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Introduction

The class D of Lie algebras in which every subalgebra is a subideal and the
class T of Lie algebras in which every subideal is an ideal were investigated by
Stewart and Amayo ([1], [2], [3]). In connection with these, it seems inter-
esting to know the properties of Lie algebras L satisfying each of the following
conditions:

(M) Every ascendant subalgebra of L is a subideal.

(M’) Every ascendant subalgebra of L is an ideal.

Let 9 and M’ denote the classes consisting of all Lie algebras which satisfy the
conditions (M) and (M’) respectively. Then it is immediate that 1 <D <M and
A<IM'<T. In this paper we shall investigate the calsses M, PV and present
several properties of Lie algebras belonging to these classes.

We shall show that Max < Max-asc<9 (Theorem 2.1). For a Lie algebra
L over a field of characteristic O satisfying Min-asc, we shall obtain certain con-
ditions which are equivalent to the condition (M) (Theorem 3.4). This will be
applied to showing that NLE N Min-asc <9 (Theorem 4.4). We shall finally
show that every solvable Mt'-algebra is either abelian or the split extension of
an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications
and conversely (Theorem 5.2).

1.

In this preliminary section, we fix the notations and terminology, and recall
a few fundamental results on locally nilpotent radicals.

Let L be a Lie algebra over a field . When H is a subalgebra (resp. an
ideal) of L, we write H<L (resp. H<L). For an ordinal g, HLL is a o-step
ascendant subalgebra of L if there is a series (H,),<, of subalgebras of L such
that

(1) Hy=H,H,=L,

(2) H,<H,,, for any ordinal a<a,

(3) H,=\UH, for any limit ordinal 1< g.
a<i
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We then write H<t? L. When o is finite, H is a o-step subideal of L. H is a
subideal (resp. an ascendant subalgebra) of L when H<" L (resp. H<a° L) for
some ne N (resp. 6). We then write H si L (resp. H asc L).

The Fitting radical v(L) of L is the sum of all nilpotent ideals of L. The
Hirsch-Plotkin radical p(L) of L is the unique maximal locally nilpotent ideal of
L. Evidently v(L)<p(L). If the basic field is of characteristic 0, the Baer
radical B(L) of L is the subalgebra generated by all nilpotent subideals of L and
the Gruenberg radical y(L) of L is the subalgebra generated by all nilpotent
ascendant subalgebras of L. Obviously v(L)<B(L)<y(L). B(L) is a char-
acteristic ideal of L, but (L) is not an ideal of L generally.

The class U consists of all abelian Lie algebras, the class & consists of all
finite-dimensional Lie algebras, and the class M (resp. W) consists of all nilpotent
(resp. solvable) Lie algebras. The class 3 consists of all hypercentral Lie alge-
bras, and the class I consists of all Lie algebras in which the relation < is
transitive. L is the class of all locally finite Lie algebras. For a class X, NX
(resp. XX) consists of all Lie algebras generated by their X-subideals (resp. as-
cendant X-subalgebras).

Max-asc (resp. Max, Max-<1®) is the maximal condition for ascendant
subalgebras (resp. subalgebras, o-step ascendant subalgebras). Min-asc, Min
and Min-<1? are similarly defined. Furthermore the same notations are used
for the classes of Lie algebras satisfying the corresponding chain conditions.

2.

For a Lie algebra L over a field @ and for an ordinal 0> w, we introduce the
following conditions:

(M) Every ascendant subalgebra of L is a subideal.

(M,) Every o-step ascendant subalgebra of L is a subideal.
We denote by It and M, the classes of Lie algebras satisfying the conditions (M)
and (M,) respectively. Then for any ordinals p >0 >, we have

DSM<M, <M, <M,
First we show the following

THEOREM 2.1. (1) Max-<t°<M, for any c>o.
(2) Max < Max-asc < .

Proor. (1) Assume that L&Mt,. Then there is a subalgebra H of L
such that H<1° L but H is not a subideal of L. Let (H,),<, be an ascending
series for H in L. Since 0> w, we may assume that

H=H,2H 2 - 2HIH, 3 .
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It is obvious that H, <a® L for each n. Therefore L& Max-<a°.

