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1. Introduction

Consider the initial value problem

(1.1) y'=f(χ,y) (a^x^b),

(1.2) y{ά) = yθ9

where/(x, y) is sufficiently smooth in IxR, / = [α, b] and # = (—oo, oo). De-

note by y(x) the solution of this problem and for a positive constant h0 let

(1.3) xj = a+jh O = 0, 1,...,N), h = (b-a)/N ^ h0.

We consider the case where the approximate values ym of y(xm) (m = fc,

fc+1,..., N) are obtained by the /c-step method [2]

(1.4) Σ 5 = o ¥ » + i = hφ(χw> Λ..-. yn+k', h) (n = 0, 1,..., ΛΓ-fc),

where α7- 0 = 0, 1,..., fe) are real constants and αfc = l. The method (1.4) includes

one-step methods, linear multistep methods, hybrid methods, pseudo-Runge-

Kutta methods and so on.

In Section 3 for sufficiently smooth Φ(x, uo> > uk; v) we study the asymp-

totic behavior of errors

(1.5) ej = yj-y(xj) (j = 0, 1,..., N)

as h-+0. In Section 4 the local truncation error is approximated and Milne's

device in the predictor-corrector method is justified under certain conditions.

In Section 5 we are concerned with the approximate computation of errors and

illustrate the method by numerical examples.

2. Preliminaries

2.1. Assumptions

For simplicity the dependence of Φ on / is not expressed explicitly. Let
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(2.1)

and assume that the following conditions are satisfied.

CONDITION A: Φ(x, uo,...,uk; υ) is sufficiently smooth in / x Rk+ί x H.

CONDITION B: If / = 0, then Φ = 0.

CONDITION R: The modulus of no zero of p(ζ) exceeds 1 and the zeros of

modulus 1 are all simple.

For any solution z(x) of (1.1) let

(2.2) Γ(x, z(x); h) = Σ5=o *jz(x+jh) - hΦ(x, z(x), z(x +A),..., z(x + kh); h)

and suppose that the method (1.4) is of order p (p^l) and that y(x) exists over

/. Then we have

(2.3)

(2.4)

and the method (1.4) is convergent if ^->0 (i = 0, 1,..., k-1) as /ι->0 [2, pp. 410-

417].

2.2. Two lemmas

Suppose that T(x, y; h) can be written as

(2.5) T(x, y; h) =

and let

We write Φ(x, «,..., M; I;), Φ/x, w,..., w; ϋ), etc. as Φ(x, u; t;), Φ/x, w; ϋ), etc. re-

spectively and denote by <5l7 Kronecker's delta. Let

(2.6) /u+1> = /O > + //(» ( = 0, 1,...), /(0> = /,

(2.7) α = p'(l), ω = (Σί=o;2«;)/2, N1=N-k.

LEMMA 1.

(2.8) Σ J * / * , J ' ; 0 ) = α//x,y),

(2.9) Σ ί > ; Φ7i(x, y; 0) = α/yy(x, y),

(2.10) Σ;;Φ/χ, y, o)/(x, y) + Φe(χ, 7; 0) + ^ ^ o ί * . y) = ω/<"(x, y),

(2.11) ΣιjjΦji(.χ, y\ 0)/(χ, y) + Σ j Φ/*, y; 0)//x, j) + Σ . Φ ^ > y; O)
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where i and j range from 0 to k.

PROOF. For any solution z(x) of (1.1) we have

ΣjθLjz(x+jh) = p(l)z(x) + αftz'(x) + ωh2z"(x) + O(/ι3),

Φ(x, z(x),..., z(x + kh); h) = Φ(x, z(x); 0) + h ΣjJΦji*, z(x); 0)z'(x)

Using (2.3) and (2.4) and noting that

z'(x) = / ( * , z(x)), zw(x)

Γ(x, z(x); Λ) = δpίh
2φ0(x, z(x)) +

we have from (2.2)

, z(x)) + Φv(x, z(x); 0)

Since z(x) is an arbitrary solution, (2.10) is valid for any (x, y) in IxR.

Calculating the partial derivatives of (2.4), (2.8) and (2.10) with respect to y,

we find (2.8), (2.9) and (2.11) respectively, and the proof is complete.

Consider the difference equation

(2.12) ΣUo*jZΛ+J = hΣkj = oβj^n+j + K (n = 0, 1 JV-fc),

where α k = l . Then we have the following lemma [1, pp. 243-244].

LEMMA 2. Under Condition R let B, β and A be the constants such that

(2.13) Σ) = o\βj*\ύB9 \βk,n\ύβ, \λn\ύA (n = 0, l,...,JV-/c)

and let βh<\. Then every solution of (2.12) for which

(2.14) N ^ Z (i = 0,l,...,fc-l)

satisfies

(2.15) |2j g K*e»" (n = 0, 1,..., N),

where

(2.16) X* = Γ*{NA + lcAZ), L* = Γ*B, A = ΣJ=o Kl, Γ* = Γ/(l-/ίΛ)

and Γ is a positive constant depending on a,- O'=0, 1,..., fc).



