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Introduction

R. Vazquez Garcia [19] and S. Araki [1] introduced two kinds of the
Steenrod operations into the mod p Serre spectral sequence {Er}, that is, the
squaring operations

(a) Sq':E < »£r* '
+ί (i < f),

(b) SqΊE * >JEr'-'-2' O ' > 0 >

for p = 2, and the reduced power operations

(a) β P*:E ' >£*,r+2i(p-i)+e (2i < ί; ε = 0, 1),

(b) jβ'P': E5

r < > jsrκ2i-f)(p-i)+..pr (2i £ ί; ε = 0, 1),

for p an odd prime; and they discussed the properties of these operations. Also
L. Kristensen [6], [7] obtained the results by using the simplical method.

On the other hand, along with the establishment of the Eilenberg-Moore
spectral sequence, J. P. May conjectured at the Conference on Algebraic Topolo-
gy at Chicago Circle in 1968 that one might introduce the Steenrod operations into
the mod/? Eilenberg-Moore spectral sequence; and then D. Rector [10] and
L. Smith [15], [16] showed that the mod p Eilenberg-Moore spectral sequence
is a spectral sequence of modules over the mod p Steenrod algebra with respect
to the operations of type (a).

Further, in his work [9], J. P. May developed a general theory to introduce
the Steenrod operations into a spectral sequence, and W. M. Singer [14] intro-
duced the squaring operations of both types (a) and (b) into a class of spectral
sequences such as the change of ring spectral sequence, the Eilenberg-Moore
spectral sequence and the Serre spectral sequence. It remains to introduce the
Steenrod reduced powers into such spectral sequences.

The purpose of this paper is to introduce and study the Steenrod operations
of both types (a) and (b) for any prime p in such a class of spectral sequences of
Eilenberg-Moore type. The main results are Theorems 1.2, 1.3, 1.4, 1.5 and
1.6. Our results extend those obtained by W. M. Singer [14] who worked when
p = 2. The method is slightly different from [14]. The key lemma is Lemma
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2.3, which follows from A. Dold [3; Satz 1.12], and this enables us to work for

any prime p.
The paper is motivated by introducing the Steenrod operations into the

Eilenberg-Moore spectral sequence to calculate the cohomology of the classifying
spaces of Lie groups. To have the Steenrod operations in the spectral sequence
is helpful in at least two ways: first in proving the collapsing of the spectral
sequence and second in reproducing the data lost in passing to quotient. The
applications are found in the works of M. Mimura and M. Mori**, A. Kono
and M. Mimura***, M. Mimura and Y. Sambe***), and M. Mori*****, in
which they calculate the cohomology of the classifying spaces of some Lie groups
whose integral homology groups have torsion groups.

The author would like to express his gratitude to Professors Tatsuji Kudo,

Masahiro Sugawara, Mamoru Mimura and Shichirό Oka who read this manu-
script and gave him advices.

§1. Results

Let p be a prime, and 0 be the category of finite ordered sets and non-
decreasing maps. A simplicial Zp-module R is a contra variant functor from
Θ to the category of Zp-modules, that is, .R is a collection of Zp-modules Rn

(n>0) together with morphisms dt: Rn-+Rn-ί9 st: Rn-*Rn+1 (0<ί<n), called the
face operators and the degeneracy operators, which satisfy the simplicial identities
(see J. P. May [8; Definitions 1.1 and 2.1]). Then we write CR for the Zp-

complex such that CnR = Rn, d=Σ(~ 1)%, and CR forms a differential Zp-
coalgebra with coproduct ξD: CR-*C(RxR)-+CR®CR, where D is the diagonal
map and ξ is the Alexander-Whitney map. A simplicial Zp-coalgebra is a
simplicial Zp-module equipped with the coproduct ξD.

