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Introduction

The class Φ of Lie algebras in which every subalgebra is a subideal and the

class X of Lie algebras in which every subideal is an ideal were investigated by

Stewart and Amayo ([1], [2], [3]). In connection with these, it seems inter-

esting to know the properties of Lie algebras L satisfying each of the following

conditions:

( M ) Every ascendant subalgebra of L is a subideal.

(M') Every ascendant subalgebra of L is an ideal.

LetSDt and W denote the classes consisting of all Lie algebras which satisfy the

conditions (M) and (M') respectively. Then it is immediate that 9l<T)<501 and

31<9M'<;2. • In this paper we shall investigate the calsses 501, SOZ' and present

several properties of Lie algebras belonging to these classes.

We shall show that Max<Max-asc<9Jl (Theorem 2.1). For a Lie algebra

L over a field of characteristic 0 satisfying Min-asc, we shall obtain certain con-

ditions which are equivalent to the condition (M) (Theorem 3.4). This will be

applied to showing that NLg Π Min-asc <OT (Theorem 4.4). We shall finally

show that every solvable 9}Γ-algebra is either abelian or the split extension of

an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications

and conversely (Theorem 5.2).

1.

In this preliminary section, we fix the notations and terminology, and recall

a few fundamental results on locally nilpotent radicals.

Let L be a Lie algebra over a field Φ. When H is a subalgebra (resp. an

ideal) of L, we write H<L (resp. #<iL) . For an ordinal σ, H<L is a σ-step

ascendant subalgebra of L if there is a series (#α)α<;σ of subalgebras of L such

that

(2) Ha<3Ha+! for any ordinal α < σ ,

(3) Hλ= \jHa for any limit ordinal λ<σ.
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We then write if<iσL. When σ is finite, H is a σ-step subideal of L. H is a
subideal (resp. an ascendant subalgebra) of L when H<3nL (resp. H<\σL) for
some n e N (resp. σ). We then write H si L (resp. if asc L).

The Fitting radical v(L) of L is the sum of all nilpotent ideals of L. The
Hirsch-Plotkin radical p(L) of L is the unique maximal locally nilpotent ideal of
L. Evidently v(L)<p(L). If the basic field is of characteristic 0, the Baer
radical β(L) of L is the subalgebra generated by all nilpotent subideals of L and
the Gruenberg radical γ(L) of L is the subalgebra generated by all nilpotent
ascendant subalgebras of L. Obviously v(L)<β(L)<γ(L). β(L) is a char-
acteristic ideal of L, but y(L) is not an ideal of L generally.

The class 21 consists of all abelian Lie algebras, the class % consists of all
finite-dimensional Lie algebras, and the class 91 (resp. E9I) consists of all nilpotent
(resp. solvable) Lie algebras. The class 3 consists of all hypercentral Lie alge-
bras, and the class X consists of all Lie algebras in which the relation <a is
transitive, L<$ί is the class of all locally finite Lie algebras. For a class 3E, N3E
(resp. N Ϊ ) consists of all Lie algebras generated by their ϊ-subideals (resp. as-
cendant X-subalgebras).

Max-asc (resp. Max, Max-<jσ) is the maximal condition for ascendant
subalgebras (resp. subalgebras, σ-step ascendant subalgebras). Min-asc, Min
and Min-<iσ are similarly defined. Furthermore the same notations are used
for the classes of Lie algebras satisfying the corresponding chain conditions.

For a Lie algebra L over a field Φ and for an ordinal σ>ω, we introduce the
following conditions:

( M ) Every ascendant subalgebra of L is a subideal.
(Mσ) Every σ-step ascendant subalgebra of L is a subideal.

We denote by SOI and 9Jtff the classes of Lie algebras satisfying the conditions (M)
and (Mff) respectively. Then for any ordinals pi>σ>ω, we have

D < 9M ̂  m p < art, ̂  anω.

First we show the following

THEOREM 2.1. (1) Max-<i<r^9Kff for any σ>ω.
(2) Max < Max-asc <, 9JΪ.

PROOF. (1) Assume that L^SOTσ. Then there is a subalgebra H of L
such that H<zσ L but H is not a subideal of L. Let (Ha\^σ be an ascending
series for H in L. Since σ>ω, we may assume that
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It is obvious that Hn <aσ L for each n. Therefore L<£Max-<iσ.
(2) Assume that LeMax-asc. Suppose that H asc L. Then H^\σ L for

some ordinal σ. Since Max-asc<Max-<iσ, we have LeMax-< f f. If σ>ω,
L e Wiσ by the statement (1). It follows that H si L. Therefore L e 5DΪ.

