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Recently, one of the present authors [4] has studied various forms of maxi-

mal and minimal asymptotic behavior of positive solutions of the nonlinear

differential equations

This paper extends the results of [4] to much more general differential equations

of the form

where n > 2 and

I d 1 d(2) Ln =
Pn(ί) dί pn^(ί) di dt Pί(t) dt Po(ί) '

It also establishes criteria for the absence of various forms of asymptotic behavior

among the eventually positive solutions of (1+) and (1~) and, in some cases, the

complete absence of eventually positive solutions.

We always assume that :

(a) Pl E C([fl, ex)), (0, oo)), 0 < i < Λ ;
(3)

(b) /eC([>, oo) x (0,oo), (0,oo)).

We introduce the notation :

The domain ^(Ln) of Ln is defined to be the set of all functions y: [Tr co)-+R

such that LjXOί 0<i<n, are continuous on [Tr oo). By a positive solution of
(1+) [(1~)] we mean a function y e &(Ln) which satisfies (1+) [(1~)] and is positive

for all sufficiently large t.
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1. We first consider the case where

(5) Γpi(t)dt =00 for 1 < ί < n - 1.
J a

LEMMA 1. Let yG^(Ln) satisfy y(i)>Q and Lny(t)<Q on [ί0, oo), t0>a.
Then there exist an integer fce{0, 1,..., n— 1}, kφn(moά2\ and a tί>t0 such
that

Lty(t) > 0 on [tί9 oo) for 0 < ί < k,
(6)

(- ly-^L Xί) > 0 on [ίl9 oo) for k + 1 < i < n.

LEMMA 2. Let ye^(Ln) satisfy y(t)>0 and Lny(t)>0 on [f0, oo). Then,
either

(7) L,XO > 0 on [ίl9 oo) for 0 < i < n,

or ί/iere exists απ integer /ce {0, 1,..., n — 2}, fc = n(mod2), swc/i ίΛαί (6) /lo/rfs on
[ίl5 oo), w/zerβ ί!>ί0 is sufficiently large.

The set of all positive solutions of (1+) [(1~)] is denoted by .̂ The set of
all positive solutions of (1+) [(1~)] satisfying (6) for some /ce{0, 1,..., n — 1}
[/ce{0, 1,..., n — 2}] is denoted by &>k\ the set of all positive solutions of (1~)
satisfying (7) is denoted by 0>n. From Lemmas 1 and 2 it follows that

0> = ̂ ! U ̂ 3 U ••• U ̂ Vi for (1+) with n even,

0> = 0>Q U ̂ 2 U ••• U ̂ n_ι for (1+) with n odd,

^ = ^o U ̂ 2 U ••• U &n for (1~) with n even,

^ = ^i U ̂ 3 U ••• U &n for (1~) with n odd.

These observations lead us to consider (1+) [(!")] when n is odd [even]. It
is now natural to refer to a positive solution y of (1+) or (1~) as minimal in case
y e^o, that is, ( — l^L^ί), 0</<n, are eventually positive, and the existence of
such minimal solutions follows readily from a theorem of Hartman and Wintner
[1]. Here we need only impose growth conditions on /(ί, y) which assure that
solutions of (1+) and (1~) can be continued to ί=oo and consider the vector x
= (L0<y, —L1y, L2y,..., (—l)n"1Ln^iy) which satisfies the first order system

(8) x ' = -f(ί,x).

Writing v > 0 in case all components of v are positive, we note that in (8)
f(ί, x)>0 for x>0. According to Hartman and Wintner [1] (see also Kreith
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[3]) this assures the existence of a "monotone solution" x(ί) of (8) satisfying
x(ί)>0in [α, oo).

We now consider (1+) [(!")] when n is even [odd]. It is clear that if y e 0>l9

then L0y(t) = y(t)/p0(t) is eventually increasing. Accordingly, for n even [odd]

we refer to positive solutions y(i) of (1+) [(1~)] as minimal in case LQy(t) are
bounded and seek growth conditions on /(ί, y) which guarantee their existence.