A bisimplicial Zp-module is a contravariant functor from Θxθ to the
category of Zp-modules. We write dh

i9 s] for the horizontal face and degeneracy
operators and dϊ, s? for the vertical face and degeneracy operators. Let K be a
bisimplicial Zp-module. We write CK for the double Zp-complex such that

CmfnK = Kmtn, dh = Σ(-Vldh

i9 dv=Σ(-l)ldϊ, and TK for the total Zp-complex

such that TnK=Σs+t=nCs,tK> d = dh + (-l)5dv on CSttK. Then we can give CK

*) The squaring operations in the Eilenberg-Moore spectral sequence and the classifying space
of an associative H-space, I, Publ. Res. Inst. Math. Sci., Kyoto Univ. 13 (1977), 755-776.

**) On the cohomology mod 2 of the classifying space of AdE7, J. Math. Kyoto Univ.,
18 (1978), 535-542.

***) On the mod p cohomology of the classifying spaces of the exceptional groups, I, II, III, IV,
J. Math. Kyoto Univ., to appear.

****) The mod 2 cohomology of the classifying space of the semi-spinor group Ss(12), mimeo-
graphed note.
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the bigraded Zp-coalgebra structure in the above way, and a bisimplicial Zp-
module with this structure is called a bisimplicial Zp-coalgebra. Apparently
the coalgebra structure on CK induces the ones on TK and on K0*.

An augmentation ε: K-+R for a bisimplicial Zp-coalgebra K is a morphism
such that 6 = 0 on Ks* for s>0 and that ε: K0*^R* is a morphism of simplicial
Zp-coalgebras satisfying εd*} = εdg: K^-^R*, where R is a simplicial Zp-coalgebra.

Dualizing them, we can define a cosimplicial Zp-module, -algebra, a bico-
simplicial Zp-module, -algebra, and a coaugmentation, etc. Obvious notation
and terminology are similarly used (see, for example, [2], [11]).

We now state our results. Let R be a simplicial Zp-coalgebra and K a bisim-
plicial Zp-coalgebra. Then Horn (R, Zp) and Hom(K, Zp) form a cosimplicial
Zp-algebra and a bicosimplicial Zp-algebra, respectively, and hence H*(CR) and
H*(TK) have the products. We shall define the Steenrod operations on H*(TK)
as well as on H*(CR), and prove the following proposition in § 2:

PROPOSITION 1.1. Let ε: K-*R be an augmentation. Then ε*: H*(CR)
-+H*(TK) preserves the products and the Steenrod operations.

We define an increasing filtration on TK by

FrTnK= ΣKs,t.
s+t=n
s^r

This gives rise to a spectral sequence passing to H*(TK). Dually, putting TnK
= Hom(TrtjK, Zp), we define a decreasing filtration on T*K by

F'T»K = {/eT»lt|/(Fr.1TΛX) = 0},

which gives rise to a spectral sequence {Er} passing to H*(TK).

This spectral sequence {Er} is a spectral sequence of Zp-algebras. Further
we shall define the 'Steenrod operations' on £r, r>2, (see § 3):

(a) Sq*:E ' > E*r>*+i (ί < ί),

β'pi'.E' * ,£;.f+2i(p-υ+« (2f < ί; ε = 0, 1),

(b) S^:£;.»—>£^'-'.2ί ( / > 0 >

^εpi; £..f > £>+(2i-f)(p-l)+e,Pf (2/ > ί; fi = Q, 1) .

Here we always assume that the underlying coefficient ring is Z2 for the
squaring operations and Zp, p an odd prime, for the reduced power operations.

THEOREM 1.2. The Steenrod operations on E2 determine those on Erfor all
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THEOREM 1.3. Let u e E}*'.
(i) Ifi<t-r + l, then drSqiu = Sqidru. If2i<t-r + l, then

s

q^
2i(P~^+s where q = r + (2i-t

- - ^ and

(ii) // f-r+l<i<ί, then Sqlu survives to Es

q-
t+i where q=2r + i-t-l,

Sqldru survives to Es

q

+^2t~2r+2

9 and

dqSqlu = Sqldru.

If t-r+l<,2i<t9 then βεPlu survives to Es

q

r-l)(p-l) + ε, ̂ Pldru survives to £*+«, '+2^-

dqβ'Piu = (- lΫβ'PirU.