LEMMA 2.2. Let L be a hypercentral Lie algebra over Φ of central height
<σ. IfH^L^thenH^L.

PROOF. Let (ζΛ(L))a^σ be the transfinite upper central series of L such
that ζσ(L) = L. If H<L9 put Ha=H+ζa(L) for any α<σ. Then the series
(Ha)a<zσ is an ascending series for H in L. Hence H^σ L.

As a consequence of the lemma we have the following

PROPOSITION 2.3. 3 n 9M=3 n £>.

PROOF. Let Le3 Π9M. Assume that H<L. Since Le3> by Lemma 2.2
H asc L. Since Le9JI, it follows that H si L. Hence L e t ) . Thus 3 Π9JI<D
and therefore 3 Π 9W=3 Π D.

3.

In order to investigate the condition (M), we further consider the following
conditions for a Lie algebra L over a field of characteristic 0:

(A ) For any /, H such that / < H asc L, β(H/I) = y{Hjί).
(B) For any /, H such that I^H asc L, γ(H/I)<ιHIL
( C ) For any /, H such that 7<iH asc L, y(#/J) si #//.
(Ao) For any I^L, β(L/I) = y(L//).

Similarly we define (Bo) and (Co).
Then we have the following

LEMMA 3.1. For a Lie algebra L over afield of characteristic 0*

(M) —>( A) —MB) —> (C)

I t 1
(Ao) — > (Bo) — » (Co) .

PROOF. (M)=>(A). Assume that L satisfies the condition (M) and I<aH
asc L. Suppose that K/I asc iί// and X/J e 91. Then K asc H. Hence X asc L.
By the condition (M) for L, X si L. It follows that K si if. Hence K/I si ff//.
This shows that γ(H/I)<β(HII) and therefore y(H//) = j8(iί//).

(A)=>(B). This follows from the fact that β(M)<aM for any Lie algebra M
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over a field of characteristic 0.

The other implications are now evident.

Let us study the converse of some of the above implications under a certain

assumption. To this end, we need the following

LEMMA 3.2. Let L be a Lie algebra over a field Φ. If LeMin-<ι 2 , then

p(L) e 5 ni l .

PROOF. It is shown in [2, Lemma 8.1.3] that p(L)e%. Hence p(L)

THEOREM 3.3. Let L be a Lie algebra over afield of characteristic 0.

(1) If Le Min-<aω and satisfies the condition (Co), then L e 50lω.

(2) //LeMin-o* (σ>ω) and satisfies the condition (C), then Leϊΰlσ.

PROOF. (1) Assume that LeMin-<] ω and satisfies the condition (Co).

Suppose that H < i ω L . Then Hk<\H for any fceN. Hence if f c<iωL. Since

L G Min-<iω, there is an m e N such that Hm = Hm+1 = ~ . Therefore Hω= Γ\Hk

= # m . On the other hand, it is obvious that # ω < α L . Hence ///Hω<aωfeL/Hω

and H/Hωe9l. It follows that HjHω<y(LIHω). By the condition (Co) for L,

γ(L/Hω) si L/Hω. Since LjHω e Min-<αω, y(L/Hω) e L91 n Min-<i2. By Lemma

3.2, it follows that y(LjHω) e g n 91. If we write y(LIHω)=IIHω

9 then we have

jn < # ω f o r s o m e n Hence In<H<L Since J/J» e 91 < t ) , fί//* si I/In. There-

fore H si /. Since / si L, if si L. Thus L e S0lω.

(2) Assume that L6Min-<i<τ and satisfies the condition (C). Suppose that

L<£$ϊϊσ. Then there is a subalgebra H of L such that H^σL but i ί is not a

subideal of L. Let (Ha)a^σ be an ascending series for # in L. Since σ > ω ,

we may assume that H is not a subideal of # ω . Then we assert that Hω e Min-<iω

and satisfies (Co). In fact, if Kί>K2> ••• and Kn<2ωHω for any n e N , then

Kn<zσL. Since LeMin-<i σ , there is an m e N such that Km — Km+ ί=- .

If J<3Hω, then l<zHω ascL. Since L satisfies (C), y(#ω/J) si ifω/7. Thus we can

apply the statement (1) for Hω to see that H si Hω9 which is a contradiction.

