The Steenrod Operations in the EilenbergMoore Spectral Sequence

Masamitsu Mori
(Received June 8, 1978)

Introduction

R. Vázquez García [19] and S. Araki [1] introduced two kinds of the Steenrod operations into the $\bmod p$ Serre spectral sequence $\left\{E_{r}\right\}$, that is, the squaring operations
(a) $S q^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s, t+i} \quad(i<t)$,
(b) $S q^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s+i-t, 2 t} \quad(i \geq t)$,
for $p=2$, and the reduced power operations
(a) $\beta^{\varepsilon} P^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s, t+2 i(p-1)+\varepsilon} \quad(2 i<t ; \varepsilon=0,1)$,
(b) $\beta^{2} P^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s+(2 i-t)(p-1)+\varepsilon, p t} \quad(2 i \geq t ; \varepsilon=0,1)$,
for p an odd prime; and they discussed the properties of these operations. Also L. Kristensen [6], [7] obtained the results by using the simplical method.

On the other hand, along with the establishment of the Eilenberg-Moore spectral sequence, J. P. May conjectured at the Conference on Algebraic Topology at Chicago Circle in 1968 that one might introduce the Steenrod operations into the $\bmod p$ Eilenberg-Moore spectral sequence; and then D. Rector [10] and L. Smith [15], [16] showed that the mod p Eilenberg-Moore spectral sequence is a spectral sequence of modules over the mod p Steenrod algebra with respect to the operations of type (a).

Further, in his work [9], J. P. May developed a general theory to introduce the Steenrod operations into a spectral sequence, and W. M. Singer [14] introduced the squaring operations of both types (a) and (b) into a class of spectral sequences such as the change of ring spectral sequence, the Eilenberg-Moore spectral sequence and the Serre spectral sequence. It remains to introduce the Steenrod reduced powers into such spectral sequences.

The purpose of this paper is to introduce and study the Steenrod operations of both types (a) and (b) for any prime p in such a class of spectral sequences of Eilenberg-Moore type. The main results are Theorems 1.2, 1.3, 1.4, 1.5 and 1.6. Our results extend those obtained by W. M. Singer [14] who worked when $p=2$. The method is slightly different from [14]. The key lemma is Lemma
2.3, which follows from A. Dold [3; Satz 1.12], and this enables us to work for any prime p.

The paper is motivated by introducing the Steenrod operations into the Eilenberg-Moore spectral sequence to calculate the cohomology of the classifying spaces of Lie groups. To have the Steenrod operations in the spectral sequence is helpful in at least two ways: first in proving the collapsing of the spectral sequence and second in reproducing the data lost in passing to quotient. The applications are found in the works of M. Mimura and M. Mori*), A. Kono and M. Mimura**), M. Mimura and Y. Sambe ${ }^{* * *)}$, and M. Mori****), in which they calculate the cohomology of the classifying spaces of some Lie groups whose integral homology groups have torsion groups.

The author would like to express his gratitude to Professors Tatsuji Kudo, Masahiro Sugawara, Mamoru Mimura and Shichirô Oka who read this manuscript and gave him advices.

§1. Results

Let p be a prime, and \mathcal{O} be the category of finite ordered sets and nondecreasing maps. A simplicial Z_{p}-module R is a contravariant functor from \mathcal{O} to the category of Z_{p}-modules, that is, R is a collection of Z_{p}-modules R_{n} ($n \geq 0$) together with morphisms $d_{i}: R_{n} \rightarrow R_{n-1}, s_{i}: R_{n} \rightarrow R_{n+1}(0 \leq i \leq n)$, called the face operators and the degeneracy operators, which satisfy the simplicial identities (see J. P. May [8; Definitions 1.1 and 2.1]). Then we write $C R$ for the $Z_{p^{-}}$ complex such that $C_{n} R=R_{n}, d=\Sigma(-1)^{i} d_{i}$, and $C R$ forms a differential $Z_{p^{-}}$ coalgebra with coproduct $\xi D: C R \rightarrow C(R \times R) \rightarrow C R \otimes C R$, where D is the diagonal map and ξ is the Alexander-Whitney map. A simplicial Z_{p}-coalgebra is a simplicial Z_{p}-module equipped with the coproduct ξD.

A bisimplicial Z_{p}-module is a contravariant functor from $\mathcal{O} \times \mathcal{O}$ to the category of Z_{p}-modules. We write d_{i}^{h}, s_{i}^{h} for the horizontal face and degeneracy operators and d_{i}^{v}, s_{i}^{v} for the vertical face and degeneracy operators. Let K be a bisimplicial Z_{p}-module. We write $C K$ for the double Z_{p}-complex such that $C_{m, n} K=K_{m, n}, d^{h}=\Sigma(-1)^{i} d_{i}^{h}, d^{v}=\Sigma(-1)^{i} d_{i}^{v}$, and $T K$ for the total Z_{p}-complex such that $T_{n} K=\sum_{s+t=n} C_{s, t} K, d=d^{h}+(-1)^{s} d^{v}$ on $C_{s, t} K$. Then we can give $C K$

[^0]the bigraded Z_{p}-coalgebra structure in the above way, and a bisimplicial $Z_{p^{-}}$ module with this structure is called a bisimplicial Z_{p}-coalgebra. Apparently the coalgebra structure on $C K$ induces the ones on $T K$ and on $K_{0 *}$.

An augmentation $\varepsilon: K \rightarrow R$ for a bisimplicial Z_{p}-coalgebra K is a morphism such that $\varepsilon=0$ on $K_{s *}$ for $s>0$ and that $\varepsilon: K_{0 *} \rightarrow R_{*}$ is a morphism of simplicial Z_{p}-coalgebras satisfying $\varepsilon d_{1}^{h}=\varepsilon d_{0}^{h}: K_{1 *} \rightarrow R_{*}$, where R is a simplicial Z_{p}-coalgebra.

Dualizing them, we can define a cosimplicial Z_{p}-module, -algebra, a bicosimplicial Z_{p}-module, -algebra, and a coaugmentation, etc. Obvious notation and terminology are similarly used (see, for example, [2], [11]).

We now state our results. Let R be a simplicial Z_{p}-coalgebra and K a bisimplicial Z_{p}-coalgebra. Then $\operatorname{Hom}\left(R, Z_{p}\right)$ and $\operatorname{Hom}\left(K, Z_{p}\right)$ form a cosimplicial Z_{p}-algebra and a bicosimplicial Z_{p}-algebra, respectively, and hence $H^{*}(C R)$ and $H^{*}(T K)$ have the products. We shall define the Steenrod operations on $H^{*}(T K)$ as well as on $H^{*}(C R)$, and prove the following proposition in $\S 2$:

Proposition 1.1. Let $\varepsilon: K \rightarrow R$ be an augmentation. Then $\varepsilon^{*}: H^{*}(C R)$ $\rightarrow H^{*}(T K)$ preserves the products and the Steenrod operations.