(2) Assume that L eMax-asc. Suppose that H asc L. Then H<°L for
some ordinal ¢. Since Max-asc<Max-<1?, we have LeMax-<’. If o>,
L e M, by the statement (1). It follows that H si L. Therefore L e IN.

LEMMA 2.2. Let L be a hypercentral Lie algebra over ® of central height
<o6. IfHLL, then H<° L.

Proof. Let ({,(L)).<, be the transfinite upper central series of L such
that {,(L)=L. If H<L, put H,=H+{,(L) for any a<o. Then the series
(H,),<, is an ascending series for H in L. Hence H<a L.

As a consequence of the lemma we have the following
ProrosiTION 2.3. 3nM=3n7D.

Proor. Let Le3nMM. Assume that H<L. Since Le 3, by Lemma 2.2
H asc L. Since Le M, it follows that H si L. Hence Le®. Thus 3nM<D
and therefore 3N M=3 nD.

3.

In order to investigate the condition (M), we further consider the following
conditions for a Lie algebra L over a field of characteristic 0:

(A) For any I, H such that I<<H asc L, f(H/I)=y(H/I).

(B) For any I, H such that I<<H asc L, y(H/I)<H/I.

(C) For any I, H such that I<H asc L, y(H/I) si H/I.

(Ay) Forany I<L, B(L/I)=y(L/I).
Similarly we define (B,) and (C,).

Then we have the following

LeMMA 3.1. For a Lie algebra L over a field of characteristic 0,

(M) = (A) > (B) > (C)

! ! l

(Ay) == (By) = (C,).

ProoF. (M)=>(A). Assume that L satisfies the condition (M) and I<H
asc L. Suppose that K/I asc H/I and K/Ie9t. Then K asc H. Hence K asc L.
By the condition (M) for L, K si L. It follows that K si H. Hence K/I si H/I.
This shows that y(H/I)<B(H/I) and therefore y(H/I)=B(H/I).

(A)=(B). This follows from the fact that f(M)<a M for any Lie algebra M
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over a field of characteristic 0.
The other implications are now evident.

Let us study the converse of some of the above implications under a certain
assumption. To this end, we need the following

LeEMMA 3.2. Let L be a Lie algebra over a field . If LeMin-<2, then
pL)eFnR.

Proor. It is shown in [2, Lemma 8.1.3] that p(L)e . Hence p(L)
eFNLR=FnN.

THEOREM 3.3. Let L be a Lie algebra over a field of characteristic 0.
(1) If L eMin-<a® and satisfies the condition (C,), then Le M,,.
(2) If LeMin-<1° (6> w) and satisfies the condition (C), then Le M,

ProofF. (1) Assume that LeMin-<t® and satisfies the condition (C,).
Suppose that H<t® L. Then H*¥<tH for any keN. Hence H*<1®L. Since

L e Min-<a?, there is an m € N such that H"=Hm*1=..., Therefore H®= ;% Hk

=H™ On the other hand, it is obvious that H*<t L. Hence H/H“’<1°’k1_,/1H°’
and H/H®?e . It follows that H/H® <y(L/H®). By the condition (C,) for L,
y(L/H®) si L/H®. Since L/H® e Min-<®, y(L/H®) e LN N Min-<t2. By Lemma
3.2, it follows that y(L/H®)e FnN. If we write y(L/H®)=I/H?®, then we have
I"<He? for some n. Hence I"<H<I. SinceI/I"eN<D, H[I"siI[I". There-
fore HsiI. SinceIsiL, HsiL Thus LeMt,.

(2) Assume that L e Min-<1® and satisfies the condition (C). Suppose that
L&M,. Then there is a subalgebra H of L such that H<®L but H is not a
subideal of L. Let (H,),<, be an ascending series for H in L. Since oc>w,
we may assume that H is not a subideal of H,. Then we assert that H, € Min-<1®
and satisfies (Cp). In fact, if K, >K,> --- and K,<x® H, for any neN, then
K,<a°L. Since LeMin-<1?, there is an meN such that K,=K, ;= "--.
If I<H,, then I<H, ascL. Since L satisfies (C), y(H,/I) si H,/I. Thus we can
apply the statement (1) for H, to see that H si H,, which is a contradiction.

