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Introduction

The main purpose of this paper is to prove the following theorem :

THEOREM. Let Wbe a plane domain containing the origin 0. Let v be an
integrable function on the complex plane C such that v(z)^c a.e. on W for a
positive number c and v(z) = 0 a.e. on the complement of W. If

for every analytic function f on Wsuch that \ |/'|2vdm«x>, then
JW

\ svdm ^ c \ sdm
JW JΔr

for every subharmonic integrable function s on Δr = {zeC\ |z|<r}, where
r={Jvdw/(cπ)}1/2 and m denotes the two-dimensional Lebesgue measure.

The equality holds if and only if either s is harmonic on Δr or v(z) = c a.e.
on W and W—Δr—E, where E denotes a relatively closed subset of Δr such that
EnK is removable with respect to analytic functions with finite Dirichlet inte-
grals for every compact subset K of Δr.

In the above statement, one might wonder if s is defined on JFand if \ svdm
JW

has a meaning. These follow from the following result :

PROPOSITION A ([7, Proposition 3.2]). Under the same assumption as in

the above theorem, it follows that WaAr and the equality supzeHr|z| = r holds if
and only i/v(z) = c a.e. on Wand W=Ar—E, where E denotes a relatively closed
subset of Δr mentioned in the theorem.

In fact, if supzeWr|z| = r, then \ svdm = c\ sdm. Since every subharmonic
JW JΔr

function is locally bounded from above, if suρzefr|z|<r, then max{sv, 0} is
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integrable.
As an application of our theorem, we can estimate the Gaussian curvature

K(z) of the span metric, namely, the metric induced by the exact Bergman kernel

differentials. The metric is equal to the Poincare metric on an open disc, and so

K(z)= — 4 on the disc.

In 1934, K. Zarankiewicz [10] showed that K(z)<— 4 for annuli and, in

1967, S. Bergman and B. Chalmers [3] treated the case of triply-connected plane

domains.
S. Bergman [2] obtained the following:

Let z0 be a boundary point of a plane domain such that two circles can be

constructed passing through z0, one interior and one exterior to the domain.

Then limz_zoX(z)= — 4 if z approaches z0 so that z —z0 makes with the interior

normal an angle in absolute value less than π/2.

Therefore it is plausible that K(z)^— 4 for such a domain. N. Suita [9]

conjectured that K(z) ^ — 4 for every Riemann surface R φ 0AD, namely, for every

Riemann surface on which there is a nonconstant analytic function with a finite

Dirichlet integral, and that the equality holds if and only if R is conformally

equivalent to Aί—E, where Ax denotes the unit disc and E denotes a relatively

closed subset of Δ± mentioned as in the above theorem.
Recently J. Burbea [5] proved that X(z)rg —2 for a plane domain which is

not contained in the class 0AD.

We apply our theorem and show that the above conjecture is true.
This paper consists of eight sections. In Sections from 1 to 6 we make

preparations for the proof of the theorem. On first reading this paper one could

omit these sections except for the definition of the kernel functions Mv(z; C, t, R)
in Section 5 and the statements of Propositions 2.1, 3.3, 4.2, 6.1 and Corollary

5.2.
The proof of the theorem is given in Section 7. The final section, Section 8,

is devoted to its application to the estimation of the Gaussian curvature of the

span metric.

§ 1. An areal inequality

Throughout this paper we denote by m the two-dimensional Lebesgue

measure. In this section we shall show the following proposition:

PROPOSITION 1.1. For every ε with 0<ε<l, there is δ>Q such that if a
measurable set E and open discs AJ9 7 = !,..., n, in the complex plane C satisfy

m(E Π AJ) ^ δm(Aj)
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for every j, then

m(E Π ( \J. AJ)) <> em( \J Aj) .
j=ι j=ι

To prove Proposition 1.1 we prepare several lemmas.

LEMMA 1.2 ([7, Lemma 1.2]). Let Δp ; = !,..., n, be open discs whose radii
are not less than a positive number r. Then the length ^(8(\J1)=ίίAJ)) of the
boundary of W" = ι -Λ; is not greater than (2/r)m(WJ = ι Aj).

LEMMA 1.3. Let J be a Jordan curve in C and set Jp = {zeC|d(z, J)<p}
for p>0, where d(z, J) denotes the distance from z to J. Then

m(Jp) ^ 2p£(J) + πp2.

LEMMA 1.4. Let ω be a number with 0<ω<l/10. Set A = {zeC\ |z|<l},
Γ = {zeC||z |>l+2ω} and ί3 = {zeC| -ω/2^argz<ω/2}. Let Δj9j = l9...9n,
be open discs such that the center Cj of each Aj belongs to Ω and each Aj satisfies
A j f t A ϊ £ 0 and AjΓiΓ^0. Then \Jn

j = lΔj is a domain starlike with respect to
1+ω. In particular, \Jnj = ιΔj is a Jordan domain.

PROOF. To prove the lemma, it is sufficient to show that 1 + ω e Aj for every
. Set Cj = rjeiθJ and denote by PJ the radius of Aj. Then

|(1 + ω) - Cj\ ^ |(1 + ω) - r^ίω/2|

if r,-^ 1 + ω, and

if Γj > 1 + ω. These inequalities imply 1 + ω e Aj.

LEMMA 1.5. Let C be a convex set and let HJ9 7 = !,..., n, be closed half-

planes in C such that Cd\jtj = ίHj. Then one can choose half-planes #/l5...,
Hjt, l^/^3, so that C<=.\Jl

k=:lHjk.

LEMMA 1.6. Let S be a closed square with sides of length d, let A be an
open disc with radius r and let H be a closed half-plane such that the boundary
dH of H is tangent to dA at a point belonging to S and H contains A. Then
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LEMMA 1.7. For every ε with 0<ε<l, there is <5>0 such that if a measur-
able set E and open discs AJ9 ; = 0, 1,..., n, in C satisfy Aj n AQΪ0 and ρygρ0,
for 7 = 1,..., n, and m(E f] ΔJ)^δm(ΔJ) for /=0, 1,..., n, where ρj denotes the
radius of Ap then

PROOF. We may assume A0 = {zeC\ |z|<l}. Then \jtj^0Ajcι{zeC\ \z\<

3}. Set ω=ε/10 and Γ = {zeC| l+2ω<|z|<3}. We shall determine δ later.
For a moment we assume m(E Π Aj)^δm(Aj) for y=0, 1,..., n.

We first estimate the area of E n (v ^/d;) n Γ. For d with 0<d<

l/2π, set Sjk={x + ίyeC\jd^x^(j + ϊ)d and ω^y^(fc+l)d}, ^={SJfc|S;jtn
5{(WJ = i AJ) Π Γ} 7* 0} and B = {Sjk \ Sjk c (vjj = 1 Λ,.) n Γ}. Let N be the smallest
natural number not less than 2π/ω, set ΩΛ={zeC| ~ω/2^arg z-2πfc/N<ω/2},
/c=0, 1,..., N— 1, and let Dfc be the union of discs AJ such that Jy Π Γ^0 and the

center of A j belongs to Ωk. Then, by Lemma 1 .4, Dfc are Jordan domains. Hence,
by Lemmas 1.2 and 1.3, we have

^ (1600/ε + l)d.

Since m({zeC| |z| = l+2ω}v2d)^22d and N^2π/ω + l, we have

(1.1) m( VJ SJfc) ̂  N(1600/ε + IX + 22d
SjkzA

^ (100600/ε2 + 1670/ε + 23)d.

To estimate the area E n S for S e B, we consider the discs Δί intersecting S.

If S<^Aj for some Jy, then

m(E Π S) ̂  m(£ n AJ) ^ δm(Aj) £ πδ.

If S n dAj^0 for every disc AJ intersecting S, take a closed half-plane Hj so that
dHj is tangent to δJy at a point belonging to S and #,• contains Jy. Then Sc

\JAjns*0Hp and hence, by Lemma 1.5, there are closed half-planes #7V..., #/,,
1 ̂ /^3, such that 5c u(=1 /fΛ. Therefore, by Lemma 1.6,

w(JB n S) ̂  Σ m(£ n 4J + Σ m(s n (Ĥ  - jj)

^ 3(π<5
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= 3π<5 + 120d3/ε.

Set<5 = αd2. Then

m(E Π S) ̂  (120d/ε + 3πα)d2

for every S e B. Hence

(1.2) m(E Π ( W SΛ)) ^ Σ m(E n Sjk)SjkeB SjkeB

^ Σ (120d/ε -f 3πα)m(S/k)S/keB

= (120d/ε + 3πα)m( W S, fc)
SjheB

^ 8π(120rf/ε + 3πα).

