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1. Introduction

Consider the initial value problem
(1.1 y=fx,» (asx=b),
1.2) @) = yo,

where f(x, y) is sufficiently smooth in I xR, I=[a, b] and R=(— o0, ). De-
note by y(x) the solution of this problem and for a positive constant h let

(1.3) xj=a+jh (j=0,1,.,N), h=(b-a)N < h,.

We consider the case where the approximate values y, of y(x,) (m=k,
k+1,..., N) are obtained by the k-step method [2]

(14) le‘=0ajyn+j = h¢(xm Ynoeoos Ynvks h) (n = 0’ ]s"-7 N_k)s

where a; (j=0, 1,..., k) are real constants and o, =1. The method (1.4) includes
one-step methods, linear multistep methods, hybrid methods, pseudo-Runge-
Kutta methods and so on.

In Section 3 for sufficiently smooth &(x, u,,..., u;; v) we study the asymp-
totic behavior of errors

1.5) ej=y;—yx) (=01..,N)

as h—0. In Section 4 the local truncation error is approximated and Milne’s
device in the predictor-corrector method is justified under certain conditions.
In Section 5 we are concerned with the approximate computation of errors and
illustrate the method by numerical examples.

2. Preliminaries

2.1. Assumptions
For simplicity the dependence of @ on f is not expressed explicitly. Let
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2.1 p(0) = Zhoo;l4, H =[O0, ho]
and assume that the following conditions are satisfied.

CONDITION A:  &(x, uy,..., uy; v) is sufficiently smooth in I x R¥*1 x H.

ConpITION B: If f=0, then &=0.

ConpDITION R: The modulus of no zero of p({) exceeds 1 and the zeros of
modulus 1 are all simple.

For any solution z(x) of (1.1) let
(22) T(x, z(x); h) = Xk_o a;z(x+jh) — h®(x, z(x), z(x+h),..., 2(x+kh); h)
and suppose that the method (1.4) is of order p (p=1) and that y(x) exists over
I. Then we have
(2.3 p() =0, p'(1)#0,
(24) D(x, yseer ¥5 0) = p' (D f(x, y)
and the method (1.4) is convergent if ¢,—~0 (i=0, 1,..., k—1) as h—0 [2, pp. 410-
417].

2.2. Two lemmas

Suppose that T(x, y; h) can be written as

@.5) T(x, y; h) = b1 S3_0 ho(x, ) + O(h**4)
and let
0P 0%2d 0P 0% ..
?;= ou;’ P = Ou0u;’ 2, =0 P =~ Ovou; (j=0,1,...%).

J J

We write &(x, u,..., u; v), Px, u,..., u; v), etc. as D(x, u; v), P(x, u; v), etc. re-
spectively and denote by §;; Kronecker’s delta. Let

(2.6 fUrD=fP+ffP (j=01.), fO=f
Q7 a=p(), o=(Tkoj2a)2, N,=N-k
LemMMA 1.
(28)  Z;Pi(x, y; 0) = afy(x, ),
(29)  Z.;Pux, y; 0) = afy,(x, ),
(210)  32;jPix, y; 0f(x, y) + Pyx, ¥; 0) + 6,100(%, ¥) = 0 f DAx, y),
11)  X;JP;x, y; 0f(x, y) + Z;jPAx, y; 0)fy(x, y) + X; Pulx, y; 0)

+ 6p1¢0y(x: y) = wfgvl)(x’ y)a
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where i and j range from 0 to k.

Proor. For any solution z(x) of (1.1) we have
¥ 0z(x+jh) = p(1)z(x) + ahz'(x) + wh?z"(x) + O(h3),
B(x, 2(X),..., Z(x+kh); h) = &(x, 2(x); 0) + h 3, j®,(x, z(x); 0)z'(x)
+ hd,(x, 2(x); 0) + O(h?).
Using (2.3) and (2.4) and noting that
Z'(x) = f(x, z(x)), z"(x) = fO(x, z(x)),
T(x, z(x); h) = 8,,h2po(x, z(x)) + O(h?),
we have from (2.2)
2JPi(x, z(x); 0)f(x, 2(x)) + Py(x, z(x); 0) + 6,1 P0(, 2(x))
= ofD(x, z(x)).

Since z(x) is an arbitrary solution, (2.10) is valid for any (x, y) in I xR.
Calculating the partial derivatives of (2.4), (2.8) and (2.10) with respect to y,
we find (2.8), (2.9) and (2.11) respectively, and the proof is complete.

Consider the difference equation
(2.12) 0®jZps; =h X o BjnZarj + An (n=0,1,..,N-k),
where o, =1. Then we have the following lemma [1, pp. 243-244].
LemMA 2. Under Condition R let B, B and A be the constants such that
(2.13) §=0lBjul =B, 1Bial =B, MlsA (n=0,1,.,N-k)
and let fh<1. Then every solution of (2.12) for which

(2.14) lzl=Z  (=0,1,.,k-1)
satisfies

(2.15) |z,| £ K*e"*  (n=0,1,...,, N),
where

(2.16) K* =T'*(NA + kAZ), L*=T*B, A=Yk oo, I'* = T/(1—ph)

and T is a positive constant depending on a; (j=0, 1,..., k).
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2.3. Notation
Let By, =[—M, M] (M >0), choose M large so that

y(x)eBy for xel, y;eBy (j=0,1,...,N) for h < h,

and put Qy=IxBif'xH. Let b; (j=0, 1,..., k) be the positive constants such
that

|Pi(X, ug, ty,eees g3 V)| S b; (j=0,1,...,k) on Qy
and put
B = Z‘l;=0 bjs ﬂ = bk, hl = min (ﬂ—ls hO)'

Let x,=a+uh (0Su=N), denote by y, the approximate value of y(x,) and
put f,=f(x,, y,). We write T(x, y(x); h), ¢;(x, y(x)), etc. simply as T(x; h),
@4(x), etc. respectively. By (1.4) and (2.2) ¢; (j=0, 1,..., N) satisfy the equation

(2.17) Zh=otjens; = h®(xp Y(Xp)+Cpseves V(X i)+ Ensics h)
— hD(Xp, Y(Xp)seees Y(Xnsi); B) — T(x3 ) (n =0, 1,..., Ny).