472 Hisayoshi SHINTANI

2.3. Notation

Let # M = [-M, M] (M>0), choose M large so that

for xe/, ^ e 5 M ( = 0, 1,..., N) for /ι ^ ft0

and put ΩM=IxBk^1xH. Let fc, O' = 0, 1,..., fc) be the positive constants such

that

\Φ/x9u0,ul9...,uk;v)\£bj (j = 0, 1,..., k) on ΩM

and put

B = Σ5-o ^ £ = 6*. *i = mm(βr\ ft0).

Let xu = a + uh ( O ^ M ^ N ) , denote by yu the approximate value of y(xu) and

put /u=/(xM, JΊι) We write T(x, Xx); Λ), φ/x, j(x)), etc. simply as T(x; /i),

ψj{x)9 etc. respectively. By (1.4) and (2.2) e,- ( j = 0, 1,..., N) satisfy the equation

(2.17) Σ*=o

- hΦ(xπ, Xxn),..., Xx n + k ); h) - T(xπ; ft) (n = 0, 1,..., Nx).

Let

(2.18) gj(x) = 7^)(χ, Xx)) (J = 0, 1,...), ^(x) = go{x\ k(x) = /yy(x, y(x))/29

(2.19) ^ , n = Φ/x,,, Xxn),..., y(xM+k); ft) 0 = 0, 1,..., fc; n = 0, 1,..., Nx)9

(2.20) yM = Φ/xπ, Xxπ); 0), y, = Φ/x 0, j o ; 0),

(2.21) φ(θ = Σ5-oy,C'

(2.22) c = l/α, β(x) =

Let ^(x) and v(x) be the solutions of the initial value problems

(2.23) e'= g(x)e - cφo(x% e(a) = 0,

(2.24) v' = ^(x)ι? - cί(x) - δpίb(x), v(a) = 0

respectively, where

(2.25) ί(x) = Ψl(x) + c(α(x) - ωflf(x))φ0W ~ ωcφ'o(x),

(2.26) fe(x) = c φ o , W ^ ) - /c(x)<x)2.

Let ζμ (M=1> 2,..., Z) be all the zeros of p(ζ) of modulus 1 and let

(2.27) Ci = 1, Cμ = β ^ ( μ = l , 2 , . . . , Z ) .
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Denote by eμ(x) (μ = l, 2,..., ϊ) the solutions of the initial value problems

(2.28) e'μ = kμ(x)eμ9 eμ(a) = 1 (μ = 1, 2 , . . . , / ) ,

where

(2.29) kjLx) = Σί=o C^Φ/X, y(χ); θ)/(ςP'(ζμ)) (μ = l, 2 /).

3. Asymptotic formulas for errors

We introduce the following
CONDITION J: There exists a positive number q such that

THEOREM 1. Under Condition J

(3.1) *B = O(fc') (n = 0,l,...,N)

/or sufficiently small h, where r = min(p, q).

PROOF. By (2.17) we have

j = h Σ * = oΦ/On, y(xn) + θeH9...9 y(xn+k) + θen+k; h)en+J - T(xn; h)

Let K and Kx be the constants such that

\T(x; h)\ ̂  KhP+1 for xel, h< hί9

\ei\£Kth* (i = 0, l,. . .,k-l) for Λ < V

Then by Lemma 2 for /ι<hx

\en\ S lh*(b-a)K + fc«Jki4X1]ΓV*-->L (n = 0, 1,...,JV).

THEOREM 2. Under Condition J

(3.2) en = ftMxw) + O(h*) {n = 0, 1,..., N)

for sufficiently small h9 where s = min(p + l, q).

PROOF. Put en = h*e(xJ + υΛ(n=09 1 iV) Then by (2.17), (3.1), (2.5),
(2.8) and (2.23) we have

ΣJ-o«/*.+j = * Σ 5 - o i W j

where r=min(Jp, ^). Since
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e(χ.) = ih Γ e'(a + iht)dt (i = 0, 1,..., fc-1)
Jo

and e'{x) is bounded on [α, α + fc/ι0], it follows that

υt = et - hPeixt) = O(hs) (i = 0, 1,..., fc-1).

Hence by Lemma 2 we have vn = O(hs) (n = 0, 1,..., N), because min(s, p+1, 2r)
= s.

COROLLARY. Under Condition J

(3.3) en = AMxJ + hP+h(xn) + O(/2S) (π = 0, 1,..., N)

for sufficiently small h9 where s = min(Jp+l, q).