From (1.1) and (1.2), we have

m(E n (W Aj) Π Γ) ^ (100600/ε2 + 5000/ε + 23)d -}- 240α.
7-1

Since

m(£ n {zeC||z| ^1 + 2ω})

^ m(£ n Λ0) + m({zeC| 1 ̂  |z| ^ 1 + 2ω})

^ παd2 + επ/2,

we obtain

m(E n (W^))
7=0

g (100600/ε2 + 5000/ε + 23)d 4- 240α.+ παJ2 + επ/2.

Take d = 10~5ε3 and δ = 10~13ε7. Then α = 10~3ε, so that

m(E n (\JAjJ) ^επ = εm(J0).
7=0

This completes the proof.

PROOF OF PROPOSITION 1.1. For ε with 0<ε<l, let δ be a number con-
sidered in Lemma 1.7. We prove the proposition by mathematical induction on
the number n of open discs. If n = 1, then our assertion is trivial. Assume that
our assertion is true when the number of open discs is equal to n — 1 ̂  1. Let E
be a measurable set and AJ9 j.= 1,..., n, be open discs satisfying m(£ n J7)^
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for every j. Assume that Ak has the maximum radius pk. Set D = \
and D' = \jAj{]Δk=0Aj. Then \Jn

j=ίlAj = D U D'. By the assumption,

m(E Π Df) ^ εm(D')

and, by Lemma 1 .7, we have

m(E n D) ̂  ε

Hence

n ( / 4 / ) ) = m((£ n D) U (£ n D')

= εm(Δk U

This completes the proof.

§ 2. Functional inequalities

In this section we deal with functional inequalities. Our aim is to prove the
following proposition.

PROPOSITION 2.1. Let α, β, y, K and σ be nonnegatίve numbers, let δ, λ
and τ be positive numbers, and let ε be a number such that 0^ε< 1. Let u and v

Γoo Γcc

be nonnegative integrable functions on [0, oo) with \ u(x)dx = a and \ v(x)dx =
Jo Jo

β. Set

Γ°°for every pair of numbers a and b with Q^a<b. If U(t)=\ u(x)dx and V(f) =

f«\ v(x)dx satisfy

(2.1) I/O + σ{(U

and

(12)

pair of numbers a and b such that Q^a<b, A(a9 b)^l and 2A(a, b)λ^
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b — α, then there is a nonnegative number M satisfying U(M)=V(M) = 0 and
depending only on α, β, γ, δ, ε, K, λ, σ and τ.

PROOF. We may assume that α + β, 7 and K are positive. Let q be a
number satisfying qδ^.6, qλ^.3 and (2-hg)τ>l, and let TV be a natural number

satisfying N ̂  2κ\ (N +1)« ̂  K, 1 + (5/3 ̂  log (N + 2)/log (JV +1) and

7κ:1+δ

N+\ =

Set εn=l/{(n + l)2(tt + 2)«} for n = N-l, N, ΛΓ +!,.•• and F(s) = σsτ.
First we show that there exists a positive number e depending only on α, /?, y,

δ, ε, K, A, σ and τ such that (17+ F)(e)^ε]V_1. Set

c =

Since X(0, c) g (α + jS)κ/c ̂  1 and

2A(Q c}λ < 2l _ (ot±β)κw' ; = 1 1 + λ

by (2.2), we have

V(c) £ γA(09

2 '

Set d = F((U + V) (0)) = F(α + β). Then, by (2. 1),

U(c + d)^ U(c + F((t7 + F)(c))) g ε(C7 + F)(c) g αε + ε(l - ε)εN.1/2.

Since

U(c + nd) £ U(c + (π - l)d + F((17 + F)(c + (n -

by mathematical induction, we have

(17 4- F)(c 4- nd) ^ αε"
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for every natural number n. Choose m so that αεm<εN-ι/2 and set e=
Then e has the required property.

Consider A(e, e+l/N2). Since A(e, e+l/N^^idV^-^ic/iN+l)^! and

, 1 ιc \λ^ N ^ 1

we have

1 1 t - _ e _
* (ΛΓ+2)« V1 "IΓ"̂ 1 ~ N

by (2.2) and

I7(β + F(sN.ί)) £ U(e + F((U + F)(e))) ̂  ε([7 + V)(e) ί

by (2.1). Hence

(ϋ + F) (e + -ji

Repeating this process we have

(£7

Since

. (2+4)t

j=N

and (2+ήf)τ>l,

M = e+ Σ 7"2 + σ Σ r<2+4>'

has the required property.
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§3. Modifications of bounded positive integrable functions on the plane

In [7, § 1], we have dealt with modifications of positive measures. In this
section we deal with bounded L1 functions on C (i.e., bounded integrable func-
tions on C).

We begin with

LEMMA 3.1. Let W be a plane domain and λ be a nonnegative bounded
L1 function on W. Then there is a nonnegative bounded lower semicontinuous

L1 function λ* on W such that \ sλdm^\ sλ*dm for every seSL1(W), where
Jw Jw

SL\W) denotes the class of subharmonic L1 functions on W.

PROOF. Exhaust W by an increasing sequence {Wj}JL0 of relatively com-
pact subdomains such that dWJ-ίc:Wj for each j^l, and set £0 = W0 and Ej =
Wj - Wj -! for 7^1. Set λj=λχE. for j ^ 0, where χEj denotes the characteristic
function of Ej and set dj = d(Ej9 dWj+l) for j=0,1 and dj = d(Ej9 dWj.2 U dWJ+ί)
for j ^2. We write Dj(z) for 2^/2(2), and consider

and

It is easy to see that each M7 is continuous and that λ* ̂  3 supzefr λ(z). Naturally,
A* is lower semicontinuous. For every s e SLl(W) we have

w

Hence \ sλdm£\ sλ*dm. By considering s = 1 we obtain \ λ*dm = \ λdm<ao.
Jw Jw Jw Jw

Our lemma is now proved.
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LEMMA 3.2. Let λ be a positive lower semicontinuous function on a open

set W. Then there is a sequence of functions λn=Σίj = ιβjXj increasing to λ a.e.
on W as n-»oo, where each βj is a positive constant and each χ, denotes the

characteristic function of an open disk in W.

PROOF. We may assume that λ is bounded and m(W)<co. Set M=

supze^A(z) and denote the open set {ze W\ λ(z)>kM/2n} by Gnk for n = l,

2,..., fe=l, 2,..., 2»-l. Define /„ by (M/2»)Σ2

k=ΊlχGn,k> Then/.Tλ as n ί oo.
In the following we let all Bnk be the union of finitely many mutually disjoint

open discs. By making use of Vitali's covering theorem choose Bltίc:Gίtί so
that m(GM-B l f l)<l/22. Set λ^Mffiχ^ and Eί^{zeW\fί(z)^λ>

ί(z)}.
Then m(£1)<l/2. Suppose Bjk, ; = !,..., rc, fc=l,..., 2 /' —1, are chosen so
that BjtkdGJ>k, m(Gjίk-Bj>k)<l/22J, λ^'"^λn and m(£y)<l/2Λ where ^ =

(M^ifeW andX. = ̂ ePF|//z)τα/z)}. Choose £n+1,Λ so that B^c

«»+ι.2ίk<=G l l + l f 2 k and m(GB+1.2fc-BB+1§2t)<l/22<»+1> for fe = l,..., 2»-l, and
so that Bn+ί)k<-Gn+l9k and m(Gn+l>k-Bn+lfk)<\/22(n+^ for other fc. Set λn+l =

(Mp^ΣKΐ-1^* and £M+1 = {zE^|/n+1(z)^;.π+1(z)}. Then λn^λn+ί

and m(£π+1)<l/2n+1. The set E = n?=1 \Jj=nEj is of measure zero and /lπ t λ on
W—E. This proves our lemma.

Our main aim in this section is to prove the following proposition:

PROPOSITION 3.3. Let W be a plane domain and let v be a bounded L1

function on C such that v(z)^l a.e. on W and v(z) = 0 a.e. on the complement Wc

of W. Then, for every ε = (ε1, ε2) with 0<ε1<l and ε2>0, there are domains
Wε and Wε, and a bounded L1 function vε on C such that

(1) WdWεaWε.

(2) m(Wε) ^ fvdm/(l - εj and m(Wε - Wε) ^ {εj(l - e^vdrn.

(3) vε satisfies vε(z)^ 1 a.e. on Wε9 vε(z) = 0 a.e. on Wc

ε and \(vε — χWε)dm^ε2.