Let
(2.18) g,(x) = f(x, y(x) (j=0,1,...), g(x) = go(x), k(x) = f,,(x, ¥(x))/2,
(2.19) Bjn= Pi(Xp Y(Xp)seoes YXpu)s ) (j=0,1,...,k;n=0,1,...,Ny),
(220) yjn = P(Xm ¥(x4); 0),  ¥; = Pj(X0, ¥o; 0),
221) ¢@) =Zh-0v,l/s @) = p() — hd(D),
(222) c=1/a, a(x)= Xk oj®[x, y(x);0).

Let e(x) and v(x) be the solutions of the initial value problems
(2.23) e = g(x)e — cpo(x), e(a) =0,
(2.24) v = g(x)v — ct(x) — 8,,b(x), v(a) =0
respectively, where
(2.25) (x) = @4(x) + c(a(x) — 0g(x))po(x) — weey(x),
(2:26) b(x) = cpo,(x)e(x) — k(x)e(x)>.

Let {, (u=1, 2,..., ]) be all the zeros of p({) of modulus 1 and let
(2.27) =1L =éo (u=1,2,.,10.
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Denote by e,(x) (=1, 2,..., I) the solutions of the initial value problems
(2.28) e, = k,(x)e,, efa)=1 w=12,..,D,
where

(2.29) ky(x) = Zho GPi(x, ()5 0/Cp'C) k=12, D).

3. Asymptotic formulas for errors

We introduce the following
ConpITION J: There exists a positive number g such that

e, =01 (i=0,1,.,k-1).
THEOREM 1. Under Condition J
3.1 e,=00h) ((n=01,..,N)
for sufficiently small h, where r=min (p, q).
Proor. By (2.17) we have
T oty = h S0 ® (X Y00 +00peees Y1) +0ensss Mens; — T(xys h)
0O<6<1).
Let K and K, be the constants such that
|T(x; h)] £ Khr*! for xel, h < hy,
lel £ Kh2 (i=0,1,...,k-1) for h < h,.
Then by Lemma 2 for h<h,
le,] < [h?(b—a)K + hikAK,J[*e®-aL*  (n =0, 1,..., N).
THEOREM 2. Under Condition J
3.2 e, = hPe(x,) + O(h*) (n=0,1,...,N)
for sufficiently small h, where s=min (p+1, q).

ProoF. Put e,=hre(x,)+v, (n=0, 1,..., N). Then by (2.17), (3.1), (2.5),
(2.8) and (2.23) we have

Z§=0ajvn+j =h 2§=0 ﬁj.nvn+.i + O(hp+2) + 0(h2’+1) (n =0,1,., Nl)’

where r=min (p, g). Since
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e(x,) = ih g: ea+ikndt (=0, 1,.., k=1)

and €'(x) is bounded on [a, a+ kh,], it follows that
v; = ¢; — hPe(x;) = O(h®) (i=0,1,.,k-1).

Hence by Lemma 2 we have v,=0(h*) (n=0, 1,..., N), because min (s, p+1, 2r)

=Ss.
CoRrROLLARY. Under Condition J

3.3) e, = hPe(x,) + h?*1lu(x,) + O(h®) (n=0,1,...,N)

for sufficiently small h, where s=min (p+1, q).

Now we introduce the following conditions.
ConpITION I: There exist constants ¢; (i=0, 1,..., k—1) and a positive
integer g such that

e; = ¢;h? + O(h1tt)y  (i=0,1,...,k—-1).

ConprTioN H: The common factor d({) of maximum dégree of p({) and
¢({) has no common factor with p({)/d().
For instance Condition H is satisfied in the following cases:

Case 1°. ®,(x, y; 0)=8,f(x, y) (j=0, 1,..., k) and p({) has no common
factor with o({)= 2% _, B;¢’.

Case 2°. Zeros of p({) are all simple.
Let

(3.4 r, = h™5[e, — hPe(x,) — h?*1v(x,)] (n=0,1,...,N).
Then by Condition I there exist constants d; (i=0, 1,..., k—1) such that
3.5) rn=d;+00h) (i=0,1,..,k-1).
Let

POIC=C) = Zhabo 0 (w=1,2,..., D),
3.6) A, = (X 8 a,;d)lp'(C) w=12,..,0.
Then we have the following

THEOREM 3. Under Conditions I and H there exists a nonnegative integer
J such that
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3.7 e, =hre(x,) + hP*lu(x,) + h* X )=y A e e, (x,) + O(hs*Y)
(n=J,J+1,...,N)

for sufficiently small h, where s=min(p+1, q), J=0 if k=1, J=2r—1 if k=
I4+r and {=0 is a zero of p({) of multiplicity r, and J=0(|log h|) otherwise.

Proor. The proof of this theorem follows the line along which Henrici
proved his theorem [1, pp. 249-255].
Let {; (j=1, 2,..., k) be all the zeros of p({) and let

t=(+max,;<; (D2, @©) = dDd(©).