If t<.i, then Sq*u survives to Es

q

+i-''2t where q = 2r-l, Sqldru
Es^+i-^2t~2r+2, and

dqSq*u = Sqldru.

If ί^2i, then βεPlu survives to Es

q

+ (2ί-θ(p-D+ePpf ^here q = rp-p + l+ε, β^d.u
survives to jg+w-oίp-υ+ +β.pί+β-i and

(iiΐ)
survives to

survives to jgj+w-oίp-υ+ +β.pί+β-i, and

THEOREM 1.4. Let p: Fs'ί=Fs/fs+ί(TX)~>£fe' be the natural projection
andueF5*'.

(i) // i < t, then SqtueF * and ρSq*u = Sqlρu.
If 2i < t, then β ptueF' * and pβεPlu = βεPlpu.

(ii) // t < i, then Sfl'iieF +'-' 2' and pSq*u = Sq*pu.
Ift£2i, then

Proofs of Theorems 1.2, 1.3 and 1.4 will be given in § 3.
The Eilenberg-Moore spectral sequence is a typical example of this spectral

sequence ([5], [10], [12], [13]). Let G be a connected associative H-space.
Let X be a right G-space and Y a left G-space. Then we have the Eilenberg-
Moore spectral sequence

E2 ^ CotorH,(G;Zp)(H*(Jί; Zp), #*(Y; Zp))=ϊH*(X x G 7; Zp),

to which our results are applicable (see § 4).

It is known in [9], [18] that two kinds of the Steenrod operations are defined
on CotorH,(G;Zp)(#*pf Zp), #*(7; Zp)) ( = Cotor), that is, the vertical squaring
operations

Sq\,: Cotor5'' - > Cotor' '+S
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the diagonal squaring operations

Sql

D: Cotor5-' > Cotor5+ί-''2',

for p = 2, and the vertical reduced power operations

βεPί: Cotor5''

the diagonal reduced power operations

βεPl

D: Cotor5''

for p an odd prime. The vertical operations are induced by the topological
Steenrod operations and the diagonal operations are algebraically defined on
Cotor. These operations satisfy the usual properties such as the Cartan formula
and the Adem relations (see § 4).

We shall always assume that the coefficient ring in Cotor is Z2 when we
consider these squaring operations, and Zp9 p an odd prime, when we consider
these reduced power operations.

THEOREM 1.5. Through the isomorphism

E2 * CotorflnG;Zp)(H*(X; Zp), H*(Y; Zp))

in the Eilenberg-Moore spectral sequence, (i) the squaring operation Sql of

type (a) coincides with the vertical squaring operation Sq\, if i<t, and the
reduced power operation βεPi of type (a) coincides with the vertical reduced
power operation βεPl

v if 2i<t, and (ii) the squaring operation Sql of type
(b) coincides with the diagonal squaring operation Sq*D if i>t, and the
reduced power operation βεP* of type (b) coincides with the diagonal reduced
power operation βεPl

D if2i>t.

Since the usual properties of the Steenrod operations such as the Cartan
formula and the Adem relations hold on Cotor, these properties inherit on the
£r-term for r>2 in the Eilenberg-Moore spectral sequence by Theorems 1.2 and
1.5.

NOTATION.

WD = SΫD* '• Cotor5'' » Cotors+ί 2t,

βεPl

D = β'Pft*: Cotor' 2' » Cotor5*2^-1'^'2*'.

THEOREM 1.6.

(i) Sq$aSqb

Du = ~Sqb

DSq$u, Sq^lϊc&u = 0, for u e Cotor5''.

(ii) PpPb

Du = Pb

DP$u, P£β+Φ£u = 0, for u e Cotor5'2',
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where 0<i<p.

Proofs of Theorems 1.5 and 1.6 will be given in §4.

§ 2. The Steenrod operations

After J. P. May [9], we introduce some categories on which the Steenrod
operations will be defined.