We define an increasing filtration on $T K$ by

$$
F_{r} T_{n} K=\sum_{\substack{s t r=n \\ s \leq r}} K_{s, t}
$$

This gives rise to a spectral sequence passing to $H_{*}(T K)$. Dually, putting $T^{n} K$ $=\operatorname{Hom}\left(T_{n} K, Z_{p}\right)$, we define a decreasing filtration on $T^{*} K$ by

$$
F^{r} T^{n} K=\left\{f \in T^{n} K \mid f\left(F_{r-1} T_{n} K\right)=0\right\},
$$

which gives rise to a spectral sequence $\left\{E_{r}\right\}$ passing to $H^{*}(T K)$.
This spectral sequence $\left\{E_{r}\right\}$ is a spectral sequence of Z_{p}-algebras. Further we shall define the 'Steenrod operations' on $E_{r}, r \geq 2$, (see § 3):
(a) $S q^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s, t+i} \quad(i<t)$,

$$
\beta^{\varepsilon} P^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s, t+2 i(p-1)+\varepsilon} \quad(2 i<t ; \varepsilon=0,1)
$$

(b) $S q^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s+i-t, 2 t} \quad(i \geq t)$,

$$
\beta^{e} P^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s+(2 i-t)(p-1)+\varepsilon, p t} \quad(2 i \geq t ; \varepsilon=0,1) .
$$

Here we always assume that the underlying coefficient ring is Z_{2} for the squaring operations and Z_{p}, p an odd prime, for the reduced power operations.

Theorem 1.2. The Steenrod operations on E_{2} determine those on E_{r} for all $r \geq 2$.

Thborem 1.3. Let $u \in E_{r}^{s, t}$.
(i) If $i<t-r+1$, then $d_{r} S q^{i} u=S q^{i} d_{r} u$. If $2 i<t-r+1$, then

$$
d_{r} \beta^{e} P^{i} u=(-1)^{\varepsilon} \beta^{\varepsilon} P^{i} d_{r} u
$$

(ii) If $t-r+1 \leq i<t$, then $S q^{i} u$ survives to $E_{q}^{s, t+i}$ where $q=2 r+i-t-1$, Sq ${ }^{i} d_{r} u$ survives to $E_{q}^{s+q, 2 t-2 r+2}$, and

$$
d_{q} S q^{i} u=S q^{i} d_{r} u
$$

If $t-r+1 \leq 2 i<t$, then $\beta^{\varepsilon} P^{i} u$ survives to $E_{q}^{s, t+2 i(p-1)+\varepsilon}$ where $q=r+(2 i-t+$ $r-1)(p-1)+\varepsilon, \beta^{\varepsilon} P^{i} d_{r} u$ survives to $E_{q}^{s+q, t+2 i(p-1)+\varepsilon+q-1}$, and

$$
d_{q} \beta^{\varepsilon} P^{i} u=(-1)^{\varepsilon} \beta^{\varepsilon} P^{i} d_{r} u
$$

(iii) If $t \leq i$, then $S q^{i} u$ survives to $E_{q}^{s+i-t, 2 t}$ where $q=2 r-1, S q^{i} d_{r} u$ survives to $E_{q}^{s+q+i-t, 2 t-2 r+2}$, and

$$
d_{q} S q^{i} u=S q^{i} d_{r} u
$$

If $t \leq 2 i$, then $\beta^{e} P^{i} u$ survives to $E_{q}^{s+(2 i-t)(p-1)+\varepsilon, p t}$ where $q=r p-p+1+\varepsilon, \beta^{\varepsilon} P^{i} d_{r} u$ survives to $E_{q}^{s+(2 i-t)(p-1)+\varepsilon+q, p t+q-1}$, and

$$
d_{q} \beta^{e} P^{i} u=(-1)^{e} \beta^{e} P^{i} d_{r} u
$$

Thborem 1.4. Let $\rho: F^{s, t}=F^{s} H^{s+t}(T K) \rightarrow E_{\infty}^{s, t}$ be the natural projection and $u \in F^{s, t}$.
(i) If $i<t$, then $S q^{i} u \in F^{s, t}$ and $\rho S q^{i} u=S q^{i} \rho u$. If $2 i<t$, then $\beta^{\varepsilon} P^{i} u \in F^{s, t}$ and $\rho \beta^{\varepsilon} P^{i} u=\beta^{\varepsilon} P^{i} \rho u$.
(ii) If $t \leq i$, then $S q^{i} u \in F^{s+i-t, 2 t}$ and $\rho S q^{i} u=S q^{i} \rho u$.

If $t \leq 2 i$, then $\beta^{\varepsilon} P^{i} u \in F^{s+(2 i-t)(p-1)+\varepsilon, t-(2 i-t)(p-1)-\varepsilon}$ and $\rho \beta^{\varepsilon} P^{i} u=\beta^{\varepsilon} P^{i} \rho u$.
Proofs of Theorems 1.2, 1.3 and 1.4 will be given in $\S 3$.
The Eilenberg-Moore spectral sequence is a typical example of this spectral sequence ([5], [10], [12], [13]). Let G be a connected associative H-space. Let X be a right G-space and Y a left G-space. Then we have the EilenbergMoore spectral sequence

$$
E_{2} \cong \operatorname{Cotor}_{H^{*}\left(G ; Z_{p}\right)}\left(H^{*}\left(X ; Z_{p}\right), H^{*}\left(Y ; Z_{p}\right)\right) \Longrightarrow H^{*}\left(X \times_{G} Y ; Z_{p}\right)
$$

to which our results are applicable (see §4).
It is known in [9], [18] that two kinds of the Steenrod operations are defined on $\operatorname{Cotor}_{H^{*}\left(G ; Z_{p}\right)}\left(H^{*}\left(X ; Z_{p}\right), H^{*}\left(Y ; Z_{p}\right)\right)(=$ Cotor $)$, that is, the vertical squaring operations

$$
S q_{V}^{i}: \text { Cotor }^{s, t} \longrightarrow \text { Cotor }^{s, t+i}
$$

the diagonal squaring operations

$$
S q_{D}^{i}: \text { Cotor }^{s, t} \longrightarrow \text { Cotor }^{s+i-t, 2 t},
$$

for $p=2$, and the vertical reduced power operations

$$
\beta^{\varepsilon} P_{V}^{i}: \operatorname{Cotor}^{s, t} \longrightarrow \operatorname{Cotor}^{s, t+2 i(p-1)+\varepsilon},
$$

the diagonal reduced power operations

$$
\beta^{e} P_{D}^{i}: \text { Cotor }^{s, t} \longrightarrow \text { Cotor }^{s+(2 i-t)(p-1)+e, p t},
$$

for p an odd prime. The vertical operations are induced by the topological Steenrod operations and the diagonal operations are algebraically defined on Cotor. These operations satisfy the usual properties such as the Cartan formula and the Adem relations (see §4).

We shall always assume that the coefficient ring in Cotor is Z_{2} when we consider these squaring operations, and Z_{p}, p an odd prime, when we consider these reduced power operations.

Theorem 1.5. Through the isomorphism

$$
E_{2} \cong \operatorname{Cotor}_{H^{*}\left(G ; Z_{p}\right)}\left(H^{*}\left(X ; Z_{p}\right), H^{*}\left(Y ; Z_{p}\right)\right)
$$

in the Eilenberg-Moore spectral sequence, (i) the squaring operation S^{i} of type (a) coincides with the vertical squaring operation $S q_{V}^{i}$ if $i<t$, and the reduced power operation $\beta^{\varepsilon} P^{i}$ of type (a) coincides with the vertical reduced power operation $\beta^{\varepsilon} P_{V}^{i}$ if $2 i<t$, and (ii) the squaring operation $S q^{i}$ of type (b) coincides with the diagonal squaring operation $S q_{D}^{i}$ if $i \geq t$, and the reduced power operation $\beta^{\varepsilon} P^{i}$ of type (b) coincides with the diagonal reduced power operation $\beta^{\varepsilon} P_{D}^{i}$ if $2 i \geq t$.