(4) \ svdm ^ \ svεdm for every s e SLl(Wε).

(5) U(r + 2(l/πy%(7 + F)^)}1/2) ̂  ε^U + F)(r) for every r^O, where

Γ°°
χ&ε-Wε(reίθ)rdθ9 l/(r) = \ u(t)dt,

v(r) = (2πvε(reiθ)rdθ and V(r) = (°v(t)dt.
JO Jr

REMARK. If h is harmonic, then h and — h are both subharmonic. Hence

it follows from (4) that \ hvdm = \ hvεdm for every harmonic L1 function h on

To prove the proposition we first give notation. Let Ω be a bounded domain
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whose boundary consists of a finite number of piecewise analytic curves or points,
let c be a point of Ω, let α be a nonnegative number and let δ be a number with
0<<5<1. We shall define an open set R(Ω, c, α, δ) which is the union of a finite
number of open rings, define a disc A(Ω, c, α, δ) and define a domain G(Ω, c, α, (5)
whose boundary consists of a finite number of piecewise analytic curves or points.

Set φ(r) = χΩ(c + reiθ)dθ/(2π) for r^O, F = {r^0\φ(r)£l-δ} and Φ(r) =
/> J°
\ 2πtχF(i)dt, where χf denotes the characteristic function of F on [0, oo).
Jo
Then φ is lower semicontinuous and analytic except, at most, at a finite number
of points. Hence F is closed, F n [0, r] consists of at most a finite number of
closed intervals or points for every r^O and Φ(r1) = Φ(r2) implies (F n [0, r1])° =
(F n [0, r2])°, where (F n [0, r])° denotes the interior of F n [0, r] in [0, oo).

Since Φ(r) is continuous and increases from 0 to oo as r varies from 0 to oo,
there is a nonnegative number a such that Φ(α) = α. The number a may not be
determined uniquely, but the open set ^4 = (Fn [0, α])° in [0, oo) is determined
uniquely by α.

Set R = R(Ω, c, α, δ) = {z E€ \\z-c\e A}, A = A(Ω9 c, α, <5) = {zeC| |z-c|<
suPreΛ r) and G = G(Ω, c9QL9δ) = Ω [ j R . Then m(R) = Φ(ά) = α, m(Ω Π R) g (1 - <5)α,

\s{βχΔp(c)}dm^\sχRdm for every seSL1(A), where Ap(c) denotes the open disc

with radius p and center at c such that Ap(c)cΩ and β is a number with βπp2 = α,
and the domain G satisfies m(A — G)^

PROOF OF PROPOSITION 3.3. We may assume that W is a bounded domain
whose boundary consists of a finite number of piecewise analytic curves, v is lower
semicontinuous on W, v(z)^l on FFand v(z) = 0 on Wc. In fact, for any W, v
and ε=(β1, ε2) given in Proposition 3.3, let v* be a bounded L1 function on C
such that v* is lower semicontinuous on W> v*(z)^l on W, v*(z) = 0 on Wc and

\ svdm^\ sv*dm for every seSLHWY, its existence follows from Lemma 3.1.
Jw jw
Choose a bounded subdomain Ω on W whose boundary consists of a finite number

of piecewise analytic curves such that \ v*dm^ε2/2. If Proposition 3.3 is
Jw-n

proved for Ω, v' = v*χβ and ε' = (εl9 ε2/2), then Wε=WuΩε,, W E = W \ j Ω ε , and
vε = Vg'-j-v*χ fΓ_β satisfy conditions from (1) to (5). We shall show only that (5)

is true. We set

and define U and V corresponding to Wε, fίζ and vδ. From the relation
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we have U' + V'^U+V. Since U^V and C7'(r) is a decreasing function of r,
we derive (5) for U and Ffrom that for V and V.

Take a positive number δ so small that Proposition 1.1 is valid for εi and
fix it. Set W0 = W and v0 = v.

Since v0 is lower semicontinuous and satisfies v0(z) ̂  XJTO(Z) o& C, by Lemma

3.2 there is a sequence of functions v0>rt = χίΓo-f-Σy = ι^o,jXo,j suc^ that v 0 > n ΐ v0

a.e. as n ΐ oo, where each βoj is a positive constant and each χoj denotes the
characteristic function of an open disc with radius poj and center at coj.

Take ni so that

and set

Δn = ^(W;.!, c0tM, β0tnπρ%ιn9 δ),

and

vπ = χn + ί i F , - , n*, + max K - Xo - ΣjX^p 0}

forn = l,..., n l 5 inductively, where χπ means /^n and χoj denotes the characteristic
function of the closed disc with radius poj and center at c0j. Then

Since vπι is lower semicontinuous and satisfies vrtl(z)^χMl(z) on C, we can
again find a sequence of functions v1>n=χII14-Σ"=/,1 + ι^1JχιJ such that v M ΐ vrtl

a.e. as n t oo, where each βί }j is a positive constant and each χl j denotes the
characteristic function of an open disc with radius pίtj and center at c l f j . Take
n2>nί so that

and set
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Δn ==

and

v«= χn + Σ Xwj-^Rj + max{vn i - χnι - Σ β i j X i j , 0}
j=nι+l jf =rM l+ι

for 71 = ̂ 4-1,..., n2. Then

Repeating this process, choose {nλ} and define vrt for nk<n^nk+1 and jS^j, χ/jj

for j ^ nk 4- 1 as above. Let JV be a natural number such that (1 — <5/2)N\ (v0 — Xo)dm

^e2.
Set »;= JFWN, fFε= Pf U ̂ ! U A2 U - U ^ΠN and vε = vnN. Then, by the defini-

tion, it is evident that these satisfy (1) and (3).
Set rt0 =0. If M f c +l<n^n k + 1 , then

Γ f n n
\svndm = \s(χH + Σ Xwj-mRj + vΠk - χΠk - Σ
J J j—njc+l j~nk

for every seSLl(Wn). Since χπ + χ fr n- 1nR n

 = ̂ n-1uRn-f Xwr n - 1 n« n = /»-i+/jrn and

for every 5 e SL^n), we have

( ( π-l n-l

\svndm ^ \s(χn,ί 4- Σ X^.mΛy + V - ̂  - Σ βkjXk,j)dm
J J j=nk+l J=«k+l

for every s e SL1(Λζ). Similarly \svΠ k + 1 dm ̂  \ svnkdm. Hence (4) is satisfied.

Next we show (2). Set E = flζ - Pfε. Then

m(£ Π JJ ^ m(Jπ - Wΰ ^ δm(An)

for n = l, 2,..., %. Hence, by Proposition 1.1,

m(E) - m(£ Π (U ̂ ))

Therefore mίllζJ-mίWϋgβ^ίl^), so that
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m(We) g m(Wε)l(ί - βl) g vεdm/(l - ε,).

This implies leSLl(W^, and so, by Remark to Proposition 3.3, \vεdm = \vdrn.

This completes the proof of (2).

Finally we show (5). Set x(r) = (^χ^re^rdθ, A:(r) = f°°x(ί)£ίί and Ar=

{Δa\lίn^nN, Λ n { z e C | | z | > r + 2(l/π°)1/2*(r)1/2}^0} for r^O. If AneAr,
then Jn n {z e C I |z| < r} =0. In fact, if Δn n {z e C | |z| < r} /0, then

B n {zeC|r < |z| < r

> π

Hence

X(r) = m(Wε n {zeC| |z |>r})

^ m(Δn n {z eC| r < |z| < r + 2(l/π)1/2X(r)1/2})

This contradiction implies Anf] {zeC| |z|<r}=0. Therefore, by Proposition

1.1,

2(1 /π)1/2^^1/2) = m(£ n

= m(E n

Since X(r)^(U+ F)(r), we obtain (5).

§ 4. Cauchy transforms

Let v be an L1 function on C. The Cauchy transform v of v is the function
defined by

The integral on the right-hand side is absolutely convergent for almost all z e C
and analytic outside the support of v.
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First we give a lemma without proof.

LEMMA 4.1. Let v be an L1 function satisfying 0^v(z)^N a.e. on C.