Let p be a prime. Let π be a cyclic group of order p with generator α and

Σp the symmetric group on /^-letters. Then π is regarded as a subgroup of Σp

by α(l,...,p) = (p, l,...,p-l).
Let W be the standard Zpπ-free resolution of Zp, which has one generator

e{ in each dimension ί>0 (see [9; p. 157]). Let Fbe a ZpΣp-fτee resolution of Zp

and j : W-+ V be a morphism of Zpπ-complexes over Zp. We regard W as a

cochain complex by setting deg^= — / so that the differential is of degree 4-1,
and also V as a cochain complex in a similar way.

Define a category <£(p) as follows. The objects of ^(p) are pairs (K, θ),
where K is a homotopy associative differential Zp-algebra with differential of

degree 4-1 and Θ: W®KP-*K is a morphism of Zpπ-complexes, where π acts on

Kp = K® *®K (p-times) as a permutation, on W®KP diagonally, and on K
trivially, such that (i) the restriction of Θ to e0®Kp is π-homotopic to the iterated

product Kp->K associated in some fixed order, and (ii) Θ is π-homotopic to a
composition £(j®l): W®KP-+V®KP-^>K, where ξ is a morphism of ZpΣp-

complexes. A morphism /: (K, θ)-*(Kr, Θ') in ^(p) is a morphism /: K-^K'

of Zpπ-complexes such that θ'(l®/p) is π-homotopic to fθ.

The category &(p) is essentially the same as ^(π, oo, Zp) defined in [9;
p. 160]. The only difference between them is the sign convention of degree of

differentials.

A morphism /: (X, Θ)->(K', θ') is said to be perfect if 0'(l®/>)=/0, and

tP(p) denote the subcategory of ^(p) having the same objects (K, θ) and all
perfect morphisms between them. A unital object, a reduced mod p object, a

Cartan object and an Adem object in ^(p) are defined in the same way as [9;

p. 161, pp. 173-4].
For a simplicial Zp-module R, let C(R) denote the normalized chain com-

plex.

LEMMA 2.1. Let π be a cyclic group of order p and W the standard Zpπ-

free resolution of Zp. Then there is a natural morphism of Zp-complexes

Φ: W® C(Rp) - > W® C(R)P,

where Rp = Rx<-xR (p-times) and C(R)P = C(R)®- ®C(R) (p times), which
satisfies the following properties',
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( i ) Φ is π-equivariant,
(ii) Φ is the identity homomorphism on W ®C0ORP),
(iii) Φ(e0®kiX'-xkp) = eQ®ξ(kίx ~xkp) if k^R, where ξ: C(Rp)->

C(R)p is the Alexander-Whitney map, and
(iv) Φ(W®

PROOF. See A. Dold [3; Satz 1.12], and J. P. May [9; Lemma 7.1].
q.e.d.

We write φ for the composite

φ = (ε ® 1)Φ: W® C(RP) _*_> W® C(R)P -E®i» C(R)*>,

where ε: W-^Zp is an augmentation.
Let C*(β) = Horn (C(R\ Zp), (C(R)^* = Horn (C(R)P

9 Zp)9 and U: C*(R)p->
be the natural shuffle map. We define a Zpπ-morphism

Θ:

by

0(w ® x)(0 = (- I)de8wdes*l/(x)0(w ® /P),

where w e ί̂ , x e C*(R)P, t e C(R).

LEMMA 2.2. (C*(K), ^) is α reduced mod /? ofe ecί o/ί/ie category

PROOF. This is immediate from Lemma 2.1 (see [9; pp. 194-5]).
q.e.d.

Let K be a bisimplicial Zp-module. Let C(K) denote the normalized double
Zp-complex and T(K) the normalized total complex, and set C*(K) = Horn (C(K\
Zp) and Γ*(K) = Hom(T(K), Zp).

