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§ 1. Introduction

The entropy functional H[ f] is defined by
U =- (" jlogfw dx,  fea,

where 2 is the set of probability density functions f on R! with S f(x)|log f(x)ldx

<o0. Let 2, be the subset of 2 with sz f(x)dx=1, and g € 2, be the Gaussian
density function with mean 0. Then Gibbs’ lemma states that

(1.1) H{f1< Hlgl, fea,
Consider a class of functionals A[ /] of the form
a1 = renax,  rea..
Under some regularity conditions on h, McKean[3] proved that if the inequality
(1.1) holds with H=H, then h(x)=c,x+c,x log x (c,<0).
Let &, be the set of probability distribution functions with mean 0 and

variance 1, and G be the Gaussian distribution function belonging to ;. Tanaka
[6] considered the functional e[F] defined by

e[F]=infS Ix—y2dM(x, y), Fe2,,
R2

where the infimum is taken over all two-dimensional distribution functions
M(x, y) whose marginals are F and G. It is known (see [6] or [4]) that

e[F] = S;IF'I(a)— G-1(a)|2det

=2-200(F],  ®o[F] =" xG-(FG)F(),

where F~!(e) is the right continuous inverse function of F(x). It can be proved
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(in § 2) that
(1.2 &olF1 =" oG- (FG)ax.

On the other hand, it is obvious that e[ F] has the minimum at F =G, and therefore
®,[F] defined by (1.2) has the maximum at F=G. The main purpose of this paper
is to prove that, along the same line as McKean [3], the functional &, is the
only one which has the maximum at G among those functionals @ of the form

(1.3) ®[F] = Sf o(F(x)dx, Fe2,.

Some regularity conditions on ¢ must be assumed, and the precise statement is
as follows.

THEOREM A. Let @ be a function on [0, 1], and assume that
(1.4a) @ eC[0, 1]nCY0, 1) and ¢(0) = ¢(1) =0,

o(a~9), alO
(1.4b) o'(a) = for any 6€(0,1).
od-w)%, atl

If the functional ® defined by (1.3) satisfies
(1.5) ?[F]1 = 9[G], Fe2,,
and is normalized so that ®[G]=1, then =,

We also consider Boltzmann’s problem for Kac’s model of a Maxwellian
gas. In this model the probability distribution function F(t, x) of molecular
speeds at time ¢ is determined by

(e e - ng"deg 1 o.xy(v cOSO+ zsin O) dF(t, y)dF(t, 2) — F(t, %),
t 27 Jo R2 ’

where 1 _, ,; is the indicator function of (— o, x] and dF(t,-) is the probability

measure corresponding to F(t,-), t being fixed. It was proved in [6] that the

functional e decreases along the solutions of (1.6), and therefore the functional

&, increases along the solutions of (1.6). As the converse statement of this, we

can prove the following theorem.

THEOREM B. Let ¢ be a function on [0, 1] satisfying (1.4a) and (1.4b).
If the functional @ defined by (1.3) increases with time along the solutions of
(1.6) with initial distribution functions belonging to 2,, then ®=c®d,, c20.



On a Functional of Distribution Functions 549

The author wishes to express his thanks to Professor H. Tanaka for valuable
advices and encouragements.

§2. Proof of Theorem A
Let Fe 2,. Because the assumption (1.4) with 6=1/3 and the estimates

.10 lim x2(1 — F(x)) = lim x2F(x) =0

imply @(F(x))=o(|x|~4/3) as |x|—>o0, the integral defining ®[F] is absolutely
convergent, that is, @[ F] is well-defined.

First we prove that (1.2) holds. Because of the well-known estimates (for
example, see [1; p175])

1—G(x)~-g§c—x), X — 00,
2.2
- 9(x) o _
G(X) 'x—l ’ X o0,
we have

ax/Zlog% , ¢l 0,
g(G 1 (®) ~

(-2)/2l0g— L, at1,

l1—a’
which combined with (2.1) implies that
'I}m Ixlg(G™!(F(x))) =0, Fe2,.

