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In a previous paper [7] we gave an answer to some questions on "Isomor-

phism Theorems" of formal groups over a field raised by J. Dieudonne in his

book [1]. We treated there the case of infinitesimal formal groups which cor-
responds to the colocal case in terms of Hopf algebras. Precisely we showed that
"Isomorphism Theorems" of colocal Hopf algebras over a field, analogous to

those in classical group theory, can be given.

The first aim of this paper is to generalize the results in [7] to any case. In

other words we shall show that the above mentioned questions by J. Dieudonne
can be solved completely for any formal groups over a field. Our method for

proofs is very similar to that in [7], and in particular the main theorem in [3]

by K. Newman, which means essentially "First Isomorphism Theorem" of

cocommutative Hopf algebras, plays an important role. As applications of "Iso-
morphism Theorems" we shall give some basic properties of cocommutative

Hopf algebras which are analogous to those in classical group theory. In § 2

we shall obtain results on commutative diagrams and direct products of cocom-

mutative Hopf algebras. In particular "Five Lemma" will be given. In §3

we show that the smash product of cocommutative Hopf algebras defined in [2]
or in [4] coincides with the semi-direct product of them in the sense of [1]. More-

over certain properties of split exact sequences of Hopf algebras are shown. In

the last section nilpotent and solvable Hopf algebras are studied. Although almost
all results in § 4 can be obtained from those in § 1 by imitating classical group

theory, we shall give detailed proofs because of unfamiliarity of our theory.

Our terminology and notations follow those in the book [6].

§ 1. Isomorphism Theorems

First we show the following

LEMMA 1. Let (C, A, ε) be a coalgebra over a field k and let e be a group-

like element of C. If x is an element of C+ = kerε, then we have

Δ(x) -x®e-e

PROOF. Since A(e) = e®e, we have ε(e) = l and hence
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(ε ® lc) (A(x) - x ® e - e ® x) = 1 ® x - 1 ® x = 0.

This means that

Λ(x) - x ® e - e ® x e Ker (ε <g) lc) = C+ ® C.

Similarly we see

Since C = C+ΘA;<?, we have (C+®C) n (C®C+) = C+®C+. Therefore we have
our assertion. q.e.d.

PROPOSITION 1. Let (C, A, ε) and (C', zΓ, ε') be cocommutative coalgebras
over k, and let p be a coalgebra homomorphism of C to C. Assume that C has
a grouplike element e and let D' be a subcoalgebra of C' containing p(e). If
we put D = {xeC|(p®lc)Λ(x)-p(e)®xeD'+®C} where Df+ = D' n kerε, D is
a subcoalgebra of C. Moreover a subcoalgebra E of C is contained in D if and
only if p(E) is contained in D'.

PROOF. The first assertion and the fact that p(D)aD' are shown in a similar
way to the proof of Prop. 4.8 in [6], and so we omit the detail. Now let E be a
subcoalgebra of C such that p(E)aDf. Since ρ(e) e D', we may assume, replacing
E with E + ke if necessary, that E contains e. Then by Lemma 1 we see

Δ(x)-x®e- e®xeE+®E+ for x e E n kerε = E+.

Since p(E+) c D' n ker ε' = D'+ from ε'p(£+) = ε(E+) = 0, we see

(p ® ic)A (x) - p(e) ® x e Df+ ® E c D'+ ® C.

This means £+ c D and hence E = ke®E+aD. q. e. d.

We call D in Proposition 1 the h-inverse of D' by p and denote it by

h-p~ *(!)')• It is ςlear that £ is independent of the choice of a grouplike element
e satisfying ρ(e) e D'. Now if B is a bigebra over /c, £ has a natural left ^-module
structure defined by the multiplication of B. Then we have the following

COROLLARY 1. Let B be a cocommutative Hopf algebra over afield k and
let C' be a cocommutative coalgebra over k with a left B-module structure. If
p is a coalgebra homomorphism of B to C' such that p is also a left B-module
homomorphism, then the h-inverse of kp(l) by p is a subbigebra of B.

This is a generalization of Corollary to Proposition of § 1 in [7], and the
same proof is available. Therefore we omit it.

COROLLARY 2. Let B and B' be cocommutative bigebras (resp. Hopf
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algebras) over a field /c, and let p be a bigebra homomorphism of B to B'. If
D' is a subbίgebra (resp. Hopf subalgebra) of B', then the h-inverse D of D' by
p is a subbigebra (resp. Hopf subalgebra) of B.

PROOF. Since 1 is a grouplike element of B and p(l) = 1 is contained in D',
there exists the /ι-in verse D of D' by p. To see that D is a subbigebra of B, it is
sufficient by Prop. 1 to show that D is a subalgebra of B. If x and y are in D,
then we have

(p ® lB)A(x) = 1 ® x + X! with xί e D'+ ® B and

(p ® lB)A(y) = 1 ® y + y ! with y1 e Df+ ® B,

where J is the comultiplication of J5. Since A and p are algebra homomorphisms,
we see

(p ® \B)A(xy) = (p® lB)A(x)(p ®

= (1 ®x + x1)(l®J' + >Ί)

= 1 . ® xy + (1 ® x)yi + x t(l ® y) -f

and hence

(p ® lB)A(xy) - 1 ® xy e D'+ ® B.

This means that xy is contained in D, so D is a subalgebra of B. Lastly we see
c(D)c:D for Hopf algebra cases in the same way as the proof of Prop. 4.8 if c
is the antipode of B. Therefore D is a Hopf subalgebra of B. q. e. d.

The following two lemmas are generalizations of Lemmas 1 and 2 in [7]
for non-colocal cases and their proofs are exactly the same ones.

LEMMA 2. Let B and B' be cocommutative Hopf algebras over a field k,
and let p be a Hopf algebra homomorphism of B to B'. Then the h-inverse D
of a normal Hopf subalgebra D' of B' by p is normal in B.

LEMMA 3. Let B, B' and p be as above, and assume that p is surjective.
Then if D is a normal Hopf subalgebra of B, so is ρ(D) in B'.