LEMMA 2.3. There exists a natural morphism ofZp-complexes

φ\W® T(K) - > T(KY = T(K) ®-'<8) T(K) (p-times),

which satisfies the following properties:

( i ) φ is π-equivariant,

(ii) φ(w®i) = tp, where t is a 0-simplex and w e W,
(iii) φ(e0®t)=e0<S)ξ(tp), where teT(K) and ξ is the Alexander-Whitney

map, and
(iv) φ(W® Tj(

PROOF. The map φ is defined componentwise as follows:
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Wk ® Cs>r(K)_5®^ ^ Σ Wι ® Wj ® CS,,(K")

-ίfi*^. Σ »ί® Σ
*+;=* d+-+r,,=r+

-*i-» Σ Σ c.
i+J=ktι+ '+tp=t+j

sι+ +Sp-s+i

Here D is the diagonal map, and φv and φh are constructed with respect to the
vertical degree and the horizontal degree, respectively, by using Lemma 2.1.

Now the lemma is proved by using Lemma 2.1 again. q. e. d.

Let (Γ(K)*)* = Horn (T(KY, Zp\ and 17: T*(Ky - » (Γ(*0P)* be the natural
shuffle map. We define a Zpπ-morphism

> T*(K)

by

0(w ® x)(ί) = (- l)d**™d'*xU(x)φ(\v ® 0,

where w e ̂ , x e Γ*(K)", ί e T(K).

LEMMA 2.4. (T*(X), 0) 1*5 a reduced mod p ofc/ecί of the category

PROOF. By Lemma 2.3, this is proved in the same way as Lemma 2.2.
q.e.d.

Now we shall introduce the Steenrod operations, following J. P. May [9].
Let (K, 0) be an object of <#(p). θ induces a morphism θ: W®nKP-+K of Zp-
complexes, and we define

by
D\x) = θ*(et ® XP) for x e H«(K) .

NOTATION. When p is an odd prime, we set

m = (p - l)/2,

v(- ^) = (- iy(m!)β, where q = 2j - ε, ε = 0 or 1.

If p=2, then we define £4* : H«(K)-+H*+i(K) by

f D -'W (i ^ «)
SίfW =

1 0 ( i > e ) .
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If p>2, then we define P f: H*(K}-*H«+2i^\K) and

by

)-i(x) (21 < q)
βP*(x) =

1 0 (2i>q).

By virtue of Lemmas 2.2 and 2.4, we can define, in the above way, the Steenrod
operations in H*(TK) as well as in H*(CR). Further, by [9; p. 162], the opera-
tion βPi on H*(TK) and on H*(CK) is the composite of Pi and the Bockstein

£

PROOF OF PROPOSITION 1.1. Since ε*: C*(K)-»T*(K) is a morphism of
differential Zp-algebras, the first half follows immediately. By the definitions of
0's, we have the following commutative diagram

W ® C*(R)v -JU C*(R)

Thus the second half follows from the above definition of the Steenrod operations.
q.e.d.

§ 3. The Steenrod operations in the spectral sequence

Let K be a bisimplicial Zp-coalgebra. As is described in § 1, the decreasing
filtration {F'T*(K)} on the total complex T*(K) = Hom(T(X), Zp) gives rise to
a spectral sequence {Er} passing to H*(TK). In this section we shall introduce
the Steenrod operations into the spectral sequence {Er} and prove Theorems 1.2,
1.3 and 1.4.

We first define functions Sq*: T«(K)-+T«+i(K) and β P*:
>+fi(K), ε = 0, 1, after S. Araki [1] and J. P. May [9].

Let a e T<*(K) and da = be T^+1(K). Assume that p > 2. Define tt e '

b^a2, I <, k < m,

where /=(i l5..., ifc) with Σij = p — 2k, and

^2k+ι = Σ/( - I)k*klbi*a2bi*a2—b**j"a9 0 < k <, m,

where / = (i1?..., i f c + 1) with ^ij = p-2k-1. Then
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degf 2 f c= p(q + 1) - 2/c, degί2fc+1 = p(q + 1) - 2/c - 1.

