Lie Algebras in which Every Ascendant Subalgebra is a Subideal

Shigeaki Tôgô and Haruo MIYAMOTO (Received May 10, 1978)

Introduction

The class \mathfrak{D} of Lie algebras in which every subalgebra is a subideal and the class \mathfrak{T} of Lie algebras in which every subideal is an ideal were investigated by Stewart and Amayo ([1], [2], [3]). In connection with these, it seems interesting to know the properties of Lie algebras L satisfying each of the following conditions:

- (M) Every ascendant subalgebra of L is a subideal.
- (M') Every ascendant subalgebra of L is an ideal.

Let \mathfrak{M} and \mathfrak{M}' denote the classes consisting of all Lie algebras which satisfy the conditions (M) and (M') respectively. Then it is immediate that $\mathfrak{N} \leq \mathfrak{D} \leq \mathfrak{M}$ and $\mathfrak{U} \leq \mathfrak{V} \leq \mathfrak{T}$. In this paper we shall investigate the calsses \mathfrak{M} , \mathfrak{M}' and present several properties of Lie algebras belonging to these classes.

We shall show that $Max \le Max-asc \le \mathfrak{M}$ (Theorem 2.1). For a Lie algebra L over a field of characteristic 0 satisfying Min-asc, we shall obtain certain conditions which are equivalent to the condition (M) (Theorem 3.4). This will be applied to showing that $NL\mathfrak{F} \cap Min-asc \le \mathfrak{M}$ (Theorem 4.4). We shall finally show that every solvable \mathfrak{M}' -algebra is either abelian or the split extension of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications and conversely (Theorem 5.2).

1.

In this preliminary section, we fix the notations and terminology, and recall a few fundamental results on locally nilpotent radicals.

Let L be a Lie algebra over a field Φ . When H is a subalgebra (resp. an ideal) of L, we write $H \leq L$ (resp. $H \lhd L$). For an ordinal σ , $H \leq L$ is a σ -step ascendant subalgebra of L if there is a series $(H_{\alpha})_{\alpha \leq \sigma}$ of subalgebras of L such that

- (1) $H_0 = H, H_\sigma = L,$
- (2) $H_{\alpha} \triangleleft H_{\alpha+1}$ for any ordinal $\alpha < \sigma$,
- (3) $H_{\lambda} = \bigcup_{\alpha < \lambda} H_{\alpha}$ for any limit ordinal $\lambda \le \sigma$.

We then write $H \lhd^{\sigma} L$. When σ is finite, H is a σ -step subideal of L. H is a subideal (resp. an ascendant subalgebra) of L when $H \lhd^{n} L$ (resp. $H \lhd^{\sigma} L$) for some $n \in \mathbb{N}$ (resp. σ). We then write H si L (resp. H asc H).

The Fitting radical $\nu(L)$ of L is the sum of all nilpotent ideals of L. The Hirsch-Plotkin radical $\rho(L)$ of L is the unique maximal locally nilpotent ideal of L. Evidently $\nu(L) \leq \rho(L)$. If the basic field is of characteristic 0, the Baer radical $\beta(L)$ of L is the subalgebra generated by all nilpotent subideals of L and the Gruenberg radical $\gamma(L)$ of L is the subalgebra generated by all nilpotent ascendant subalgebras of L. Obviously $\nu(L) \leq \beta(L) \leq \gamma(L)$. $\beta(L)$ is a characteristic ideal of L, but $\gamma(L)$ is not an ideal of L generally.

The class $\mathfrak A$ consists of all abelian Lie algebras, the class $\mathfrak F$ consists of all finite-dimensional Lie algebras, and the class $\mathfrak A$ (resp. $\mathfrak E \mathfrak A$) consists of all nilpotent (resp. solvable) Lie algebras. The class $\mathfrak F$ consists of all hypercentral Lie algebras, and the class $\mathfrak F$ consists of all Lie algebras in which the relation \lhd is transitive. L $\mathfrak F$ is the class of all locally finite Lie algebras. For a class $\mathfrak F$, $\mathfrak K \mathfrak F$ (resp. $\mathfrak K \mathfrak F$) consists of all Lie algebras generated by their $\mathfrak F$ -subideals (resp. ascendant $\mathfrak F$ -subalgebras).

Max-asc (resp. Max, Max- $\triangleleft \sigma$) is the maximal condition for ascendant subalgebras (resp. subalgebras, σ -step ascendant subalgebras). Min-asc, Min and Min- $\triangleleft \sigma$ are similarly defined. Furthermore the same notations are used for the classes of Lie algebras satisfying the corresponding chain conditions.