Now we have obtained preliminary results in the above to prove "Iso-
morphism Theorems" of not necessarily colocal cocommutative Hopf algebras
over a field k. The following results are generalizations for non-colocal cocom-
mutative Hopf algebras of the ones for colocal cases which were shown in §2
of the paper [7]. The previous proofs given in [7] of "Isomorphism Theorems"
for colocal cases are also available for general cocommutative cases without any
change, if we use the above obtained results instead of the ones of § 1 in [7].
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Therefore we shall state only the results without proofs.
Let B be a cocommutative Hopf algebra over a field k and let D be a Hopf

subalgebra of B. If B+ is the kernel of the counit ε of B, we put D+ = D n B+.
Then it is easy to see that the left ideal BD+ of B generated by D+ is a coideal of
B. Therefore the quotient space B/BD+ is a coalgebra over k with a natural left
B-module structure and the canonical map π of B to B/BD+ is a coalgebra and
left J5-module homomorphism. Then the following theorem was given by K.
Newman in his paper [3].

THEOREM 1. Let B, D and π be as above. Then D is the h-kernel of π.
Conversely let p be a surjective coalgebra and left B-module homomorphism
of B to a coalgebra C with a left B-module structure, and let E be the h-kernel
of p. Then the kernel of p is BE+ and C is isomorphic to B/BE+ as coalgebras
and left B-modules.

In particular if D is a normal Hopf subalgebra of B, we know that BD+ is
equal to D+B and hence that BD+ is a Hopf ideal (cf. Lemma 14.8 in [6]). There-
fore the quotient space B/BD+ is a Hopf algebra over k which is called the Hopf
quotient algebra of B by D and will be denoted by B/D. If ρD is the canonical
map of B to B/D = B/BD+, pD is a Hopf algebra homomorphism. Then Theorem
1 gives the following corollary which would correspond to "First isomorphism
theorem" in group theory.

COROLLARY. Let B9 D, B/D and pD be as above. Then the h-kernel of the
Hopf algebra homomorphism pD is D. If p is a surjective Hopf algebra homo-
morphism of B to a Hopf algebra B' over k, then the h-kernel E of p is a normal
Hopf subalgebra of B and B' is isomorphic to BIE = B/BE+ as Hopf algebras.

THEOREM 2. Let B and B' be cocommutative Hopf algebras over a field
k, and let p be a surjective Hopf algebra homomorphism of B to B'. If C is the
h-inverse of a Hopf subalgebra C of B' by p, B/BC+ is isomorphic to B'/B'Cf+

as coalgebras and left B-modules, where the left B-module structure of B'/B'C'+

is the one obtained naturally from its left B'-module structure through p.

As a direct consequence of this theorem we have the following Hopf algebra
version of "Second isomorphism theorem" in group theory.

COROLLARY 1. Let B, B' and p be as above. If C is a normal Hopf
subalgebra of B'9 so is the h-inverse C of C' by p in B. Moreover the quotient
Hopf algebras B/C and B'jC are isomorphic to each other.

COROLLARY 2. Let B, B' and p be as above, and let D be the h-kernel of
p. Then there is a bijective correspondence between Hopf subalgebras C' of



Group Theoretic Properties of Cocommutative Hopf Algebras 183

B' and Hopf sub algebras C ofB containing D such that C (resp. C) corresponds

to h-p~l(C') (resp. p(CJ). Moreover the Hopf quotient algebra C/D is iso-

morphic to C' = p(C).

REMARK. If a Hopf subalgebra C of B corresponds to C of B' in the above

corollary, C is normal in B if and only if C' is normal in B' by Lemmas 2 and 3.

The following theorem could be called "Third isomorphism theorem".

THEOREM 3. Let B be a cocommutatίve Hopf algebra over a field k, and
let J(C, D) and /(C, D) be the join and the intersection of Hopf subalgebras C

and D of B, respectively. Then if D is normal in B, /(C, D) and D are normal in

C and J(C, D), respectively, and the Hopf quotient algebras J(C, D)/D and
C//(C, D) are isomorphic to each other.

§ 2. Commutative diagrams and direct products

In this section we show certain results on commutative diagrams of cocom-

mutative Hopf algebras whose corresponding ones in group theory are well known

and useful. Furthermore we give some elementary properties of tensor product
Hopf algebras of cocommutative Hopf algebras.

In the following we assume that a map of a Hopf algebra over a field k to

another one is always a Hopf algebra homomorphism if otherwise specified.

A sequence

... _ . D fi-ί^ D / i , D _ ...
- > ΰi-ι - » *>i - > &i+ι - >

of cocommutative Hopf algebras over a field k is called exact, if the /ι-kernel of
f ι is equal to the image of fi-1 for each i. From the definition of /i-kernels it is

easy to see that a Hopf algebra homomorphism f of B to B' is injective (resp.

surjective) if and only if

k -U B^-+B' (resp. B -2L> β' -ϊ-> k)

is exact, where i and ε' are the identity of B and the coidentity of B', respectively.

PROPOSITION 2. Assume that the commutative diagram of cocommutative

Hopf algebras over afield k

B _H->C -JUZ)

B' u' > C v' > D'

has both rows exact. Then we have the following s:
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(i ) Ifu',b and d are injective, so is c.
(ii) If υ, b and d are surjective, so is c.
(iiϊ) If c is injective b and v surjective, d is injective.
(iv) If c is surjective d and u' injective, b is surjective.

PROOF, (i) If we put £ = /ι-kerc, then c(E) = k. So we see k = v'c(e)
= dv(E). This means v(E) = k by injectivity of d. Since w(J3) = /ι-ker υ contains
E, there is a Hopf subalgebra E' of B such that u(E') = E by Cor. 2 to Th. 2.
Then we have u'b(E') = cu(E') = c(E) = k and hence E' = k by injectivity of u' and
b. Therefore we see E = u(E') = k and hence c is injective.
(ii) If we put £' = c(C), then we have v'(E') = v'c(C) = dv(C) = D' by surjectivity
of v and d, and hence C' = h-υ'-*(D') = J(E'9 u'(B')) by Cor. 2 to Th. 2 and
exactness of the lower row of the diagram. On the other hand we see u'(β')
= u'b(B) = cu(B)c2c(C) = E'. This means that c is surjective.
(iii) Let E be the /t-kernel of d. Then there is a Hopf subalgebra E' of C such
that v(E') = E by Cor. 2 to Th. 2 and surjectivity of v. Since we have k = d(E)
= dv(E') = v'c(E'), c(E') is contained in /ι-kert/. Therefore there is a Hopf
subalgebra E" of B such that u'b(E") = c(E') by Cor. 2 to Th. 2, exactness of the
lower row of the diagram and surjectivity of b. Then since c(E')~u'b(E")

= CM(£"), we have E' = u(E") by Cor. 2 to Th. 2 and injectivity of c. Therefore
we see E=v(E') = vu(E") = k by exactness of the upper row of the diagram. This
means that d is injective.
(iv) Since c is surjective, there is a Hopf subalgebra £ of C such that u'(B') = c(E)
by Cor. 2 to Th. 2. Then we have dv(E) = v'c(E) = v'u'(B') = k by exactness of
the lower row of the diagram, and hence v(E) = k by injectivity of d. This means
that E is contained in h-kεrv = u(B). Therefore there is a Hopf subalgebra
E' of B such that u(E') = E by Cor. 2 to Th. 2. Then we have u'b(E') = cu(E')
= c(E) = w'(£') and hence b(E') = B' by injectivity of w'. This means that b is
surjective. q. e. d.