Put 7 = (q - 2i + 1) (p - 1). Define

c = Σϊ -oί- l)**/-2* ® *2* + ι ~ ΣΓ-ι(- l)

Then

degc = g + 2/O - 1), degc7 = q + 2i(p - 1) 4- 1.

An easy calculation shows that

Jc = βj ® bP9 dc' = - ^._! ® 6".

Now define functions Pi and βPi by

If p = 2, we define 5 '̂ by

Sqla = Θ(c), where c = eq,ί,ί ® b ® α + e^ ® α ® α.

Then, we see immediately the following (see J. P. May [9])

LEMMA 3.1. These functions Sql: T4(K)-+T«+i(K) and β Pl:T*(K)-+
i(p-i)+ε(jq satisfy the following properties:

( i ) dSqί = Sqίd, dβ P* = (- l^jS P'd.
(ii) // 0 is α cocycle which represents xeH*(TK), then Sq*a and βεPla

are cocycles which represent Sq*x and β£Plx, respectively.

(iii) // /:(T*(X), Θ)-+(T*(Kf), θ') is a morphism in 0>(p\ then fSq*
= Sq*f and fβ'P* = ( - iy>β P*f.

We now estimate the filtration degree. We define a filtration on T*(K)P

by

F'T*(KY = Σ Fn T*(K) ® - - ® F'p T*(K) .
rι+~ +rp£r

Then the following lemmas and corollary follow immediately from definitions.

LEMMA 3.2. I f a e F*T*(K) and da = be Fs+rT*(K), then
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LEMMA 3.3.

θ(Wk ® FST*(KY) c Fs-fcΓ*(K),

θ(Wk ® FST*(KY) a Fli*WrtT*(K),

where lig(x) is the least integer greater than or equal to x.

COROLLARY 3.4. Let a eFs^ =Fs>tT*(K). Then

S<f0eFs' ί+ί if i < t,

if i > ί,

-v+* i/ 2ί < f,

^P-^+^Pt if 2i>t.

Therefore in the £0-term of the spectral sequence passing to H*(TX), the
functions Sql and /?δP' are defined as follows:

βP*a = (-

for αe£§' f, where f̂ = s + ί and

Thus the functions Sq* and ^eP' are homomorphisms on the £0-term. General-
ly, recalling the usual formula

ZJ * = {x 6 FST*(K)\ dx e FS+T*(K)}, r > 1,

we obtain homomorphisms
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for all r>0.

LEMMA 3.5. The functions Sql and βεPl are homomorphisms on the Er-
terms for all r>0.

We now have

LEMMA 3.6. Let a e Zs

r><. Then

SqlaeZs

r'
t+i if i < t - r + 1,

Sq*a E Zs

q

 t+i where q = i - t + 2r - 1 if t - r + 1 < / < ί,

Sg'β GZ;+|-' 2f where q = 2r - 1 if i ^ ί,

if 2i < f - r + 1,

= r 4- (2ί - ί 4- r - l)(p - 1) + e

i/ ί - r + 1 < 2i < ί,

g = rp - p + 1 + ε i/ 2i > ί.

PROOF. Calculate dSq*a9 dβεPla and estimate the filtration degree. Then
the lemma follows from Corollary 3.4 and the definitions. q.e.d.

PROOFS OF THEOREMS 1.2, 1.3 AND 1.4. Theorem 1.2 follows immediately
from Lemmas 3.1 and 3.5; Theorem 1.3 from Lemmas 3.1 and 3.6, and Theorem

1.4 from Lemma 3.1 and Proposition 1.1. q.e.d.