The growth conditions on /(ί, y) will be formulated in terms of a continuous
function F(t, y) which is monotone increasing or decreasing in y and satisfies

(9) f(t, y) < F(t, y) for (ί, y) e [α, oo) x (0, oo) .

The following notation will be employed. Let ι'ke {!,..., n — 1}, i<k<n — 1,
and ί, 5 e [α, oo). We define J0 = 1 and

(10) Ik(t, s; pίk,..., ptl) = \ pik(r)Ik-v(r9 s; plk_ί9...9 Pijdr, 1 < fe < n - 1.
Js

For simplicity we put for 0 < i < n — 1

Jfa s) = /i(ί, s; P!,..., pa Jt(t) = Jf(ί, α);
(11)

ί, s) = /f(ί, s; £„_!,. .., pn-i), Kί(0 = Kfa a) .

THEOREM 1. Suppose that n is even [pdd~\. A sufficient condition for
(1+) [(!")] to have a minimal positive solution is that

(12) J**:»-ι(θA,(0*i(f> cPo(t))dt < oo for some c> 0.

SKETCH OF PROOF. Let b = c/2 or fc = 2c according to whether F(t, y) is

increasing or decreasing in y. Choose T>a so large that

cPo(t))dt < *-.
o

Denote by ^ the locally convex space of all continuous functions y: [T, oo)
-»# with the topology of uniform convergence on compact subintervals of [T, oo).

Consider the set

7= y e ^ - o W < XO < 2ip0(0, ί >

and define the operators Φ± : Y-+& by

Φ±XO = δPo(0 ± (-l)"

It is not difficult to verify that Φ± are continuous and map 7, which is a
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closed convex subset of tf, into compact subsets of 7. Therefore, by the

Schauder-Tychonoίf fixed-point theorem, Φ+ [Φ_] has a fixed point in Y9 which

provides a minimal positive solution of equation (1+) [(!")]. For the details the

reader is referred to Kitamura and Kusano [2].

Turning now to the concept of maximal solutions, we note that even in the

linear case of y(n} — q(t)y = Q we would not expect to be able to bound the growth
of solutions ye^n if q(i)>Q. Accordingly, we restrict our considerations of
maximal solutions to equation (1+). A positive solution y of (1+) satisfies Lny(t)
<0 and therefore, by integrating this inequality n times, we see that y(t) cannot

grow faster than p0(OΛι-ι(0 as t->ao. Thus we define a positive solution ye

^n-ι to be maximal if it is asymptotic to cp0(OΛ-ι(0 f°Γ some c>0, i.e., if there
exists a constant c> 0 such that

The basic result regarding the existence of maximal solutions is the following

THEOREM 2. A sufficient condition for (1+) to have a maximal positive

solution is that

(13) ^"pn(i)F(t, cp0(ίy»-ι(0)Λ < °° f°r some c > °

SKETCH OF PROOF. Let b be as in the proof of Theorem 1, choose T>a

so that

and define

Z = {j e V\ -^-p0(OΛ-ι(0 < XO <

Consider the operator Ψ: Z-+& defined by

rt roo
p0(t) \ /B_2(ί, 5; P!,..., pn-2)pn-ι(s)\ Pn(r)f(r, y(r))drds.

JT Js

Proceeding as in [2], it can be shown that Ψ is a continuous operator map-
ping Z into a compact subset of Z. It follows that Ψ has a fixed point in Z,
which is the desired maximal positive solution of equation (1+).

REMARK. In case /(ί, j;) itself is monotone increasing or decreasing in y,
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then the hypotheses of Theorems 1 and 2 with F replaced by / are necessary as
well as sufficient. See [2] for details.

It may happen that the nonexistence of maximal or minimal positive solu-
tions implies the nonexistence of any other kinds of positive solutions. This is
the case if, for example, f ( t , y) is itself decreasing in y as the following theorem
shows.