Then there exists a positive number hj (hy<h,) such that for h<h} the zeros of
@(0) are all distinct. Let { ;(j=1,2,...,r) be all the distinct zeros of ¢({) for
h<h{ and p; be the multiplicity of {;, We may assume that {,—{, (u=1, 2,..., ])
as h—0. Let h, (h,<h}) be a positive number such that

ILl<t (j=1+1,142,.,r) for h<h,
Let g({) be the (N + 1)-vector defined by g({)=(1, {,..., {¥)T and denote by

2 =z, z®,.., z)T  (u=1,2,..., k)

the vectors
q(Z;)s q,(Zj)a"'s q(pj_l)(zj) (.I = 15 25'-" r)’

where q(({) denotes the vector g({) differentiated i-times.
By Lemma 1, (2.17), (2.5), (2.23) and (2.24) r, (n=0, 1,..., N) satisfy the
difference equation

(3.8) kol = h 2k Bitnss + h2Ay (n=0,1,.,N,,

where |4,|<4 (n=0, 1,..., N,) for some constant 4. Corresponding to (3.8) we
consider the homogeneous difference equation

(3.9) 2’;=Oajun+j = hZ',":oﬁj,n“nﬁ (n=0,1,.,N,).

Let e (n=0, 1,..., N; u=1, 2,..., k) be the solutions of (3.9) satisfying the
initial conditions

(3.10) e =2z  (i=0,1,.,k=1;p=12,...,k).

Since (" =0(1) (i=0, 1,..., k—1), by Lemma 2 ¥ =0(1) (n=0, 1,..., N).
Let u, (n=0, 1,..., N) be the solution of (3.9) with u;=r; (i=0, 1,..., k—1).
Then we have

(3.11) uy=Sk_ Be®  (n=0,1,.,N),
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where B, (u=1, 2,..., k) satisfy
3.12) kyz2™B, =1, (i=0,1,.,k=-1).

Put w,=r,—u, (n=0, 1,..., N). Then they satisfy (3.8) and w;=0 (i=0,
1,..., k—1). By Lemma 2 we have w,=0(h) (n=0, 1,..., N), so that

(3.13) r, = u, + O(h) (n=0,1,...,N).
From (3.4), (3.11) and (3.13) it follows that
(3.14) e, = hPe(x,) + h**1u(x,) + h* Tk_; B,e” + O(hs*Y) (n=0, 1,...,, N).

Now we study the behavior of Buef,“).
Casel. u=l.
Let

D) = oOIC-C) =Thada,, 00 (w=1,2,..,).
Then from (3.12) it follows that
(3.15) B, = (Zhzda,rple ).
Since
o= Cu + hdC)IP'(C) + O(h?),
by (3.5) and (3.6)
(3.16) B,=A,+0h (p=1,2,.,1).
Put f(M ={;"e{” (n=0, 1,..., N). Then they satisfy
Shooaf; = hTho o BYLfH;,  (1=0,1,..,Ny,
S =G =14+00) (=01, k=1),
where
(3.17) o =a;ll, B = Bjali.
By (2.28) and (2.29) we have
006, (%ae)) = h Th oo Vialiexass) + O(h2).
Let w"=f®" —e,(x,) (n=0, 1,..., N). Then they satisfy
Shoo Wl = hTh o BYWE) + 0(H)  (n =0, 1,..., Ny,
wi¥ =0(h) (i=0,1,..,k-1),
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because B;,—7;,=0(h) (j=0, 1,...,k). By Lemma2 w{®=0(h) (n=0,1,...,
N), so that

e = {ile,(x,)+0m)] (n=0,1,.,N).
Combining this with (3.16) we have
(3.18) Bl = A eimeue,(x,) + O(h) w=12,...,1;n=0,1,.,N).

Case 2. u>1

(a) Case where { » is not a zero of d({).

Since Z“ is a zero of (), it is simple. Let z(")=q(Zu). Then we show that
for any ¢ (0<ée<1) and for sufficiently small h there exists a nonnegative integer
J such that

(3.19) eW = O(hz)  (n=J, J+1,..,N).

Let
e =z 4 (n=0,1,...,N).

Then w® (n=0, 1,..., N) satisfy

(3.20) Shooaw®; = h Tk o B Wl + ho,  (n=0,1,..,N)),

(3.21) wit) =0 (i=01,.,k=-1),
where
(322) o, = Z§=O (ﬂj,n—'yj)zsl,-‘i-)j (n = 0, 1’--'9 Nl)'

Since there exists a constant K, such that
1Bin—7il S (n+Kk)Kh (j=0,1,.,k;n=0,1,...,N,) for h<h,,
we have
lo.| £ (k+1)K,(n+k)ht" (n=0,1,...,N)).

Let J be the integer such that J <2|log h/logt|<J+1 and let hy (0<h;<h,)
be a number less than 1 such that J+ k<N for h<h;. Then for some constants
K, and K,

loll = K;(J+k)h (n=0,1,...,J) for hEhs,
J+k £ Kjllog h for h < h,.
Applying Lemma 2 to (3.20) for n<J, we have for some constant K

IWW| < e T*K,(J +k)?h? < Ky(hlogh?  (n=0, 1,..., J+k)
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for h=h,.
Since t/ 2 h?2>t/*1, there exists a constant K such that
2] = (fn St < Ksh*  for n=J, h < b,
Hence for some constant C
(3.23) [eW] = |z +w| < Ksh? + K (hlog h)?
SCh*t (n=J,J+1,...,J+k) for h < h,.

Application of Lemma 2 to (3.9) for n=J with the estimate (3.23) yields (3.19).
Let fﬂ—m as h—0 and let n be a zero of p({) of multiplicity r. Then by
Condition H n is not a zero of d({),

= n + kh'" + O(h?*'"),
and B, is given by (3.15), where « is one of the r-th roots of r!¢(n)/p™(n). Since
@il = rémh'=1"fxc + O(h),
it follows that B,=O0(h~1*1/r), The choice ¢<1/r yields
(3.29) Be® =0h) (n=J,J+1,.,N).
In the case n=0, let e ={mn (n=0, 1,..., N). Then
k_oalo® = hTk_ BPo®. (n=0,1,..., Ny),
W =1 (i=0,1,..,k=-1),

where
o =i, BW =800 (=0, 1., k).