2.

For a Lie algebra L over a field Φ and for an ordinal $\sigma \ge \omega$, we introduce the following conditions:

- (M) Every ascendant subalgebra of L is a subideal.
- (M_{σ}) Every σ -step ascendant subalgebra of L is a subideal.

We denote by \mathfrak{M} and \mathfrak{M}_{σ} the classes of Lie algebras satisfying the conditions (M) and (M_{σ}) respectively. Then for any ordinals $\rho \ge \sigma \ge \omega$, we have

$$\mathfrak{D} \leq \mathfrak{M} \leq \mathfrak{M}_{\rho} \leq \mathfrak{M}_{\sigma} \leq \mathfrak{M}_{\omega}.$$

First we show the following

Theorem 2.1. (1) Max- $\neg \sigma \leq \mathfrak{M}_{\sigma}$ for any $\sigma \geq \omega$.

(2) $Max \leq Max-asc \leq \mathfrak{M}$.

PROOF. (1) Assume that $L \notin \mathfrak{M}_{\sigma}$. Then there is a subalgebra H of L such that $H \lhd^{\sigma} L$ but H is not a subideal of L. Let $(H_{\alpha})_{\alpha \leq \sigma}$ be an ascending series for H in L. Since $\sigma \geq \omega$, we may assume that

$$H = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_n \supseteq H_{n+1} \supseteq \cdots$$

It is obvious that $H_n
ightharpoonup ^{\sigma} L$ for each n. Therefore $L \notin \text{Max-}
ightharpoonup ^{\sigma}$.

(2) Assume that $L \in \text{Max-asc}$. Suppose that H asc L. Then $H \lhd^{\sigma} L$ for some ordinal σ . Since $\text{Max-asc} \leq \text{Max-} \lhd^{\sigma}$, we have $L \in \text{Max-} \lhd^{\sigma}$. If $\sigma \geq \omega$, $L \in \mathfrak{M}_{\sigma}$ by the statement (1). It follows that H si L. Therefore $L \in \mathfrak{M}$.

LEMMA 2.2. Let L be a hypercentral Lie algebra over Φ of central height $\leq \sigma$. If $H \leq L$, then $H \triangleleft^{\sigma} L$.

PROOF. Let $(\zeta_{\alpha}(L))_{\alpha \leq \sigma}$ be the transfinite upper central series of L such that $\zeta_{\sigma}(L) = L$. If $H \leq L$, put $H_{\alpha} = H + \zeta_{\alpha}(L)$ for any $\alpha \leq \sigma$. Then the series $(H_{\alpha})_{\alpha \leq \sigma}$ is an ascending series for H in L. Hence $H \triangleleft^{\sigma} L$.

As a consequence of the lemma we have the following

Proposition 2.3. $3 \cap \mathfrak{M} = 3 \cap \mathfrak{D}$.

PROOF. Let $L \in \mathfrak{J} \cap \mathfrak{M}$. Assume that $H \leq L$. Since $L \in \mathfrak{J}$, by Lemma 2.2 H asc L. Since $L \in \mathfrak{M}$, it follows that H si L. Hence $L \in \mathfrak{D}$. Thus $\mathfrak{J} \cap \mathfrak{M} \leq \mathfrak{D}$ and therefore $\mathfrak{J} \cap \mathfrak{M} = \mathfrak{J} \cap \mathfrak{D}$.

3.

In order to investigate the condition (M), we further consider the following conditions for a Lie algebra L over a field of characteristic 0:

- (A) For any I, H such that $I \triangleleft H$ asc L, $\beta(H/I) = \gamma(H/I)$.
- (B) For any I, H such that $I \triangleleft H$ asc L, $\gamma(H/I) \triangleleft H/I$.
- (C) For any I, H such that $I \triangleleft H$ asc L, $\gamma(H/I)$ si H/I.
- (A₀) For any $I \triangleleft L$, $\beta(L/I) = \gamma(L/I)$.

Similarly we define (B_0) and (C_0) .