THEOREM 3. Let /(ί, y) be decreasing in y. Then equation (1+) has no
positive solution if and only if

(14) \"pn(t)f(t, cp0(OΛ-ι(0)Λ = °° for all c > 0.

PROOF. Suppose ye^k for some /ce{0, 1,..., n — 1}. Then it follows that

(15) ^-i-iίOAίO/fc XO)Λ < oo.

(See [2].) If ye^09 then y(t)^c1p0(f) eventually for some cί>0, and this
combined with (15) yields

< oo.

If ye^k for some fee {!,..., n — 1}, then there are positive constants c2 and c3

such that

(16) c2p0(θΛ-ι(0 < XO

for all sufficiently large t. Using (16) in (15), we obtain

: oo.

In summary, if έPk^φ for some /ce {0, 1,..., n — 1}, then

ί, cp0(ί)Jk(ij)dt < oo for some c > 0,

or equivalently, &k = φ for some /ce{0, 1,..., n-ί} if

(17fc) \*£B-*-ι(θΛ(0/(f» cpoWkWdt = oo for all c> 0.

In view of (5) we see that

and lim [_Kt.
r-κx>
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Using these and the decreasing nature of/, we have

κn-k+ί(t)Pn(t)f(t,

provided t is sufficiently large, and so (17fc) implies (17k_2). Now (14) is nothing

else but (!?„_!), and from the above observation it follows that

^»-ι = ^»-3 = ••• = ^i = Φ if n is even,

^Vi = ̂ π_3 = =^0 = Φ if * is odd.

This completes the "if" part of the theorem. The "only if" part is contained
in the Remark following Theorem 2.

Noting that (13) is sufficient for equation (1~) to have a positive solution

y(i) such that lim [XO/PoίOΛ-i (01= const >0, and that (15) also holds for
f-KJO

solutions of (1~) belonging to 0>k9 fce{0, 1,..., n — 2}, we have the following

theorem.

THEOREM 4. Suppose f(t, y) in (1~) is decreasing in y. If (14) holds for
all c>0, then 0> = 0>

nfor (1~), and every positive solution of (1~) grows faster

than Po(t)Jn-ι(t) as ί-voo.

Next we examine the case where /(ί, y) is nondecreasing in y. We say that
equation (1+) [(!")] is superlinear or sublinear according as/(ί, y) satisfies

f ( t , y ) / y > f ( t , z ) / z for y > z > 0,

or

f ( t , y ) l y £ f ( t 9 z ) l z for y > z > 0.

THEOREM 5. Let (1+) be sublinear. Suppose

(18) l m m f - * - * - ' >0

/or fe = l, 3,..., n — 3 if n is even, and for k = 2, 4,..., n — 3 i/ n is odd. Suppose

in addition

(19) AW/α cpQ(t)Jn,2(t))dt = oo /or α / / c > 0.

TJ^βn, ̂  = φ i/n is ei en, and ̂  = ̂ 0 ί/n IS odd.

THEOREM 6. Lei (1+) be superlinear. Suppose

(20) lim i n f + - * - 3 ^ >0
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for fc=l, 3,..., n-3 if n is even and for fe = 2, 4,..., n-3 if n is odd. Suppose
in addition

(21) K»-2(OP.(0/(/,cpo(0)Λ=oo for all c>0

if n is even, and

(22) JβX»-3«A(0/(f, cj>o(OJι(0)Λ = oo /or α» c> 0

z/n is odd. TTien, ̂  = φ i/n is even, and 0> = 0>Q i/n is odd.

PROOF OF THEOREMS 5 AND 6. Let y be a positive solution of (1+) such
that ye^k for some fee {!,..., n — 1}. Then, using (15), (16) and the fact that
/(ί, y) is nondecreasing, we have

f, ci>o(OΛ-ι(0)Λ < °o for some c> 0.

Consequently, &k = φ if

(23,) J°° Kn-k-ι(t)pn(t)f(t9 cpQ(t)Jk. ι(t))dt = oo for all c > 0.