PROPOSITION 3. Assume that the commutative diagram of cocommutative
Hopf algebras over afield k

A —H_> B —ίU C -̂> D -*U E

i *1 i i i
A' -Hi* £; _£L+ C -^ D' -̂ -> £;

has both rows exact. Then we have the followings:
(i) If a is surjectίve b and d injective, then c is injective.
(ii) If e is injective b and d surjective, then c is surjective.

PROOF, (i) If we put X = /t-kerc, then we see dw(X) = w'e(X) — k and
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hence w(X) = k by injectivity of d. Therefore there is a Hopf subalgebra Y of B
such that v(Y) = X by Cor. 2 to Th. 2 and exactness of the upper row of the
diagram. Since we have υ'b(Y) = cv(Y) = c(X) = k, there is a Hopf subalgebra Z
of A such that u'a(Z) = b(Y) by Cor. 2 to Th. 2, exactness of the lower row and
surjectivity of a. Then we see bu(Z) = u'a(Z) = b(Y) and hence u(Z)=Y by
injectivity of b. Therefore we have X = v(Y) = vu(Z) = k by exactness of the upper
row. This means that c is injective.
(ii) By surjectivity of d and Cor. 2 to Th. 2 there is a Hopf subalgebra X of D
such that d(X) = w'(C'). Since w'(C') =/ί-ker x' by our assumption, we see
ex(X) = x'd(X) = x'w'(C') = k and hence jc(X) = fc by injectivity of e. Therefore
there is a Hopf subalgebra Y of C such that ^(7) = ̂  by Cor. 2 to Th. 2 and
exactness of the upper row. Then we have w'c(Y) = dw(Y) = d(X) = w'(C') and
hence J(c(Y\ v'(B'J) = C/ by Cor. 2 to Th. 2 and exactness of the lower row.
This means obviously J(c(C), ι/(£')) = C'. On the other hand we see t/(B')
= v'b(B) = cv(B) G c(C) by surjectivity of 6. Therefore we have C = J(c(C\ v'(B'))

= c(C). q.e.d.

COROLLARY (Five Lemma). In the commutative diagram of Prop. 3 assume
further that b and d are isomorphic, that a is surjective and that e is injective.
Then c is isomorphic.

Though the following results on tensor product Hopf algebras are already
known (cf. Chap. I, §3, no. 12, 14, 19 in [1]), we give proofs for convenience'
sake.

PROPOSITION 4. Let B and C be cocommutative Hopf algebras over a field
k. Then the tensor product Hopf algebra B®C of B and C is the direct product
of them in the category of cocommutative Hopf algebras over k.

PROOF. Let E be B®C, and let pB and pc be the canonical Hopf algebra
projections of E to B and C respectively. Then it is sufficient to show that if F
is a cocommutative Hopf algebra over k and if / and g are Hopf algebra homo-
morphisms of F to B and C respectively, then there is a unique Hopf algebra
homomorphism h of F to E satisfying f=pBh and g = ρch. If A is the comulti-
plication of F, then A is a Hopf algebra homomorphism by cocommutativity of
F and so h = (f®g)Δ is a Hopf algebra homomorphism of F to E. Now put

Δ(x)= Σχ(i)®χ(2) f°Γ x in F Then we have

(x)
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where εB and εF are the coidentities of B and F, respectively. This means pBh =/.

Similarly we see pch=g. Next we show the uniqueness of h. Let jβ and jc

be the Hopf algebra homomorphisms of B and C to E respectively such that

jB(x) = x<8)l for x in B and j(£y)=l®y for y in C. Then we can see easily that

™E(JBPB®JcPc)ΛE = 1E9

where mE and AE are the multiplication and the comultiplication of E respectively.
Let h' be a Hopf algebra homomorphism of F to E satisfying pBh' —f and pch' = g.
Then we have

= mE(jB ®jc)(pB ® pc)0' ® Λ')^

This means obviously /! = /?'. q.e.d.

COROLLARY. Lei B and C be as in Prop. 4, and let D be a Hopf subalgebra
of B®C. If B' and C are the images of D by the canonical Hopf algebra
projections pB and pc of B®C to B and C respectively, then D is contained in
B'®C', where B'®C' is considered naturally as a Hopf subalgebra of B®C.

PROOF. Let qB and qc be the restrictions of pB and ρc to E respectively,
and jB and jc be the canonical injections of B' and C' to B and C respectively.
If pB> and pc. are the canonical Hopf algebra projections of B'®C to B' and
C respectively, then there is a unique Hopf algebra homomorphism h of D

to B'®C' satisfying qB = pB'h and qc = pC'h by Prop. 4. If jD is the canonical

injection of D to J5(x)C, then we have pBJD==JBclB==JBPB'h and PcJD—Jc^c^JcPc'h-
On the other hand if jB><$c' is tne canonical injection of B'®C to B®C, then we

see ρBJB'®c'=JBPB> and ρcJB®c'=JcPc" Therefore we have ρBJD=JBPB'h =
PBJB>®c'h and ρcJD=JcPc>h = PcJB>®c>h, and hence jD=JB>®c h by Prop. 4. This
means clearly that D is contained in B'®Cf. q. e. d.

THEOREM 4. Let B be a cocommutative Hopf algebra over a field k, and let
C and D be Hopf subalgebras of B. Then the fallowings are equivalent:
( i ) B is isomorphic to C®D.

(ii) The join J(C, D) of C and D is B, the intersection /(C, D) of C and D is k,
and C commutes with D.
(iii) The join J(C, D) of C and D is B, the intersection 7(C, D) of C and D is k,
and C and D are normal in B.