Then we have the following

LEMMA 3.1. For a Lie algebra L over a field of characteristic 0,

$$(M) \longrightarrow (A) \longrightarrow (B) \longrightarrow (C)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(A_0) \longrightarrow (B_0) \longrightarrow (C_0).$$

PROOF. (M) \Rightarrow (A). Assume that L satisfies the condition (M) and $I \triangleleft H$ asc L. Suppose that K/I asc H/I and $K/I \in \mathfrak{N}$. Then K asc H. Hence K asc L. By the condition (M) for L, K si L. It follows that K si H. Hence K/I si H/I. This shows that $\gamma(H/I) \leq \beta(H/I)$ and therefore $\gamma(H/I) = \beta(H/I)$.

(A) \Rightarrow (B). This follows from the fact that $\beta(M) \triangleleft M$ for any Lie algebra M

over a field of characteristic 0.

The other implications are now evident.

Let us study the converse of some of the above implications under a certain assumption. To this end, we need the following

Lemma 3.2. Let L be a Lie algebra over a field Φ . If $L \in \text{Min-} < 2$, then $\rho(L) \in \mathfrak{F} \cap \mathfrak{R}$.

PROOF. It is shown in [2, Lemma 8.1.3] that $\rho(L) \in \mathfrak{F}$. Hence $\rho(L) \in \mathfrak{F} \cap L\mathfrak{N} = \mathfrak{F} \cap \mathfrak{N}$.

THEOREM 3.3. Let L be a Lie algebra over a field of characteristic 0.

- (1) If $L \in \text{Min} \neg \neg \omega$ and satisfies the condition (C_0) , then $L \in \mathfrak{M}_{\omega}$.
- (2) If $L \in \text{Min-} (\sigma \geq \omega)$ and satisfies the condition (C), then $L \in \mathfrak{M}_{\sigma}$.

PROOF. (1) Assume that $L \in \text{Min} \neg \triangleleft^{\omega}$ and satisfies the condition (C_0) . Suppose that $H \multimap L$. Then $H^k \multimap H$ for any $k \in \mathbb{N}$. Hence $H^k \multimap L$. Since $L \in \text{Min} \neg \triangleleft^{\omega}$, there is an $m \in \mathbb{N}$ such that $H^m = H^{m+1} = \cdots$. Therefore $H^{\omega} = \bigcap_{k=1}^{\infty} H^k = H^m$. On the other hand, it is obvious that $H^{\omega} \multimap L$. Hence $H/H^{\omega} \multimap L/H^{\omega}$ and $H/H^{\omega} \in \mathbb{N}$. It follows that $H/H^{\omega} \le \gamma(L/H^{\omega})$. By the condition (C_0) for L, $\gamma(L/H^{\omega})$ is L/H^{ω} . Since $L/H^{\omega} \in \text{Min} \neg \triangleleft^{\omega}$, $\gamma(L/H^{\omega}) \in L\mathfrak{N} \cap \text{Min} \neg \triangleleft^2$. By Lemma 3.2, it follows that $\gamma(L/H^{\omega}) \in \mathfrak{F} \cap \mathfrak{N}$. If we write $\gamma(L/H^{\omega}) = I/H^{\omega}$, then we have $I^n \le H^{\omega}$ for some n. Hence $I^n \le H \le I$. Since $I/I^n \in \mathfrak{N} \le \mathfrak{D}$, H/I^n si I/I^n . Therefore H si I. Since I si L, H si L. Thus $L \in \mathfrak{M}_{\omega}$.

By using Theorem 3.3, we now show the following

THEOREM 3.4. Let L be a Lie algebra over a field of characteristic 0. If $L \in Min$ -asc,

$$(M) \Longleftrightarrow (A) \Longleftrightarrow (B) \Longleftrightarrow (C)$$
.

PROOF. Assume that $L \in \text{Min-asc}$ and satisfies the condition (C). Suppose that H asc L. Then $H \lhd^{\sigma} L$ for some ordinal σ . Since Min-asc $\leq \text{Min-} \lhd^{\sigma}$, $L \in \text{Min-} \lhd^{\sigma}$. If $\sigma \geq \omega$, $L \in \mathbb{M}_{\sigma}$ by Theorem 3.3. Hence H si L. Therefore

L satisfies the condition (M). The statement now follows from Lemma 3.1.

4.

In this section by using Theorem 3.4 we shall show that certain subclasses of Min- \triangleleft^{ω} are contained in \mathfrak{M} and \mathfrak{M}_{ω} .

LEMMA 4.1. Let L be a Lie algebra over a field of characteristic 0. If $L \in \operatorname{NL}_{\mathcal{F}}$, then $\gamma(L) \triangleleft L$.

