following conditions
(5.15-16) for some k,:

(5.15) a+ W,<D and g(a+ W,) < g(a) + EW,}).
(5.16) For each I, there is L;: 0<L,<1 such that
[g(@a+x)—IT(W) = LW, forall xeW,

Then, there are a set U with W, < U = W, for some k' Z k, and a preneighbor-
hood V of 0 in F such that the restriction
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fi=fl@a+U):a+U—F

is an injection of a+U onto f(a)+V and fi': f(a)+V—E is R-continuous at
f(a). If, in addition, E and F satisfy (A.3), then f1! is R-continuous on f(a)+ V.

Proor. By (A.1), we may assume that W, cE({W,}). We divide the proof
into several steps.
(@) fv+tueW, for0=t<1 and ue W, p,>0, then

u—g(a+v+u)+ gla+v)eLiyW,

where L;<Lj<1.
Proof of (a): By (5.15), we see that

Fi®)=v+ tu — g(a + v + tu) + g(a) e EW,}), 0t 1.
By (5.16), we have
F®)=u—g'(a+v+ tu)(u)e LW, for 05t<1, 1=1,2,...,
so that F'(tf) e E{W,}) for 0<t<1. Hence we can apply Theorem 3.1 and obtain
u—g(a+v+u)+g(a+v)=F(1) — F0) e LiyW({W,}).

Thus, in view of Lemma 1.7, we have (a).

(b) Put L=L;, and choose We {W;} such that W<2"1{(1-L)W,,. Then,
for any y, € b+ W (b=g(a)), there is x, € W,, such that y,=g(a+x,).

Proof of (b): Given y, € b+ W, put

T(x)=yo+x—gla+x), xeW,

Define {u,} by u,=y,—b and u,=T(u,_,), m=1,2,.... Since uoeWc
2-1(1-LYW,,<E({W.}), there is a sequence {«;} of positive numbers such that
uo,ea,W, for all I. By induction we shall prove

Uy — Up_1 €LY, W, m=12,..;1=12,...,
(5.17) Up — Up_1 €271 — LL"W,, m=1,2,..,
Up—1 + Uy — Upy—y) €W, 0<t=1,m=12,...
Since uy € W), uo€2"(1—-L)W,, = W,, and
uy — ug = uo — g(a + up) + g(a),

(a) implies that u,—u,eLjoy,W, and u;—uoe2”'(1—L)LW,,. Then, u,+
t(uy;—up)e27'(1-L)(1+L)W,,. Thus (5.17) holds with m=1. Suppose (5.17)
holds for m=1, 2,..., n. Since
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Uppy — Uy = Uy — Uy_y — g(a + u,) + g(a + t,_y),
(5.17) for m <n and (a) imply the first two relations in (5.17) with m=n+1 and
Uy + Wthpyg — Up) = to + X hc1(Uyy — Up—q) + Wthys g — Uy)
€271 = L)(1 + ZrELmW, © W,

for 0<¢t<1. Thus we obtain (5.17).

From the first relation in (5.17), it follows that {u,,} is a Cauchy sequence by
{W,}. Since E is assumed to be R-complete, there is x, € E such that u,,— xo({ W;})-
By the second relation in (5.17), we see that u, €271W,, and hence xq € Wj,.
Since g, and hence T, is R-continuous, from the definition of T and {u,,}, we derive
that

xg = T(xo) = yo + Xo — g(a + xo),
ie., yo=g(a+xo).

(c) For each [, let p(y)=inf{1>0|A"1y e W,} be the Minkowski functional
for W,. ‘Then for any z,, z, e W,

¢zy — z; — ga + zy) + g(a + z,)) S Loz, — z5).
Proof of (¢): For any £>0, since z; —z, €(@fz; —z,)+ &)W,
2y — 2z, — g(a + zy) + g(a + z) € Li(pz, — z,) + W,

by (a). Thus ¢(z,—z,—g(a+z,)+g(a+2z,))SLi(@fz,—z;)+e) for any e>0,
and we obtain (c).

(d Put U=W,n{g~'(b+W)—a}. Then g,=g|(a+U): a+U—E is
injective, g,(a+ U)=b+ W and there is k' = k, such that W,.cU.

Proof of (d): If xo, x, € W,, and g(a+ x,)=g(a+x,), then by (c)

oi(xo — x1) £ Ligi(xo — Xy), I=1,2,...

Since Lj<1, this means that ¢,(x,—x,;)=0 for all I, i.e.,, xo—x, € W, for all I
Hence x,=x;. Thus g, is injective. By (b), g,(a+U)=b+W. Applying
Lemma 5.1, we find k' >k, such that

g(a+ W) n [b+E({W] = b+ W.

By (5.15), g(a + W) = b+ W, which implies W,.cU.

(e) gil: b+W-a+U is R-continuous at b; if we assume (A. 3) for E and F,
then g7! is R-continuous on b+ W.