Since the usual properties of the Steenrod operations such as the Cartan formula and the Adem relations hold on Cotor, these properties inherit on the E_{r}-term for $r \geq 2$ in the Eilenberg-Moore spectral sequence by Theorems 1.2 and 1.5.

Notation.

$$
\begin{aligned}
& \overline{S q}_{D}^{i}=S q_{D}^{i+t}: \text { Cotor }^{s, t} \longrightarrow \text { Cotor }^{s+i, 2 t} \\
& \beta^{\varepsilon} \bar{P}_{D}^{i}=\beta^{\varepsilon} P_{D}^{i+t}: \text { Cotor }^{s, 2 t} \longrightarrow \text { Cotor }^{s+2 i(p-1)+\varepsilon, 2 p t} .
\end{aligned}
$$

Thborem 1.6.
(i) $\quad S q_{V}^{2 a} \overline{S q_{D}^{b}} u=\overline{S q}_{D}^{b} S q_{V}^{a} u, \quad S q_{V}^{2 a+1} \overline{S q}_{D}^{b} u=0, \quad$ for $u \in \operatorname{Cotor}^{s, t}$.
(ii) $P_{V}^{p a} \bar{P}_{D}^{b} u=\bar{P}_{D}^{b} P_{V}^{a} u, \quad P_{V}^{p a+i} \bar{P}_{D}^{b} u=0$, for $u \in \operatorname{Cotor}^{s, 2 t}$,
where $0<i<p$.
Proofs of Theorems 1.5 and 1.6 will be given in $\S 4$.

§ 2. The Steenrod operations

After J. P. May [9], we introduce some categories on which the Steenrod operations will be defined.

Let p be a prime. Let π be a cyclic group of order p with generator α and Σ_{p} the symmetric group on p-letters. Then π is regarded as a subgroup of Σ_{p} by $\alpha(1, \ldots, p)=(p, 1, \ldots, p-1)$.

Let W be the standard $Z_{p} \pi$-free resolution of Z_{p}, which has one generator e_{i} in each dimension $i \geq 0$ (see [9; p. 157]). Let V be a $Z_{p} \Sigma_{p}$-free resolution of Z_{p} and $j: W \rightarrow V$ be a morphism of $Z_{p} \pi$-complexes over Z_{p}. We regard W as a cochain complex by setting $\operatorname{deg} e_{i}=-i$ so that the differential is of degree +1 , and also V as a cochain complex in a similar way.

Define a category $\mathscr{C}(p)$ as follows. The objects of $\mathscr{C}(p)$ are pairs (K, θ), where K is a homotopy associative differential Z_{p}-algebra with differential of degree +1 and $\theta: W \otimes K^{p} \rightarrow K$ is a morphism of $Z_{p} \pi$-complexes, where π acts on $K^{p}=K \otimes \cdots \otimes K$ (p-times) as a permutation, on $W \otimes K^{p}$ diagonally, and on K trivially, such that (i) the restriction of θ to $e_{0} \otimes K^{p}$ is π-homotopic to the iterated product $K^{p} \rightarrow K$ associated in some fixed order, and (ii) θ is π-homotopic to a composition $\xi(j \otimes 1): W \otimes K^{p} \rightarrow V \otimes K^{p} \rightarrow K$, where ξ is a morphism of $Z_{p^{\prime} \Sigma^{-}}$ complexes. A morphism $f:(K, \theta) \rightarrow\left(K^{\prime}, \theta^{\prime}\right)$ in $\mathscr{C}(p)$ is a morphism $f: K \rightarrow K^{\prime}$ of $Z_{p} \pi$-complexes such that $\theta^{\prime}\left(1 \otimes f^{p}\right)$ is π-homotopic to $f \theta$.

The category $\mathscr{C}(p)$ is essentially the same as $\mathscr{C}\left(\pi, \infty, Z_{p}\right)$ defined in [9; p. 160]. The only difference between them is the sign convention of degree of differentials.

A morphism $f:(K, \theta) \rightarrow\left(K^{\prime}, \theta^{\prime}\right)$ is said to be perfect if $\theta^{\prime}\left(1 \otimes f^{p}\right)=f \theta$, and $\mathscr{P}(p)$ denote the subcategory of $\mathscr{C}(p)$ having the same objects (K, θ) and all perfect morphisms between them. A unital object, a reduced $\bmod p$ object, a Cartan object and an Adem object in $\mathscr{C}(p)$ are defined in the same way as $[9$; p. 161, pp. 173-4].

For a simplicial Z_{p}-module R, let $C(R)$ denote the normalized chain complex.

Lemma 2.1. Let π be a cyclic group of order p and W the standard $Z_{p} \pi$ free resolution of Z_{p}. Then there is a natural morphism of Z_{p}-complexes

$$
\Phi: W \otimes C\left(R^{p}\right) \longrightarrow W \otimes C(R)^{p},
$$

where $R^{p}=R \times \cdots \times R$ (p-times) and $C(R)^{p}=C(R) \otimes \cdots \otimes C(R)$ (p-times), which satisfies the following properties:
(i) Φ is π-equivariant,
(ii) Φ is the identity homomorphism on $W \otimes C_{0}\left(R^{p}\right)$,
(iii) $\Phi\left(e_{0} \otimes k_{1} \times \cdots \times k_{p}\right)=e_{0} \otimes \xi\left(k_{1} \times \cdots \times k_{p}\right)$ if $k_{i} \in R$, where $\xi: C\left(R^{p}\right) \rightarrow$ $C(R)^{p}$ is the Alexander-Whitney map, and
(iv) $\quad \Phi\left(W \otimes C_{j}\left(R^{p}\right)\right) \subset \sum_{k \leq p j} W \otimes\left[C(R)^{p}\right]_{k}$.

Proof. See A. Dold [3; Satz 1.12], and J. P. May [9; Lemma 7.1].
q.e.d.

We write ϕ for the composite

$$
\phi=(\varepsilon \otimes 1) \Phi: W \otimes C\left(R^{p}\right) \xrightarrow{\Phi} W \otimes C(R)^{p} \xrightarrow{\varepsilon \otimes 1} C(R)^{p},
$$

where $\varepsilon: W \rightarrow Z_{p}$ is an augmentation.
Let $C^{*}(R)=\operatorname{Hom}\left(C(R), Z_{p}\right),\left(C(R)^{p}\right)^{*}=\operatorname{Hom}\left(C(R)^{p}, Z_{p}\right)$, and $U: C^{*}(R)^{p} \rightarrow$ $\left(C(R)^{p}\right)^{*}$ be the natural shuffle map. We define a $Z_{p} \pi$-morphism

$$
\theta: W \otimes C^{*}(R)^{p} \longrightarrow C^{*}(R)
$$

by

$$
\theta(w \otimes x)(t)=(-1)^{\operatorname{deg} w \operatorname{deg} x} U(x) \phi\left(w \otimes t^{p}\right)
$$

where $w \in W, x \in C^{*}(R)^{p}, t \in C(R)$.
Lemma 2.2. $\quad\left(C^{*}(R), \theta\right)$ is a reduced $\bmod p$ object of the category $\mathscr{C}(p)$.
Proof. This is immediate from Lemma 2.1 (see [9; pp. 194-5]).
q.e.d.

Let K be a bisimplicial Z_{p}-module. Let $C(K)$ denote the normalized double Z_{p}-complex and $T(K)$ the normalized total complex, and set $C^{*}(K)=\operatorname{Hom}(C(K)$, $\left.Z_{p}\right)$ and $T^{*}(K)=\operatorname{Hom}\left(T(K), Z_{p}\right)$.