Then

The equality holds if and only i f v = NχΔ a.e. on C, where A = {ζeC\ \ζ — z\<

The purpose of this section is to prove the following proposition :

PROPOSITION 4.2. Lei Wbe an open set, let W be a domain such that FFc W
and m(ί^)<oo, and let v be an L1 function on C such that v(z)^l a.e. on W Π
{zeC||z|^r0}/or some r0>0 and v(z) = 0 a.e. on Wc. Set

u(r) = \2πχ*-w(reiθ)rdθ9 l/(r) = \\(ί)dt9
Jo Jr

v(r) = (2πv(reiθ)rdθ and V(r) = Γv(t)dt.
JO Jr

(4.1)

then

7(6) g γA(a, 6)1+3/5

Cb
for every pair of numbers a and b such that r0^a<b, A(a, b) = [κ/(b — a)} \ {u(t)

+ v(i)}dt^l and 2A(a, by/5^b-a, where 7 = 2πr0(rJ/2 + 4max {r0, l}J|v|dm)

and κ: = 8/(πr0).

PROOF. Set T(reie) = - eie$(reiθ). Then

= (v dm - 7(r)

for almost all r e [0, oo) and (4.1) implies
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for every reiθ e Wc Π {zeC\ |z|^r0}.
Let 0 and fc be numbers such that r0^a<b, A = A(a, 6) g 1 and 2A1/5 ^b-a.

CbΓ2n Γb
We may assume A>0. In fact, if ^4=0, then \ \ χ^(reiθ)rdθdr^\ (u + v)dr=

JflJo _ Jα
0. Since H^ is connected, we obtain the two cases m(W f] {zeC| |z|>α}) = 0

or m(^n{zeC||z |<fc})=0. If m(W Π {|z|>α})=0, then F(b)^F(α)=0. If
m(W Π {|z| <ί?}) = 0 and /vdm^O, then the function v analytic outside the support
of v has a pole at the origin by (4.1). This is a contradiction. Hence if m(W Π
{|z|<ί>})=0, then Jvdw = 0, and so v = 0 a.e. on C. Therefore we have F(ί?) = 0
in both cases.

Next we show that there is a number c e (a, b) such that

(1) [c - A1/5, c + Λ1/5] c [a, fc] .

Γc+Al/s ~r
(2) \ (w + ̂ dr^-

Jc-A1/5 2

(3) ^({re[c - (1/2M1/5, c

where ^ denotes the one-dimensional Lebesgue measure.

Let n be the largest natural number not greater than (b — ά)/(2A1/s) and set
ϊ)AV5

9j = l, 2,..., n. Then n^(b-a)l(4A^5) and

Σ
j=l

Let c = ck be a number satisfying

j
v)dr = min \ (w + v)dr.

Then (1) and (2) are satisfied. If
5, then

Γc+A1/5 Γc+(l/2)A1/5

\ (u + v)dr ^ \ (u + υ)dr > πr0A
Jc-Ai/s Jc-(l/2)Ai/s

This contradicts (2), so that (3) is satisfied.

We set ^{reCc-OlβM1/5, c + (l/2)A^ \(u + v)(r)<πr0A} and R =
{zEC\c-Aί/5<\z\<c + Al/5}. In what follows, we consider only re£. If
reE, then r^r0, T(reiθ) = $vdm/r for reiθeWc and (w + ίO(r)<πτvl.
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Next we define, for each re£, φ = φ(θ) on [0, 2π) as follows: If ϊeiθέ ϊ^c,
then φ(θ) = 0, and if reiθeW9 then φ(θ) is the minimum solution x satisfying
x^0, reixeWc and

In the latter case, since

t
^ (w + v)(r) < πr0A ^ πr

Jo

and VFC is closed, φ(θ) exists and satisfies θ<^φ(θ)<4π and r(φ(θ)-θ)
CΦ(Θ)

Λ χ^(reit)dt<2πrQA.
Jo

From (4.2) we have

V(r) = -^\2\T(re^) - T(reiθ)}rdθ

= -i-ί {T(rβ^) - T(reiθ)}rdθ
*•"' J Gr

for almost all r e £, where GP={0 e [0, 2π) | reiβ e 1̂ }. Set

ptβ
e

and

Then T(retβ)=I(retθ) + 0(reiβ) and

for almost all r e E. Hence, by integrating F on E, we have

g ( V(r)dr
JE

re'Ψ) - I(relθ)}rdrdθ

{0(reiΦ) - 0(reiβ)}rdrdθ

by (3), where G = {(r, 0) | r e E and 0 e Gr}.
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Since

Jo JE Jc-Λi/ 5 2

by (2), Lemma 4.1 gives

Hence, by (2),

r) dr

Consider the inverse function θ = (φ \ GΓ)
-1 of φ \ GΓ. Then

on G^ = 0(GΓ), and so the general derivative of θ is equal to χ^c(reiφ) a.e. on G'r.
Therefore

Xw WWΦ - ( dφ
\ζ - re*+\ Jc^ζ-

Since G;c[0, 4π) and £(G'r) = £(Gr)9 by Lemma 4.1, we have

where G' = {(r, φ) \ r e £ and φ e G'r}.

Finally we consider the following:

|0(re'*) - 0(reiβ)|
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9iφ( v(0<toι(0 _ rie( v(0<faι(0

n iu 1C - re'*||C - re"|

where A2r={zeC\ \z\<2r}. For ζeRc, we have |ζ-re'*|, Iζ-
If |C|^2r, then

1 ICI/r 1 ICI/ i
1C - / eίβ| r |C// - e'9| = r |C|/r - 1 = r

Since |re''*-rei9|^r(^-0)<2nr0^, we have

573

^ 16πmax{r0,

Hence

( \0(re*+) - 0(reiθ)\rdrdθ ^ 8π2r0 max {r0,

Combining the inequalities obtained above, we have

V(V) ^ 2πr0(rέ/2 + 4max{r0, 1}( \v\dni

This completes the proof.

% 5. Convergence of kernel functions

Let R be a Riemann surface and let ζ be a point on R. Let v be a measurable

function on R such that v(z)^c a.e. on R for a positive number c. We denote by

ADV(R9 ζ) the complex linear space of analytic functions/on £ such that/(Q = 0

and \ \f'(z)\2v(z)dxdy< oo, where z = x + iy.
JR
An inner product on ADV(R9 ζ) is defined by

for every pair of / and g in ADV(R, ζ). With this inner product ADV(R, ζ) be-

comes a Hubert space.
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Let t be a fixed local coordinate defined in a neighborhood of ζ. Since the
functional f*-+(df/df)(ζ) is bounded, there is a unique function M(z) = Mv(z; ζ,

t, R) such that

for every feADv(R, ζ). We call M the kernel function of ADV(R, ζ).
The kernel function Mv(z ζ, ί, #) is identically equal to zero if and only if

W/Λ)(0 = 0 for every feAD£R,ζ). If M(z) = Mv(z; f, ί, Λ)|έO, then
(dM/dt)(ζ) = (M, M)v>0. In this case we also consider the following normalized
function :

- V , ,

This function is the unique function minimizing (/, /)v in the class of functions

feADv(R, 0 such that (d//Λ)(0 = l
In this section we are concerned with the convergence of kernel functions and

show the following proposition :

PROPOSITION 5.1. Let R be a Riemann surface, let ζ be a point on R and
let t be a fixed local coordinate defined in a neighborhood of ζ. Let {Rj}J^ι be
a sequence of subdomains of R such that U Rj~R, Rj^Rj+1 and ζeRjfor every
j. Let {v7 }^=1 be a sequence of measurable functions on R such that v/z)^c
a.e. on Rjfor a fixed positive number c, Vj(z) = 0 a.e. on R — Rj and Vj(z)^vj+ί(z)
a.e. on R for every j. We denote by v(z) a measurable function on R which is
equal to liin^αoV/z) a.e. on R. Set M/z) = MVj(z; ζ, t, Rj), μ/w) =

ΣzeΛfJ1(w)VXz), j = l, 2,..., M(z) = Mv(z; C, ί, K) and μ(w)=ΣZ6M-ι<w)V(z). Then

(1) ( \M'j\2Vjdxdy = ( μjdm < oo, 7 = 1, 2,...
*̂ R J a

and

\ |M'|2Vίίxdy = \ μdm < oo.
JR JC

(2) \ μ^ί/m I \ μJm as j ΐ oo

and

( \M'j - M'\2Vjdxdy ^ ( μjdm - f μdm.
β' Λ »/ C J C

In particular, Mj converges to M uniformly on every compact subset of R.
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(3) ( \M'j2Vj - M'2v\dxdy - > 0 as j - > oo.
JR

(4) \ \μj — μ\dm - > 0 as j - > oo.
j c

PROOF. Assertions (1) and (2) are easily verified. We write

\M'j2Vj - M'2v\dxdy

< \ |M'|2(v - vj)dxdy + \ \M'j - M'|(|M}| + \M'\)Vjdxdy.
J R J R

Since v. t v and \ \M'\2vdxdy < oo, \ |MΊ2|v — Vj\dxdy-*Q as j->oo. By applying
JR JR

Schwarz's inequality and (2), we see that \ \Mj-M'\(\Mj\ + \M'\)vjdxdy-+Q as

7~»oo. Thus (3) is proved.
Next we prove (4). We may assume M^O. For every ε>0, let Ω be a

relatively compact subdomain of R such that its boundary dΩ consists of a finite
number of smooth curves,

( \M'\2vdxdy < ε
JR-Ω

and

inf \M'\>dXdy >

ω

where ω denotes a second order differential on .R with a positive continuous
coefficient.