By Lemma 2 we have v{¥’ =0(1) (n=0, 1,..., N), so that
B =0(h) (n=2r-1,2r,..,N).

(b) Case where { « 18 a zero of d({) of multiplicity r.
Since {, is independent of h, we put {,=7. Let

o0 = o(OIC—n) = ZhgyPU (i=1,2,...,7),
Z0t) = qUy), C;=B,,; (=01,.r=1).
Then we have
r i= [Z] O'y(l)r - Z ¢gr_j)(rl)cr—j]/¢gr_i)(’7) (l = 1’ 2"--’ r)-

As |n| <t, there exists a constant K such that
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,j!(?)n"‘f} <K (j=0,1,.,r—1;n=j, j+1,.,N),
so that
zZW <Kt (n=0,1,..., N;u=v,v+1,.,v+r—1).

By the same argument as in the case (a) we have (3.19).
Since 7 is not a zero of p({)/d({) by Condition H,

¢ D(n) = (r=D)pOM)/rt + 0h)  (i=1,2,...,71),
so that C;=0(1) (j=0, 1,..., r—1) and
(3.25) B =0(h*? (u=v,v+l..,v+r—1;n=J,J+1,..,N).

In the case =0, since z{'* =j15,, (n=0, 1,..., N; j=0, 1,..., r—1), we have
6,=0(h) (n=0, 1,..., N,). By Lemma 2 w{)=0(h) (n=0, 1,..., N), so that

Be® =0(h) (n=r,r+1,.,N).
This completes the proof.

In the case k=1 let w(x) be the solution of the initial value problem

"=g(x)w — @x(x) — I(x), w(a) =0,
where

(3.27) Ux)=(v"—gv)/2 + (" —g,0)[6 + P(P1Po+ 1) + (P11 f+P,1)00
+ 6,m + J,,b,
(3.28) m(x) = B,b + ¢1,¢ + (9o, —f,ye0 — fDef4 — f, €36
+ (D1 fyy+ Poyp)e?[2 + (P10 + Py 1)ego,

and @,, f, etc. denote @,(x, y(x); 0), f(x, y(x)), etc. respectively. Then we have
the following

COROLLARY. For one-step methods
(3.29) e, = hPe(x,) + h**1v(x,) + h?*2w(x,) + O(h?*3)  (n=0, 1,..., N)
for sufficiently small h.

For the two-step method of Adams type

(330) ' Ynt2 = Yn+1 T+ -hQ(xm Vs Yn+1s Yn+25 h),
(3.7) is valid with I=1 and J=1.
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4. Approximation of local truncation errors

In this section besides Conditions I and H we impose the following

ConpIiTION L: p({) has only one zero of modulus 1 and g=p+1.
Hence e, can be expressed as

4.1) e, = hPe(x,) + h**lv(x,) + A h?*le (x,) + O(h?*?) (n=J,J + 1,..., N).

4.1. General results

Let E(x, ug, ty,..., U,; v) be a sufficiently smooth function in I xR™!x H
and suppose that for any solution z(x) of (1.1)

(4.2) E(x, z(x), z(x+ h),..., z(x+mh); h) = h?*1*[Po(x, z(x))+ O(h)]
(x+jhel;j=0,1,...,m;m=k),

where 6=0 if

4.3) bo(x, ) = 790(x, ¥), ¥#0, 1+7#0,

and o021 dtherwise. “Let . |

OE OE 02E PE
Ei=%u;» B~ Bu=dugu;> Bi=doou; GJ=0Lem)

We write E(x, u,..., u; v), E{x, u,..., u; v), etc. as E(x, u; v), Ei(x, u; v), etc. re-
spectively. We assume that

4.4 >mojEfx, y;0) = —a for (x,y)el x R.
LEMMA 3.
(45) E(x, y;0)=0,
(4.6) X,JE{(x, y; 0)f(x, y) + Efx, y; 0) =0,
@47 X;Efx,y;0)=0,
48) ZijJEi(x, y; 0f(x, y) + ZUELX, y; 0f(x, ) + ZiE(x, y; 0) =0,
where i and j range from 0 to m.

Proor. Expanding (4.2) into power series in & and equating to zero the
coefficients of h/ (j=0, 1), we have (4.5) and (4.6). Calculation of the partial
derivatives of (4.5) and (4.6) with respect to y yields (4.7) and (4.8). This com-
pletes the proof.
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For simplicity let
4.9) E, = E(Xp Yps Ynt15-++s Ynims 1) (n=0,1,..., N—m).
LEMMA 4. Under Conditions I, H and L
(4.10) E, = h**'[@o(x,) + hoy(x,) + h¢o(x,) + O(h)]
n=J,J+1,.., N—-m)
Jor sufficiently small h.

ProOF. Substituting y;=y(x;)+e; (j=n, n+1,..., n+m) and (4.1) into E,
and expanding it at x=x, into power series in h, we have (4.10) by Lemma 3,
(4.4), (2.23) and (2.24).

By this lemma and (4.3) we obtain the following
TueorEM 4. Suppose that Conditions I, H and L are satisfied. Then
@.11) E, = h**1pq(x,) + O(h**2)  (n=J, J+1,.., N—m)
for a1, and
4.12) aE, = h**lpq(x,) + O(h**?) (n=J,J+1,..., N—m)
for 6=0 and a=1[(1+Y).

" 4.2. Construction of the formulas

4.2.1. Formulas without interpolation
Let a; and b; (j=0, 1,..., m) be the constants such that

4.13) Ymoa; =0, Xm,ja;=—a,

4.149) Tmojta; =i X" j7tb; (i=12,...,p+0)
and let

(4.15) E,=370Yn+j— h X0 bjfus ;-

Then Theorem 4 is valid, and for 62>1
(4.16) E, = T(x,; h) — c(o+ Z7=0j2a;/2)h"*2p)(x,) + O(h?*?)
n=J,J+1,..,N—m).

