Isometry Groups of Negatively Pinched 3-Manifolds

Midori S. GOTO* and Morikuni GOTO (Received October 24, 1978)

§1. Introduction

Let M be a Riemannian manifold. For a 2-plane π tangent to M, let $k(\pi)$ denote the sectional curvature at π . M is said to be *negatively pinched* if there exist negative numbers c_1 and c_2 such that $c_1 \le k(\pi) \le c_2 < 0$ for all π .

In [8], p. 152, Margulis gave some unsolved problems. Among them we find:

PROBLEM. Let M be a simply connected, symmetric space of noncompact type. Let Γ_1 and Γ_2 be discrete groups of isometries of M with the factor spaces of finite volume. Is the ratio of the volume vol (M/Γ_1) : vol (M/Γ_2) rational?

The main purpose of this paper is to establish the following theorem by which in particular the analogous problem to the above for negatively pinched 3-manifolds can be reduced to the case of hyperbolic spaces.

THEOREM. Let M be a complete, simply connected, negatively pinched Riemannian manifold of dimension three. Suppose that there exists a discrete group Γ of isometries of M such that the factor space M/Γ is of finite volume. Then either M is of constant curvature or the group I(M) of all isometries of M is discrete.

Under the assumptions of the theorem, let G denote the identity component of the Lie group I(M). Then by Heintze, G is a semisimple Lie group without compact factor and with trivial center, see § 2, Lemma 6. Now suppose that $G \neq \{1\}$. Then we can see easily that G must be isomorphic with the adjoint group of either $SL(2, \mathbb{C})$ or $SL(2, \mathbb{R})$, and if we can exclude the latter case, the theorem follows directly. For the purpose we start with a little more general setting and construct a warped product of a certain symmetric space and a straight line \mathbb{R} , which does not admit a discrete group Γ of isometries with the factor space of finite volume. The exact statement is given in PROPOSITION of § 3.

§2. Lemmas

For the later use we shall state some known results.

^{*} Supported in part by NSF grant MCS77-18723.

LEMMA 1. Let R be a connected Riemannian manifold, and let H be a closed subgroup of I(R). Then for any $p \in R$ the orbit H(p) is closed.

See e.g. Theorem 2.2, Helgason [6], p. 167.

LEMMA 2. Let R be a connected Riemannian manifold, and let H be a closed subgroup of I(R). Suppose that there exists $p \in R$ such that dim $H - \dim H_p \ge \dim R$, where H_p denotes the stability group at p. Then

$$\dim H - \dim H_p = \dim R,$$

and H is transitive on R.

This follows directly from Lemma 1.

LEMMA 3. Let R be a Riemannian manifold with the metric tensor g. A transformation φ of R onto itself is said to be homothetic if there is a positive number c such that $\varphi^*g = cg$. If R is complete and is not locally flat, then any homothetic transformation of R is an isometry.

See e.g. Kobayashi-Nomizu [7], p. 242.

LEMMA 4. Let R be a complete, simply connected Riemannian manifold of non-positive sectional curvature. Let σ be an isometry of R. Let $F(\sigma)$ denote the set of all fixed points under σ . Then $F(\sigma)$ is totally geodesic.

PROOF. Suppose that $\sigma p = p$ and $\sigma q = q \neq p$. Then σ fixes every point of the unique geodesic passing through p and q. Q. E. D.

LEMMA 5. Let G be a connected, non-compact, simple Lie group with trivial center. Let K be a maximal compact subgroup of G. Then

(i) K coincides with its normalizer in G.

(ii) Let \mathfrak{G} and \mathfrak{R} denote the Lie algebras of G and K, respectively. Let $\mathfrak{G} = \mathfrak{R} \oplus \mathfrak{P}$ be a Cartan decomposition of \mathfrak{G} . Then the representation ψ of K given by

$$\psi(\eta) = \operatorname{Ad}(\eta)|_{\mathfrak{B}} \qquad (\eta \in K)$$

is faithful and irreducible.

(iii) The Killing form of \mathfrak{G} gives rise to a Riemannian metric g of the factor space G/K such that S = G/K is an irreducible symmetric space of non-compact type. In this case, G is the identity component of the isometry group I(S) and the factor group I(S)/G is finite.

(iv) Let N be a Riemannian manifold. Suppose that G acts transitively on N, and that for some $p \in N$ the stability group G_p coincides with K. Then after identifying S and N by the map $\sigma K \mapsto \sigma p$ ($\sigma \in G$), the metric tensor of N is

314

given by fg, where f is a positive constant.