PROOF. The implications (i)=>(ii) and (i)=>(iπ) are trivial. (iii)=>(ii).
Let E be any cocommutative coalgebra over k and consider Homcoα/ (E, C) and
Homcoαί(E, D) naturally as subgroups of the group Homcoα/(E, B). If / and
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g are elements of Homcoαί (E, C) and Homcoα/ (E, D) respectively, then we see

f*g*f^eHomeoal(E9 D) and g^f'^g-1 eHomcoα/(E, C) by Prop. 12.1 in [6]
and our assumption. Therefore /*#*/-1*#~"1 is contained in Homcoα/(£, C) Γ)
HomCOfl/(£, D) = Homcoal(E, /(C, D)) = Homcofl/(E, fe). This means f*g=g*f,

and C commutes with D by Prop. 13.1 in [6]. (ii)=>(i). By Th. 3 and our

assumption we see that B/D = J(D, Q/D is isomorphic to C//(C, D) = C. This

means that the sequence

k - >D-1->B-<^C ϊίB/D - > fc

is exact, where j and p are the canonical injection and surjection respectively.

Now let α be the linear map of D®C to B satisfying ot(x®y) = xy for x e C and

y e D. Since C commutes with Z), we see α is an algebra homomorphism and hence
a Hopf algebra one. Moreover we have the following commutative diagram of

cocommutative Hopf algebras

k - > D -^ C®D - » C -*£+ /c

4 i . lcl
jfc - >Z>--U 5 . -£-»C - ,/c

where jD and pc are the canonical injection and projection respectively. Since

the upper row is also exact by Prop. 1 in [5], α must be an isomorphism by Cor.
to Prop. 3. q.e. d.

§ 3. Semi-direct products and split exact sequences

First we recall the definitions of ^-module bigebras and smash products of

cocommutative Hopf algebras over a field k (cf. 2.1 and 2.13 in [2]).
Let (B, mB, iB, AB, SB) and (D, WD, z'D, ΔD, εD) be bigebras over a field /c, and

assume that a /c-linear map / of B®D to D gives a left 5-module structure of D.

Then we call D a left B-module bίgebra with respect to /, if the followings are

satisfied for any elements x in B and α, b in D :

(1) /(x ® ab) = ΣMi) ® β)/(x(2)
(*)

(2) f(x ® 1) = εfl(x)l,

(3) JD(/(x ® α)) = Σ /(x ( i)®β
(^).(β)

and

(4) βj)(/(Λ®β)) =

where Aj£x)= Σ ^(i)®^(2) and AD(a)= Σ«(i)®«(2)
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Now let B be a cocommutative bigebra over k and let D be a left B-module
bigebra with respect to /. The smash product or the semi-direct product of D
and B with respect to /, written D$fB or simply D$B9 is a bigebra over k defined
as follows :

( i ) As a vector space D$fB is D®B. Elements α(g)x will be written a$x.
(ii) The multiplication is defined by

(5) (β**)(WfjO = Σ «(/(*(!)
(*)

where AB(x)= Σx(i)®*(2) The unit is 1*1.
(*)

(iii) The comultiplication A and the coidentity ε are defined by

(6) A(a9x) = Σ (β(i)**u)) ® (β(2)#*(2>) and

(β)

(7) ε(α#x) = εD(α)εβ(x),

where Λβ(x) = Σ*<i)®*(2) and ΔD(ά)=

Then it is known and not difficult to verify that D$fB is a bigebra over fc.

Moreover if B and D are Hopf algebras with the antipodes CB and CD respectively,
then it can be shown by a routine calculation that D$fB is also a Hopf algebra over
k with antipode c defined by

(8) c(a%x) = /(cB(x(1)) ® cD(fl))#Ca(*<2)) »

where ΔB(x)— Σχ(i)®*(2) If 7o and JB are linear maps of D and £ to DttjB
(*)

defined by jD(α) = αttl and jB(x) = l%x respectively, then it is easy to see that jD

and jB are injective Hopf algebra homomorphisms. Now we have the following

LEMMA 4. Let B and D be cocommutative Hopf algebras over a field k,
and assume that D is a B-module bigebra with respect to f. If we put D' =

jD(D) and B'=jB(B), then we have the following s:
(i) J(D',B') = D$fB and I(D',B') = k.

(ϋ) ΦD*f^(l%χ)®(a%iy)=f(χ®a)$l for x in B an& a in D> where φD9fB is the
adjoint map of D$fB given in the beginning of § 12 in [6]. In particular D'
is normal in D$fB.

PROOF. It is clear that /(£>', B') = D' f]B' = k. Since we have
= α(/(l®l))*x = α#x, J(D', B') must be equal to D%fB. Next we see by (2),

(5) and (8)

(αc)
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= Σ /(*<!)
(x)

= Σ /(*(!)
(*)

where AB(x) = Σ*(i)®*<2)> (^β®lΰ)^β(x) = (lβ®^B)^βW= Σ*<i)®*(2)®*<3)>
(x) (x)

and (ΛB®ΛB)JB(x) = Σ*(i)®X(2)®*(3)®*(4) Therefore we have φD*fB(B'®D')

cD', and hence we see easily φD9fB((D%fB)®D')<=D' by Prop. 12.4 in [6] and

J(D\ B') = D$fB. In other words D' is normal in D#fB. q. e. d.

COROLLARY. Let B, D and f be as above. If pB is a k-linear map of
D$fB to B defined by pB(a%x) = εD(a)x, then the sequence

k -J£L» D -!SL> D%fB -̂  B -^ k

is an exact one of Hopf algebras.

PROOF. Since pB is the canonical projection of the tensor product coalgebra
D®B to B, pB is a surjective coalgebra homomorphism. On the other hand we

see by (4) and (5)

= Σ
(x)

This means that ρB is an algebra homomorphism and hence a Hopf algebra one.
Since D$fB/D' is isomorphic to B' ~B by Lemma 4 and Th. 3, we see easily that
our sequence is exact. q. e. d.

LEMMA 5. Let (E, m, i, A, ε, c) be a cocommutative Hopf algebra over k,
and let D and B be Hopf subalgebras of E. Assume that D Is normal in E and

let f be the restriction to B®D of the adjoint map φE of E. Then D is a left
B-module bigebra with respect to f.