For the two-step method (3.30), (4.16) is valid for n>0 if a,=0 and a=1.
For explicit one-step methods with p=2 and for 0=2
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@17)  E, = T(xy; b) — (14 S3 j2a)h*20)(x,)]2
— hP*2g(x,)o(x,)/2 + O(hP*3) (n=0,1,..., N—m).

Hence if

(4.18) >mojtaj=—2r—1 r=0,1,.,m-1),

then

(4.19) E, = T(X,+,5 h) — h?*2g(x,)po(x,)[2+ O(h?*?)  (n=0, L,..., N—m);

and if

(4.20) Xmojla; = —m,

then

(421) mE, = 2755 T(x,+ 55 b) — mhP*2g(x,)@o(x,)/2 + O(h?*?)

(n=0,1,...,N—m).

ExampLE 1. If we impose the condition (4.20) and choose m=4, a=1
and p+o="7, we have

(4.22) E, =[5(Vn = Yn+a) + 32(Vn+1 — Yn+3)1/84
+ h(fy + 16f541 + 36512 + 16f543 + fo44)/70.
There exist also formulas that use the values of f computed already other than

f;|+j (j=09 19-'-9 m) [4]'

4.2.2. Formulas with interpolation
Suppose that there exist constants A, (m>A,>0) that are not integers, and
constants c¢,; and d,; (v=1, 2,..., t; j=0, 1,..., m) such that

4.23) XMooy =1,
(4.24) Tmodiey + i X jild,; = A i=1,2,..,p+9),
where J is a nonnegative integer. Let
(4.25) Yntay = ZT=0CyVatj + R XT0dyifar;  (=12,..,1).
Then we have
LEMMA 5. Ifq=p+1 and 6=0, then
(4.26) e,y;, = hPe(x,4,,) + O(hPHY) n=J,J+1,..,N—-m;v=1,2,...,1).
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Under Conditions 1, H and L if
4.27) 621, ¥m,d,; =0,
then
@.28)  eyrs, = BPe(Xyis,) + B 10(x00s,) + ArhPley(x, ) + O(RP*2)
(n=J,J+1,..., N—m).
Proor. Substituting (4.1) into
eis, = Ze0 Coilns; + h Z0odyg(tus Jeus; + O(P1+9) + O(h2P+)

and expanding it at x=x, into power series in h, we have by (4.23), (4.24) and
(2.23)

s, = hPe(x,4,,) + hPo(x,) + A hPtle (x,)

+ (=0 dy)hP* 1 @o(x,) + O(hP*2) + O(hP*1*9),

which completes the proof.
Let a;, b; (j=0, 1,..., m) and b,,, (v=1, 2,..., ) be the constants such that

(4.29) Xmoa;=0, ¥Xm"oja;=—a,
430) Xmojiaj = i(Xmoj 7 b; + i1 A bpyy) (i=1,2,..., p+0)
and let
@31)  Ey=S70aymr; = h Z0obifars = h Ticy bursfrras

Then Theorem 4 is valid and (4.16) holds if 6=1 and (4.27) is satisfied.

For explicit one-step methods with p=2, (4.17) holds if ¢=2 and (4.27) is
satisfied. For the two-step method (3.30), (4.16) is valid for n=0 if a,=0, 021
and (4.27) is satisfied.

We introduce the following notations:

¢,; = C,;/C,, d,; = D,;/D, v=12,..,tj=0,1,.,m).

ExAMPLE 2. The choice m=2,t=1, p+6=5,1;=1+a/3 and a=./3
yields

Cl = 18, CIO = 5_2a, Cll = 8, C12 = 5+2a,
D1 =S4, D10=3_a, D11=8a, D12= —3—a.

The conditions =1 and p+0=56 lead to
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(4.32) E, = [(15-8a)y, + 16ay,,; — (15+8a)y,,1/30
+ h[Q@-a)f, + 8foss + Q+a)fosz + 18£,4,,1/30.

ExampLE 3. If we impose the condition (4.27) and choose m=t=2 and
p+d6=35, we have

Ay =1-af3, 4, =1+af3, a=./6, C, = C, =18, Cyq = C,, = 8+3a,
Ciy=Cy;=2,Cyy=Cyo=8-3a, Dy =D, =54, D;y = —D,, = 3+a,
D,y = =Dy, =2a, Do = —D,, = 3—a.
The choice a=1 and p+o6="6 yields
(4.33) Ey=(yn— Ya+2)2 = h(fy — 14fos1 + for2 = O fnsa, — 9fa422)/30,
for which (4.20) is satisfied.
4.3. Milne’s device
Let
(4.34) aFymre + ZA2L 0 Ynsj = hOXp Vuorpseess Vnti-15 )

be a predictor of order p which satisfies the conditions analogous to Conditions A,
B and R, where af =1 and r20. Put g()=3%__,a}{/, a*=p'(1), and for any
solution z(x) of (1.1) let

ke _ro¥z(x+jh) = hO(x, z(x—rh),..., z(x+(k—1)h); h) + T*(x, z(x); h).
Assume that T*(x, y; h) can be expressed as
T*(x, y; h) = h**198(x, y) + O(h?*?).
Then we have the following
THEOREM 5. Suppose that
4.35) 5%, y) = v00(%, y), ¥ # 0, a* # ay.