See Helgason [6], Wolf [9] and Goto-Grosshans [4].

Next, let M be a complete, simply connected, Riemannian manifold of nonpositive sectional curvature. The set $M^{(\infty)}$ of all asymptote classes of geodesic rays in M forms the boundary of M. The set $\overline{M} = M \cup M^{(\infty)}$ has a natural topology as a closed disk in \mathbb{R}^{n+1} , where dim M = n+1, and $M^{(\infty)}$ is homeomorphic to the bounding sphere S^n . If for any pair of points x and y in $M^{(\infty)}$, there exists a geodesic connecting x and y, then the manifold M is said to satisfy the visibility axiom. If the sectional curvature of M is bounded above by a negative constant, then the visibility axiom holds for M. Let H be a subgroup of I(M), and let p be in M. The intersection of the closure of the orbit H(p) in \overline{M} with $M^{(\infty)}$ does not depend on the choice of p, is called the *limit set* of H, and is denoted by L(H). If H is discrete and the factor space M/H is of finite volume, then $L(H) = M^{(\infty)}$. (The details of these results can be found in Eberlein-O'Neill [2].)

LEMMA 6 (Heintze [5]). Let M be a complete, simply connected Riemannian manifold of non-positive sectional curvature satisfying the visibility axiom. Suppose that there exists a discrete subgroup Γ of I(M) such that $L(\Gamma) = M^{(\infty)}$. Let G denote the identity component of I(M). Then G is a semisimple Lie group with no compact factor and with trivial center.

§3. A warped product

PROPOSITION. Let M be a complete, simply connected, negatively pinched, Riemannian manifold of dimension n+1. Let G denote the identity component of I(M). Let K be a maximal compact subgroup of G. Suppose that G is a non-compact, simple Lie group with trivial center, that G is not transitive on M, and that

$$\dim G - \dim K = n.$$

Let S = G/K denote the irreducible symmetric space of non-compact type with the metric tensor ds^2 given by the Killing form of the Lie algebra of G. Then

(i) S is a symmetric space of rank one, and M is a warped product of S and **R**, i.e. M can be identified with the direct product space $S \times \mathbf{R}$ with the metric given by

$$f(t)^2 ds^2 + dt^2,$$

where f(t) is a positive, strictly convex smooth function on **R** with a unique minimum.

(ii) G is of finite index in I(M), and for any discrete subgroup Γ of I(M), the volume of the factor space M/Γ is infinite.

PROOF. We fix a maximal compact subgroup K of G, once and for all, and put

$$B = \{q \in M; \eta q = q \text{ for all } \eta \in K\}.$$

Let p be in M. Then the stability group G_p , being compact, is contained in some maximal compact subgroup, say $\sigma K \sigma^{-1}$ for $\sigma \in G$. If $G_p \neq \sigma K \sigma^{-1}$, i.e. dim $G_p < \dim K$, then dim $G - \dim G_p \ge \dim M$, and G acts transitively on M, by Lemma 2, which is a contradiction. Hence $G_p = \sigma K \sigma^{-1}$. Then for any $\eta \in K$ we have $\sigma \eta \sigma^{-1} p = p$, i.e. $\eta \sigma^{-1} p = \sigma^{-1} p$. Hence $\sigma^{-1} p \in B$ and $p \in \sigma B$. Thus every point of M can be written in a form σb ($\sigma \in G$, $b \in B$).

Let φ denote the map

$$(G/K) \times B \ni (\sigma K, b) \longmapsto \sigma b \in M.$$

We have seen that φ is onto. In order to prove that φ is one-one, let us suppose that

$$\sigma b = \sigma' b'$$
 for $\sigma, \sigma' \in G$ and $b, b' \in B$.

Then $b = (\sigma^{-1}\sigma')b'$ and $G_b = (\sigma^{-1}\sigma')G_{b'}(\sigma^{-1}\sigma')^{-1}$. Since $G_b = G_{b'} = K$, we have that $\sigma^{-1}\sigma'$ is contained in the normalizer of K. By Lemma 5 (i), we get $\sigma^{-1}\sigma' \in K$ and b = b'.