By using Theorem 3.3, we now show the following

THEOREM 3.4. Let L be a Lie algebra over a field of characteristic 0.
If L € Min-asc,

M= A) = B) = (0).

Proor. Assume that L € Min-asc and satisfies the condition (C). Suppose
that H asc L. Then H<i®L for some ordinal ¢. Since Min-asc<Min-<a?,
LeMin-<?. If 6>w, LeM, by Theorem 3.3. Hence H si L. Therefore
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L satisfies the condition (M). The statement now follows from Lemma 3.1.

4.

In this section by using Theorem 3.4 we shall show that certain subclasses of
Min-<a® are contained in M and IM,,.

LeMMA 4.1. Let L be a Lie algebra over a field of characteristic 0. If
L eNL, then y(L)< L.

This is [2, Corollary 6.3.5] and can be shown by using the fact that (L) is
invariant under every locally finite derivation of L and by observing that ad,x is
a locally finite derivation of L for any element x of an ascendant L§-subalgebra
of L.

LeEmMMA 4.2. Let L be a Lie algebra over a field of characteristic 0. If
L eNLE N Min-<a?, then

V(L) = B(L) = (L) = p(L)e FNN.
Proor. By Lemma 4.1 y(L) is a locally nilpotent ideal of L. Hence

W(L) < B(L) < (L) < p(L).
But by Lemma 3.2 p(L)e § n . Therefore we have p(L) < w(L).

LemMA 4.3. Let L be a Lie algebra over a field of characteristic 0.
(1) If LeXLF nMin-<a?, then L satisfies the condition (A,).
(2) If LeNLE n Min-asc, then L satisfies the condition (A).

ProoF. (1) Assume that LeNLF N Min-<a?. If I<L, then L/l eQNL{
=NLE. Evidently L/I € Min-<12. Therefore by Lemma 4.2 we have B(L/I)
=y(L/I).

(2) Assume that LeNLF n Min-asc and that [ « Hasc L. From the fact
that L is locally coalescent, it follows that NL{ is s-closed. Hence H e NLE <
NLE and therefore H/I eNLE. It is immediate that H € Min-<a2? and therefore
H|I e Min-<a2. Hence by Lemma 4.2 we have S(H/I)=y(H/I).

We are now in a position to show the following

THEOREM 4.4. For fields of characteristic 0,
(1) N nMin-<® <M,
(2) NLE N Min-asc <M,

Proor. (1) Assume that LeNLF N Min-<®. Then by Lemma 4.3 L
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satisfies the condition (A,). It follows from Lemma 3.1 that L satisfies the
condition (C,). Hence by Theorem 3.3 we see that Le IR,

(2) Assume that LeNLE N Min-asc. Then by Lemma 4.3 L satisfies the
condition (A). Theorem 3.4 now tells us that L satisfies the condition (M),
that is, L e IN.

S.

In this section, we introduce the following conditions for a Lie algebra L
which are stronger than the conditions (M) and (M,) (6 >w):

(M’') Every ascendant subalgebra of L is an ideal.

(M) Every o-step ascendant subalgebra of L is an ideal.
We denote by I’ and M., the classes of Lie algebras satisfying the condition
(M’) and (M) respectively. Then for any ordinals p >o¢ >w, we have

AP <M, <M, <M, <T.
Moreover we have
TND=AU T AM=DW, T nM, =M\, (6 > w). .

In fact, let Le T ND. Then every subalgebra of L is an ideal. For any x, ye L,
<x><aLand <y><L. If x and y are linearly independent, then [x, y]e <x>
n<y>=(0). If x and y are linearly dependent, then obviously [x, y]=0.
Therefore LeA. Thus we have TN D=AU. The other formulas are evident.

It can be shown as in Lemma 3.1 that every Pt'-algebra L over a field of
characteristic 0 satisfies the condition:
(A") For any I, H such that I<H asc L, v(H/I)=y(H/I).

We shall determine the structure of Lie algebras belonging to some special
subclasses of M.

ProposITION 5.1. 3 nI'=U.

ProoF. Let Le 3nWV. Then by using Lemma 2.2 we see that every sub-
algebra of L is an ideal. It follows that L is abelian. Therefore 3 n W' <A.