Now we introduce the following conditions.
CONDITION I: There exist constants cf (i=0, 1,...,/c —1) and a positive

integer q such that

e. = φ + O(^+ 1) (i = 0, 1,..., fc-1).

CONDITION H: The common factor d{ζ) of maximum degree of p(ζ) and
φ(ζ) has no common factor with p{ζ)jd{ζ).

For instance Condition H is satisfied in the following cases:

Case 1°. Φ/x, y\ O)=βjfy(x, y) O' = 0, 1,..., fc) and p(ζ) has no common
factor with σ(G = Σ5«

Case 2°. Zeros of p(ζ) are all simple.
Let

(3.4) rn = Λ- [βji - h*e(xn) - ^+It;(xn)] (n = 0, 1,..., N).

Then by Condition I there exist constants dt (Ϊ = 0, 1,..., fc —1) such that

(3.5) r^d^OQi) (i = 0,1,..., fc-1).

Let

P(O/(C-y = Σ } = o α ^ (μ = 1, 2,..., /),

(3.6) Aμ = (Σ5=i «μjdj)lp'(ζμ) (μ = 1, 2,..., /).

Then we have the following

THEOREM 3. Under Conditions I and H ί/iere exisίs a nonnegative integer
J such that
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(3.7) en =

/or sufficiently small h, where s = m i n ( p + l , q), J = 0 if k = l, J = 2r—1 if k =

l + r and ζ = 0 is a zero of p(ζ) of multiplicity r, and J = O(\\ogh\) otherwise.

PROOF. The proof of this theorem follows the line along which Henrici

proved his theorem [1, pp. 249-255].

Let ζj (j = 1, 2,..., k) be all the zeros of p(Q and let

t = (1 +max ι<Jύk \ζj\)/29 φ(ζ) = d(ζ)φ(ζ).

Then there exists a positive number h[ (/ιi</ii) such that for h^h[ the zeros of

φ(ζ) are all distinct. Let ζj O' = l, 2,..., r) be all the distinct zeros of φ(ζ) for

h^h[ and /?j be the multiplicity of ζj. We may assume that ζμ^ζμ ( μ = l , 2,..., Z)

as /?->0. Let h2 (/la^^i) t>e a positive number such that

\ζj\^ t / U , . , r ) for fc^fc2.

Let ^(0 be the (JV + l)-vector defined by q(ζ) = (l, C,..., C^)7 and denote by

z<"> = ( z ^ , z^,. . . 5 z<r>)Γ (μ = 1, 2,..., k)

the vectors

where ^(ί)(C) denotes the vector g(Q differentiated i-times.

By Lemma 1, (2.17), .(2.5), (2.23) and (2.24) rn(n = 0, 1,...,JV) satisfy the

difference equation

(3.8) Σ)-o*jrH+J = h Σkj = oβj»rn+J + h2λn (n = 0, 1,..., N,),

where |AΠ|^/1 (n = 0, 1,..., JVX) for some constant Λ. Corresponding to (3.8) we

consider the homogeneous difference equation

(3.9) ΣUoWn+j = hΣ)=oβj,nun+j (n = 0, 1,...,^).

Let e(

n

μ) (n = 0, 1,..., N; μ=ί, 2,..., k) be the solutions of (3.9) satisfying the

initial conditions

(3.10) e\* = zW (i = 0, 1,..., fe-1; μ = 1, 2,..., k).

Since ^ μ ) = O(l) ( i=0, 1,..., fc-1), by Lemma 2 eiμ) = O(l) (n = 0, 1,..., N).

Let Mn (n=0, 1,..., N) be the solution of (3.9) with Mf = rf ( i=0, 1,..., /c-1).

Then we have

(3.11) un = Σ ί - i B ^ (n = 0, 1,..., iV),
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where Bμ (μ = 1, 2,..., k) satisfy

(3.12) ΣJUi z\μ)Bμ = r, (f = 0, 1,..., fc-1).

Put wΛ = r Λ ~w π (n=0, 1,..., N). Then they satisfy (3.8) and W|=0(i=0,
1,..., fc-1). By Lemma 2 we have wn = O(h) (n=0, 1,..., N), so that

(3.13) rn = un + O(h) (n = 0, 1,...,JV).

From (3.4), (3.11) and (3.13) it follows that

(3.14) en = h*e(xn) + hr+h(xn) + hsΣUιBAμ) + 0 ( h s + 1 > ) (" = 0, 1,..., iV).

Now we study the behavior of Bμe
(

n

μ\
Case 1. μ <* J.
Let

μ ζ ) = Σ } Ξ j « μ ^ 0* = i, 2,..., /).