Then, for the predictor-corrector method (4.34)-(1.4), under Conditions I, H and
L

(4.36) C(Yysx — VED = T(x,; B) + O(W?*2) (n=J+r, J+r+1,..., N—k)
for sufficiently small h, where

“4.37) C = af(ay — a*).
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Proor. From (4.34) and the assumptions it follows that
(4.38) p(1) =0, O(x,y;0) =a*f(x,y).
By (1.4) and (4.34) we have
Yk = Yuok = Xf= =10 Ynsj — hOXps Ynorseves Ynsk—15 h)
=Tk ¥l — h AL, 0% Y(Xassees YXnikm1)5 Wy
+ hrtlp¥(x,) + O(hP*2).

Substituting (4.1) into the right side, expanding it at x=x, into power series in h
and using (4.38), we have by (2.23)

Yntie = Yk = B 08(x,) — a*ch?*1o4(x,) + O(hP*?),
from which (4.36) follows.

This theorem justifies Milne’s device with C defined by (4.37) for sufficiently
small h and large n.

Numerical examples
We use the following predictor and correctors:

439 Yars = Y Vns1 = Yns2) + Vu + 6h(for2 + fo10),
L Ynt3 = Yur2 + hOfuss + 19f342 — Sfass + f)24,
IL Yui3 =21 + Y3+ h25f0s3 + W fusz + 43f5sy + 9572,
UL Yuy3 = Yo+ 30(fos3 + 3fusz + 3foer + 1)I8,

IV. Yus3 = Vns1 + W(foss + 4fas2 + fos1)/3.

The following problems are solved by these formulas with h=2"5,
Problem 1. y' =2y, y(0)=1.
Problem 2. y' = —y?, »(0) = 1.
Problem 3. y'=1-y% y(0)=0.
Probiem 4. y' = -5y, y0)=1.

Starting values are computed by the Runge-Kutta method. - The local truncation
error T and the value M of (4.36) at the step where the approximate value of
y(3) is computed are listed in Table 1. It is to be noted that the correctors III
and IV do not satisfy the first part of Condition L.
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Table 1.
Form
W\ I 1 11 v
1 T —9.36—06 —7.05—06 —1.31-05 —4.02—06
M —8.90—06 —6.90—06 —1.31-05 —3.89—-06
5 T 24511 -2.06—11 34711 7.34—12 .
M 2.87—11 2.38—11 —6,48——08 2.06—08
3 T —1.24—10 —9.33—11 —1.89—10 —4.75—11
M —1.16—10 —8.80—11 1.43—-08 —6.92—-09
4 T 9.22—13 6.98—13 1.36—12 3.71-13
M 1.05—12 7.23—-13 —1.12—-05 7.42—05

REMARK. For the linear method @=3*%_, B;f(x,+, yn+;) Condition H is
satisfied if p({) has no common factor with o({)=23>%_, B;{/.

5. Approximate computation of errors

In this section we assume that
5.1 eo =0, ¢=0Hhr*Y) (i=1,2,...,k-1)

and approximate the.errors e, (j=0, 1,..., P; Pm<N) for a fixed positive integer
m.

5.1. . Method for approximation
Let A(x, y; h) be the function such that for any solution z(x) of (1.1)

(5.2) 2(x+h) = z(x) + hA(x, z(x); h).
Then it can be written as
A(x, y; b) = X0 W fOx, Y)IG+ D! + O (r2p).
From (2.6) and (2.18) it follows that ‘
Gi01() = g9 + g,(0g(x) (=0, 1,...).

Hence g;(x) can be written as a sum of products of g(x) and its derivatives in the
form

gi(x) = Theogu®  (G=0,1,.).
For instance 900=9; 910 =‘g_} and g,, =92

LEMMA 6. For any integer s (1<s=<p+1) there exist an integer r (r=m)
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and functions A(X,, Vuseeos Yusrs 1)y Ajp(Xps Yuseeos Ynsrs B) (J, k=0, 1,..., M) and
S(Xus Vus--> Yu+rs €n ) such that

(5.3) en+m = en + mh[A(xm y,,; mh) -_— A(xn’ y(xn); mh)] + A
+h XM hi Yo Apgp(x,) + hPs*1s,

where
(5.4) A =0(h*Y), Ay = O(hr*?) (jyk=0,1,.... M\; M =5-2).

Proor. Let D be the differential operator and 4 be the forward difference
operator. Then there exists an integer r (r=m) such that

(55)  Yx+ih) = y(x) + TS heo GADY/(k+ DAY (x) + O(h+s+9)

(G=12,.,1),
where 6=0;,. Substituting

hD =log(1 +4) = 4 — A42]2 + A3]3 —---
into (5.5), we have ‘
Y(x+jh) = y(x) + h Ti=o Epd*y'(x) + O(h?*5*?),
which can be rewritten as
(5.6)  y(x+jh) = y(x) + h Th=o cjxy'(x+kh) + O(h?*s+?) (G=1,2,..,0n.
Let u(x) be the solution of (1.1) with u(x,)=y, and let
BN ey = uChs)) dpy = Yors =ty (F=0, 1 m),
58 Wers=Yuss— Vo= hTioCufi  G=12..0).
Since by (5.1) and Theorem 2
5.9 e+ = hPe(x,4 ;) + O(hP*Y)  (j=0,1,..,71)
and by Gronwall’s inequality

Upsj — V(Xns)) = €, + O(hrtY) (j=0,1,..,7r,
we have

(5'10) dn+j =Chtj + y(xn+j) —Upy; = O(hp"'l) (] = 19 2;-“" r)'
By (5.6)-(5.10)

(511)  dyyj=h iy cipg(Xps)dnik + Wosj + O(hP*5*9) (G=12,.,7r),
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from which it follows that
(5.12) Wopj = O(h?*)  (j=1,2,..,7r).
By (5.2) we have
(5.13) €yrm = €, + mh[A(x,, y,; mh) — A(x,, y(x,); mh)]
+ Yntm = Yo — mhd(x,, u(x,); mh).
From (5.6) it follows that
mhA(x,, u(x,); mh) = h Li=o S Xpsro U(X5 1)) + O(hP*s1)

= h k=0 Col fask — 9(Xn+)dn+i] + O(hPTSTY).
By this and (5.13)

(514) Citm = €y + mh[A(xm Yns mh) - A(xn’ y(xn)’ mh):' + Wntm
+ h k1 Cuid(Xp 1 )y i + O(hPS*T).