Let (1+) be sublinear. Then, for any c>0 and for all sufficiently large ί,

< Kn-k+l(t)pn(t)f(t,

It follows that, in the presence of (18), (23k) implies (23k_2). Now condition
(19) means that (23^-j) is valid, so that

^Λ_ι = ^»-3 =•••= ^i = $ if n is even,

^π_ χ = ̂ Λ_3 =...= ^»2 = 0 if n is odd.

This completes the proof of Theorem 5.

Let (1+) be superlinear. Then,

9 cPo(t)Jk+l(t)) r

h

Jk

for any c>0 and for all large ί, so that, under condition (20), (23Λ) implies (23fc+2).
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Noting that (21) and (22) agree with (23 J and (232), respectively, we conclude

that

^ = ^>3 =...= 0>n_i = φ if n is even,

^»2 = &>4 =...= 0>n_ί = φ if n is odd,

thereby completing the proof of Theorem 6.

If in particular ^(0=1, 0<i<n, then conditions (18) and (20) are clearly
satisfied, and so Theorems 5 and 6 specialized to the equation

(24) y™+f(t, )0 = 0

yield the following result.

COROLLARY 1. (i) Lei (24) be sublinear. If

(25) (°° /(ί, cί"-2)Jί = oo for all c > 0,

then 0> = φ if n is even, and 0> = 0>

Q if n is odd.

(ii) Let (24) be superlinear. Suppose

(26) Γ ί"-2/(ί, c)dt = oo /or α/ί c> 0

if n is even, and

(27) (°°r~3/(ί? cί)dί = oo for all c > 0

i/π is odd. Then, έP = φ if n is even, and ̂  = ̂ 0 if n is odd.

Likewise we are able to prove the following theorems.

THEOREM 7. Let (1~) be sublinear. Suppose that (18) holds for k = 29

4,..., n — 4 if n is even and for fc=l, 3,..., n — 4 if n is odd. Suppose in addition
that

(28) β0Xι(θΛ(0/αcpo(OJ.-3(0)Λ=oo /or*// c> 0.

77/en, it follows for (1~) ί/rαί ̂  = ̂ 0 u ̂ M i/n is ei βn, and 0> = 0>nifn is odd.

THEOREM 8. Let (1~) fee superlinear. Suppose that (20) holds for k = 2,
4,..., n — 4 i/n is ei en and for k=l, 3,..., n — 4 i/n is 0Jd. Suppose in addition
that (22) /z0/ds ί/ n is even and that (21) holds if n is odd. Then it follows for
(1~) that 0> = 0>Q \J 0>nifn is even and 0> = 0>nifn is odd.
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COROLLARY 2. Let the equation

(29) y™-f(t,y) = Q

be sublίnear. Suppose

(30) (°V(f, ct"~3)dt = oo for all c> 0.

77ιen, 0> = 0>Q u ̂ π z/n is et en and 0> = 0>nifn is odd.

(ii) Lei (29) be superlinear. Suppose (26) or (27) ftoWs according as n

is odd or even. Then, 0> = 0>

0 U &n if n is even and 0> = 0>

n if n is odd.

2. We now turn to the case where condition (5) is not satisfied. Recently,
Trench [5] has shown that any differential operator Ln of the form (2) can be
rewritten as

_ _ I d 1 d d i d -
" Pn(t) dt Pn-^t) dt dt p^i) dt p0(t) '

where p/eC([α, oo), (0, oo)), 0<j<n, and

(32) (* Ptf)dt =00 for 1 < i < n - 1,
J a

and that the representation is unique in the sense that the /^(f), 0<ϊ<π, are

determined up to positive multiplicative constants with product 1. From this
fact it follows that there exist principal systems for general Lπ, one of which is

where Jt(f) are constructed from pt(f)9 l<i<n — 1, according to the rule (11).
Here, by a principal system for Ln we mean a set of n positive solutions