PROOF. It is clear by normality of D in E that f(B®D) is contained in D.
Then we see for x, y in B and a in D

/(la ® /)(* ® y ® «) =/(*
(y)

= Σ
(χ),(y)

= Σ (xy\u<*c((xy)(2y) = /(w|MB (g) lD)(x ® y ® a) ,
(xy)

where A(x)= Σxm®x(2) etc This means that D is a left β-module. Next
(x)

we have for x in B and α, b in D
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Σ /(*<!) ® α)/0(2) ® b) = Σ
(X) (X)

(x) (x)

where Λ(x)= Σ*(i)®*(2>> (^®l£)^W = (
(x)

(J®^l)J(x)= Σ^c(i)®λ:(2)®Λ:(3)®:)C(4) Therefore / satisfies (1). Similarly we
(x)

can easily see that / satisfies (2). Moreover we have by cocommutativity of E

= Σ *(l)β(l)Φ(2)
(•*)»(«)

= Σ /(*(!) ®f l ( l
(*),(«)

and hence / satisfies (3). Similarly we see that / satisfies (4). Therefore D is a
left 5-module bigebra. q. e. d.

COROLLARY. Let E, D, B and f be as in Lemma 5. If g is a k-linear map
of DΰfB to J(D, B) defined by g(a%x) = m(a®x) = ax, then g is a surjective Hopf
algebra homomorphism of D%fB to J(D9 E). Moreover g is an isomorphism
if and ίf I(D, E) = k.

PROOF. First we see from (5)

(x)

(x)

= Σ<*X(i)be(xw)y = g(a$x)g(b$y),
(x)

where x, y in B with J(x)= Σ*(i)®*(2) and (1^®^)^^)= Σ^(i)®x(
(x) (x)

and where α, b in D. Since g(l% 1) = 1, g is a /c-algebra homomorphism. Similarly
we can see easily that g is a coalgebra homomorphism using (6) and (7). There-
fore g is a Hopf algebra homomorphism of D$fB onto J(D, B). Now assume
/(D, B) = k. Then we have the following commutative diagram of cocommutative
Hopf algebras :

A: - > D - > /(A 5) - > ̂  - > k,

where the upper row is the exact sequence given in Cor. to Lemma 4 and where
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the lower one is also an exact sequence obtained naturally from the assumption
I(D, B) = kby Th. 3. Then we see by Cor. to Prop. 3 that g is an isomorphism.
Conversely if g is an isomorphism, Hopf subalgebras D' and B' of D$fB given in
Lemma 4 correspond to D and B in J(E, B) by g, respectively. Therefore we see

/(D, B) = /c, because we have /(D', B') = k by Lemma 4. q.e.d.

Now we recall that an exact sequence

(*) fc >D-±-*E-?->B > fc

of cocommutative Hopf algebras over k is said to be split, if there is a Hopf
algebra homomorphism A of B to £ such that pλ= 1B. Then we have the follow-
ing

PROPOSITION 5. The exact sequence (*) of cocommutative Hopf algebras

over k is split if and only if there is a Hopf subalgebra C of E satisfying
J(j(D\ C) = E and I(j(D\ Q = k.

PROOF. Assume that the sequence (*) is split, and let A be a Hopf algebra
homomorphism of B to E such that ρλ = 1B. Then C = λ(B) is a Hopf subalgebra

of E. Since J(C, j(D))=> j(D) and p(J(C, j(D))) = p(C) = B, we see J(C, j(D)) = E
by Cor. 2 to Th. 2. On the other hand we see by Th. 3

C//(C, ;(/>)) * J(C, ;(/>))/j(D) = E/ΛD) * B,

and hence the /?-kernel of the restriction p|c of p to C is /(C, ./(£>)). But it is clear
that p\c is an isomorphism. Therefore /(C,./(/))) must be k.

Conversely assume that there is a Hopf subalgebra C of E satisfying J(C,

j(D)) = E and /(C, j(D)) = k. Then we see by Th. 1 and Th. 3

B ~ £/;(D) = J(C, j(D))/7(D) * C//(C, j(/>)) ^ C

and this isomorphism is given by the restriction of p to C. Therefore we may
define λ to be the inverse map of this isomorphism. q. e. d.

Summarizing the above results, we have the following

THEOREM 5. Let B, D and E be cocommutative Hopf algebras over a field
k. Then the followings are equivalent:
(i) There are Hopf subalgebras B' and D' of E isomorphic to B and D respec-
tively such that D' is normal in E and that the join and the intersection of B'
and D' are E and k respectively.
(ii) D is a left B-module bigebra with respect to f and E is isomorphic to

D$fB.
(iii) There is a split exact sequence of cocommutative Hopf algebras:
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k > D > E » B > k.

PROOF. This is a direct consequence of Prop. 5, Lemma 4 and Cor. to
Lemma 5.

REMARK, (i) The equivalence between (ii) and (iii) is given by R. K.
Molnar (cf. 3.6, (c) and 4.1 in [2]). But his proof is somewhat different from
ours, because he did not use isomorphism theorems.
(ii) J. Dieudonne gave the notion of semi-direct products of formal groups
over k in his book [1] (Chap. 1, §3, no. 15) and his definition of semi-direct
products in terms of bigebras is essentially our assertion (i) in Th. 5. Therefore
the equivalence between (i) and (ii) in Th. 5 means that the definition of semi-
direct products of cocommutative Hopf algebras given by R. K. Molnar in [2]

coincides with one by J. Dieudonne.

We shall terminate this section by giving a result on relations between semi-
direct products and /ι-kernels of homomorphisms of cocommutative Hopf algebras.
For this purpose we need the next lemma and its corollary.

LEMMA 6. The sequence

k >D_i-»£_p_>B

of cocommutative Hopf algebras over k is exact if and only if the induced se-

quence

{e} » Homcoa,(C, D)-i* Homcoβ((C, E)-** Homcoal(C, B)

of groups is exact for any cocommutative coalgebra C over k.

PROOF. The necessity can be shown in the exactly same way as in the proof
of Prop. 14.12 in [6] and so we omit the proof. Conversely we assume that the
second sequence is exact for any cocommutative coalgebra C over k. In particular
if C = /j-ker7 and / is the canonical injection of C into D, then the image of
j * ( f ) = j f is k. Therefore jf is the neutral element of the group Homcoα/(C, E)
and hence /is the neutral element of Homcoα/(C, D) by injectivity of j*. This
means C = /c, i.e., j is injective. Next if C = D and f=lD, then p*j*(F) is the
neutral element of Homcoal (C, B). Therefore y(D) is contained in /ι-kerp.