Substituting (5.11) repeatedly into (5.14) and expanding the functions at
x =X, into power series in h, we have (5.3) with

(5.15) A=Wy Aoo= Z'}=1cmjwn+ja Ao = Z;'=1jcmjwn+js
Ay = 2h=1Cmj 25=1CjiWn+i
and so on. From (5.12) and this (5.4) follows. Thus the proof is complete.
In some cases we may take r=m by using the interpolation.

Suppose that there exist a method of explicit one-step type for approximating
e,+n and constants K,, K, and L such that

(5.16) e,1m = €y + Mh¥P(Xpy Vyseevs Vnitrs €ns h)
+ hPPIIR(X Yapeoos Yurrd € D) + HPP5 18Xy Yooy Yutrs € ),
(5.17) |R(x, ugs..., u,; w, v)| < K4,
(5.18) |S(x, ug,--., u,; w, v)] £ K,
(5.19) |¥Y(x, ug,..., u,; w, v) — ¥Y(x, ug,..., u,; w, v)| < Llw — W|
for veH, x, x+rhel, u;, u;—w, u;—we By (i=0,1,..,7r).
Let P be an integer such that (P—1)m+r<N and define é;, (j=0, 1,..., P) by

(5.20) &,4p =&, + Mh¥(Xy, Vuseoe> Vuars € B) (n=jm; j=0,1,..., P), &, =0.



On errors in the numerical solution of ordinary differential equations 489

Then we have the following

THEOREM 6. Under the condition (5.1) suppose that there exist functions
¥, R and S satisfying (5.16)~(5.19) and let &;, (j=0, 1,..., P) be defined by
(5.20). Then

(5.21) €jm = &y + O(hP*Y) (j=0,1,..,P)
for sufficiently small h, where t=min (s, d).

ProOF. Let v,=e¢,—¢&, (k=jm;j=0,1,...,P). Then for n=jm (0<j<
P—1) we have

Vntm = Un + ML (X, Yirvos Yutrs €m 1) = ¥(Xns Yureois Yntrs € 1))
+ hr*td*iR 4 pptstis,
Let u=1+mLh and K be a constant such that
K h* + K,;hs £ Kht  for heH.
Then
[Vnseml S ulvy| + HP*IK,
so that
[Ojml S (1 + v 44+ ui")Khrtt+l < jhelU-1mh K pptt

< m~i(b—a)el®-a) K prtt (j=0,1,...,P).
This completes the proof.
In the case of variable stepsize where
X(j+1ym = Xjm +mh; (j=0,1,..,P=1), xp,+ (r—m)hp_; < b,

if y,4; (i=0, 1,..., r) in (5.16) denote the approximate values of y(x,+ih;) (n=
jm), then (5.21) is valid with h=max,¢;<p h;.

5.2. Examples
In this subsection we consider the case m =4.

5.2.1. Formulas (5.6)
We use the notation c;,=C;/C; (j=1, 2,...,r; k=0, 1,..., r).

ExAMPLE 4. In the case r=4 we have p+s=6 and

(5.22) C, =720, Cyo=251, Cyy =646, C;; = —264, C,3 =106, C;4 = —19;
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C,=90, Cy0=29, C,; =124, Cy, =24, Cy3=4, Cyy=—1;
C3=80, C39=27, C3;, =102, C3, =72, C33=42, C3,=—3;
C, =90, Cyo=Chy =28, Cyy = Cy3 =128, C,, =48.
ExAMPLE 5. In the case r=6 we have p+s=7 and

(5.23) €, =60480, C,, = 19087, C,, = 65112, C,, = —46461, C,; = 37504,
Cis = —20211, C,5 = 6312, C,s = —863; C, = 3780, C,, = 1139,
C, =5640, C,, =33, C,; = 1328, C,, = —807, C,5 =264, Cyg = —37;
C;3 = 2240, C,, = 685, C3; = 3240, C,, = 1161, C;3; = 2176,
C3qa=—T29, C35 =216, C35 = —29; C4 =945, C4o = 286, C,y = 1392,
C,=384,C,3 =1504, C,y =174, C,5s =48, Cus = —8; C5 = 12096,
Cso = 3715, Csy = 17400, Cs, = 6375, Cs5 = 16000, Cs, = 11625,
Css = 5640, Csg = —275; C4 =140, Cgp = Cg6 = 41, Cgy = Cgs5 = 216,
Cos = Cg4 =27, Cg3 =272.

5.2.2. Formulas (5.16)
Let

(5.24) F(x, y, u) = f(x, y) — f(x, y—u).
ExXAMPLE 6. In the case s=2 and M =0 let
Fl = F(xm Vn> en)9 F2 = F(xn+2’ Vn+2s €n+ 2hF1 + b)’ b= A00/4'

Then we have

(5.25) €nss = €, + A + 4hF, + O(h?*3),
(5.26) €nra = € + A+ 2h(Fy + 4F, + F3)[3 + O(h?*?),
where

F3 = F(Xpi45 Ynt4s € — 4hFy + 8hF, + 2b).
There exists a 4-stage method
5.27 Cia =€ + A+ 20F, + 2F, + 2F; + F,)/3 + O(h?*3),

where
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F3 = F(Xy425 Yn+2: €+ 2hF, + b),
Fy=F(X,445 Vu+a> €n + 4hF5 + 2b).
ExXAMPLE 7. In the case s=2 we have
(5.28) eyra = €, + A+ 2h(F, + F,) + O(h?*t+1),
where
Fy = F(xy Vp €5+ b1), Fs=F(Xy135 Yn+3> €y + 4hFy + b)),
by = (3Ago — A10)/4, by =(A10 — Ago)/4, t=min(2, s).
There is also a 3-stage method
(5.29) e,14 =€, + A + 4h(2F, + 3F, + 4F3)[9 + O(hr+t*1),
where
Fy=F(Xp Ypo €5+ b1), Fy = F(Xy12, Yn+2> €n+2hF; + by),
F3=F(Xy43 Yus3> €y + 3hF; + b3), by = (12409 — 4410 — 411)/8,
b, = (Ao + A1 — 3400)/4, b; = (6490 + Ao —24,,)/16, t=min(3,s).