Set G = M(Ω), G_a = {weG|d(w, M(dΩ))>δ} and W=Ω n M-^G.,), where

δ is a positive number taken sufficiently small so that \ \M'\2vdxdy<ε.
_ JΩ-W

Take j sufficiently large so that |M7 — M| ̂  δ on ίλ Then every point weG_δ

is taken by Mj\Ω with the same number of times as taken by M\Ω. Since
infβ|MΊ2dxdj;/ω>0 and z7 -^z as ;->oo, where z 6 JFand each z, is an appropriate
element of Mji(M(z)\ there is a 1-1 analytic mapping F, of W into Ω such that
MfFj = M for sufficiently large j. The sequence {Fj} converges to the identity

mapping of W. Take j so large that \ \M'\2vdxdy<2ε and set W: =
JΩ-Fj(W)

For a measurable set E in Λ, set μ;,£(flO = ΣzeM71(MθnEv/z) ^OΓ eveιT 7 an<l

,. - μ\dm
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= \ l/f/,Ω + μj,Λ-β - μΩ - μR-Ω\dm
j c

^ \ \μjtΩ - μΩ\dm + \ μjtR-Ωdm + \ μR-Ωdm,
J Ct J C J C

\ μR.Ωdm = ( \M'\2vdxdy
JC JR-Ω

and

\M'\2vdxdy + |M}2v, - M'2v\dxdy
R-Ω JΩ

We also have

Jc J>

= \ \U; Wί

JC J' J

r Γ Γ
= \ IVj.wj - μw\dm + \ μjtΩ.Wjdm + \ μΩ-wdm,

JG-ό JC JC

\ μΩ-wdm = \ \M'\2vdxdy
Jc JΩ-W

μjΩ-w.dm ^ ( \M'\2vdxdy + ( |M/v, - M'2v\dxdy.
C J' J JΩ-Wj JΩ-Wj

and

Let φ =fdxdy be a second order differential on # with continuous coefficient

such that the support of φ is compact and φ satisfies

ί |/- \M'\2v\dxdy < ε.
JR

Since

\ \μjtWj - μw\dm
J G- ΰ

= \ IΣzeMj
JG-6
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^ |v/F/z)) - v(z)| \M'(z)\2dxdy,
J rf

we have

\ \μJtW - μw\dm
JG-ΰ

\ \f(F{z))-f(z)\dxdy
J IV

Set z, = x7 + iyj = F^ίz) and ^ =fjdxjdyj. Since

f I |M'(z)|2v/F/z)) - f(Fj(z))\dxdy
j w

= ( I |MχZj.)pvχz;) - ffaWxjdyj
JWj

^ ( IM^VJ. - M'*v\dxdy + \ | |M'|2v - f \dxdy
J R JR.

and

( \f(Fj(z) )-f(z)\dxdy— » 0 0— oo),
•/ W^

using all the above inequalities, we have

lim supy^oo \ \μj — μ\dm ^ 7ε.

This completes the proof of (4).

COROLLARY 5.2. In Proposition 5.1, assume further M^O and set MJ(z)

M*/z; C, ί> Λj), μJM= Σ^Γ'M^^ J = !> 2— M*(z) = M*(z; ζ, ί, Λ)
μ*(w) = ΣzeM,-,(w)v(z). Then

(1) \ μj'dm ί \ μ*dm as j ΐ oo.

(2) ( \μj - μ*\dm - > 0 as - > oo.
Jc
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§6. Estimates for the area

Let M*(z; ζ, t, R) be the extremal function defined in § 5. If # is a domain
in the complex z-plane, then we choose z as a fixed local coordinate defined in a
neighborhood of ζ. In this section, we deal with the case v = χR and abbreviate
M*R(z; £, z, R) by M*(z; ζ, R). We also consider a univalent function minimiz-

ing (f,f)XR = \ \f'\2dxdy = DR[f] in the class of univalent functions /such that
J R

(df/dz)(ζ) = l. This function may not be determined uniquely. We call it an
extremal univalent function on R for ζ.

In this section we prove the following proposition:

PROPOSITION 6.1. Let Ω be a plane domain such that OeΩ and m(Ω)<oo.
Then

m(Ω - 4) ̂  10{m(Ω)/π}15/16Z)β[z - M*]1/16,

where 4={zeC| |z|<r}, r={m(Ω)/π}1/2 and M*(z) = M*(z; 0, Ω).

To prove Proposition 6.1 we prepare several lemmas.

LEMMA 6.2 (a length-area principle, cf. e.g. [1, p. 117]). Let g be an ana-
Γ2π

lytic function on a ring domain PF={weC|s<|w|<f}. Set L(r) = \ \g'(reίθ)\rdθ
Jo

(s<r<t). Then

(2πΓr
PROOF. We may assume Dw[g']<ao. Set D(r) = \ \ \g'(ρeiθ)\2ρdρdθ.

Jo Js
Then, by the Schwarz inequality, we have

L(r)2 ^ 2πr(2π\g'(reiθ)\2rdθ = 2πrD'(r) .
Jo

Our assertion follows from this inequality.

LEMMA 6.3. Let c and r be numbers with 0^c<r. Then F(z)=(r2~c2)z/
(cz-hr2-c2) is an extremal univalent function on Jr(c) = {zeC| |z-c|<r} for
0 and satisfies F(Ar(c)) = {wεC\ |w|<r-c2/r}.

We omit the proof of this lemma. Next we show

LEMMA 6.4. Let Ω be a finitely connected domain such that QeΩ and
m(Ω)<oo. Let F be an extremal univalent function on Ω for 0. Then
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m(Ω - Ar) £ 9{

where Ar={zeC\\z\<r} and r = {m(Ω)/π}1/2.

PROOF. Without loss of generality we may assume m(Ω) = π. Then r=l.

Set rf = {Dβ[z-F]/π}1/2. If rf1/8 ^π'1/16^), then m(Ω- A,) ̂  m(Ω) = π ̂
9π1/16d1/8=9Dβ[z — F]1/16 and our lemma is proved. Hence we may assume

Since {Dβ[F]/π}1/2^{Dβ[z]/π}1/2-ί/ = l -d, the image W=F(O) is a circular
slit disc of radius not less than 1-d. Set G = F-1, r1 = l-2rf and K={weC|

m(V)U2+Jπd. Set L(r) = (2π\G'(reiθ)\rdθ for r with {weC| |w| = r}c:F n W
Jo

and set L=inf {L(r): {w e C \ |w| = r} c V Π W}. Then, by Lemma 6.2, we have

L2

 f d ^ Q^ΓI + ^2 _ πr2}l/2 + ̂ J]2.

Hence

L2 ^ (2πr1 -

Therefore we can choose a number p so that {w e C 1 1 w| = p} c F Π W^ and

- 2πp < L(p) - 2πrί < 2n^J~d.

Let Up be the domain surrounded by the curve G({weC| |w|=p}) and R be
the radius of the circumscribed circle of Up the circumscribed circle of Up is the
unique circle of the smallest radius that encloses Up. Set A(p) = m(Up). Then

A(p) ^ m(G({\w\<p} Π W)) ^ np\

and hence

L(p)2 - 4πA(p) ^ (2πp + 2πV^

By the Bonnesen inequality ([4], see [6]) we have

|L(p) - 2πR\ ^ {L(p)2 -

so that

R - p ̂  (V2 + Vd-f-d1/4)^1/4 < l.όd1/4.

Let c be the center of the circumscribed circle of Up. Then G({| w| < p} n VF)
Upc;dR(c). Hence, by Lemma 6.3, we have
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p^R-\c\2lR.

Therefore

|c|2 = R(\c\2/K) <(p + l-όdwyiόd1'4 < (lAd1'*)2.