This is [2, Corollary 6.3.5] and can be shown by using the fact that $\gamma(L)$ is invariant under every locally finite derivation of L and by observing that $\mathrm{ad}_L x$ is a locally finite derivation of L for any element x of an ascendant L%-subalgebra of L.

Lemma 4.2. Let L be a Lie algebra over a field of characteristic 0. If $L \in ML\Re \cap Min-\lhd^2$, then

$$v(L) = \beta(L) = \gamma(L) = \rho(L) \in \mathfrak{F} \cap \mathfrak{N}.$$

PROOF. By Lemma 4.1 y(L) is a locally nilpotent ideal of L. Hence

$$\nu(L) \leq \beta(L) \leq \gamma(L) \leq \rho(L)$$
.

But by Lemma 3.2 $\rho(L) \in \mathfrak{F} \cap \mathfrak{N}$. Therefore we have $\rho(L) \leq \nu(L)$.

LEMMA 4.3. Let L be a Lie algebra over a field of characteristic 0.

- (1) If $L \in \dot{N}L_{\infty}^{\infty} \cap Min 2$, then L satisfies the condition (A_0) .
- (2) If $L \in NL\mathfrak{F} \cap Min$ -asc, then L satisfies the condition (A).

PROOF. (1) Assume that $L \in \text{\'nL}\mathfrak{F} \cap \text{Min-} \lhd^2$. If $I \lhd L$, then $L/I \in \text{Q\'nL}\mathfrak{F}$ = $\text{\'nL}\mathfrak{F}$. Evidently $L/I \in \text{Min-} \lhd^2$. Therefore by Lemma 4.2 we have $\beta(L/I) = \gamma(L/I)$.

(2) Assume that $L \in \mathbb{NL}\mathfrak{F} \cap \mathbb{M}$ in asc and that $I \lhd H$ asc L. From the fact that $L\mathfrak{F}$ is locally coalescent, it follows that $\mathbb{NL}\mathfrak{F}$ is s-closed. Hence $H \in \mathbb{NL}\mathfrak{F} \leq \mathbb{NL}\mathfrak{F}$ and therefore $H/I \in \mathbb{NL}\mathfrak{F}$. It is immediate that $H \in \mathbb{M}$ in $-\mathbb{I}$ and therefore $H/I \in \mathbb{M}$ in $-\mathbb{I}$. Hence by Lemma 4.2 we have $\beta(H/I) = \gamma(H/I)$.

We are now in a position to show the following

THEOREM 4.4. For fields of characteristic 0,

- (1) $\text{NL}\mathfrak{F} \cap \text{Min-} \triangleleft^{\omega} \leq \mathfrak{M}_{\omega}$.
- (2) NL $\Re \cap \text{Min-asc} \leq \Re M$.

PROOF. (1) Assume that $L \in \dot{N} \cup \dot{N} \cap \dot{M} = -\omega$. Then by Lemma 4.3 L

satisfies the condition (A_0) . It follows from Lemma 3.1 that L satisfies the condition (C_0) . Hence by Theorem 3.3 we see that $L \in \mathfrak{M}_m$.

(2) Assume that $L \in \mathbb{NL} \mathfrak{F} \cap M$ in-asc. Then by Lemma 4.3 L satisfies the condition (A). Theorem 3.4 now tells us that L satisfies the condition (M), that is, $L \in \mathfrak{M}$.

5.

In this section, we introduce the following conditions for a Lie algebra L which are stronger than the conditions (M) and (M_{σ}) ($\sigma \ge \omega$):

- (M') Every ascendant subalgebra of L is an ideal.
- (M'_{σ}) Every σ -step ascendant subalgebra of L is an ideal.

We denote by \mathfrak{M}' and \mathfrak{M}'_{σ} the classes of Lie algebras satisfying the condition (M') and (M'_{σ}) respectively. Then for any ordinals $\rho \geq \sigma \geq \omega$, we have

$$\mathfrak{A} \leq \mathfrak{M}' \leq \mathfrak{M}'_{\sigma} \leq \mathfrak{M}'_{\sigma} \leq \mathfrak{A}'_{\omega} \leq \mathfrak{T}.$$

Moreover we have

$$\mathfrak{T} \cap \mathfrak{D} = \mathfrak{A}, \quad \mathfrak{T} \cap \mathfrak{M} = \mathfrak{M}', \quad \mathfrak{T} \cap \mathfrak{M}_{\sigma} = \mathfrak{M}'_{\sigma} \qquad (\sigma \geq \omega).$$

In fact, let $L \in \mathfrak{T} \cap \mathfrak{D}$. Then every subalgebra of L is an ideal. For any $x, y \in L$, $\langle x \rangle \prec L$ and $\langle y \rangle \prec L$. If x and y are linearly independent, then $[x, y] \in \langle x \rangle \cap \langle y \rangle = (0)$. If x and y are linearly dependent, then obviously [x, y] = 0. Therefore $L \in \mathfrak{A}$. Thus we have $\mathfrak{T} \cap \mathfrak{D} = \mathfrak{A}$. The other formulas are evident.