Lemma 2.3. There exists a natural morphism of Z_{p}-complexes

$$
\phi: W \otimes T(K) \longrightarrow T(K)^{p}=T(K) \otimes \cdots \otimes T(K)(p \text {-times }),
$$

which satisfies the following properties:
(i) ϕ is π-equivariant,
(ii) $\phi(w \otimes t)=t^{p}$, where t is a 0 -simplex and $w \in W$,
(iii) $\phi\left(e_{0} \otimes t\right)=e_{0} \otimes \xi\left(t^{p}\right)$, where $t \in T(K)$ and ξ is the Alexander-Whitney map, and
(iv) $\phi\left(W \otimes T_{j}(K)\right) \subset \sum_{k \leq_{p j}\left[T(K)^{p}\right]_{k} .}$

Proof. The map ϕ is defined componentwise as follows:

$$
\begin{aligned}
W_{k} \otimes C_{s, t}(K) & \xrightarrow{D \otimes D} \sum_{i+j=k} W_{i} \otimes W_{j} \otimes C_{s, t}\left(K^{p}\right) \\
& \xrightarrow{1 \otimes \phi^{\nu}} \sum_{i+j=k} W_{i} \otimes \otimes_{t_{1}+\cdots+t_{p}=t+j} C_{s, t_{1}}(K) \otimes \cdots \otimes C_{s, t_{p}}(K) \\
& \xrightarrow{\phi^{n}} \sum_{i+j=k} \sum_{\substack{t_{1}+\cdots+t_{p}=++j \\
s_{1}+\cdots+s_{p}=s+i}} C_{s_{1}, t_{1}}(K) \otimes \cdots \otimes C_{s_{p}, t_{p}}(K) .
\end{aligned}
$$

Here D is the diagonal map, and ϕ^{v} and ϕ^{h} are constructed with respect to the vertical degree and the horizontal degree, respectively, by using Lemma 2.1. Now the lemma is proved by using Lemma 2.1 again.
q.e.d.

Let $\left(T(K)^{p}\right)^{*}=\operatorname{Hom}\left(T(K)^{p}, Z_{p}\right)$, and $U: T^{*}(K)^{p} \longrightarrow\left(T(K)^{p}\right)^{*}$ be the natural shuffle map. We define a $Z_{p} \pi$-morphism

$$
\theta: W \otimes T^{*}(K)^{p} \longrightarrow T^{*}(K)
$$

by

$$
\theta(w \otimes x)(t)=(-1)^{\operatorname{deg} w \operatorname{deg} x} U(x) \phi(w \otimes t),
$$

where $w \in W, x \in T^{*}(K)^{p}, t \in T(K)$.
Lemma 2.4. $\quad\left(T^{*}(K), \theta\right)$ is a reduced $\bmod p$ object of the category $\mathscr{C}(p)$.
Proor. By Lemma 2.3, this is proved in the same way as Lemma 2.2.
q.e.d.

Now we shall introduce the Steenrod operations, following J. P. May [9]. Let (K, θ) be an object of $\mathscr{C}(p) . \quad \theta$ induces a morphism $\theta: W \otimes_{\pi} K^{p} \rightarrow K$ of $Z_{p^{-}}$ complexes, and we define

$$
D^{i}: H^{p}(K) \longrightarrow H^{p q-i}(K)
$$

by

$$
D^{i}(x)=\theta^{*}\left(e_{i} \otimes x^{p}\right) \quad \text { for } \quad x \in H^{q}(K)
$$

Notation. When p is an odd prime, we set

$$
\begin{gathered}
m=(p-1) / 2 \\
v(-q)=(-1)^{j}(m!)^{\varepsilon}, \quad \text { where } \quad q=2 j-\varepsilon, \varepsilon=0 \quad \text { or } 1 .
\end{gathered}
$$

If $p=2$, then we define $S q^{i}: H^{q}(K) \rightarrow H^{q+i}(K)$ by

$$
S q^{i}(x)= \begin{cases}D^{q-i}(x) & (i \leq q) \\ 0 & (i>q)\end{cases}
$$

If $p>2$, then we define $P^{i}: H^{q}(K) \rightarrow H^{q+2 i(p-1)}(K)$ and $\beta P^{i}: H^{q}(K) \rightarrow H^{q+2 i(p-1)+1}$ (K) by

$$
\begin{aligned}
P^{i}(x) & = \begin{cases}(-1)^{i} v(-q) D^{(q-2 i)(p-1)}(x) & (2 i \leq q) \\
0 & (2 i>q),\end{cases} \\
\beta P^{i}(x) & = \begin{cases}(-1)^{i} v(-q) D^{(q-2 i)(p-1)-1}(x) & (2 i \leq q) \\
0 & (2 i>q)\end{cases}
\end{aligned}
$$

By virtue of Lemmas 2.2 and 2.4, we can define, in the above way, the Steenrod operations in $H^{*}(T K)$ as well as in $H^{*}(C R)$. Further, by [9; p. 162], the operation βP^{i} on $H^{*}(T K)$ and on $H^{*}(C R)$ is the composite of P^{i} and the Bockstein β.

Proof of Proposition 1.1. Since $\varepsilon^{*}: C^{*}(R) \rightarrow T^{*}(K)$ is a morphism of differential Z_{p}-algebras, the first half follows immediately. By the definitions of θ 's, we have the following commutative diagram

Thus the second half follows from the above definition of the Steenrod operations.
q. e.d.

§3. The Steenrod operations in the spectral sequence

Let K be a bisimplicial Z_{p}-coalgebra. As is described in $\S 1$, the decreasing filtration $\left\{F^{r} T^{*}(K)\right\}$ on the total complex $T^{*}(K)=\operatorname{Hom}\left(T(K), Z_{p}\right)$ gives rise to a spectral sequence $\left\{E_{r}\right\}$ passing to $H^{*}(T K)$. In this section we shall introduce the Steenrod operations into the spectral sequence $\left\{E_{r}\right\}$ and prove Theorems 1.2, 1.3 and 1.4 .

We first define functions $S q^{i}: T^{q}(K) \rightarrow T^{q+i}(K)$ and $\beta^{\varepsilon} P^{i}: T^{q}(K) \rightarrow$ $T^{q+2 i(p-1)+\varepsilon}(K), \varepsilon=0,1$, after S. Araki [1] and J. P. May [9].

Let $a \in T^{q}(K)$ and $d a=b \in T^{q+1}(K)$. Assume that $p>2$. Define $t_{l} \in T^{*}(K)^{p}$ $(1 \leq l \leq p)$ by

$$
t_{2 k}=\sum_{I}(-1)^{k q}(k-1)!b^{i_{1}} a^{2} b^{i_{2}} a^{2} \cdots b^{i_{k+1}} a^{2}, \quad 1 \leq k \leq m,
$$

where $I=\left(i_{1}, \ldots, i_{k}\right)$ with $\sum i_{j}=p-2 k$, and

$$
t_{2 k+1}=\sum_{I}(-1)^{k q} k!b^{i_{1}} a^{2} b^{i_{2}} a^{2} \cdots b^{i_{k+1}} a, \quad 0 \leq k \leq m,
$$

where $I=\left(i_{1}, \ldots, i_{k+1}\right)$ with $\sum i_{j}=p-2 k-1$. Then

$$
\operatorname{deg} t_{2 k}=p(q+1)-2 k, \quad \operatorname{deg} t_{2 k+1}=p(q+1)-2 k-1
$$