Integrating ®,[F] by parts and using d[g(G~'(F(x)))]=— G~ (F(x))dF(x), we
obtain

[~ x61renare = g6 Feanas,
as was to be proved.

Now we proceed to the proof of Theorem A. In order to clarify our method,
we perform some formal calculations; rigorous justifications of these will be
given later.

Put

_ 1 (x—m)?
Gm,(x) = 75—;—[67‘?[——27—:',
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fulx) = a[(1 - e)g(ox) + €9, (0x)], - 6 = /1-e+e(t+m?)—eZm?,

for te(0, 1) and me R!; let F, be the distribution function corresponding to the
density function f,. Since F, has mean em/o and variance 1, we have

(2.3) O[F] = waq;(F,(x))dx = S:o(p ((1 —£)G(ox) + aG< ""\/'t_’” )) dx

= o[F,] < o[G1,

where F(x)=F (x+em/oc)e #,. Therefore we obtain

24) 0= 115,1—2— (®[G] — ®[F,]}

- S:Oqa'(G(x)) {G(x) - % xg(x) — G( "\77’" )} dx.

Letting ¢ | 0 in the above, we have

¢

P GE® — L xg(x) = 100} dx;

(2.5) 0< S 5

this must be the equality, because the integration of the right hand side of the
above with respect to g(m)dm yields

@® ] 2
(7 v G)” {6659 = "L xg(x) — 1m0} atrmrim = 0.
Differentiating this equality (2.5) in m, we have

2.6) ?'(Gm) = m- (" ¢'(GEIxg(ds,

and therefore ¢'(G(m))=cm. Since #[G]=1, c=—1 and hence 2=,

Proof of (2.4): Let d€(0, 1) be fixed, and put
A = 9(G) — o((1-0)G(ax) + ¢G (%ﬁ—”’—))

Writing down ?%A,(x) explicitly and then using the assumption (1.4) on ¢, we

see that there exists a positive constant ¢, depending upon J such that the following
estimate holds for all sufficiently large x:

@7 | & 4w

s —1-osm ()" oo ~o( 3
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" [t+m2—1—2em?|

o —_—
- praen+ e (U
For each fixed te(0, 1) and m, there exist positive &; and N, such that

agx—m agx—m

max{ax,T}é—f‘, min{ax, N } \/2

for 0<e<eg, and x> N,; and therefore

|1 — (1-8)G(0x) —eG( ""w’” )| >1- G( )

lG(ax)—G(ax ’”)' 1-0(\/—)

Inserting these estimates into (2.7) and then using (2.2), we have

09 [feass| oo - o) (o)
< ca[’Y exp(- T":,_)] xexp<_ X2

for e<e; and x> N, where ¢, and ¢, are some positive constants. An estimate
similar to (2.8) for e<g, and x < — N, can be obtained for some &, >0 and N,>0.
Therefore, taking 6 >0 small enough, we see that there exists an integrable function
Y(x) (independent of €) such that

|5 49| S W), 0<e<eo Ixl> N

where g,= min (el, ;) and No= max(N,, N;). On the other hand, from the
explicit form of A(x), it is clear that, for each fixed ¢ and m, 7;9— A(x) is uni-
formly bounded on {|x| < N,} for all sufficiently small e>0. Therefore

40 = 1 £ 4o

is bounded by some integrable function for small ¢>0, and hence by Lebesgue’s
convergence theorem we have

0 < limL1 {o[6] - &[F]}
el €

= lim Sw ﬁg)_ dx = Sw lim Aﬁ__/‘o(x) dx

el0 J- -0 gd0
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© 2 __ _
= {7 o Gen{oe - T xg00 - 6 (7 e,
which proves (2.4).
Proof of (2.5): Put
B(x) = o' @) {a0) — 5 xg00 -6 (),

and evaluate the absolute value of B(x). For each m there exists t, €(0, 1) such
that

for sufficiently large |x|, and we have

|t+m2

18,091 519" GeNI{|66) — 6 (* )|+ L ixlg o}

< (1+m?)]e'(Gx))| xlg(x), x| = oo,

for 0<t<t,. Since the last term in the above is integrable by (1.4), we obtain
(2.5) by letting ¢ } 0 in (2.4) and then applying Lebesgue’s dominated convergence
theorem.