It can be shown as in Lemma 3.1 that every \mathfrak{M}' -algebra L over a field of characteristic 0 satisfies the condition:

(A') For any I, H such that $I \triangleleft H$ asc L, $\nu(H/I) = \gamma(H/I)$.

We shall determine the structure of Lie algebras belonging to some special subclasses of \mathfrak{M}' .

Proposition 5.1. $3 \cap \mathfrak{M}' = \mathfrak{A}$.

PROOF. Let $L \in \mathfrak{J} \cap \mathfrak{M}'$. Then by using Lemma 2.2 we see that every subalgebra of L is an ideal. It follows that L is abelian. Therefore $\mathfrak{J} \cap \mathfrak{M}' \leq \mathfrak{A}$.

Theorem 5.2. Every $\mathfrak{BA} \cap \mathfrak{M}'$ -algebra is either abelian or the split extension of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications, and conversely. Furthermore

$$\mathbf{E}\mathfrak{A} \cap \mathfrak{M}' = \mathbf{E}\mathfrak{A} \cap \mathfrak{M}'_{\sigma} = \mathbf{E}\mathfrak{A} \cap \mathfrak{T}.$$

PROOF. (1) Assume that $L \in \mathbb{P} \mathfrak{A} \cap \mathfrak{T}$. It is stated without proof in

[2, p.167] that L is then either abelian, or the split extension of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications. We shall give the outline of its proof. Let L be not abelian. Then there is an integer k>0 such that $L^{(k)} \neq (0)$ and $L^{(k+1)} = (0)$. For any $x \in L^{(k)}$, < x > si L and therefore $< x > \lhd L$. It follows that $\mathrm{ad}_{L^{(k)}} Z = \alpha 1_{L^{(k)}}$ for any $z \in L$, where $\mathrm{ad}_{L^{(k)}} Z$ is the restriction of $\mathrm{ad}_L z$ to $L^{(k)}$. If $\mathrm{ad}_{L^{(k)}} L = 0$, for every $u \in L^{(k-1)} < u > \text{si } L$ and therefore $< u > \lhd L$. It follows that $L^{(k)} = (0)$, which contradicts the choice of k. So dim $\mathrm{ad}_{L^{(k)}} L = 1$ and

$$L = \text{Ker ad}_{L^{(k)}} + \langle z_0 \rangle, \quad \text{ad}_{L^{(k)}} z_0 = 1_{L^{(k)}}.$$

We assert that k=1. In fact, if not, for every $u \in L^{(k-1)} < u > \text{si } L$ since $L^{(k-1)} \le L^{(1)} \le K$ er $\text{ad}_{L^{(k)}}$. Hence $< u > \lhd L$ and therefore $L^{(k)} = (0)$, contradicting the choice of k. We next assert that $\text{Ker ad}_{L^{(1)}} = L^{(1)}$. In fact, if not, take a subspace U of $\text{Ker ad}_{L^{(1)}}$ complementary to $L^{(1)}$. For any $u \in U$, < u > si L, whence $< u > \lhd L$. It follows that U is contained in the center of L. Take an element $y \ne 0$ in $L^{(1)}$ and a subspace V of $L^{(1)}$ complementary to < y > L. Put H = V + < y + u > W with $0 \ne u \in U$. Then H si L but H is not an ideal of L. This contradicts the assumption that $L \in \mathfrak{T}$. Thus we conclude that $L = L^{(1)} + < z_0 > L$.

(2) We shall show that $\mathbb{E}\mathfrak{A} \cap \mathfrak{T} \leq \mathfrak{M}'$. Let $L \in \mathbb{E}\mathfrak{A} \cap \mathfrak{T}$. If L is abelian, then $L \in \mathfrak{M}'$. So assume that L is the split extension

$$L = A + \langle z \rangle$$
 with $A \in \mathfrak{A}$ and $z = 1_A$.