Proof of (¢): Let y,€ b+ Wand y,=g(a+x,) with xoe€ U. If yo#b, choose
k*=k, such that yo+ Wb+ W by (A.3). If yo,=>b, then let Wi,=W. First
we show that
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(5.18) for each I, there is k()= k* satisfying g7(yo+ W) =Xo+a+ W,
Let ueb+ Wand u=g,(a+z) with ze U. By (c)

o(z — x0) — (u — o)) = Lip(z — xo)-
Since ¢, is subadditive, it follows that
(1 = L))oz — x0) = ofu — yo),»

so that u € yo+2~1(1 — L)W, implies ze x,+ W,. Hence (5.18) is valid with k(I)
2 k* such that W, <271(1—-L)W,.

Now, given a f.s. {U,} in E, applying Lemma 5.1 with f=1I, we find m(l)
such that

Um(l) n E({Wk}) < M(l)
for each I. Since b—yo+ W< W+ W cE({W,}), (5.18) shows that
gfl[(yo + Um(l)) nk+w]c Xo +a+ W,

which shows that g7! is R-continuous at y,,.
(f) Since f’(a) is an R-isomorphism, V =f'(a) (W) is a preneighborhood of 0
in F. Thus we have the theorem by (d) and (e).

§6. Higher derivatives

Let E and F be T% linear ranked spaces and D be an R-open subset of E.
Let E2=E x E be the product linear ranked space of 2-copies of E.

DEFINITION 6.1. A mapping f: D—F is said to be twice R-differentiable
at ae D, if fis R-differentiable at every point of D and if there is an R-continuous
bilinear mapping f”(a) of E? into F such that r': D—a—L(E, F), given by

ri(h)(x) = (f'(a+ h) - f(@)(x) - f"(a)(h,x) (heD — a, xeE),
satisfies the following condition:
(6.1) For any f.s.’s {V;} and {V}} in E, there is a f.s. {W,} in F such that
A 111 (Aahy) (hy) — O({Wi})

for every {Vi}-q.b.s. {h,}, every {V};}-q.b.s. {h,} and every sequence {1,} with
A,>0, 4,—0.
We can prove the following as in the proof of Lemma 2.3.

LEMMA 6.1. f"(a) in the above definition is uniquely determined.
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THEOREM 6.1 (cf. [2, §9.1], [7, (1.8.2)]). Let F be a convex T¥ linear
ranked space satisfying (A.1-2) and D be an R-open subset of E. If f: D-»F
is twice R-differentiable at a e D, then

f'@(x, y) =f"@(y,x) forall x, yeE.

Proor. By (E.5) and (E.2) for E, there is a f.s. {V}} in E such that x, y
e E({V,}). Since f is R-differentiable at ae D, f is R-continuous at aeD by
Theorem 2.1. Thus there is a f.s. {U,} in F such that

f@+VvV)nD)ycfla+ U, forall k.
Choose k, such that U,,cE({U,}) by (A.1). Then

(6.2) f@+ V) nD)<fla+E{U}) if nzk.

Let {V¥} be a f.s. in E such that V,+ V, < V¥ for all k. Since D is R-open, there
is ky = ko such that a+ V¥ <=D. Choose 1,>0 such that Apxe V,, and A,y € V..
Then

Mx+ A'yellg!Vi <D —a if & ¢&€e[0,1] and A€[0, 40].
For any £€[0, 1] and A€[0, 4,], put

(6.3) 9(&; ) =f(a + AMx + Ay) — f(a + A¢x).
Then, by Theorem 2.2 and Corollary 2.4, the R-derivative g'(£; 1) of g(&; 4)
with respect to & is given by

64 g GA=(la+Mx+y)—flla+ix)(x) O<{<],
0= A= A).
By the definition of the remainder r! in Definition 6.1, we see easily that
(6.5) (f'(a + 8x + Ay) — f'(a + Ax)) (x)
= f"(@)(Ay, x) + r'(Aéx + Ay)(x) — r'(A¢x)(x).
Now, by (6.1) choose a f.s. {W,} in F such that
Autri(Ayhy) (hy) — 0({WA})

for every {V¥}-q.b.s. {h,}, every {V,}-q.b.s. {h,} and every {4,} with 1,>0, 1,—0.
Then, for any {A,} with 1,>1,>0, 1,—0 and for any k, there is N(k) such that

6.6)  Ar(AEx + A, ))(x)eW, if m=N(k) and Ee[O0,1].

In fact, suppose the contrary. Then there are k;, m(1)<m(2)<.--— o0 and {£,}
such that A1, (Aum&nX + Ammy) (X)€W, and ¢&,€[0, 1] for all n. Since
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x, ye E{V,}) and &,€[0, 1], we see that {£,x+ y} is {V¥}-bounded and hence
{V¥}-q.b. by Lemma 1.10(a). Thus the above definition of {W,} implies that
AmlmT AmmyenX + Ammyy) (X) >0 ({ W }), which is a contradiction. Hence we see
(6.6).