5.2.3. Numerical examples
The predictor (4.39) and correctors I-IV are used to solve Problem 3 and the
following problems with h=2"5,

Table 2.
Form I 1 11 v
Prob
e 1.96—09 6.34—10 1.21—-08 —6.21—09
3 é 1.97—09 6.36—10 1.21—-08 —6.20—09
é 1.97—09 6.35—10 1.21—-08 —6.12—09
e 3.38—05 1.14—05 1.75—05 6.99—06
5 é 3.33—05 1.10—05 1.70—05 6.54—06
p) 3.37—05 1.13—05 1.74—05 6.91—06
e 1.344-00 4.92-01 7.33-01 3.28—01
6 é 1.32400 5.01—01 7.36—01 3.41—01
é 1.30--00 4.81—01 7.16—01 3.21-01
e 1.02—10 2.56—11 1.21—05 —7.49—05
7 ¢ 9.52—11 24211 1.20—05 —7.46—05

Y

9.45—11 2.34—11 1.18—05 —6.77—05




492 Hisayoshi SHINTANI

Problem 5. y' =y — 2x/y, y(0) = 1.
Problem 6. y’' =2xy, y(0)=1.

Problem 7. y' =5(1 —y), y0)=0.

Starting values are computed by the Runge-Kutta method. Formula (5.29) is
used with quantities in (5.15) whose coefficients are given by (5.22) and (5.23).
The error e at x=3 and the values ¢ and é obtained respectively by using (5.22)
and (5.23) are listed in Table 2.

For ¢ we have r=4, s=t=2 and M =1>s-—2, while for é we have r=6, s=t
=3and M=1=s-2.

5.3 Explicit one-step methods
We show the following

THEOREM 7. Let E, be given by (4.15) or by (4.31) satisfying (4.27) and
suppose that 6=2 and (4.20) is satisfied. Then for explicit one-step methods
with p=2

(5.30) A= —mE,, Ao = —m2E,2, s=2.
Proor. Letu,,;and d,,;(j=0, 1,..., m) be defined by (5.7). Since
Unijrs = tpss + BACopssy a3 ) (F=0, Loy m=1),
(5.31 Yntjr1 = Yn+j+ hA(Xpsjs Yurjs B) — T(Xnsjs Yusjs )
by (5.10) we have d,=0,
dyijar = dnij = BP*0o(x,) + O(h?*2)  (j=0,1,...,m—1).
From this it follows that
(5.32) dyyj = —jhPt1gy(x,) + O(hP*2) (j=0,1,...,m).
By (5.31)
(533)  ensjur =ensj+ BLACx,1j, u(Xns )5 h) — A(xpsjp Y(Xns )5 B)]
+ hay (Xt jp Yatj3 Wdnsj — T(Xar 3 b) + O(h?PF1)
(j=0,1,..,m-1).

Since for any solution z(x) of (1.1)
h 2725 A%+ js 2(Xn+ )3 B) = mhA(x,, 2(x,); mh),
by (5.32) and (5.33) we have
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Crim = €y + mh[A(xm Yns mh) - A(xm y(xn)’ mh)] - T=_1 T(xn+j; h)
— m(m—1Dh"*2g(x,)po(x,)/2 + O(h?*3).

Substitution of (4.21) into this yields (5.30).

Numerical examples

Problem 5 and the following problem are solved by the Runge-Kutta method
and Kutta’s method for m=4.

Problem 8. y’ = 2xe***[y3, y(0) = 1.

E, is computed by means of (4.22). Formulas (5.26) and (5.27) are used when
p=3 and 4 respectively.

The same problems are solved by the Runge-Kutta method for m=2 with
the aid of (4.33) and the formula

(5.34) iz = €, — 2E, + h(F| + F;) + O(h?*3),
where
Fy=F(x,, ¥p, €,—b), F, =F(Xy12; Vy+2, €n + 2hF; —2b), b=2E,/3.

Computation is carried out by the following program:
(1) Compute y; (i=1, 2,..., m) and é,,.
(2) If |[mEy|>10"8max(|y,l, 1), halve the stepsize and go to (1). (Initially
h=273))
(3) Replace xy, yo and &, by x,,, ¥, and &, respectively.
The error e and the computed value ¢ are listed in Table 3.

Table 3.
Formula (5.26) (5.27) (5.39)
Prob x é e é e é e
3.0 5.90—06 5.85—06 1.96—06 1.97—06 2.15—06 2.18—06
5 4.0 3.85—05 3.82—05 1.29—-05 1.30—05 1.40—05 1.43—05

5.0 2.57—04 2.55—04 8.65—05 8.71—-05 9.20—05 9.59—05

3.0 —1.60—04 —1.58—04 3.70—05 3.83—05 2.49-—04 2.49—-04
8 4.0 —4.07—-01 —4.06—01 5.14—02 526—02 5.24—02 5.26—02
5.0 —8.15+02 —7.96+02 1.03+03 1.05+03 1.05+03 1.054-03
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