Suppose that H asc L and $H \neq L$. Then there is an ascending series $(H_{\alpha})_{\alpha \leq \sigma}$ for H in L. Let ρ be the first ordinal such that $z \in H_{\rho}$. Then ρ is not a limit ordinal. If $\rho < \sigma$, then $H_{\rho} \lhd H_{\rho+1}$. For any element $x = a + \beta z \in H_{\rho+1}(a \in A)$, $a = [x, z] \in H_{\rho}$ and therefore $x \in H_{\rho}$. Hence $H_{\rho} = H_{\rho+1}$. Thus $H_{\rho} = H_{\sigma} = L$ and we may assume that $\rho = \sigma$. Since $\sigma \geq 1$, $H_{\sigma-1} \lhd L$. If $x = a + \beta z \in H_{\sigma-1}(a \in A, \beta \neq 0)$, then $a = [x, z] \in H_{\sigma-1}$ and therefore $z \in H_{\sigma-1}$, which contradicts the choice of ρ . Therefore $H_{\sigma-1} \leq A$. It follows that $H \leq A$ and therefore $H \lhd L$. Thus $L \in \mathfrak{M}'$.

6.

In this section, we shall show by examples that some of the classes of Lie algebras observed in the preceding sections are really distinct.

EXAMPLE 1. We illustrate that $\mathfrak{M}_{\omega+1} \lneq \mathfrak{M}_{\omega}$. Let A be an abelian Lie algebra with basis e_0, e_1, \ldots , let y be the derivation of A defined by $e_0 \mapsto 0$ and $e_i \mapsto e_{i-1} (i=1, 2, \ldots)$, and let $z=1_A$. Let L=A+< y, z> be a split extension. Then we show that $L \in \mathfrak{M}_{\omega} \backslash \mathfrak{M}_{\omega+1}$.

If $H \triangleleft^{\omega} L$, take an ascending series $(H_{\alpha})_{\alpha \leq \omega}$ for H in L. There is an $n \in \mathbb{N}$

such that $y, z \in H_n$. It is then easy to show that $H_n = H_{n+1}$. Hence $H_n = L$ and therefore $H < ^n L$. Thus $L \in \mathfrak{M}_{\omega}$.

Put $K = \langle y \rangle$. If we set

$$K_0 = K, \quad K_i = \langle e_0, e_1, ..., e_{i-1}, y \rangle$$
 $(i = 1, 2, ...),$ $K_{\omega} = A + \langle y \rangle$ and $K_{\omega+1} = L,$

then $(K_{\alpha})_{\alpha \leq \omega+1}$ is an ascending series for K in L. Hence $K \triangleleft^{\omega+1} L$. If $K \triangleleft^n L$, then $e_0 = [e_n, p] \in K$, which is a contradiction. Therefore K is not a subideal of L. Thus $L \notin \mathfrak{M}_{\omega+1}$.

EXAMPLE 2. Let L=A+< z> with the notations in Example 1. Then in Theorem 5.2 it has been shown that L belongs to $\mathfrak T$ and $\mathfrak M'$. Therefore $L\in \mathfrak M$. Since the idealizer of < z> in L is < z> itself, < z> is not a subideal. Hence $L\notin \mathfrak D$. Thus $\mathfrak T \leq \mathfrak D$, $\mathfrak M' \leq \mathfrak D$ and $\mathfrak D \leq \mathfrak M$.

EXAMPLE 3. Let $L = \langle e_0, e_1 \rangle + \langle y \rangle$ with the notations in Example 1. Since L is nilpotent, $L \in \mathfrak{D}$. However $L \notin \mathfrak{T}$, for $\langle y \rangle \lhd^2 L$ but $\langle y \rangle$ is not an ideal. Therefore $\mathfrak{D} \nleq \mathfrak{T}$. Consequently $\mathfrak{D} \nleq \mathfrak{M}'$, $\mathfrak{M} \nleq \mathfrak{T}$, $\mathfrak{M}' \nleq \mathfrak{M}$ and $\mathfrak{M}'_{\sigma} \nleq \mathfrak{M}_{\sigma}$.

References

- [1] R. K. Amayo: Lie algebras in which every finitely generated subalgebra is a subideal, Tôhoku Math. J. 26 (1974), 1-9.
- [2] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leydon, 1974.
- [3] I. Stewart: Lie Algebras, Lecture Notes in Mathematics 127, Springer, Berlin, 1970.

Department of Mathematics,
Faculty of Science,
Hiroshima University
and
Department of Mathematics,
Faculty of Engineering,
Tokushima University