Since AR(c)<=AR+^/2(c/2) and Jp(0)<= ΔR+M/2(cl2), we obtain

m(Jp(0) - β) £ m(^+lc|/2(c/2) - G({|w| < p] n WO)

g π(K + |c|/2)2 - πp2

< π{(p + l.βd1/* + 0.7 d1/8)2 - p2}

= πOLόίί1/8 + 0.7) (2p + l.όί/1/4 + 0.

< 9.2 ίί1/8.

On the other hand, we have the following inequality:

m(Al - Af(0)) = π(l - p2) ^ π{l - (1 - 2d)2} < 4πd < 0.1 d1/8.

Therefore

! - Ω)

Jp(0)) + m(dp(0) - Ω)

<9.3ίί1'18

LEMMA 6.5. Let Ω be a plane domain and let F be an extremal univalent
function on ΩforζeΩand set M*(z) = M*(z; ζ, Ω). Then

- F] ^ 4DΩ[z - M*] .

PROOF. Since DΩ[F] = m(.F(Ω)) ̂  m(Ω), we have

βflCz - ί"]1/2 ^ β0[z - M*]1/2 + Dβ[F - M*]1/2

= £»Ω[z - M*]i/2 + {DΩ[F] - £»Ω[

g £»n[z - M*]1/2 + {m(Ω) - / [̂M

= 2DΩ[z - M*]1/2.

PROOF OF PROPOSITION 6.1. Let {Ωn} be an exhaustion of Ω such that
each Ωn is finitely connected and contains 0. Then, by Lemmas 6.4 and 6.5,
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m(Ωn - Δrn) < W{m(Ωn)lπΓ5^DΩnlz - M?]1/16,

where rn = {m(Ωn)lπγi2 and Λf*(z) = M*(z; 0, Ωn). Since limn_00/)βn[z-M*] =
DΩ[z — M*], by letting n-»oo, we obtain the proposition.

§ 7. Proof of the theorem

In this section we prove our theorem and state a conjecture. At first we give
two lemmas.

LEMMA 7.1. Let Δ = {zeC\ |z|<r}, Ri = {zeC\riί<\z\<rί2} and R2 =
{zeC|r2 1<|z|<r2 2} with 0^r1 ] L<r1 2^r2 1<r2 2^r. Let s be a subharmonic
Ll function on A. Then

m :*ι) L
The equality holds if and only if s is harmonic on {zeC\ |z|<r22}.

LEMMA 7.2. Let W be a domain and let v be an L2 function on C such that

v(z)^l a.e. on W and v(z) = 0 a.e. on Wc. Then, for every ε>0, there are an
open set Wε and a domain Wε satisfying the following conditions:

(1) WcW.cty.

(2) m(Wε) < oo and m(Wε - Wε) < ε.

(3) \ hvdm — \ hdm for every harmonic L2 function h on Wε.
JW JWε

PROOF. To prove the lemma it is sufficient to construct the following Wn9

Wnand vπ, n = 0, 1,2,...:
(a) Wn is an open set and Wn is a domain.
(b) Wn^Wn+ί and Wn<=Wn+ί.
(c) W^Wn^Wn.

(d) m(Wn) < oo for n ̂  0, m(W0 - W0) = 0 and m(Wn -W1)<ef, l/2m

m=l
for n ̂  1.

(e) vπ is an L2 function on C such that vn(z) ̂  1 a.e. on Wn and vn(z) = 0
a.e. on Wc

n.

(0 llAlli.fr,, < ε/2w+2 and \\μ^2tWn < 1/2" for n ̂  1, where μπ = vn - χWn

a n d | | l l ι

(g) \ hvdm = \ hvndm for every harmonic L2 function h on tίζ.
JTF Jτrn

We construct Wn, Wn and vπ, n = 0, 1, 2,..., by mathematical induction. Set
WQ=WO = W and v0 = v. Then P70, ί̂ 0 and v0 satisfy the above conditions for
n=0. Note that m(W)< oo because v e L2(FF) and v^ 1 a.e. on W.
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Assume that Wn, Wn and vn are constructed. Let Ωn be a domain such that

dΩn consists of a finite number of smooth curves, Ω^cl^, \\vH\\ι,vr»-ΩΛ<
ββn*3

and \\Vn\\2,wn-Ωn<lβn+1 We apply Proposition 1.9 proved in [7] replacing
W, dv and ε by Ωn, (vnχWnnΩn + χΩ^-Wt)dm and ε/2Λ+2, respectively. Then there

are a bounded open set WΩ>n and a bounded domain WΩ>n such that Ωn<=.WΩjΛ<=.

W0n, «,<= Ok,, m(^»- n)<ε/2"+2 and

\ hvndm -h \_ Λdm = \
J j Γ n n Ω f t Jβn-ίΓn J

for every harmonic integrable function h on J?^fir Define Wn+ί = Wn\J {WΩ>n-

(Qn-Wn)}9 Wn+1 = WnUWΩ>n and vn+1=χWn+ί + vnχWn_Ωn-χWn.WΩtn = χWn+l +

AΊ +i
Substituting 1 in the above equality, we have

Hence

\ vndm + \ dm = \ t/m.
JWnΠΩn JΩn-Wn J WΩ, n

m(WΩιa - ΩJ = ί (v, - l)dm
JϊΓnnβn

< ε/2»+2.

Therefore

m(^π+1 - WJ ^ m((\Vn U J β̂,B) - (^ U Wfi,n))

+ m((Wn U Pfβ>π) - 1̂ ,) + m(Wn -

ί m(WΩ,n - WΩιn) + m(WΩιn - Ωn) +

Thus Wn+i satisfies (d). The other conditions are easily verified. The proof is

complete.

We divide the proof of the theorem into three steps. We may assume that

v^c everywhere on FT and v = 0 everywhere on Wc.

Step 1. Let ζ be a point on a Riemann surface R and let t be a local coordi-

nate defined in a neighborhood of ζ. We abbreviate MXR(z; ζ, t, K) (resp.

M*R(z; C, ί, Kj) by M(z) (resp. M*(z)). Assume M(z)^0 and let/ be an analytic
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function on W=M*(K) such that \ |/'|2vdra<oo, where v denotes the valence
Jw

function of M*. By the reproducing property of M we have

(7.1) /'(O) = °d (C)

= — f (foλf*)'M'dxdy

In this step we show that if the valence function v of M * satisfies v(\V)^ n on
W for some natural number n, then

swim ^ tt\ sdm
w JΔ

for every function s which is subharmonic on C and bounded from below, where

A = {w e C I M < {Jvdm/Cnπ)}1/2}.
Let {#;} be a regular exhaustion of R, namely, let {Rj} be a sequence of sub-

domains of R such that U Rj — R, RjdRj+1 for every j and each dRj consists of

a finite number of mutually disjoint analytic Jordan curves in R. We may

assume that ζeRj for every j. It is known that M*(z) = M*,(z; ζ, ί, Rj) can be

extended analytically onto Rj (cf. [8; pp. 114-137]), where χy = χRj.. Hence
each valence function v, of MJ is bounded. Set fF/ = Mj!(ΛJ.) and 17; = {we FP}|

For every δ > 0, choose a compact set K containing 0 as its interior point so

that \ vdm<δ. Applying Rouche's theorem choose J1 so that KaU for
JW-K

any j^ /i, and then choose J^J1 so that \ (v — Vj)dm<δ by Fatou's lemma.
j K

Set μ = max { vj9 nχWj} . Then μ is a bounded L1 function on FFj such that μ(w) ̂  n

on Wj and μ(w) = 0 on Wj.

Let ε=(εl5 ε2) be a pair of positive numbers εi and ε2 with εj < 1, and apply

Proposition 3.3 replacing W and v by Wj and μ/n, respectively. Then there are
domains WE and Wε, and a bounded L1 function vε on C such that

(1) Wj c Wε c Λζ.
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(2) m(Wε)^ l _ μ d m and m(Wε-Wε) ^

(3) vε satisfies vε(z)^ 1 a.e. on Wε9 vε(z) = 0 a.e. on Wc

ε and \(vε-χWε)dm ^ ε2.

(4) \ sμdm rg n\ svεdm for every s e SL^PΪζ) .
J Wj J Wε

(5) U(r + 2(l/π)1/2{(ί/ + F)^)}1/2) ̂  β^C/ + F)(r) for every r ̂  0, where

, I7(r) =
JO

vε(rβίθ)rίί^ and V(r) = Γv(f)dt.
Jo Jr

By Remark to Proposition 3.3, we have

(7.2) \ hμdm = n\ hvεdm
JWj JWε

for every heHLί(Wε). Set λ = vε + (min{vj9 nχWj} — nχWj)/n and r0=(Jvdm/

π)1/2. By (1) of Corollary 5.2, fvjί/m^Jvdw, so that by Proposition A, we have

PFjc:{weC||w|<ro}. Hence A(w) = vε(w)^l a.e. on Wε n {weC| |w|^r0} and

A(w) = 0 a.e. on ίyε

c. Let us see that ί(w)= -$λdm/w on ϊ^ε

c n {weC| |w|^r0}.