Put $j=(q-2 i+1)(p-1)$. Define

$$
\begin{aligned}
& c=\sum_{k=0}^{m}(-1)^{k} e_{j-2 k} \otimes t_{2 k+1}-\sum_{k=1}^{m}(-1)^{k} e_{j-2 k+1} \otimes\left(\alpha^{-1}-1\right)^{p-2} t_{2 k}, \\
& c^{\prime}=\sum_{k=0}^{m}(-1)^{k} e_{j-2 k-1} \otimes t_{2 k+1}+\sum_{k=1}^{m}(-1)^{k} e_{j-2 k} \otimes t_{2 k} .
\end{aligned}
$$

Then

$$
\operatorname{deg} c=q+2 i(p-1), \quad \operatorname{deg} c^{\prime}=q+2 i(p-1)+1
$$

An easy calculation shows that

$$
d c=e_{j} \otimes b^{p}, \quad d c^{\prime}=-e_{j-1} \otimes b^{p}
$$

Now define functions P^{i} and βP^{i} by

$$
\begin{aligned}
& P^{i} a=(-1)^{i} v(-q+1) \theta(c), \\
& \beta P^{i} a=(-1)^{i} v(-q+1) \theta\left(c^{\prime}\right) .
\end{aligned}
$$

If $p=2$, we define $S q^{i}$ by

$$
S q^{i} a=\theta(c), \quad \text { where } \quad c=e_{q-i-1} \otimes b \otimes a+e_{q-i} \otimes a \otimes a
$$

Then, we see immediately the following (see J. P. May [9])
Lemma 3.1. These functions $S q^{i}: T^{q}(K) \rightarrow T^{q+i}(K)$ and $\beta^{e} P^{i}: T^{q}(K) \rightarrow$ $T^{q+2 i(p-1)+\varepsilon}(K)$ satisfy the following properties:
(i) $d S q^{i}=S q^{i} d, d \beta^{\varepsilon} P^{i}=(-1)^{\varepsilon} \beta^{\varepsilon} P^{i} d$.
(ii) If a is a cocycle which represents $x \in H^{*}(T K)$, then $S q^{i} a$ and $\beta^{\varepsilon} P^{i} a$ are cocycles which represent $S q^{i} x$ and $\beta^{\varepsilon} P^{i} x$, respectively.
(iii) If $f:\left(T^{*}(K), \theta\right) \rightarrow\left(T^{*}\left(K^{\prime}\right), \theta^{\prime}\right)$ is a morphism in $\mathscr{P}(p)$, then $f S q^{i}$ $=S q^{i} f$ and $f \beta^{e} P^{i}=(-1)^{\varepsilon} \beta^{e} P^{i} f$.

We now estimate the filtration degree. We define a filtration on $T^{*}(K)^{p}$ by

$$
F^{r} T^{*}(K)^{p}=\sum_{r_{1}+\cdots+r_{p} \leq r} F^{r_{1}} T^{*}(K) \otimes \cdots \otimes F^{r_{p}} T^{*}(K)
$$

Then the following lemmas and corollary follow immediately from definitions.
Lemma 3.2. If $a \in F^{s} T^{*}(K)$ and $d a=b \in F^{s+r} T^{*}(K)$, then

$$
\begin{aligned}
& t_{2 k} \in F^{s p+(p-2 k) r} T^{*}(K)^{p}, \\
& t_{2 k+1} \in F^{s p+(p-2 k-1) r} T^{*}(K)^{p} .
\end{aligned}
$$

Lemma 3.3.

$$
\begin{aligned}
& \theta\left(W_{k} \otimes F^{s} T^{*}(K)^{p}\right) \subset F^{s-k} T^{*}(K) \\
& \theta\left(W_{k} \otimes F^{s} T^{*}(K)^{p}\right) \subset F^{1 \mathrm{ig}(s / p)} T^{*}(K),
\end{aligned}
$$

where $\operatorname{lig}(x)$ is the least integer greater than or equal to x.
Corollary 3.4. Let $a \in F^{s, t}=F^{s, t} T^{*}(K)$. Then

$$
\begin{array}{ll}
S q^{i} a \in F^{s, t+i} & \text { if } i<t, \\
S q^{i} a \in F^{s+i-t, 2 t} & \text { if } i \geq t, \\
\beta^{e} P^{i} a \in F^{s, t+2 i(p-1)+\varepsilon} & \text { if } 2 i<t, \\
\beta^{\varepsilon} P^{i} a \in F^{s+(2 i-t)(p-1)+\varepsilon, p t} & \text { if } 2 i \geq t .
\end{array}
$$

Therefore in the E_{0}-term of the spectral sequence passing to $H^{*}(T K)$, the functions $S q^{i}$ and $\beta^{\varepsilon} P^{i}$ are defined as follows:

$$
\begin{aligned}
& S q^{i} a=\theta\left(e_{q-i} \otimes a^{2}\right), \\
& \beta P^{i} a=(-1)^{i} v(-q+1) \theta\left(c_{0}\right), \\
& \beta P^{i} a=(-1)^{i} v(-q+1) \theta\left(c_{0}^{\prime}\right),
\end{aligned}
$$

for $a \in E_{0,}^{s, t}$, where $q=s+t$ and

$$
\begin{aligned}
& c_{0}=(-1)^{m+m q} m!e_{(q-2 i)(p-1)} \otimes a^{p}, \\
& c_{0}^{\prime}=(-1)^{m+m q} m!e_{(q-2 i)(p-1)-1} \otimes a^{p} .
\end{aligned}
$$

Thus the functions $S q^{i}$ and $\beta^{e} P^{i}$ are homomorphisms on the E_{0}-term. Generally, recalling the usual formula

$$
\begin{gathered}
E_{r}^{s, t}=Z_{r}^{s, t} /\left(d Z_{r-1}^{s-r+1, t+r-2}+Z_{r}^{s+1, t-1}\right), \\
Z_{r}^{s, t}=\left\{x \in F^{s} T^{*}(K) \mid d x \in F^{s+r} T^{*}(K)\right\}, \quad r \geq 1,
\end{gathered}
$$

we obtain homomorphisms

$$
\begin{array}{ll}
S q^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s, t+i} & (i<t), \\
S q^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s+i-t, 2 t} & (i \geq t), \\
\beta^{\varepsilon} P^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s, t+2 i(p-1)+\varepsilon} & (2 i<t), \\
\beta^{\varepsilon} P^{i}: E_{r}^{s, t} \longrightarrow E_{r}^{s+(2 i-t)(p-1)+\varepsilon, p t} & (2 i \geq t),
\end{array}
$$

for all $r \geq 0$.
Lemma 3.5. The functions $S q^{i}$ and $\beta^{\varepsilon} P^{i}$ are homomorphisms on the $E_{r}-$ terms for all $r \geq 0$.

We now have
Lemma 3.6. Let $a \in Z_{r}^{s, t}$. Then
$S q^{i} a \in Z_{r}^{s, t+i}$ if $i<t-r+1$,
Sq $q^{i} a \in Z_{q}^{s, t+i}$ where $q=i-t+2 r-1$ if $t-r+1 \leq i<t$,
$S q^{i} a \in Z_{q}^{s+i-t, 2 t}$ where $q=2 r-1$ if $i \geq t$,
$\beta^{\varepsilon} P^{i} a \in Z_{r}^{s, t+2 i(p-1)+\varepsilon}$ if $2 i<t-r+1$,
$\beta^{\varepsilon} P^{i} a \in Z_{q}^{s, t+2 i(p-1)+\varepsilon}$ where $q=r+(2 i-t+r-1)(p-1)+\varepsilon$

$$
\text { if } t-r+1 \leq 2 i<t \text {, }
$$

$\beta^{\varepsilon} P^{i} a \in Z_{r}^{s+(2 i-t)(p-1)+\varepsilon, p t}$ where $q=r p-p+1+\varepsilon$ if $2 i \geq t$.
Proof. Calculate $d S q^{i} a, d \beta^{\varepsilon} P^{i} a$ and estimate the filtration degree. Then the lemma follows from Corollary 3.4 and the definitions.
q.e.d.