By using Theorem 3.3, we now show the following

THEOREM 3.4. Let L be a Lie algebra over a field of characteristic 0.

If Le Min-asc,

PROOF. Assume that L e Min-asc and satisfies the condition (C). Suppose

that H asc L. Then H<α<τL for some ordinal σ. Since Min-asc<Min«<iσ,

*-. If σ > ω , Le9)t σ by Theorem 3.3. Hence H si L. Therefore
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L satisfies the condition (M). The statement now follows from Lemma 3.1.

4.

In this section by using Theorem 3.4 we shall show that certain subclasses of

Min-<αω are contained in $01 and SQlω.

LEMMA 4.1. Let L be a Lie algebra over a field of characteristic 0. //

L e NLg, then y(L)-«α L.

This is [2, Corollary 6.3.5] and can be shown by using the fact that γ(L) is

invariant under every locally finite derivation of L and by observing that adLx is

a locally finite derivation of L for any element x of an ascendant Ljξί-subalgebra

ofL.

LEMMA 4.2. Let L be a Lie algebra over a field of characteristic 0. //

NL(5 Π Min-<i 2 , then

PROOF. By Lemma 4.1 y(L) is a locally nilpotent ideal of L. Hence

v(L)<β(L)<γ(L)<p(L).

But by Lemma 3.2 ρ(L)e% n 91. Therefore we have ρ(L) < v(L).

LEMMA 4.3. Let L be a Lie algebra over a field of characteristic 0.

(1) If Le NLg Π Min-<ι2, then L satisfies the condition (Ao).

(2) If Le N L 5 Π Min-asc, then L satisfies the condition (A).

PROOF. (1) Assume that L E N L ^ Π Min-<ι2. If J<ιL, then L//eQNLg

= NLg. Evidently L//eMin-<i2. Therefore by Lemma 4.2 we have β(L/I)

(2) Assume that L e N L J ί! Min-asc and that / o H asc L. From the fact

that Lg is locally coalescent, it follows that NLJ5 is s-closed. Hence H G N L 5 <

N L $ and therefore H/I e NLg. It is immediate that H eMin-<i2 and therefore

H/I e Mίn-<32. Hence by Lemma 4.2 we have β(H/I) = y(H/I).

We are now in a position to show the following

THEOREM 4.4. For fields of characteristic 0,

(1) rtL5nMin-<aω<9)iω.

(2) N L $ Π Min-asc < SK,

PROOF. (1) Assume that LeNL^n Min-<jω. Then by Lemma 4.3 L
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satisfies the condition (Ao). It follows from Lemma 3.1 that L satisfies the

condition (Co). Hence by Theorem 3.3 we see that Le9Dtω.

(2) Assume that L e NL^Γ Π Min-asc. Then by Lemma 4.3 L satisfies the

condition (A). Theorem 3.4 now tells us that L satisfies the condition (M),

that is,

5.

In this section, we introduce the following conditions for a Lie algebra L

which are stronger than the conditions (M) and (Mσ) (σ>ω):

(M') Every ascendant subalgebra of L is an ideal.

(M^) Every σ-step ascendant subalgebra of L is an ideal.

We denote by W and Wσ the classes of Lie algebras satisfying the condition

(M') and (M^) respectively. Then for any ordinals p>σ>ω, we have

91 < W <ς Wp < Wσ < Wω < 2.

Moreover we have

x n © = 9i, x n s» = w9 z n $nσ = wσ (σ > ω).

In fact, let L e ϊ Π T>. Then every subalgebra of L is an ideal. For any x, y 6 L,

< x > < L and <y><αL. If x and >> are linearly independent, then [x, ̂ ] 6 < x >

Π < y > = ( 0 ) . If x and y are linearly dependent, then obviously [x, y ] = 0 .

Therefore L e 91. Thus we have X n I) = 91. The other formulas are evident.

It can be shown as in Lemma 3.1 that every SDΓ-algebra L over a field of

characteristic 0 satisfies the condition:

(A') For any /, H such that I^H asc L, v(H/I) = y(H/I).

We shall determine the structure of Lie algebras belonging to some special

subclasses of W.

PROPOSITION 5.1. 3 n W = 91.

PROOF. Let L e 3 Π S0ί'. Then by using Lemma 2.2 we see that every sub-

algebra of L is an ideal. It follows that L is abelian. Therefore 3 n9K'<9I.