Then φ is a continuous one-one map from $S \times B$ onto M. Because G is not transitive on M, the set B contains at least two points. On the other hand, $B = \bigcap_{\eta \in K} F(\eta)$ is totally geodesic, by Lemma 4. Hence B contains a non-constant complete geodesic γ . Suppose that B contains a point which does not lie on γ . Then B contains an open 2-cell D, and the restriction of φ on $S \times D$ gives rise to a one-one smooth map from \mathbb{R}^{n+2} into \mathbb{R}^{n+1} , which is impossible. Hence B coincides with γ . Thus

$$\varphi_0: S \times \mathbf{R} \ni (\sigma K, t) \longmapsto \sigma \gamma(t) \in M$$

is a homeomorphism by Brouwer's invariance theorem of domains, where we suppose that the parameter t is given by arclength.

For each $t \in \mathbf{R}$, we set $S(t) = G(\gamma(t))$. Then the map $\varphi(t): S \ni \sigma K \to \sigma \gamma(t) \in S(t) \subset M$ is smooth and is a homeomorphism. By the implicit function theorem, for some $\sigma_0 \in G$, the infinitesimal linear map $d\varphi(t)_{\sigma_0 K}$ is one-one.

Let τ be in G. Since $\tau \sigma_0^{-1}$ is a diffeomorphism of M and $(\tau \sigma_0^{-1})(\sigma_0 \gamma(t)) = \tau \gamma(t)$, we see immediately that $d\varphi(t)_{\tau K}$ is one-one. Hence S(t) is a submanifold, which is obviously regularly embedded. By Lemma 5 (iv), that $G_{\gamma(t)} = K$ implies

316

that S(t) is an irreducible symmetric space of non-compact type with the metric $f(t)^2 ds^2$, where f(t) is a positive number, by identifying S and S(t).

Let σ be in G. Then $(\sigma\gamma)(t) = \sigma(\gamma(t))$ is a geodesic, and for a fixed t we have that $S(t) \cap (\sigma\gamma) = \{\sigma\gamma(t)\}$. We shall see that $S(t) \perp \sigma\gamma$. For that purpose it obviously suffices to show that $S(t) \perp \gamma$ at $\gamma(t)$.

Let us put $T_{\gamma(t)}M=\mathfrak{T}$ and $T_{\gamma(t)}S(t)=\mathfrak{S}\subset\mathfrak{T}$. Also let $\dot{\gamma}$ denote the vector tangent to γ at $\gamma(t)$. Since $K(\gamma(t))=\gamma(t)$, K acts on \mathfrak{T} as a group of isometries. The subspace \mathfrak{S} is invariant under K, and can be identified with \mathfrak{P} in Lemma 5 (ii). Also the action of K on \mathfrak{S} is identified with ψ there. Therefore, the action of K on \mathfrak{S} is irreducible and faithful. On the other hand, K acts trivially on γ , and so on $\dot{\gamma}$. Hence \mathfrak{S} and $\mathbf{R}\dot{\gamma}$ are irreducible, mutually inequivalent invariant subspaces under K. Since dim \mathfrak{S} +dim $\mathbf{R}\dot{\gamma}$ =dim \mathfrak{T} , we have that

$$\mathfrak{T} = \mathfrak{S} \oplus \mathbf{R} \dot{\gamma}, \qquad \mathfrak{S} \perp \dot{\gamma}.$$

This fact implies, in particular, that φ_0 is a diffeomorphism, and that the metric of M is given by

$$f(t)^2 ds^2 + dt^2.$$

Therefore, M is a warped product of S and \mathbf{R} , see Bishop-O'Neill [1] and Eberlein [2].

Let π be a two-dimensional plane in $\mathfrak{T} = T_{\gamma(t)}M$. Then we can find an orthonormal basis $\{c\dot{\gamma} + V, W\}$ of π such that $c \in \mathbb{R}$ and $V, W \in \mathfrak{S}$. When $\{V, W\}$ is linearly independent, we denote by l(V, W) the sectional curvature of the plane spanned by V and W in S, and we put l(V, W) = 0 otherwise. Then the sectional curvature $k(\pi)$ is given by

$$k(\pi) = \frac{-f''(t)}{f(t)}c^2 + \frac{l(v,w) - f'(t)^2}{f(t)^2} \|v\|^2,$$

see Bishop-O'Neill [1]. Since $k(\pi) < 0$ for all π , we have f''(t) > 0 for all t and f is a strictly convex function. Furthermore, by Eberlein [3], we have that the sectional curvature of S is strictly negative, i.e. S is a symmetric space of rank one, and that f has a unique minimum. After this, we suppose that γ is parametrized so that f(0) is the minimum.