Proofs of Thborems 1.2, 1.3 and 1.4. Theorem 1.2 follows immediately from Lemmas 3.1 and 3.5; Theorem 1.3 from Lemmas 3.1 and 3.6, and Theorem 1.4 from Lemma 3.1 and Proposition 1.1.
q.e.d.

§ 4. The Eilenberg-Moore spectral sequence

Let G be a connected associative H-space. Let X be a right G-space and Y a left G-space. The geometric bar construction on X and Y over G, to be denoted by $\boldsymbol{G}=\boldsymbol{G}(X, G, Y)$, is defined as follows. Put

$$
\boldsymbol{G}_{n}=\boldsymbol{G}_{n}(X, G, Y)=X \times G \times \cdots \times G \times Y, \quad n \geq 0,
$$

where the factor G occurs n-times. Define face operators $\delta_{i}: \boldsymbol{G}_{\boldsymbol{n}} \rightarrow \boldsymbol{G}_{n-1}$ by

$$
\delta_{i}\left(x, g_{1}, \ldots, g_{n}, y\right)= \begin{cases}\left(x g_{1}, g_{2}, \ldots, g_{n}, y\right) & (i=0) \\ \left(x, g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}, y\right) & (1 \leq i \leq n-1) \\ \left(x, g_{1}, \ldots, g_{n-1}, g_{n} y\right) & (i=n)\end{cases}
$$

and degeneracy operators $\sigma_{i}: \boldsymbol{G}_{\boldsymbol{n}} \rightarrow \boldsymbol{G}_{n+1}$ by

$$
\sigma_{i}\left(x, g_{1}, \ldots, g_{n}, y\right)=\left(x, g_{1}, \ldots, g_{i}, e, g_{i+1}, \ldots, g_{n}, y\right) \quad(0 \leq i \leq n)
$$

where $e \in G$ is the identity. It is easy to check the simplicial identities in $\boldsymbol{G}(X, G$, Y).

Let $S_{*}(T)$ denote the singular chain complex of a space T in coefficient Z_{p} with all vertices at the base point and $C_{*}(T)$ denote the normalization of $S_{*}(T)$. Let $S^{*}(T)=\operatorname{Hom}\left(S_{*}(T), Z_{p}\right)$. The complex $S_{*}(T)$ is regarded as a simplicial Z_{p}-coalgebra and $S^{*}(T)$ as a simplicial Z_{p}-algebra through the Eilenberg-Zilber map.

We now obtain a bisimplicial Z_{p}-coalgebra K by setting $K_{n, *}=S_{*}\left(\boldsymbol{G}_{n}\right)$. Here the horizontal face and degeneracy operators are $d_{i}^{h}=\left(\delta_{i}\right)_{*}$ and $s_{i}^{h}=\left(\sigma_{i}\right)_{*}$, respectively, and the vertical operators are the usual ones in $S_{*}\left(\boldsymbol{G}_{n}\right)$. Dualizing this, we obtain a bicosimplicial Z_{p}-algebra $K^{* *}=\operatorname{Hom}\left(K_{* *}, Z_{p}\right)$.

Let $p: \boldsymbol{G}_{0}=X \times Y \rightarrow X \times{ }_{G} Y$ be the projection. Then the map

$$
p^{*}: S^{*}\left(X \times{ }_{G} Y\right) \longrightarrow S^{*}(X) \otimes S^{*}(Y)
$$

is regarded as a map

$$
p^{*}: S^{*}\left(X \times{ }_{G} Y\right) \longrightarrow S^{*}(X) \square_{S^{*}(G)} S^{*}(Y),
$$

and induces a coaugmentation

$$
\eta: S^{*}\left(X \times{ }_{G} Y\right) \longrightarrow K^{* *}
$$

The cohomology of the bicosimplicial Z_{p}-algebra $K^{* *}$ is, by definition, Cotor $_{C^{*}(G)}$ $\left(C^{*}(X), C^{*}(Y)\right)$. Now J. C. Moore [10] states that the map η induces an isomorphism

$$
H^{*}\left(X \times{ }_{G} Y ; Z_{p}\right) \cong \operatorname{Cotor}_{C^{*}(G)}\left(C^{*}(X), C^{*}(Y)\right)
$$

Filter the total complex $T^{*}(K)$ as in $\S 1$. Then we have the Eilenberg-Moore spectral sequence $\left\{E_{r}\right\}$ such that

$$
E_{2} \cong \operatorname{Cotor}_{H^{*}\left(G ; Z_{p}\right)}\left(H^{*}\left(X ; Z_{p}\right), H^{*}\left(Y ; Z_{p}\right)\right) \Longrightarrow H^{*}\left(X \times_{G} Y ; Z_{p}\right),
$$

into which the Steenrod operations are introduced as is discussed in $\S \S 2,3$.
We shall recall two kinds of the Steenrod operations in $\operatorname{Cotor}_{H^{*}\left(G ; Z_{p}\right)}\left(H^{*}(X ;\right.$ $\left.Z_{p}\right), H^{*}\left(Y ; Z_{p}\right)$).

Define $H_{*}(\boldsymbol{G})=H_{*}(X) \otimes T H_{*}(G) \otimes H_{*}(Y)$, where $T H_{*}(G)$ is the tensor algebra of $H_{*}(G)$ and the coefficient ring is Z_{p}. Then $H_{*}(\boldsymbol{G})$ forms a simplicial Z_{p}-coalgebra and the normalization $\boldsymbol{B}=\mathrm{CH}_{*}(\boldsymbol{G})$ coincides, up to sign, with the bar construction. The usual notation $x\left[g_{1}|\cdots| g_{n}\right] y$ is used for an element in \boldsymbol{B}. The differential in \boldsymbol{B} is given by

$$
\begin{aligned}
d\left(x\left[g_{1}|\cdots| g_{n}\right] y\right)= & x g_{1}\left[g_{2}|\cdots| g_{n}\right] y \\
& +\sum(-1)^{i} x\left[g_{1}|\cdots| g_{i} g_{i+1}|\cdots| g_{n}\right] y \\
& +(-1)^{n} x\left[g_{1}|\cdots| g_{n-1}\right] g_{n} y .
\end{aligned}
$$

(Remark that the sign convention differs from the usual one.)
Lemma 4.1. Let π be a cyclic group of order p and let W be the standard $Z_{p} \pi$-free resolution of Z_{p} such that $W_{0}=Z_{p} \pi$ with generator e_{0}. Form $W \otimes \boldsymbol{B}$ and bigrade it by

$$
[W \otimes \boldsymbol{B}]_{s, t}=\sum_{i+j=s} W_{i} \otimes \boldsymbol{B}_{j, t}
$$

Then there exists a morphism of bigraded $Z_{p} \pi$-complexes

$$
\phi: W \otimes \boldsymbol{B} \longrightarrow \boldsymbol{B}^{p}=\boldsymbol{B} \otimes \cdots \otimes \boldsymbol{B}
$$

which is natural in the \boldsymbol{B} and satisfies the following properties:
(i) $\phi(w \otimes b)=0$ if $b \in \boldsymbol{B}_{0}$ and $w \in W_{i}, i>0$,
(ii) $\phi\left(e_{0} \otimes b\right)=D(b)$ if $b \in \boldsymbol{B}$, where D is the iterated coproduct,
(iii) if $X=G$, then ϕ is a morphism of left $H_{*}(G)$-modules, where $H_{*}(G)$ operates on $W \otimes \boldsymbol{B}$ by

$$
a(w \otimes b)=(-1)^{\operatorname{deg} g \operatorname{deg} a} w \otimes a b
$$

(iv) $\phi\left(W_{i} \otimes \boldsymbol{B}_{\text {s.t }}\right)=0$ if $i>(p-1) s$.