On the other hand if C = /ι-kerp and / is the canonical injection of C into E,
then p*(/) is the neutral element of Homcoal(C, B), and hence there is a coalgebra

homomorphism g of C to D such that f=j*(g)=jg. This means that C is con-
tained in j(D). Therefore we see j(D) = /z-ker p. q. e. d.

COROLLARY. // the sequence
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of cocommutative Hopf algebras over k is exact and split, then the induced
sequence

(**) {e} — Homcoβ/(C, D) -A* Homcoβ/(C, E) J±> Homcoβί(C, B) _> {e}

of groups is exact and split for any cocommutative coalgebra C over k. Con-
versely if (**) is exact and split for any cocommutative coalgebra C over k,
then (*) is exact.

PROOF. Assume that the first sequence is exact and split. Then there is a
Hopf algebra homomorphism λ of B to E such that ρλ= lβ. If C is any cocom-
mutative coalgebra over k and if / is any coalgebra homomorphism of C to B,
then we have f=ρλf=p*(λf). Therefore ρ+ is surjective. On the other hand
we see that p*h* = lHomcoal(CiBr This means by Lemma 6 that the second

sequence is exact and split. Conversely assume that the second sequence is exact

and split for any cocommutative coalgebra C over k. If C = B and /=1B, then
there is a coalgebra homomorphism g of C to E such that /=p*(0), i.e., lB—pg.
Therefore p is surjective and so the first sequence is exact. q. e. d.

LEMMA 7. Let G1 and G2 be groups, and let N and H be subgroups of
G! such that Gl is the semi-direct product of N with H. If f is a group homo-

morphism of Gί to G2 such that f(N) n f(H) = {e2}, then ker/ is the semi-direct
product of kerf \N with ker/|H.

PROOF. Since we have GoJV and ker/|N=ker/ n N, ker/|N is normal in
ker/. On the other hand we see ker/|N n ker/|H = {eJ from Nc\H={eί}.
Since any element g in ker/ is written uniquely g = nh with n in N and h in H,

we have e2 =/(0) =/(w)/(A). By the assumption that f(N) n /(H) = {e2}, we have
f(n)=f(h) = e2. This means that n and h are contained in ker/|N and ker/|H
respectively, and hence that ker/=(ker/[N)(ker/lH). Therefore ker/ is the

semi-direct product of ker/l^ with ker/|#. q. e. d.

Now let D and B be Hopf subalgebras of a cocommutative Hopf algebra E
over a field fc such that J(D9 B) = E and /(D, £) = fc. When D is normal in £,
we may say from Th. 5 that E is the semi-direct product of D with B. Then we
have the following Hopf algebra version of Lemma 7.

PROPOSITION 6. Let E^ and E2 be cocommutative Hopf algebras over a
field k. Let D and B be Hopf subalgebras of E^ such that E± is the semi-direct
product of D with B, and let f be a Hopf algebra homomorphism of E^ and E2

such that I(f(D\f(B)) = k. Then /ι-ker/ is the semi-direct product of Λ-ker/]D

with /ι-ker/|B.

PROOF. Since Eί is the semi-direct product of D with B, we have a split
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exact sequence of cocommutative Hopf algebras:

1 < JB

where jD and jB are the canonical injections of D and B into E^ respectively

and where P7B=1B. Moreover if we put K = h-kεrf, KD = h-kerf\D and KB

= A-ker/|B, then we have the following commutative diagram of cocommutative

Hopf algebras:

k lk > k l fe > k

I i I
\ jκ\ /κ |

D JD > E!* ." >

Ί JB Ί

where jx is the canonical injection of K into Eί and where three columns are

exact. If C is any cocommutative coalgebra over /c, we have the following

commutative diagram of groups from the above one :

1 I I
Homcβ.,(C, KD) - > Romcoal(C, K) - > Homcoal(C, KB)

ϊ I I
{e} - „ Homcoal (C, £>) - » Homcoβ, (C, £,) ^=± Homcoo/ (C, KB) - » {e}

1 I I
Homcoβ/ (C, JB2) - > HomCOΛ/ (C, Jg2) - > HomCOΛί (C, £2)

In this diagram three columns are exact by Lemma 6 and the third row is exact

and split by Cor. to Lemma 6. Therefore the sequence

{e} _> Homcoβ/ (C, KD) l̂ H Homcoα/ (C, X)

-ί^l^Homcoβί(C,KB)_ ,{e}

of groups is exact and split for any cocommutative coalgebra C by Lemma 7,

and so the sequence

- JDlκ - -
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of cocommutative Hopf algebras is exact by Cor. to Lemma 6. This means that
KD is normal in K. Since p(KB) = pjB(KB) = lB(KB) = KB, we see J(KD9 KB) = K
by Cor. 2 to Th. 2. On the other hand we see I(KB, KD) = k from I(D, B) = k.
Therefore K is the semi-direct product of KD with KB. q. e. d.

§ 4. Nilpotent and solvable Hopf algebras

The purpose of this section is to define nilpotent and solvable cocommutative
Hopf algebras over a field k and to get analogous results to those in classical
group theory.

Let (β, m, i, A, ε, c) be a cocommutative Hopf algebra over a field /c, and let
E and F be Hopf subalgebras of B. Then we defined in § 14 of [6] the com-
mutator [£, F] of E and F which is the smallest Hopf subalgebra of B containing

all the elements Σ ^uΛυΦtoMj'u)) where x in E with A(x)= Σ*(i)®*(2)
(*),(?) (*)

and y in F with Δ(y)= Σ-Fα)®)7^)- The next basic lemma is necessary in the
(y)

following.

LEMMA 8. Let B and B' be cocommutative Hopf algebras over a field k,
and let D be a normal Hopf subalgebra of B. Then we have the following s:
( i ) /([£, F]) = [/(£), /(F)] /or any Hop/ subalgebras E and F of B and for
any Hopf algebra homomorphism f of B to B'.
(ii) [£,D]c=/λ

(iii) The Hopf quotient algebra B/D of B by D is commutative if and only if

PROOF, (i) Let A and c be the comultiplication and the antipode of B
respectively. Since [£, F] is the subalgebra of B generated by the elements

Σ *(i).V(i)c(*(2))cO;(2)) where x and y run over E and F respectively (cf.
(*),(y)
Proof of Prop. 14.2 in [6]), it is easy to see /([£, F]) =[/(£), /(F)].