Proof of (2.6): Take N>|m| and write (2.5) with equality sign as

2.9) 0= g C(x)dx +S C,()dx = I, + I,
|x|>N |x| SN

where C,(x)=0'(G(x)) {G(x)— m’—1 xg(x)—l[m,,,o,(x)}. Then, for |x|> N

| 22 Cot0)| = 10/(GEx)mxg()] < I9'(GENIx2g(x).
Since the last term in the above is integrable, we have
@10 -4 1 =S 9 ¢ (x)dx =— mg 0" (G(x)xg(x)dx.
dm ' )ix>xom " |x|>N

On the other hand

dn=-( o) P xgxds — L o' @C)ax

dm dm
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=-m{ _ oG)a0dx + 9/ (Gm),

which combined with (2.9) and (2.10) proves (2.6).

§3. Proof of Theorem B and some remarks

1. Proor oF THEOREM B: It is enough to prove the following lemma.

LEMMA. Let ¢ be a function on [0, 1] satisfying (1.4), and assume that
the functional @ defined by (1.3) increases along the solutions of (1.6) with initial
distribution functions belonging to 2#,. Then ® satisfies (1.5).

ProoF. Let F(t, x) be the solution of (1.6) with initial distribution function
F(x) belonging to 2,. F(t, x) can be expressed as Wild’s sum (see [3] or [6]),
and F(t,-)e 2, for each t=0. It was proved in [6] that e[F(f)] decreases to
0 as t 1 oo (in [6] it was assumed that F(x) has the finite fourth moment, but it is
easy to remove this restriction), and hence F(t, x) converges to G(x) uniformly on
compacts as ¢t 1 0. Therefore for each N>0

(.1) lim S” o(F(t, x))dx = S" @(G(x))dx.

t=o© J—-N -N
On the other hand, since F(t,-) e 2, for each t=0, we have
(3.2) F(t,—x) and 1-F(, )<, x20.

Making use of (3.2) and the assumption (1.4) on ¢, we can prove that

lim sup S @(F(t, x))dx| = 0,
Ix|ZN

N-w© >0

which combined with (3.1) implies lim,,, ®[F(f)]=®[G]. Since the conver-
gence is monotone by the assumption, we obtain (1.5).

2. Inequality of convolution type: When F e 2, is the distribution func-
tion of a random variable X, we also write e[ X] (@[ X]) for e[F] (®o[F]). Then
the functional e satisfies the following inequality of convolution type (see [6]):

Let X, and X, be independent random variables with distribution
Jfunctions belonging to #,. Then, for a, b>0 with a>+b?=1,
(3.3) efaX, + bX,] < a%e[X,] + b2%e[X,]
unless both X, and X, are Gaussian.

This fact was extended to multidimensional case by Murata and Tanaka [5], and
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to the case of real Hilbert spaces by Kondé and Negoro [2]. It follows im-
mediately that the functional @, also has the following property:

Let X, and X, be independent random variables with distribution
functions belonging to 2,. Then, for a, b>0 with a2+ b%*=1,

(3.4) Oo[aX, + bX;] > a?@o[X,] + b2&,[X,]

unless both X, and X, are Gaussian.

A remarkable application of (3.3) and (3.4) is that one can give a simple proof of
the central limit theorem for sums of independent random variables (see [6]);
for example, the following assertion can easily be proved by making use of (3.4):
If {X,},>1 is.a sequence of independent random variables with a common dis-
tribution function belonging to &,, then lim,_ ®,[n" 12 1., X, ]=1.
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