Proof. See, for example, J. P. May [9; Lemma 11.3]. q.e.d.

Define $H^{*}(\boldsymbol{G})=H^{*}(X) \otimes T H^{*}(G) \otimes H^{*}(Y)$. Then $H^{*}(\boldsymbol{G})$ forms a cosimplicial Z_{p}-algebra and let $\boldsymbol{C}=\operatorname{CH}^{*}(\boldsymbol{G})$ denote the normalization of $H^{*}(\boldsymbol{G})$. Apparently \boldsymbol{C} is the dual to \boldsymbol{B} and is a differential module over the $\bmod p$ Steenrod algebra.

Definition. Let $U: \boldsymbol{C}^{p} \rightarrow\left(\boldsymbol{B}^{p}\right)^{*}$ be the natural shuffle map and define a $Z_{p} \pi$-morphism

$$
\theta: W \otimes \boldsymbol{C}^{p} \longrightarrow \boldsymbol{C}
$$

by

$$
\theta(w \otimes x)(k)=(-1)^{\text {deg } w \operatorname{deg} x} U(x) \phi(w \otimes k),
$$

for $w \in W, x \in \boldsymbol{C}^{p}, k \in \boldsymbol{B}$.
Using the terminology of [9], we have apparently
Lemma 4.2. (C, θ) is a reduced mod p object, a unital object, a Cartan object and an Adem object of $\mathscr{C}(p)$.

Consequently we have
Theorem 4.3. There exist natural homomorphisms $S q_{D}^{l}$ and $\beta^{e} P_{D}^{l}$ for
$i \geq 0, \varepsilon=0,1$, called the diagonal Steenrod operations, defined on Cotor $=$ $\operatorname{Cotor}_{H^{*}\left(G ; Z_{p}\right)}\left(H^{*}\left(X ; Z_{p}\right), H^{*}\left(Y ; Z_{p}\right)\right)$, that is,

$$
\begin{aligned}
& S_{D}^{i}: \text { Cotor }^{s, t} \longrightarrow \text { Cotor }^{s+i-t, 2 t} \\
& \beta^{\varepsilon} P_{D}^{i}: \text { Cotor }^{s, t} \longrightarrow \text { Cotor }^{s+(2 i-t)(p-1)+\varepsilon, p t} .
\end{aligned}
$$

These operations satisfy the following properties:
(i) $S q_{D}^{i}=0$ if $i<t$ or $i>s+t$, $P_{D}^{i}=0$ if $2 i<t$ or $2 i>s+t$, $\beta P_{D}^{i}=0$ if $2 i<t$ or $2 i \geq s+t$,
(ii) $S q_{D}^{i} x=x^{2}$ if $i=s+t$, $P_{D}^{2 i} x=x^{p} \quad$ if $\quad i=s+t, \quad$ for $\quad x \in \operatorname{Cotor}^{s, t}$,
(iii) the Cartan formula and the Adem relations hold.

Note that $S q_{D}^{0} \neq 1, P_{D}^{0} \neq 1$.

Notation.

$$
\begin{aligned}
& \overline{S q}_{D}^{i}=S q_{D}^{i+t}: \operatorname{Cotor}^{s, t} \longrightarrow \text { Cotor }^{s+i, 2 t} \\
& \beta^{\varepsilon} \bar{P}_{D}^{i}=\beta^{\varepsilon} P_{D}^{i+t}: \operatorname{Cotor}^{s, 2 t} \longrightarrow \text { Cotor }^{s+2 i(p-1)+\varepsilon, 2 p t} .
\end{aligned}
$$

On the other hand, since \boldsymbol{C} is a differential module over the $\bmod p$ Steenrod algebra, the following Steenrod operations are induced on Cotor:

$$
\begin{aligned}
& S q_{V}^{i}: \operatorname{Cotor}^{s, t} \longrightarrow \text { Cotor }^{s, t+i} \\
& \beta^{\varepsilon} P_{V}^{i}: \text { Cotor }^{s, t} \longrightarrow \text { Cotor }^{s, t+2 i(p-1)+\varepsilon},
\end{aligned}
$$

for $i \geq 0, \varepsilon=0,1$. These operations are called the vertical Steenrod operations and satisfy, a priori, the usual properties such as the Cartan formula and the Adem relations.

Lemma 4.4. Let π be a cyclic group of order p. Then the $Z_{p} \pi$-morphism

$$
\theta: W \otimes \boldsymbol{C}^{p} \longrightarrow \boldsymbol{C},
$$

defined after Lemma 4.1, is a morphism of modules over the mod p Steenrod algebra \mathscr{A}_{p}, where \mathscr{A}_{p} acts on $W \otimes C^{p}$ by

$$
a(w \otimes c)=(-1)^{\operatorname{deg} w d \operatorname{deg} a} w \otimes a c
$$

for $a \in \mathscr{A}_{p}, w \in W, c \in \boldsymbol{C}^{p}$.
Proof of Theorem 1.5. Let $u \in E_{2}^{s, t}$ be represented by $a \in T^{q} K$ such that $a \in F^{s} T K$ and $d a \in F^{s+2} T K$. Let $p>2$. Then $\beta^{\varepsilon} P^{i} u$ is represented by

$$
\beta^{\varepsilon} P^{i} a=(-1)^{i} v(-q) \theta\left(e_{(q-2 i)(p-1)-\varepsilon} \otimes a^{p}\right)
$$

(see §3). Recall from Lemma 3.6 that

$$
\begin{aligned}
& \beta^{e} P^{i} a \in Z_{2}^{s, t+2 i(p-1)+\varepsilon}, \quad \text { when } \quad 2 i<t, \\
& \beta^{\varepsilon} P^{i} a \in Z_{2}^{s+(2 i-t)(p-1)+\varepsilon, p t}, \quad \text { when } \quad 2 i \geq t .
\end{aligned}
$$

Now we have, for $k \in T_{*}(K)$,

$$
\begin{aligned}
\left(\beta^{\varepsilon} P^{i} a\right)(k) & =(-1)^{i} v(-q) \theta\left(e_{(q-2 i)(p-1)-\varepsilon} \otimes a^{p}\right)(k) \\
& =(-1)^{i+\varepsilon p q} v(-q) U\left(a^{p}\right) \phi\left(e_{(q-2 i)(p-1)-\varepsilon} \otimes k\right) .
\end{aligned}
$$

(i) Assume that $2 i<t$. Then estimating a filtration degree by Lemma 3.2, we need only pick out from k the component which lies in $C_{s, t+2 i(p-1)+\varepsilon}$ and consider the composite

$$
\begin{aligned}
& W_{(q-2 i)(p-1)-\varepsilon} \otimes C_{s, t+2 i(p-1)+\varepsilon}(K) \\
& \xrightarrow{D \otimes D} W_{s(p-1)} \otimes W_{(t-2 i)(p-1)-\varepsilon} \otimes C_{s, t+2 i(p-1)+\varepsilon}\left(K^{p}\right) \\
& \xrightarrow{1 \otimes \phi^{\nu}} W_{s(p-1)} \otimes C_{s, t}(K)^{p} \\
& \xrightarrow{\phi^{h}} C_{s, t}(K)^{p} .
\end{aligned}
$$