(ii) Since D is normal in B, we see that Σx^yφ^)) *s contained in D for any
(x)

elements x in B and j; in D. Therefore Σ *(i)J;(i)Φc(2))cO;(2)) is contained
(χ),(y)

in D for any x in £ and y in D. This means that [£, D] is contained in D.
(iii) Let π be the canonical Hopf algebra homomorphism of B to B/D. If £//)
is commutative, then we see from (i) that π([B, B]) = [π )̂, π(B)] = /c. Since D
is the /ι-kernel of π by Th. 1, we see that [β, β] is contained in D. Conversely
if IB, B]cD, then we see from (i) [π(£), π(5)] = π([J5, £]) c π(D) = fc. This

means by Prop. 13.1 and Prop. 14.1 in [6] that β/D = π(J3) is commutative.

q.e.d.

Now we shall consider a chain of Hopf subalgebras of a cocommutative Hopf
algebra B over a field k :



196 Hiroshi YANAOIHARA

where each Dt is normal in Di,1. We call this chain subinvariant. In particular
if each Dt is normal in B9 the sequence is called a normal chain. A cocommuta-
tive Hopf algebra B over k is said to be nilpotent if it possesses a finite normal
chain B = D0=>D1iD =)Dn = /c such that [B, D,]czDί+1 for 0<ΐ<n.

Next we shall define the lower and upper central series of a Hopf algebra.
If B is as above, then we put tf°B = B and ^ί+1B = [B, ίί'B] inductively. We
call the sequence

B = #°B:D <£1B ID <r2B =>•••=> '̂B ID

ί/te /0wer central series of B. By Prop. 14.16 in [6] we see that each '̂B is
normal in B. On the other hand put ^0B = /c and let ^B be the center of
B = B/&oB. It is clear that V0B and ^B are normal in B. Let £ be the center
of the Hopf quotient algebra B/^B and πt the canonical Hopf algebra homo-
morphism of B to B/^B. If ^2B is the Λ-in verse of E by π l 5 then ^2B is a
normal Hopf subalgebra of B by Lemma 2. Next let π2 be the canonical Hopf
algebra homomorphism of B to E\^2B and ^3B the /i-inverse of the center of
B\^2B by π2. Similarly we define πf and &i+ιB for i>3 inductively. In
other words ^ί+1β is the unique Hopf subalgebra of B containing Ήβ such that
Φi+^l&iB is the center of B/^ B. Then we have an ascending chain of normal
Hopf subalgebras of B:

which is called the upper central series of B.

PROPOSITION 7. Lei B a cocommutative Hopf algebra over a field k.
Then the fallowings are equivalent:
( i ) B is nilpotent.
(ii) There is a positive integer n such that &nB = k.
(iii) There is a positive integer n such that &nB = B.

PROOF. (i)=>(ϋ) and (iii). Let

B = DQ => D! =5 — ID Dn = k

be a normal chain of Hopf subalgebras of B such that [B, Di']^Di+l for 0<ti<n.
We show DjZD^B by induction on i. For i = 0 we see D0 = B = 9?0B. If we
assume that D î B, then we see Dί+1 :=>[£, D^[B9 &iB] = tfi+1B. This
means that k=Dn = &iB. Next we show <^iBcιDn_i by induction on i. For
i=0 we have &0B = k = Dn. Assume *f ,£=>!)„_,. Since ^i+^B/^β is the
center of B/^B, we see [B, ^^Bjci^B from Prop. 13.1 and Prop. 14.1
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in [6] and Lemma 8, (i). Similarly we see easily that if [D, B~\a^.B for a Hopf
subalgebra D of B, # f+ tB contains D by the definition of centers. Since we have
[£, Dn-i_1]c:Dn_ic:tfίB, we see Dn.i.i c^.+1J5. Therefore we have &nB = B.

The implication (ii)=>(i) is trivial. (iii)=>(i). Assume that tfnB = B. Since
<g\B is the center of B, we see [J3, ^B] = k = &QB. If Et is the center of B/tfβ,
&ί+ιB is the /ι-inverse of £f by π£: B-^B/tfiB and hence B/&i+ίB is isomorphic
to (BlVflyEi by Cor. 1 to Th. 2. Therefore we have (̂[B, ifi+1B]) = [ f̂l),
πi(Vί+1B)'] = [_B/<<fiB9 JEj] = fc by Lemma 8, (i). Since the ft-kernel of'π, is tf,B
by Cor. to Th. 1, we see [£, tfi+ ]̂ c ̂ B. Therefore B is nilpotent. q. e. d.

COROLLARY. // B is a non-trivial nilpotent cocommutative Hopf algebra
over afield k, then the center of B is also non-trivial.

PROPOSITION 8. Hopf subalgebras and Hopf quotient algebras of a
nilpotent cocommutative Hopf algebra over afield k are also nilpotent. Con-
versely let D be a normal Hopf subalgebra of a cocommutative Hopf algebra B
over k such that D is contained in the center of B. If B/D is nilpotent, then so is
B.

PROOF. Let B be a nilpotent cocommutative Hopf algebra over k. If
D is a Hopf subalgebra of B, then we see ίf'Dctf'β. Therefore we have-if "D
= k for some n >0 by Prop. 7, i.e., D is nilpotent. On the other hand assume that
D is normal in B, and let π be the canonical Hopf algebra homomorphism of B
to BfD. By Lemma 8, (i) we see easily ^(β/D) = <#*£). Therefore we see
similarly to the above that &n(BID) = k for some n>0. Therefore B/D is liil-
potent. Conversely assume that D is contained in the center of B and that B/D
is nilpotent. By Prop. 7 there is a positive integer n such that &n(B/D)=k.
By Lemma 8, (i) and Cor. to Th. 1 we see <£nB<=D. This means &n+ίBcι
[B, D~\ = k by Prop. 13.1 and Prop. 14.1 in [6]. Therefore B is nilpotent by
Prop. 7. q.e.d.

PROPOSITION 9. Tensor product Hopf algebras of nilpotent cocommuta-
tive Hopf algebras over afield k are also nilpotent.

PROOF. Let B and D be nilpotent cocommutative Hopf algebras over k
and put E = B®D. Let pB and pD be the canonical projections of E to B and D
as Hopf algebras respectively. Then we see pB(<#nE) = <gnB = pD(<gnE) = <£nD
= /c for some n>0 by Lemma 8, (i) and Prop. 7. Since the /i-kerriel of pB is k®D
as seen easily, we have fβnE<^k®Ό. Similarly we see WEaBt&k and hence
<#nEcz(B®k) n (k®D) = k. This means that E is nilpotent by Prop. 7. q.e.d.