By (6.6) and (A. 1) for F, there is an integer N, such that

6.7  A;rt(Asx + A () eE({W,}) if n= N, and ¢&¢€[0, 1].
Similarly, there are {N'(k)} and N, such that

6.8) ARiri(,Ex)(x) e W, if mxN'(k) and ¢&€[0, 1];
6.9) A (AEx)(x) e E(W,})  if n= N, and ¢&€[0, 1].

Let {W;} be a fs. in F such that f"(a)(x, y), f"(a)(y, x) e E{W}}) and
{W#¥} be a f.s. in F such that U, +2W,+ W, c W} for each k. Then, by (6.2-5,
7, 9) there is an integer N, such that n= N, implies

9(&; 4)eE(We}Y)  forall £e[0,1]; g°(; A) e ECWED)
forall £€(0,1).
Also by (6.4-6) and (6.8), there is {n’(k)} such that n=n'(k) and & € (0, 1) imply
9' (& A e (@ B, x) + 2W) = A(f"(@) (v, x) + W3).
Thus Theorem 3.1 and Lemma 1.7 show that
(6.10)  g(1; 4,) — g(0; 2,) € A3(f"(a) (v, x) + WE(WED)
< A2(f"(a)(y, x) + 2W}H for large n.

On the other hand, (6.3) shows that g(1; 4,)—g(0; 4,) is symmetric with re-
spect to x and y. Thus by repeating the above discussion, we see that

6.11)  g(1; 4,) — g(0; A,) e A3(f"(a) (x, y) + 2W})  for large n.
(6.10-11) show that f"(a)(y, x)—f"(a)(x, y) e4W} for all k, and hence

J(@)(y, x) = f(a)(x, y)
by (T%) as desired.

THEOREM 6.2 (cf. [7, (1.8.3)]). Let E, F and G be T¥*linear ranked spaces
and D, D, be R-open subsets of E, F, respectively. If f: D»F and g: D,—G
with f(D)c= D, are twice R-differentiable at ae D and at b=f(a)e D,, respec-
tively, then the composed mapping gof: D—G is twice R-differentiable at ae D
and

(g°f)(@)(x, y) = g"(B)(f'(a) (x), f'(@ () + g'(b)(f"(a)(x, ).
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Proor. By Theorem 2.2, gof is R-differentiable and (gof)(a+x)=g'(f(a
+x))of'(a+x) for xeD—a. Put l=f'(a), L=f"(a), l,=g'(b), Ly=g"(b) and

rX)=fa+x)—b-1Ux), r'x)©) =("a+x)-D0) - Lx,y),
s(2) = g(b + 2) — g(b) — 14(2),

si(z)(W) = (9'(b + 2) — 1)) (W) — Ly(z, w),
Rx)(») = (g=f)(a + x) — LD (y) — {L,(I(x), Iy)) + L(LLx, y))}

for xeD—a, yeE,zeD,—b and we F. Then for e>0 with exe D—a, we see
easily that

(6.12) e 'R(ex)(y) = X918 Si = Six, ¥, 8),

where
Sy = Ly(e7'r(ex), I(y)), S, = &7!s'(f(a + &x) — b) (I(y)),
S5 = li(e™'ri(ex) (»)), S4 = L,(I(e"?x), L(e'?x, y)),
Ss = Ly(I(ex), & 'r'(ex) (»)), S¢ = eLy(e7r(ex), e7'ri(ex) (¥)),

S; = Ll(e_lr(sx)9 L(Ex’ i))2
Sg = &7!s!(f(a + ex) — b) (L(ex, y) + &(™'r'(ex) ().

Now, let {V,} and {V}} be given f.s.s in E. Then by using Lemma 1.15,
we can show easily the following:

(6.13) For any 1<i<8, there is a f.s. {W{"} in G such that

Si(xm Yns Bn) - 0({ W;‘i)})

for any {V;}-q.b.s. {x,}, any {V};}-q.b.s. {y,} and any {e,} with ¢,>0, ¢,—0.
Thus if we choose a f.s. {W} with 38 W < W, for all k, then we see
by (6.12-13) that &, 'R(e,x,) ()~ 0({W,}), which shows the theorem.

References

f1] J. Dieudonné: Foundations of Modern Analysis, Academic Press, 1960.

[2] A. Frohlicher and W. Bucher: Calculus in vector spaces without norms, Lecture Notes
in Math. 30, Springer, 1966.

[3] H.H. Keller: Differential calculus in locally convex spaces, Lecture Notes in Math.
417, Springer, 1974.

[4] K. Kunugi: Sur la méthode des espaces ranges I-II, Proc. Japan Acad. 42 (1966),
318-322, 549-554.



Differential Calculus in Linear Ranked Spaces 299

[5] W. Washihara: On ranked spaces and linearity I-II, Proc. Japan Acad. 43 (1967),
584-589, 45 (1969), 238-242.

[6] M. Yamaguchi: Calculus in ranked vector spaces I-VI, Proc. Japan Acad. 44 (1968),
207-218, 307-317, 424-433.

[71 S.Yamamuro: Differential calculus in topological linear spaces, Lecture Notes in
Math. 374, Springer, 1974.

Department of Mathematics,
Faculty of Science and Technology,
Science University of Tokyo