§ 4. The Eilenberg-Moore spectral sequence

Let G be a connected associative H-space. Let X be a right G-space and
7 a left G-space. The geometric bar construction on X and Y over G, to be

denoted by G=G(X, G, 7), is defined as follows. Put

Gn = Gn(X, G, Y) = X x G x ••• x G x 7, n ^ 0,

where the factor G occurs n-times. Define face operators δt: Gn-^Gn_ί by

(x0ι,g2>->9n>y) 0' = 0)

(x, 0ι,..., 0ί0ί+ι,..., 0n, J>) (1 ̂  i < n - 1)

and degeneracy operators σ f: Gπ-^Gn+1 by

<Tί(x, 0ι,..., 0Λ, y) = (x, 0ι,..., 0ι, ^ 0ί + ι,..., 0rt, j>) (0 < i < n)
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where e e G is the identity. It is easy to check the simplicial identities in G(X9 G,

n
Let S*(T) denote the singular chain complex of a space T in coefficient Zp

with all vertices at the base point and C*(T) denote the normalization of 5#(T).
Let S*(T) = Horn (S*(Γ), Zp). The complex S*(T) is regarded as a simplicial
Zp-coalgebra and S*(T) as a simplicial Zp-algebra through the Eilenberg-Zilber

map.
We now obtain a bisimplicial Zp-coalgebra K by setting KΠt# = S#(Gn).

Here the horizontal face and degeneracy operators are d^=(δ^ and sf = (σί)+,
respectively, and the vertical operators are the usual ones in S*(Gn). Dualizing

this, we obtain a bicosimplicial Zp-algebra K** = Hom(K##9 Zp).
Let p: G0 = X x Y-*^ x G 7 be the projection. Then the map

G Y) - > S*(X) (8) S*(Y) ,

is regarded as a map

p*: S*(X x G 7) —

and induces a coaugmentation

η:S*(X x G Y )

The cohomology of the bicosimplicial Zp-algebra K** is, by definition, Cotorc*(G)

(C*(X)9 C*(Y)). Now J. C. Moore [10] states that the map η induces an iso-
morphism

H*(X x G Y Zp) s Cotorc,(G)(C*(^), C*(Y)) .

Filter the total complex T*(K) as in § 1. Then we have the Eilenberg-Moore
spectral sequence {Er} such that

E2 s CotorH,(G;Zp)(//*(Z; Zp\ H*(Y; Z,))=*H*(X x G 7; Z,),

into which the Steenrod operations are introduced as is discussed in § § 2, 3.
We shall recall two kinds of the Steenrod operations in CotorH*(G;Zp)(7f *(X

Define H*(G) = H*(X)®TH*(G)®H*(Y), where TH*(G) is the tensor

algebra of //*(G) and the coefficient ring is Zp. Then H#(G) forms a simplicial
Zp-coalgebra and the normalization B = CH*(G) coincides, up to sign, with the
bar construction. The usual notation x[0ι| |0J.y is used for an element in B.
The differential in B is given by

— \9nly
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(Remark that the sign convention differs from the usual one.)

LEMMA 4.1. Let π be a cyclic group of order p and let W be the standard
ZpTi-free resolution of Zp such that W0 = Zpπ with generator e0. Form W®B
and bigrade it by

Then there exists a morphism of bigraded Zpπ-complexes

φ: W®B - >BP = B®- ®B

which is natural in the B and satisfies the following properties:

(i) φ(w®b) = Q ifbεB0 and wεWi9 i
(ii) φ(eQ®b) = D(b) ίfbeB, where D is the iterated coproduct,
(iiϊ) if X = G, then φ is a morphism of left H*(G)-modules, where H#(G)

operates on W®B by

a(w ®b) = (- I)de8wdegflw ® ab,

(iv) φ(Wt ® B,,) = 0ifi>(p- 1)5.

PROOF. See, for example, J. P. May [9; Lemma 11.3]. q. e.d.

Define H*(G) = H*(X)®TH*(G)®H*(Y). Then #*(G) forms a cosim-
plicial Zp-algebra and let C=CH*(G) denote the normalization of H*(G).
Apparently C is the dual to B and is a differential module over the mod p Steenrod
algebra.

DEFINITION. Let U: Cp->(Bp)* be the natural shuffle map and define a
Zpπ-morphism

0:

by

0(w <g> x)(k) = (- l)de wde *t/(x)φ(w ® fc),

for weW, xeCP, keB.