THEOREM 5.2. Every EMOW-algebra is either abelian or the split ex-

tension of an abelian Lie algebra by the 1-dimensional algebra of scalar

multiplications, and conversely. Furthermore

E9I n w = E9T n wσ = E9I n x.

PROOF. (1) Assume that L e E9I n X. It is stated without proof in
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[2, p. 167] that L is then either abelian, or the split extension of an abelian Lie

algebra by the 1-dimensional algebra of scalar multiplications. We shall give

the outline of its proof. Let L be not abelian. Then there is an integer k>0

such that L<*>#(0) and L<*+1>=(0). For any xeL<*>, < x > si L and therefore

<x>^L. It follows that adL<k)Z = αlL(k) for any zeL9 where adL(k>z is the

restriction of adLz to L(k\ If adL(fc)L = 0, for every ueL**"1) <u> si L and

therefore <u><aL. It follows that L(Λ) = (0), which contradicts the choice of k.

So dimadL(k)L=l and

L = KeradL(k> 4- < z o > , adL(k)Z0 =

We assert that fc = l. In fact, if not, for every UEL^"^ <U> si L since L ( k - 1 )

<[L(1)^KeradL(k). Hence <ux\L and therefore L ( f c )=(0), contradicting the

choice of fc. We next assert that KeradLd)=L ( 1 ). In fact, if not, take a

subspace U of KeradL(n complementary to L(1 ). For any ueU9 <u> si L,

whence < u > o L . It follows that U is contained in the center of L. Take

an element y # 0 in L ( 1 ) and a subspace F of L ( 1 ) complementary to < y > .

Put H=V+ <y + u> with O^ue 17. Then H si L but J/ is not an ideal of L.

This contradicts the assumption that L e ϊ . Thus we conclude that L=L(ί)

+ < z o > .

(2) We shall show that E S I Π Ϊ ^ Ϊ Π ' . Let LeESInΣ. If L is abelian,

then L e 501'. So assume that L is the split extension

L = A + <z> with /leSI and z = 1Λ.

Suppose that H asc L and HΦL. Then there is an ascending series (Ha)a^σ for

fί in L. Let p be the first ordinal such that z e Hp. Then p is not a limit ordinal.

If p<σ, then HP^HP+1. For any element x = a + βzeHp+ί(aeA), α = [x, z]

eif p and therefore xeHp. Hence Hp = Hp+1. Thus Hp=Hσ=L and we may

assume that p = σ. Since σ>l, Hσ^1^iL. If x = a + βzeHσ^ί(aeA, βΦ0\
then α = [x, z] eHσ_1 and therefore zeHσ_l9 which contradicts the choice of p.

Therefore # , _ ! < ; ! . It follows that i ί < ^ and therefore #<ιL. Thus LeSDΐ'.

6.

In this section, we shall show by examples that some of the classes of Lie

algebras observed in the preceding sections are really distinct.

EXAMPLE 1. We illustrate that 9Jlω+1^SDίlω. Let A be an abelian Lie

algebra with basis eθ9 ei9...9 let y be the derivation of A defined by eo*-+0 and

ei^ei.ί(i = l9 2,...), and let z = li4. Let L=A+ <y9 z> be a split extension.

Then we show that L e 9Mω\9Jlω+ v

If if<αωL, take an ascending series (Hα)α^ω for H in L. There is an n e N
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such that y, zeHn. It is then easy to show that Hn = Hn+ί. Hence Hn = L and
therefore H<in L. Thus L e 90ΐω.

?utK=<y>. If we set

Ko = K, Kt= <e0, el9...9 ei_u y> (i = 1, 2,...),

Kω = A+<y> and Kω+1 = L,

then (Ka)a^ω+ί is an ascending series for K in L. Hence X<iω + 1L. If X<inL,
then e0 = [ew, n<y] 6 X, which is a contradiction. Therefore X is not a subideal
ofL.

EXAMPLE 2. Let L = A+ <z> with the notations in Example 1. Then in
Theorem 5.2 it has been shown that L belongs to % and W. Therefore Le9Jί.
Since the idealizer of < z > in L is <z> itself, < z > is not a subideal. Hence

, 5DΓ$I>and

EXAMPLE3. Let L= <e0, eγ> 4- <>^> with the notations in Example 1.
Since L is nilpotent, LeD. However Lφ.%, for < ] / > < 2 L but <y> is not an
ideal. Therefore D$3:. Consequently £>$9Jl', 9Jl$^, TO^^Dί and Wσ<mσ.
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