Let w e ^ n { w e C | | w | ^ r 0 } and set ft(Q=l/(C-w). Since both Reft and

Im h belong to ΉL1^), we have by (7.2)

= ( hλdm
JWε

= \ hvεdm + -i-l Λ(min {v j5 wχ^^} - nχWj)dm
Jwε

 n Jwε

= — \ Λ(max {vj, n} + min {v j? «} — n)dm
n JWj

Let /(O be a branch of log(C-w) on {weC||w|<r0}. Applying (7.1) to / we

have

( hvjdm = h(0)\ Vjdm=-~-\ Vjdm
JWj JWj W JWj

and hence l(w)= — (nw)~l\ Vjdm. If we carry the same computation with h = 1,
JWj

then we obtain \λdm = n~1\ Vjdm. Hence l(w)= — \λdm/w.
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By using Proposition 4.2, we have

V(b) g γA(a, i?)1+3/5

.. . Γb
for every pair of numbers α and b such that r0 ̂  a < b, A(a, b) = {κ/(b — a)} \ {u(t) +

J a
v(t)}dt^i and 2A(a, b)l/5^b-a, where y = 2πr0(rJ/2-|-4max{r0, l}J|λ|dm) and
κ: = 8/(πr0). Hence, by Proposition 2.1, there is a number M> {$vdm/(nπ)}l/2 sat-

isfying U(M)= F(M) = 0. We can choose M so that it depends only on ε l s r0 and

$\λ\dm. Therefore $ζ,c:{\veC| |w|<M} for every ε' = (εi, ε2) with 0<ε'1^ε1

and ε2 >0. Since every subharmonic function on C is locally bounded from above,

s is bounded on {weC| |w|<M}. Set ||s||oo,M = suPM<MKw)l Since

\ Vjdm — \Vjdm — \vdrn + \ vdm + \ (v — Vι)dm < 2δ,
JWj-K J J JW-K JK

we have

i f r i f f
\ svjdm — \ sμdm = \ svjdm — \ sμdm

\JWj JWj \JWj-K JWj-K

o,M\ VJ'
JWj-K

^ l|s| |oo,M Vjdrn +
Wj-K

Wj-K

^ \\s\\^M2(n + 1)5.

From (3) and (4), we have

\ sμdm ^ n\ svεdm
JWj JWε

= n \ \ sdm + \ s(vε - χWε)dm + \ sdm - \ sdm\
UΔ Jwε JWε-Δ JΔ-Wε )

^ n( sdm + n i l s || oo M{ε2 + m(Wε - A) + m(A - Wε)} .
JΔ

We next estimate m(Wε — A) and m(J — PFε). Apply Lemma 7.2 replacing

W, v and ε by Wε9 vε and η, respectively. Then there are an open set Wη and a

domain Wη such that WεaWηcιWη9 m(Wη)<oo, m(Wη-Wη)<η and ( hvtdm =
JWε

{ hdm for every he HL2(ffη). Hence, by (7.2),
JWη

( f'μdm = n( f'dm
JWj Jwη
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for every analytic function /on Ω= Wε U Wη with a finite Dirichlet integral DΩ\_f\.

Set Mβ(w) = MχΛ(w; 0, w, Ω). Then

for every /e ADχfi(Ω, 0). Since

μ_ V j = 0 on 17,, O^μ-vj^n-i on W^-l/j and m(O- W;)^m(llζ-

mO^-FF^βiWl-βO)-1/^
we have

Hence

where M$(w) = M*n(w; 0, w, Ω). Since K^Ω and K contains 0 as its interior
point, #(w) = w — M£ Jvjrf w/(nDΩ[M£]) tends to 0 uniformly on some neighbor-
hood of 0 as (5, Si and η tend to 0. Hence #'(0) tends to 0 so that fvjdw/

(nDβ[M£|) tends to 1. It follows that Dβ[w-M^] tends to 0.

Finally we show that m(WE — A) + m(A — WE) tends to 0 as <5, ε l9 ε2 and η tend
to 0. We apply Proposition 6.1 and obtain m(Ω- Jr)->0, where r = {m(Ω)/π}1/2.

From the relation \ vεdm=\ dm and (7.2) we obtain m(PFΠ) = n~1\ μdm.
JfΓε JWn JWj

Since m(Ω)-m(Hζ) = m(Ω- W)gε1(l-ε1)-1Jvί/m + ̂  and

0 ̂  ίJ
^ 2(n -

Wj JWj

by (1) of Corollary 5.2, we have m(Ω)-^n~1Svdm, and hence r->{Jvdw/(nπ)}1/2.
Therefore

m(Jfε - /I) ^ m(Ω - A) ^ m(Ω - Jr) + m(Jr - J) - > 0,

and
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\m(A - Wε) - m(Wε - Δ)\ = \m(Δ) - m(Wε)\ > 0.

Thus m(Δ - JFε)->0 too. By (2) of Corollary 5.2, we have

\ svdm = lim\ svjdm ^ n\ sdm.
JW J-+<x>JWj JΔ

Step 2. Let FFbe a domain and let v be an L1 function on C given in the
theorem. In this step we show

(7.3) ( svdm ^c( sdm
JW JΔr

for every function s which is subharmonic on C and bounded from below.
Suppose first that v is a lower semicontinuous function on C and v(z) is a

natural number not less than n for every z e W. In this case, by using the same
argument as in [7, Proposition 3.1], we can construct a Riemann surface R of
infinite genus and F e ADXR(R, ζ) for some ζ e R such that

(1) The valence function VF of F is equal to v a.e. on C.
(2) (dF/dt)(ζ)^0 for some (and hence every) local coordinate t defined in

a neighborhood of ζ.
(3) For every geADXR(R, ζ), there is a function feADv(W, 0) satisfying

9=f°F.
By virtue of (2) we can choose F as a local coordinate defined in a neighborhood
of ζ. As was shown in the proof of Proposition 3.1 of [7], F(p)=M*R(p; ζ, F,
R). By Step 1, we have

\ svdm = \ svpdm ^ n \ sdm
Jw Jw JΔ

for every function s which is subharmonic on C and bounded from below, where
A = [z e CI |z| < {fvdm/tnπ)}1/2}.

Suppose next that v is lower semicontinuous on C, that v(z)/ε is a natural
number for some fixed ε>0 and for every z e Pf and that c/ε is a natural number.
By the above argument, we also have (7.3) in this case.

Finally we show (7.3) for an arbitrary v given in the theorem. We can con-
struct functions v, on C, j = 1, 2,..., such that

(1) 0 ̂  Vj ^ vj+ ί and lim v/ = v a.e. on C.
(2) v/z) ̂  c on W.

(3) V j is lower semicontinuous on C.
(4) (2J/c)Vj(z) is a natural number for every z e W.

Set M?(z) = M*/z; 0, z, W\ μJ(^ = ΣzeMΓl(^j(zl 7 = 1, 2> > M*(z) = MJ(z;
0, z, W) and μ*(w)=ΣZeM*-i(w)v(z) From the assumption in the theorem and
the definition of the kernel function, we have M*(z) = z and so μ* = v. The
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function μj is lower semicontinuous on C and satisfies that μj(w)^c on MJ(W)9

= μJ(w)/(cl2j) is a natural number for almost all w eMj(W) and

for every /e ADμ*(MJ(W), 0). Hence, by the above argument, we have

\ sμjdm ^ c\ sdm
JC JΔj

for every function s which is subharmonic on C and bounded from below, where
Aj = {wεC\ \w\<{$μjdm/(cπ)}i/2}. Therefore, by Corollary 5.2, we obtain

\ svdm = l im\ sμfdm < c\ sdm.
Jw Jw J JΔr

Step 3. Let W be a domain and let v be an L1 function on C given in the
theorem. Let s be a subharmonic function on C which is not necessarily bounded
from below. Since max {s, N} is subharmonic for every number N9 by Step 2,
we have

\ max {s, N}vdm ^ c \ max {s, N}dm.
Jw j Δr

Letting N | — oo, we obtain (7.3) for every subharmonic function on C.
Now we prove (7.3) for every subharmonic L1 function on Δr. By Proposi-

tion A, we may assume that there is a compact subset K of W such that m(K) > 0
and infzeK v(z) > c. By using the same argument as in the proof of Proposition A
([7], Proposition 3.2), we can construct a measurable function v0 on PΓsuch that

(1) v0(z) ̂  c + aXA0(z) on W and v0(z) = 0 on Wc, where α > 0 and
AQ denotes a disc centered at 0 with 30 c W.