PROPOSITION 10. Let B be a nilpotent cocommutative Hopf algebra over
a field k and D a Hopf subalgebra of B different from B. Then the normalizer
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NB(D) ofD in B is not D.

PROOF. Let C be any cocommutative coalgebra over k. Now we define
Hopf subalgebra Dt of B as follows: Put D0 = D and let Df be the normalizer

Nβ(A-ι) of A-i in B for i>l. Then we shall show D^^tB for each ί>0.
For ΐ = 0 we have D0=>#0£ = /c. Assume that D^^β, and let/ and g be ele-
ments in HomCOfl/(C, #ί+1B) and Homcofl/(C, Dt) respectively. Then we see
[/, g]=f*g*Γl*g-lel{omcoal(C, ^f5)c:Homcoαί(C, Df), and hence f*g*f~*
eg*Romcoal(C9 D^ = Homcoβί(C, Df). This means that Homcoβ/(C, Vi+ίB) is
contained in the normalizer of Homcoαί(C, Dt) in Homcoα/(C, B). Therefore
tfi+^B is a Hopf subalgebra of NB(Dί) = D ί + 1 by Prop. 12.1 and Prop. 12.4 in
[6]. In particular we have Dn^<£nB = B for some n by Prop. 7. If Nβ(D) = Dj
= D, then we see Dn = Dn,l = -=D1=D. But this contradicts the assumption

q.e.d.

Next we define a solvable Hopf algebra. For this purpose we need first to
define the ΐ-th derived Hopf subalgebra of a cocommutative Hopf algebra B over
k. For ϊ = 0 we put &°B = B and for ϊ>0 we define 0iB = [&i-ίB, ^<~15]
inductively. Then we call ^iB the i-th derived Hopf subalgebra of B. If
<&nB = k for some n>0, B is called solvable. It is clear that a nilpotent Hopf
algebra is solvable.

PROPOSITION 11. Hopf subalgebras and Hopf quotient algebras of a
solvable cocommutative Hopf algebra over a field k are solvable. Conversely
let D be a normal Hopf subalgebra of a cocommutative Hopf algebra B over k.
If D and B/D are solvable, then so is B. In particular the tensor product Hopf
algebra of solvable Hopf algebras is solvable.

Proof is similar to that of Prop. 8 and we omit the detail.

PROPOSITION 12. Let B be a cocommutative Hopf algebra over a field
k. Then the fallowings are equivalent:
( i ) B is solvable.
(ii) There is a normal chain of B:

B = DO z> DΊ 3 => Dn = k

where DJDi+1 is commutative for l<i<n.
(iii) There is a subίnvariant chain of B:

where DfJD'i+i is commutative for l<i<m.

PROOF. (i)=>(ii). We may put D{ — ̂ 1B for each i. The implication (ii)
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=>(iii) is trivial. (iii)=>(i). Since £/DJ=Dό/Di is commutative, we see DJ=>
[£, B~] = @1B by Lemma 8, (iii). Similarly if D'^^gt^B, then we have D't
=>[/>/'-!,/>;_!]z>[^'- 1B, 0ί-1B] = &ίB. Hence, ultimately we have k = D'm^>
3>mB. Therefore B is solvable. q.e.d.

The following lemma is necessary to define the radical of a Hopf algebra.

LEMMA 9. Let D and E be normal and solvable Hopf subalgebras of a
cocommutative Hopf algebras B over afield k. Then J(D, E) is also normal in
B and solvable.

PROOF. Since J(D, E)/E~£//(D, E) by Th. 3, J(D, E)/E is solvable by
Prop. 11 . Then by the same proposition, we see that J(D,E) is also solvable.

q.e.d.

Let B be as above. If there is a maximal Hopf subalgebra D of B which is
normal in B and solvable, then D is the largest one satisfying the same conditions

by Lemma 9. We call such D the radical of B.

PROPOSITION 13. If a cocommutative Hopf algebra B over k has the radi-
cal D, then D is the smallest normal Hopf subalgebra E of B such that the radical
ofB/E is k.

PROOF. Let E be a normal Hopf subalgebra of B such that the radical of
B/E is k, and let πE be the canonical Hopf algebra homomorphism of B to B/E.
If D! is any normal and solvable Hopf subalgebra of B, then π^D^ is also normal
and solvable Hopf subalgebra of B/E by Lemma 3 and Prop. 11. Therefore we
see π£(/)1) = /c and hence Dί czE by Cor. to Th. 1. This means by Lemma 9 that
D is contained in E. On the other hand let πD be the canonical Hopf algebra
homomorphism of B to B/D and let E' be a normal and solvable Hopf subalgebra
of B/D. If E is the /ι-inverse of E' by πD, then we see E'~E/D by Cor. 1 to Th. 2.
Therefore E is solvable and normal in B by Prop. 11 and Lemma 2. This means
E = D and hence E' — k by the maximality of D. Therefore the radical of B/D
is k. This completes the proof. q.e.d.

PROPOSITION 14. Let Bt be a cocommutative Hopf algebra over a field
k for l<ί<n. Then B = Bί® -<8)Bn has the radical D if and only if each Bi

has the radical Difor l<i<n. Furthermore, then, we have D = Di® ®Dn.

PROOF. Assume that B; has the radical Dt for 1 < i < n. Then we see easily
that I*!®---®/),, is normal in B, and that Dl®- ®Dn is solvable by Prop. 11.
Let E be a normal and solvable Hopf subalgebra of B. If Ef is the image of E by
the canonical projection πt of B to Bt as Hopf algebras, then Ef is normal in Bt

and solvable by Lemma 3 and Prop. 11. Therefore we see EiaDi for l< i<n
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and hence EcD^'-QDn by Cor. to Prop. 4. This means that D!®-
is the radical of B. Conversely assume that B has the radical D. Then Df = πf(D)
is normal in B{ and solvable for 1 < i<n by Lemma 3 and Prop. 11. Let E{ be a
normal and solvable Hopf subalgebra of Bt. If Et is not contained in Dh then the
join of D and £ί = fc® ®/c®£ί(g)/c(8) (g)/c is larger than D. However this is
a contradiction to the maximality of D from Lemma 9, because E\ is normal in
B and solvable. Therefore we see D^E^ and hence Df is the radical of B{. The
last assertion in our proposition is already shown in the above. q. e. d.
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