Next, let ρ be in I(M). Since $\rho G = G\rho$, we have that $\rho S(0) = \rho G(\gamma(0)) = G(\rho\gamma(0))$ is an orbit. Hence there exists $t_0 \in \mathbf{R}$ with $\rho S(0) = S(t_0)$. Therefore ρ induces an isometry between S(0) and $S(t_0)$. We denote

$$\varphi(t): S \ni \sigma K \longmapsto \sigma \gamma(t) \quad \text{for} \quad t \in \mathbf{R}.$$

Let X be a vector tangent to S. Then we have

$$\|d\varphi(t)X\| = f(t) \|X\|$$
.

Let us put $\mu = \varphi(t_0)^{-1} \circ \rho \circ \varphi(0)$. Then μ is a diffeomorphism of S onto itself and

$$||d\mu X|| = \frac{f(0)}{f(t_0)} ||X||,$$

i.e. μ is homothetic. Since S is complete and is not locally flat, by Lemma 3, we have $f(0)=f(t_0)$ and $t_0=0$. Thus we have seen that I(M)S(0)=S(0).

Let ρ be in I(M), and suppose that ρ acts trivially on S(0). Since γ is orthogonal to S(0), ρ leaves the geodesic γ invariant. Since $\rho\gamma(0) = \gamma(0)$, we have either $\rho\gamma(t) = \gamma(t)$ or $\rho\gamma(t) = \gamma(-t)$ for $t \in \mathbb{R}$. Hence there are at most two choices for ρ , i.e. the kernel of the homomorphism

$$I(M) \ni \rho \longmapsto \rho|_{S(0)} \in I(S(0))$$

is of order at most two. On the other hand, G is of finite index in I(S), by Lemma 5 (iii). Hence I(M)/G is finite.

Let Γ be a discrete subgroup of I(M). We put $G \cap \Gamma = \Gamma_0$. Then Γ_0 is of finite index in Γ . Let v denote the volume of S/Γ_0 . Then the volume of M/Γ_0 is

$$v \int_{-\infty}^{\infty} f(t)^n dt \ge v \int_{-\infty}^{\infty} f(0)^n dt = \infty.$$

Hence the volume of M/Γ cannot be finite.

§ 4. Proof of Theorem

Let M be a complete, simply connected, negatively pinched 3-manifold. Suppose that there exists a discrete subgroup Γ of I(M) such that M/Γ is of finite volume. Then by Lemma 6, the identity component G of I(M) is a semisimple Lie group without compact factor and with trivial center. Let K be a maximal compact subgroup of G. Since dim M=3, we have

dim
$$G \leq 6$$
 and dim $G - \dim K \leq 3$.

Then the only choices for $G \neq \{1\}$ are the adjoint groups of either $SL(2, \mathbb{C})$ or $SL(2, \mathbb{R})$. In the first case, dim G-dim K=3, and G is transitive on M, and we know that M is of constant curvature in this case. On the other hand, if G is the adjoint group of $SL(2, \mathbb{R})$, then all the assumptions in the PROPOSITION are satisfied, and we have a contradiction. Q. E. D.

318

Q. E. D.

Bibliography

- [1] R. L. Bishop and B. O'Neill; Manifolds of negative curvature, Trans. AMS 145 (1969), 1-49.
- [2] P. Eberlein and B. O'Neill; Visibility manifolds, Pacific J. of Math. 46 (1973), 45-109.
- [3] P. Eberlein; Product manifolds that are not negative space forms, Michigan Math. J. 19 (1972), 225-231.
- [4] M. Goto and F. Grosshans; Semisimple Lie algebras, Marcel Dekker, 1978.
- [5] E. Heintze; Mannigfaltigkeiten negativer Krümmung, Preprint, Bonn Januar 1976.
- [6] S. Helgason; Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [7] S. Kobayashi and K. Nomizu; Foundations of Differential Geometry, vol. I, Interscience, New York, 1963.
- [8] G. A. Margulis; Arithmetic properties of discrete subgroups, Russian Math. Surveys 29: 1 (1974), 107-156.
- [9] J. A. Wolf; Spaces of Constant Curvature; Publish or Perish Inc., Boston, 1974.

The Institute for Advanced Study, Princeton and University of Pennsylvania

Added in Proof:

In this paper, by the factor space M/Γ is "of finite volume" we mean that there is a fundamental domain of finite volume. Cf. Heintze [5].