Using the terminology of [9], we have apparently

LEMMA 4.2. (C, θ) is a reduced mod p object, a unital object, a Cartan
object and an Adem object of

Consequently we have

THEOREM 4.3. There exist natural homomorphisms Sq*D and βεPl

D for
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ϊ>0, ε = 0, 1, called the diagonal Steenrod operations, defined on Cotor =
CotorH,(G;Zp)(#*(*; Zp), #*(7; Zp)), that is,

: Cotors'f

These operations satisfy the following properties:

( i ) Sqί = 0 V i < t or i> s + t,
P}> = 0 i/ 2i < t or 21 > s + ί,
jjpj, = 0 i/ 2i < ί or 2i > s 4- ί,

(ii) Sg}>x = x2 if ί = s + ί,
p2fχ = XP // i = s + f, /or x e Cotors><,

(iii) the Cartan formula and the Adem relations hold.

Note that Sq^l,

NOTATION.

*: Cotors»' - > Cotors+ί»2ί,

On the other hand, since C is a differential module over the mod p Steenrod
algebra, the following Steenrod operations are induced on Cotor:

Sql

v: Cotor5' ' - > Cotor s'ί+ί,

β'Pί, : Cotor' ' - > Cotors ί+2ί^-1>+ε,

for z>0, ε = 0, 1. These operations are called the vertical Steenrod operations
and satisfy, a priori, the usual properties such as the Cartan formula and the
Adem relations.

LEMMA 4.4. Let π be a cyclic group of order p. Then the Zpπ-morphism

θ:

defined after Lemma 4.1, is a morphism of modules over the mod p Steenrod
algebra jtfp, where jtfp acts on W®Cp by

a(w ® c) = (- l)d egw d eg«w ® ac,

for a e jtfp, w e W, ceCp.

PROOF OF THEOREM 1.5. Let ueE^ be represented by a e TqK such that
a e FSTK and da e FS+2TK. Let p > 2. Then βεP*u is represented by
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(see § 3). Recall from Lemma 3.6 that

+ε, when 2z < /,

-v+' r', when 2ι > f.

Now we have, for k e

-i)-β ® k).

(i) Assume that 2/<ί. Then estimating a filtration degree by Lemma 3.2,

we need only pick out from k the component which lies in CS f ί + 2/(p-i)+ε
consider the composite

1/17 ^vh M7vγs(p-l) W "(f-

Recall from [7; Lemma 8.2] that

and an easy calculation shows that βεPia represents βεP^u on Cotor.
(ii) Assume that 21 > t. Then, estimating a filtration degree, we need only

pick out from k the component which lies in Cs+(2ί _ ί)(p-1)+ε>pf and consider the
composite

v(q-2i)(p-l)-ε

Since φv(eQ®kl x ••• x kp) = ξ(kί x ••• x /cp) by Lemma 2.1, 0'D is the diagonal
map. Remark that 0Λ commutes with the internal differential. Then an easy
calculation shows that βεPia represents βεPί

Du on Cotor.
If p = 2, then the proof is similar. q. e. d.
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PROOF OF THEOREM 1.6. Let p>2. Let u eCotoτs 2t^E% 2t be represented
by x e T*(K). Then by Lemma 4.4, P$aPb

Du is represented by

where i = fc + ί, q = s + 2ί, Γ = f + α(> - 1), g' == s + 2f + 2α(p - 1). Since the second
term is contained in the image of the boundary, (*) represents P^Pfyu.

If p = 2, then the proof is similar. q.e.d.

§ 5. The Serre spectral sequence

Let /: E-^B be the Serre fibration, where B is simply connected. According
to A. Dress [4], there is a bisimplicial Zp-coalgebra K and an augmentation ε: K
->S*(E) such that ε* : #*(£; Zp)^>H*(TK) is an isomorphism. Thus the filtration
on TK as in § 1 gives rise to the Serre spectral sequence

Ey ^ H*(B; H<(Fb'9 Z,))=» #•*'(£; Zp), b e B,

where Fb=f~l(b\ and Theorems 1.2, 1.3 and 1.4 recover those in [1], [6], [7]
and [19].
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