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§ 1. Introduction

The entropy functional #[/] is defined by

tf[/]=-Γ /(x)log/(x)dx, fe&9
J-oo

where 2 is the set of probability density functions / on R1 with \/(x)|log/(x)|dx

< oo. Let 0j be the subset of "2 with \x2f(x)dx = 1, and g e ̂ i be the Gaussian

density function with mean 0. Then Gibbs' lemma states that

(1.1)

Consider a class of functional fi[f] of the form

Under some regularity conditions on Λ, McKean[3] proved that if the inequality
(1 . 1) holds with H = #, then /ι(x) = cxx + c2x log x (c2 ̂  0).

Let ^i be the set of probability distribution functions with mean 0 and
variance 1, and G be the Gaussian distribution function belonging to ̂ ^ Tanaka
[6] considered the functional e[F] defined by

\x-y\*dM(x,yl Fe&l9

where the infimum is taken over all two-dimensional distribution functions
M(x, y) whose marginals are F and G. It is known (see [6] or [4]) that

= 2-2Φ0[F] , Φ0[f] =

where F-1(α) is the right continuous inverse function of F(x). It can be proved
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(in § 2) that

(1.2) Φ0[Ή

On the other hand, it is obvious that e[F] has the minimum at F = G, and therefore
Φ0[F] defined by (1.2) has the maximum at F= G. The main purpose of this paper
is to prove that, along the same line as McKean [3], the functional Φ0 is the
only one which has the maximum at G among those functional Φ of the form

(1.3) Φ[F]=Γ <p(F(x»dx,
J-oo

Some regularity conditions on φ must be assumed, and the precise statement is
as follows.

THEOREM A. Let φ be a function on [0, 1], and assume that

(IΛa) φ 6 C[0, 1] Π C^O, 1) and <p(0) = φ(l) = 0,

, α I 0
( 1 .46) φ'(α) = for any δ e (0, 1) .

α)-*), a t 1

// the functional Φ defined by (1.3) satisfies

(1.5) Φ[F]^Φ[G],

and is normalized so that Φ[G] = 1, then Φ = Φ0.

We also consider Boltzmann's problem for Kac's model of a Maxwellian
gas. In this model the probability distribution function F(f, x) of molecular
speeds at time t is determined by

(1.6)
(_ao

01 ΔTl Jo JR2

where 1(« ̂ ^ is the indicator function of (— oo, x] and dF(t, ) is the probability
measure corresponding to F(ί, ), t being fixed. It was proved in [6] that the
functional c decreases along the solutions of (1.6), and therefore the functional
Φ0 increases along the solutions of (1.6). As the converse statement of this, we
can prove the following theorem.

THEOREM B. Let φ be a function on [0, 1] satisfying (1.4α) and (1.46).
// the functional Φ defined by (1.3) increases with time along the solutions of
(1.6) with initial distribution functions belonging to &l9 then Φ = cΦ0, c^O.
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§ 2. Proof of Theorem A

Let Fe^i. Because the assumption (1.4) with 5 = 1/3 and the estimates

(2.1) lim x2(l - F(x)) = lim x2F(x) = 0
jc-»oo X-+-QO

imply <p(F(x)) = o(|x|~4/3) as |x|->oo, the integral defining Φ[F] is absolutely
convergent, that is, Φ[F] is well-defined.

First we prove that (1.2) holds. Because of the well-known estimates (for
example, see [1 p!75])

(2.2)

we have

1 - G(x)

G(x)

g(χ)
x '

β(x)
\*\ '

00,

X -> — 00,

«V21og
1 , α I 0,

- l -CΛ ' α T *'

which combined with (2.1) implies that

lim M0(G-*(F(x))) = 0, Fe^.
|Λ|-*OO

by parts and using d[^(G~1(F(x)))]= -G-ί(F(x))dF(x)9 weIntegrating

obtain

as was to be proved.

=
J-

Now we proceed to the proof of Theorem A. In order to clarify our method,
we perform some formal calculations; rigorous justifications of these will be
given later.

Put

1 2Γ
)2 Ί

J'
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-f ], σ ̂  Jl-ε + ε(t + m2) -

for f e(0, 1) and m e J R 1 ; let Fε be the distribution function corresponding to the
density function fe. Since Fε has mean εm/σ and variance 1, we have

(2.3) Φ[FJ ΞS ^φ(Fε(x))dx = J% ((1 - ε)G(σx) + εG ( g*^W )) dx

where /^(x) = F£(x + εm/σ) e 3>> ^ . Therefore we obtain

(2.4) O

Letting t i 0 in the above, we have

(2.5) 0 ̂  J%' (G(x))JG(x) - -5? dx

this must be the equality, because the integration of the right hand side of the
above with respect to g(m)dm yields

(x) g(m)dm = 0.

Differentiating this equality (2.5) in m, we have

(2.6) φ'(G(m)) = m - f °° '̂(G(
J-oo

and therefore φ'(G(m)) = cm. Since Φ[G] = 1, c= — 1 and hence

Proof of (2.4) : Let δ e (0, 1) be fixed, and put

A,(x) s φ(G(xJ) -

Writing down -~-Aε(x) explicitly and then using the assumption (1.4) on φ, we
OS

see that there exists a positive constant CΛ depending upon δ such that the following
estimate holds for all sufficiently large x :

(2.7)
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For each fixed f e(0, 1) and m, there exist positive εί and N^ such that

! and x>N x ; and therefore

a-)| ϊ i -G(T)

Inserting these estimates into (2.7) and then using (2.2), we have

S c

for ε<εx and x>Ni9 where c2 and c3 are some positive constants. An estimate
similar to (2.8) for ε<ε2 and x<—N2 can be obtained for some ε2>0 and N2>0.
Therefore, taking <5>0 small enough, we see that there exists an integrable function
\l/(x) (independent of ε) such that

WAM 0 ε0,

where ε0= min(ε l5 ε2) and N0= max(N l 5 N2). On the other hand, from the

explicit form of -̂ — Aε(x), it is clear that, for each fixed t and m, -^- Aε(x) is uni-

formly bounded on {|x|^JV0} for all sufficiently small ε>0. Therefore

is bounded by some integrable function for small ε>0, and hence by Lebesgue's
convergence theorem we have

elO
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which proves (2.4).