THEOREM 5.2. Every U nMWM'-algebra is either abelian or the split ex-
tension of an abelian Lie algebra by the 1-dimensional algebra of scalar
multiplications, and conversely. Furthermore

EAUNWM =AnM, =AnI.

PrRoOOF. (1) Assume that LepAn<IT. It is stated without proof in
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[2, p.167] that L is then either abelian, or the split extension of an abelian Lie
algebra by the 1-dimensional algebra of scalar multiplications. We shall give
the outline of its proof. Let L be not abelian. Then there is an integer k>0
such that L®*)#(0) and L&**D=(0). For any xe L®, <x> si L and therefore
<x><aL. It follows that ad az=al « for any ze L, where ad;u,z is the
restriction of ad,z to L®. If ad;uyL=0, for every ue L&~ <u> si L and
therefore <u><L. It follows that L*) = (0), which contradicts the choice of k.
So dimad;u,L=1 and

L =XKerad; s + <z¢>, adpmwzo = 1.

We assert that k=1. In fact, if not, for every u e L*~1) <u> si L since L*~1
<LMW<Kerad, o). Hence <u><L and therefore L*)=(0), contradicting the
choice of k. We next assert that Kerad,w=L®. In fact, if not, take a
subspace U of Kerad,u, complementary to L), For any ueU, <u> si L,
whence <u><L. It follows that U is contained in the center of L. Take
an element y#0 in LM and a subspace V of L)) complementary to <y>.
Put H=V+ <y+u> with 0#ueU. Then H si L but H is not an ideal of L.
This contradicts the assumption that Le¥. Thus we conclude that L=L®
+<zo>.

(2) We shall show that BEANT<W'. Let LeeANZIT. If L is abelian,
then LeI’. So assume that L is the split extension

L=A+ <z> with AeWAandz=1,.

Suppose that H asc L and H# L. Then there is an ascending series (H,),<, for
Hin L. Let p be the first ordinal such that ze H,. Then p is not a limit ordinal.
If p<o, then H,<H,,,. For any element x=a+pzeH,, (a€ A), a=[x, z]
€ H, and therefore xe H,. Hence H,=H,,,. Thus H,=H,=L and we may
assume that p=¢. Since ¢>1, H,_,<L. If x=a+pzeH,_,(ae A, B#0),
then a=[x, z]e H,_, and therefore z € H,_,, which contradicts the choice of p.
Therefore H,_, <A. It follows that H<A and therefore H<L. Thus LeW'.

6.

In this section, we shall show by examples that some of the classes of Lie
algebras observed in the preceding sections are really distinct.

ExampLE 1. We illustrate that 9M,,; SM,. Let 4 be an abelian Lie
algebra with basis e, ey,..., let y be the derivation of A defined by e, —0 and
e e_((i=1,2,...), and let z=1,. Let L=A4+ <y, z> be a split extension.
Then we show that Le MM, \M,, , ;.

If H<® L, take an ascending series (H,),<, for H in L. There is an neN
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such that y, ze H,. It is then easy to show that H,=H,,,. Hence H,=L and
therefore H<s"L. Thus LeIN,.
Put K=<y>. If we set

KO = K, K,' = <€p, €15..., €1, V> (l = ], 2,...),
K,=4+ <y> and K,,1=1L,

then (K,),<e+1 18 an ascending series for K in L. Hence K<“*!L. If K<"L,
then e,=[e,, ,y] € K, which is a contradiction. Therefore K is not a subideal
of L. Thus L&, ., ;.

ExaMPLE 2. Let L=A+ <z> with the notations in Example 1. Then in
Theorem 5.2 it has been shown that L belongs to T and M’'. Therefore L e M.
Since the idealizer of <z> in L is <z> itself, <z> is not a subideal. Hence
Lg®D. ThusTED, M £D and DS

ExAMPLE 3. Let L=<ey, ¢, >+ <y> with the notations in Example 1.
Since L is nilpotent, Le ®. However L& T, for <y><1?2L but <y> is not an
ideal. Therefore D£ZI. Consequently DEM', ME T, M' =M and M, SNM,.
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