(2) \ svdm^\ sv0dm for every se SLl(W).
Jw Jw

Set μ(z) = v0(z)-aχΔo(z). Then μ(z)^c on W, μOO = 0 on Wc and

for every fe ADμ(W, 0). Hence

(7.4) \ sμdm ^ c \ sdm
JW JΔP

for every subharmonic function s on C, where Ap = {ze€\ |z|<p} and p —

For every sGSL1(Ar\ there is a subharmonic function s on C such that
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S I Δp = s I Δp. Therefore (7.4) holds for every s e SL\Δr).
By Lemma 7.1, we have

(7.5) ( s(aχΔo)dm^c\ sdm,
JW JΔr~Δp

and so we obtain (7.3) for every seSL1(Ar). The equality in (7.5) holds if and
only if s is harmonic on Δr. This completes the proof of our theorem.

In our theorem we have treated upon the special case when v satisfies

for every analytic function /on VFsuch that \ |/'|2vdw<oo. By our theorem
JW

and Lemma 7.2 we are led to the following conjecture :

CONJECTURE. Let W be a domain and let v be an Lp (l^p<co) function
on C such that v(z)^ 1 a.e. on Wand v(z) = 0 a.e. on Wc. Then there is a domain
W satisfying the following conditions:

(1) W c W.

(2) m(W) = $vdm< oo.

(3) \ svdm ^ \ sdm for every subharmonic Lq function s on W, where q
JW JW
satisfies l/p+l/q = l.

If this conjecture were true, then it would be possible to simplify the proof of
our theorem.

§ 8. An application to the estimation of the Gaussian curvature of the span
metric

Let R be a Riemann surface and let v be a measurable function on R such
that v(z)^c a.e. on R for a positive number c. For a natural number π, let
ADV(R, ζn) be the complex linear space of analytic functions / on R such that

I f'(z)\2v(z)dxdy< oo and f(ζ) = (df/dt)(ζ)= ... =(<*"- W'1) (0 = 0 for a fixed
JR

local coordinate t defined in a neighborhood of ζ. We define an inner product
by

(f,9\=-=\ f'(z)g'(z)v(z )dXdy
JR

for every pair of / and g in ADV(R, ζn). With this inner product ADV(R, ζn)

becomes a Hubert space. Set ||/||v= J(f, /)v.
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Since the functional f*-+(dnf/dtn)(ζ) is bounded, there is a unique M(z) =
Mv(z; C", t, R)eADv(R, ζ") such that

""(0 = (/,M)V" Λ "

for every /e ADV(R, £"). By Proposition A, we have M(R)cA = {weC\ \w\<

\ see the following proof. Applying our theorem we have

PROPOSITION 8.1. 7/M(z) = Mv(z; ζn, t, #) is not identically zero, then

(8.1)

/or ei ery analytic function f on A = {weC\ \w\<\\M\\v/ ^fc}. The equality
holds if and only if one of the following is satisfied:

( i ) f is constant.
(ii) v(z) = c a.e. on R and f is a linear function, namely, f(w) = aw + b for

some constants a and b.
(iii) n = l, v(z) = c a.e. on R and R is conformally equivalent to Δ—E,

where E denotes a relatively closed subset of A such that E f t K is
removable with respect to analytic functions with finite Dίrichlet
integrals for every compact subset K of A.

\
J

PROOF. Set W=M(R) and μ(vv)=ΣzeM-ι(w)v(z). Then \ μdm =
Jc

\M'\2vdxdy<ao, μ(w)^c a.e. on W, μ(w)=0 on Wc and

_ π d»(f°M)
Sμdm dt"

for every feADμ(W, 0). To prove (8.1) we may assume feADXΔ(A, 0). Since
\f\2 = \f>2\ eSLl(Δ), by our theorem, we have

cDa[/oM] ^ ( (f°M)'(f^MYvdxdy = ( \f'\2μdm ^ c( \f'\2dm,
JR Jw JΔ

and so
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Next we prove the equality assertion. It suffices to show the "only if"
part. Assume DΛ[/°M]=Dj[/] for a nonlinear analytic function / on A. If

£j[/] = °°> then £>Λ[/°M] = \ \f'\2μdm = ao. We know that \ μdm«X).
_ jw jc

Therefore W ς£ A so that supW6fr |w| is equal to the radius of A. By Proposition A,
it follows that μ(w) = c a.e. on J, so that v(z) = c a.e. on R and M is univalent.
Hence n = 1 and R is a Riemann surface mentioned in the proposition. If Dj[/] <
oo, then the subharmonic L1 function |/'|2 is not harmonic on A, since / is
nonlinear. Therefore, by our theorem, we have again μ(w) = c a.e. on A. It
follows as above that (iii) is true. This completes the proof of our proposition.

COROLLARY 8.2. If M(z) = MXR(z'9 £, f, R) is not identically equal to zero,
then

The equality holds if and only if R is conformally equivalent to Aί—E9 where
A{ denotes the unit disc and E denotes a relatively closed subset of Aί men-
tioned in Proposition 8.1.

PROOF. Set /(w) = w2/2. Then DJ[/] = π||M||JR/2=DΛ[M]2/(2π), and so
our assertion follows from Proposition 8.1.

REMARK. Set φ=M/\\M\\XR. Then DΛ[φ] = π. Hence, by Corollary 8.2,
we have DR[φ2/2]^DR[φ~]2l(2π) = π/2. This has been conjectured by J. Burbea
[5, Conjecture 2].

Now we deal with the "span metric". The span S(ζ) at ζ e R is defined by

The span 5(0 depends on the choice of the local coordinate t. But if the span
vanishes for some local coordinate, then it vanishes for every local coordinate.
We denote by NR the set of points ζ e .R at which the spans vanish.

If R e 0AD, namely, if there are no nonconstant analytic functions on R with

finite Dirichlet integrals, then NR=R. If RφOAD, then NR is a closed discrete
subset of R. We note that NR = 0 if RφOAD and R is of finite genus.

The metric ^fS(ζ) \dt\ defined on R-NR is called the span metric. Let K(ζ)
be the Gaussian curvature of the span metric, namely,
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PROPOSITION 8.3. It follows that

K(ζ) ^ - 4

for every ζ in R — NR. The following conditions are equivalent:
(i) K(ζ)=-4 for some point ζ in R-NR.

(ii) K(ζ)= —4 for every point ζ in R — NR.
(iii) R' is conformally equivalent to Al—E, where A1 denotes the unit disc

and E denotes a relatively closed subset of Aί mentioned in Proposi-
tion 8.1.

PROOF. Since ζeR-NR, <fMZJr(C; C, ί, Λ)/Λ*0. In §5 we set M*R(z; ζ,
t, R) = MXR(z-, C, ί, R)/{dMχR(ζι C, ί, R)/dί} Denoting it by F^z) here, we have
^[ ι̂/2] < oo by Corollary 8.2. Hence d2MXR(ζι ζ2,t,R)/dt2 *Q. Set F2(z) =
MXR(z; C2, ί, R)/{d2MXR(ζ; ζ\ t, R)/dt2}. Since

by Corollary 8.2, we have

(8.2)

It is known that

(cf. e.g. [2, Chapter III]). By (8.2), we have

K(ζ) ^ - 4

for every ζ e R — NR.
Next we prove the second assertion. It is evident that (iii) implies (ii) and

(ii) implies (i). If K(ζ) = - 4 for some ζ in R - NR9 then DΛ[F?/2] = DΛ[F1]
2/(2π).

Hence, by Corollary 8.2, .R is a planar domain mentioned in (iii).

Finally we deal with the integral curvature of the span metric. It is the
surface integral C of the Gaussian curvature K(z\ namely,

C = ( K(z)S(z)dxdy.

COROLLARY 8.4. IfRφOADί then C=-oo.

PROOF. By Proposition 8.3, we have C^-4\ S(z)dxdy = -4\ 5(z)
JR-NR JR

dxdy. Let {φn} be a complete orthonormal system of ADXR(R, ζ). Then
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, and hence

= <UmcADXR(R9 C).

Since RφOAD, by [7, Corollary 2.5], dimc ADXR(R, 0 = °o Therefore C= -oo.
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