Proof of (2.5): Put

F> * x i/^ϊ x \Bt(x) = φ'(G(x))
— f x ~

xg(x) - G

and evaluate the absolute value of Bt(x). For each m there exists ί0 e (0, 1) such

that

1*1 s ^7τ^ , 0<ί<t0,

for sufficiently large |x|, and we have

)| |x|̂ (x), |x| -̂  oo,

for 0<ί<ί0. Since the last term in the above is integrable by (1.4), we obtain

(2.5) by letting 1 1 0 in (2.4) and then applying Lebesgue's dominated convergence

theorem.

Proof of (2.6): Take N> \m\ and write (2.5) with equality sign as

(2.9) 0 = ( Cm(x)dx + ( Cm(x)dx = I, + 129
J\x\>N J\x\*N

where Cm(x) = φ'(G(x)) \G(x) -~^~ xg(x) - lC l W f «>(*)} Then, for \x\>N

\φ'(G(x))mxg(x)\ ί |<p'(G(x))|x^(x) .

Since the last term in the above is integrable, we have

(2.10) -£-!, = ( -J-- Cm(x)dx = - mi φ'(G(x»xg(x)dx.
dm j\x\>Nθm J\X\>N

On the other hand
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which combined with (2.9) and (2.10) proves (2.6).

§ 3. Proof of Theorem B and some remarks

1. PROOF OF THEOREM B: It is enough to prove the following lemma.

LEMMA. Let φ be a function on [0, 1] satisfying (1.4), and assume that
the functional Φ defined by (1.3) increases along the solutions of '(1.6) with initial
distribution functions belonging to 0*^ Then Φ satisfies (1.5).

PROOF. Let F(t, x) be the solution of (1.6) with initial distribution function
F(x) belonging to ^V F(ί, x) can be expressed as Wild's sum (see [3] or [6]),

and F(J, )e<^ι f°Γ each tetQ. It was proved in [6] that e[F(ί)] decreases to
0 as 11 oo (in [6] it was assumed that F(x) has the finite fourth moment, but it is
easy to remove this restriction), and hence F(ί, x) converges to G(x) uniformly on
compacts as 11 oo. Therefore for each N>0

(3.1) lim Γ φ(F(ί, x))dx = Γ φ(G(x))Λc.
ί->oo J-N J-N

On the other hand, since F(ί, •) e ̂ ί for each ί^O, we have

(3.2) F(ί, -x) and 1 - F(ί, x) ̂  -^, x £ 0.

Making use of (3.2) and the assumption (1.4) on φ, we can prove that

= 0,lim sup \
JV-»α> f>0 I J |/l*l

which combined with (3.1) implies limr_1,00Φ[F(0] = Φ[G]. Since the conver-
gence is monotone by the assumption, we obtain (1.5).

2. Inequality of convolution type: When Fe^ t is the distribution func-

tion of a random variable X, we also write e[X] (Φ0[^Ί) for *[*Ί (Φo[*Ί) Then
the functional e satisfies the following inequality of convolution type (see [6]):

' Let Xί and X2 be independent random variables with distribution
functions belonging to &±. Then, for a, fe>0 vviί/i

(3.3)

unless both X± and X2 are Gaussian.

This fact was extended to multidimensional case by Murata and Tanaka [5], and
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to the case of real Hubert spaces by Kondό and Negoro [2]. It follows im-
mediately that the functional Φ0 also has the following property :

' Let X± and X2 be independent random variables with distribution
functions belonging to 0*^. Then, for a, b>Q with

(3<4)

unless both X} and X2 are Gaussian.

A remarkable application of (3.3) and (3.4) is that one can give a simple proof of
the central limit theorem for sums of independent random variables (see [6]);
for example, the following assertion can easily be proved by making use of (3.4):
If {Xn}nzι is a sequence of independent random variables with a common dis-

tribution function belonging to ^j., then limn^QOΦ0[n~1/2ΣZ =ι-X'k] = l

References

[1] W. Feller, An Introduction to Probability Theory and Its Applications Vol. 1, 3rd

ed., John Wiley and Sons, Inc., New York London Sydney.
[ 2 ] R. Kondό and A. Negoro, Certain functional of probability measures on Hubert spaces,

Hiroshima Math. J., 6 (1976), 421-428.
[ 3 ] H. P. McKean, Entropy is the only increasing functional of Kac's one-dimensional

caricature of a Maxwellian gas, Z. Wahrscheinlichkeitstheorie verw. Geb., 2 (1963),
167-172.

[ 4 ] H. Murata, Propagation of chaos for Boltzmann-like equation of non-cutoff type in the

plane, Hiroshima Math. J., 7 (1977), 479-515.
[ 5 ] H. Murata and H. Tanaka, An inequality for certain functional of multidimensional

probability distributions, Hiroshima Math. J., 4 (1974), 75-81.
[ 6 ] H. Tanaka, An inequality for a functional of probability distributions and its application

to Kac's one-dimensional model of a Maxwellian gas, Z. Wahrscheinlichkeitstheorie
verw. Geb., 27 (1973), 47-52.

Department of Mathematics,
Faculty of Science,

Hiroshima University