..., Yn(t)} of the equation Lny = 0 which satisfy

It is known that if {Y^ί),..., Yn(f)} and {Y^ί),..., Yπ(0) are principal systems for
Lπ, then the limits

(34)

exist and are finite. (See, for example, Lemma 3 of [5].)
On the basis of the above observation we define minimal and maximal

positive solutions of (1+) and (1~) with general Ln as follows. Given a principal

system (Y^ί),..., Yn(i)} of Lny = Q, for n even [odd], we say that a positive solu-
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tion y(f) of (1+) [(!")] is minimal if y(ί) is asymptotic to cY^t) for some c>0,

that is, lim[y(i)/Yί(f)~] = c. A positive solution y(i) of (1+) is called maximal
ί->00

if it is asymptotic to cYn(t) for some c>0: lim [y(t)/Yn(ty] = c.
ί-*oo

All the theorems proven in the preceding section can easily be transferred to

the present situation.

THEOREM Γ. Let (Y^ί),..., Yn(i)} be a principal system for Ln and let
{Z1(ί), ..5 Zn(t)} be a principal system for the operator L* defined by

r* 1_ d I d d 1 d '
^» p0(t) dt pat) dt dt /V-iW dt pn(t) '

A sufficient condition for (1+) and (1~) to have a minimal solution is that

Γ°°
(36) \ Zn(i)F(t9 cYι(i))dt < oo for some c > 0.

PROOF. We rewrite Ln in the form (31) satisfying (32). Then the operator

L* is represented as

Γ* 1 d 1 d d 1 d
* Pι(t) dt dt pn_,(t) dt pn(t) '

Let {Ϋ ι(t\..., Ϋn(f)} stand for the principal system for Ln given by (33), and let

{Z^O,..., Zn(f)} denote the set of functions

(37) {ft,(0, A(0 ι̂(0,.. , A(0 .̂-ι(0} ,

where Kf(ί) are defined exactly as the functions without tilde. The set of func-
tions (37) is a principal system for L*.

Theorem 1 states that a minimal positive solution of (1+) [(!")] exists if

cp0(tj)dt < oo for some c > 0,

or if

(38) (°°Zn(i)F(t9 cΫ^tydt < oo for some c> 0.

Since the limits (34) and lim \_Zi(t)IZί(ί)~] >0, l<i<n, exist and are finite, (38) is
f-»00

equivalent to (36).

THEOREM 2'. Equation (1+) has a maximal positive solution if

(39) ("z^OFfc cYn(t))dt < oo for some c> 0.
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THEOREM 3'. Let f ( t 9 y) be decreasing in y. Equation (1+) has no positive
solutions if and only if

(40) Γz^O/tί, cYn(t))dt = oo for all c> 0.

THEOREM 4'. Let /(*, y) be decreasing in y and suppose that (40) holds.
Then any positive solution of (1~) grows faster than Yn(i) as f-»oo.

THEOREM 5'. Let (1+) be sublinear. Suppose

(41) lim inf v ^ ^ V 1 " , ^ >0

/or fc = l, 3,..., n — 3 ι/ n zs even and for fc = 2, 4,..., n — 3 z/ n is odd. Suppose
in addition

(42) ΓZι(0/(f, <?i;-ι(0)Λ = oo /or all c> 0.

TTzen, (1+) /ιas no positive solution if n is even9 and every positive solution y(f)

of(i+) is such that lim [XO/^iίO] exists and is finite if n is odd.

Similarly, Theorems 6', Ύ and 8' could be derived from Theorems 6, 7 and 8,
respectively.

EXAMPLE. Consider the operator Ln defined by (2) in which

{™pj(f)dt < oo for 1 < i < n - 1.
J a

Define the functions jt(t) and k^f) as follows :

fco(0 = 1,

Then, as principal systems for Ln and L* we can take

ίPo(0;.-ι(0, IΌ(θΛ-2(0, , Po(0)
and

respectively.
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