Recall from [7; Lemma 8.2] that

$$
\phi^{h}\left(e_{s(p-1)} \otimes k_{1} \otimes \cdots \otimes k_{p}\right)=(-1)^{m s} v(-s)^{-1} k_{1} \otimes \cdots \otimes k_{p}
$$

and an easy calculation shows that $\beta^{\varepsilon} P^{i} a$ represents $\beta^{\varepsilon} P_{V}^{i} u$ on Cotor.
(ii) Assume that $2 i \geq t$. Then, estimating a filtration degree, we need only pick out from k the component which lies in $C_{s+(2 i-t)(p-1)+\varepsilon, p t}$ and consider the composite

$$
\begin{aligned}
& W_{(q-2 i)(p-1)-\varepsilon} \otimes C_{s+(2 i-t)(p-1)+\varepsilon, p t}(K) \\
& \xrightarrow{D \otimes D} W_{(q-2 i)(p-1)-\varepsilon} \otimes W_{0} \otimes C_{s+(2 i-t)(p-1)+\varepsilon, p t}\left(K^{p}\right) \\
& \xrightarrow{1 \otimes \phi^{\nu}} W_{(q-2 i)(p-1)-\varepsilon} \otimes C_{s+(2 i-t)(p-1)+\varepsilon, t}(K)^{p} \\
& \xrightarrow{\phi^{h}} C_{s, t}(K)^{p} .
\end{aligned}
$$

Since $\phi^{v}\left(e_{0} \otimes k_{1} \times \cdots \times k_{p}\right)=\xi\left(k_{1} \times \cdots \times k_{p}\right)$ by Lemma 2.1, $\phi^{v} D$ is the diagonal map. Remark that ϕ^{h} commutes with the internal differential. Then an easy calculation shows that $\beta^{\varepsilon} P^{i} a$ represents $\beta^{\varepsilon} P_{D}^{i} u$ on Cotor.

If $p=2$, then the proof is similar.
q.e.d.

Proof of Theorem 1.6. Let $p>2$. Let $u \in \operatorname{Cotor}^{s, 2 t} \cong E_{2}^{s, 2 t}$ be represented by $x \in T^{*}(K)$. Then by Lemma 4.4, $P_{V}^{p a} \bar{P}_{D}^{b} u$ is represented by

$$
\begin{aligned}
(*)= & (-1)^{i} v(-q) P^{p a} \theta\left(e_{(s-2 b)(p-1)} \otimes x^{p}\right) \\
= & (-1)^{i^{\prime}} v\left(-q^{\prime}\right) \theta\left(e_{(s-2 b)(p-1)} \otimes\left(P^{a} x\right)^{p}\right) \\
& +\sum \theta\left(e_{(s-2 b)(p-1)} \otimes P^{i_{1}} \otimes \cdots \otimes P^{i_{p}} x\right),
\end{aligned}
$$

where $i=b+t, q=s+2 t, i^{\prime}=t+a(p-1), q^{\prime}=s+2 t+2 a(p-1)$. Since the second term is contained in the image of the boundary, (*) represents $\bar{P}_{D}^{b} P_{V}^{a} u$.

If $p=2$, then the proof is similar.
q.e.d.

§5. The Serre spectral sequence

Let $f: E \rightarrow B$ be the Serre fibration, where B is simply connected. According to A. Dress [4], there is a bisimplicial Z_{p}-coalgebra K and an augmentation $\varepsilon: K$ $\rightarrow S_{*}(E)$ such that $\varepsilon^{*}: H^{*}\left(E ; Z_{p}\right) \rightarrow H^{*}(T K)$ is an isomorphism. Thus the filtration on $T K$ as in $\S 1$ gives rise to the Serre spectral sequence

$$
E_{2}^{s, t} \cong H^{s}\left(B ; H^{t}\left(F_{b} ; Z_{p}\right)\right) \Longrightarrow H^{s+t}\left(E ; Z_{p}\right), \quad b \in B
$$

where $F_{b}=f^{-1}(b)$, and Theorems 1.2, 1.3 and 1.4 recover those in [1], [6], [7] and [19].

References

[1] S. Araki, Steenrod reduced powers in the spectral sequence associated with a fibering, I, II, Mem. Fac. Sci., Kyushu Univ., Ser. A, 11 (1957), 15-64, 81-97.
[2] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., No. 304, Springer-Verlag, 1972.
[3] A. Dold, Über die Steenrodschen Kohomologieoperationen, Ann. of Math. 73 (1961), 258-294.
[4] A. Dress, Zur Spectralsequenz von Faserungen, Invent. Math. 3 (1967), 172-178.
[5] S. Eilenberg and J. C. Moore, Homology and fibrations I, Comment. Math. Helv. 40 (1966), 199-236.
[6] L. Kristensen, On the cohomology of two-stage Postonikov systems, Bull. Amer. Math. Soc. 67 (1961), 597-602.
[7] L. Kristensen, On the cohomology of two-stage Postonikov systems, Acta Math. 107 (1962), 73-123.
[8] J. P. May, Simplicial objects in algebraic topology, Van Nostrand, 1967.
[9] J. P. May, A general approach to Steenrod operations, The Steenrod algebra and its applications, Lecture Notes in Math. No. 168, Springer-Verlag, 1970, 153-231.
[10] J. C. Moore, Algèbre homologique et homologie des espaces classifiants, Sémiaire Henri Cartan, Exposé 7, 1959/60.
[11] D. Rector, Steenrod operations in the Eilenberg-Moore spectral sequence, Comment. Math. Helv. 45 (1970), 540-552.
[12] M. Rothenberg and N. E. Steenrod, The cohomology of classifying space of H-space, Bull. Amer. Math. Soc. 71 (1965), 872-875.
[13] M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of H-spaces, Mimeographed Notes.
[14] W. M. Singer, Steenrod squares in spectral sequences, I, II, Trans. Amer. Math. Soc. 175 (1973), 327-336, 337-353.
[15] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58-93.
[16] L. Smith, On the Künneth theorem I, Math. Z. 116 (1970), 94-140.
[17] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies, No. 50, Princeton Univ. Press, 1962.
[18] H. Uehara, B. Al-Hashimi, F. S. Brenneman and G. Herz, Steenrod squares in Cotor, Manuscripta Math. 13 (1974), 275-296.
[19] R. Vázquez García, Nota sobre los cuadrados de Steenrod en la sucesion espectral de un espacio fibrado, Bol. Soc. Math. Méxicana 2 (1957), 1-8.

College of Education,
University of the Ryukus;
Research Institute for Mathematical Sciences, Kyoto University

[^0]: *) The squaring operations in the Eilenberg-Moore spectral sequence and the classifying space of an associative H-space, I, Publ. Res. Inst. Math. Sci., Kyoto Univ. 13 (1977), 755-776.
 **) On the cohomology mod 2 of the classifying space of $\operatorname{Ad} E_{7}$, J. Math. Kyoto Univ., 18 (1978), 535-542.
 ***) On the mod p cohomology of the classifying spaces of the exceptional groups, I, II, III, IV, J. Math. Kyoto Univ., to appear.
 ${ }^{* * * *)}$ The mod 2 cohomology of the classifying space of the semi-spinor group Ss(12), mimeographed note.