Then from (3.12) it follows that

(3.15) Bμ = (ΣkjZhdίμjrj)l

Since

by (3.5) and (3.6)

(3.16) Bμ = A μ

Put/oo = £-»*<>) ( n = o, 1,..., JV). Then they satisfy

Σ J - o α ^ Λ ΐ y = Λ Σ}.o^CiΛΐy (Λ = 0, 1,..., N ^ ,

/ ί μ ) = ( C ϊ 1 ^ 1 = 1 + O(Λ) (i = 0, 1,..., fc-1),

where

(3-17) α? > = α/i, ftl = βj,nζ
J

μ.

By (2.28) and (2.29) we have

Σ J - o β y V W = h Σkj=oyjXeμ(xn+J) + O(h2).

Let w<μ) =/<") - e,,(xB) (n=0, 1,..., N). Then they satisfy

i ) % y > i ί (» = 0, 1,..., iVJ,
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because βj,n-γj,n = O(h) (j=0, 1,..., k). By Lemma 2 w ^ O ^ ) (n=0, 1,.,.,
N), so that

e(nμ) = ζ"μίeμ(.Xn)+O(h)l (n = 0, 1,..., N).

Combining this with (3.16) we have

(3.18) Bμeiμ) = Aμe
in^eμ{xn) + O(h) (μ = 1, 2,..., /; n = 0, 1,..., JV).

Case 2. μ > I.
(a) Case where ζμ is not a zero of d(ζ).
Since £μ is a zero of <p(ζ), it is simple. Let z(/t) = q(ζμ). Then we show that

for any ε ( 0 < ε < l ) and for sufficiently small h there exists a nonnegative integer
J such that

(3.19) e<"> = O(h2-") (n = J, J+l , . . . , N).

Let

e<'> = z<"> + w<"> (n = 0, 1,..., N).

Then w(

B

μ) (n=0, 1,..., JV) satisfy

(3.20) Σ)=o*A'ϊJ = hΣkj=oβjΛ'ϊj + h°« (» = 0, 1,...,^),

(3.21) wί»> = 0 (i = 0,l,...,fc-l),

where

(3.22) σn - Σ}=o (βj»-Vj)z£j (« = 0, 1,..., ΛΓj).

Since there exists a constant Kγ such that

^-yjl^in + k^h U = 0,l)...,k;n = 0,l,...,Nl) for hgh2,

we have

|σ.| g (k+VKάn + Qhr (n = 0, 1,..., NJ.

Let J be the integer such that J^2|loghβog t\<J+1 and let h3 (0<h3^h2)
be a number less than 1 such that J+k<N for h^h3. Then for some constants
K2andK3

\σn\^K2(J+k)h (n = 0,l,...,J) for h£h3,

J+k^K3\\ogh\ for fcg/t3.

Applying Lemma 2 to (3.20) for n $,J, we have for some constant K4

|WW| ^ e"hL'Γ*K2(J+k)2h2 ^ Kt(hlogh)2 (n = 0, 1,..., J+k)
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for h^h3.
Since tJ^.h2>tJ+1, there exists a constant K5 such that

I4μ)l = Iftl £ ί" £ ^5Λ
2 for n^J, h^ h3.

Hence for some constant C

(3.23) | # > | = Izi^ + w^l ^ K5h
2 + K4(/zlogfc)2

for ft ^ ft3.

Application of Lemma 2 to (3.9) for n^ J with the estimate (3.23) yields (3.19).

Let ζμ->η as /ι->0 and let η be a zero of p(ζ) of multiplicity r. Then by

Condition H η is not a zero of d(ζ),

and £ μ is given by (3.15), where K is one of the r-th roots of r\φ{η)jp^r){η). Since

it follows that Bμ = O(/r 1 + 1 / r ) . The choice ε< 1/r yields

(3.24) B/f = O(ft) (n = J, J + 1 , . . . , N) .

In the case η = 0, let <#•> = ζn

μviμ) (n = 0, 1,..., JV). Then

where

αy> = α/ΐ, /#> = ^,πCί (j = 0,1,..., k).

By Lemma 2 we have !#° = O(1) (n = 0, 1,..., N), so that

(b) Case where ζμ is a zero of d(ζ) of multiplicity r.

Since ζμ is independent of /z, we put ζμ = η. Let

i = 1, 2,..., r),

Then we have

As |?/| < ί ? there exists a constant K such that
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Kt" 0 = 0, l , . . . , r - l ; n = ; , j + l,...,7V),

so that

|z<*>| = Kt» (n = 0, 1,..., N; μ = v, v + 1 , . . . , v + r - 1 ) .

By the same argument as in the case (a) we have (3.19).

Since η is not a zero of ρ(ζ)jd(ζ) by Condition H,

φ[r-i){η) = (r-0!pW(ιy)/r! + O(ft) (i = 1, 2,..., r) ,

so that C, = O(1) ( j = 0, 1,..., r - 1 ) and

(3.25) Bμe™ = O(ft2"ε) (μ = v, v + 1,..., v + r - 1 ; n = J, J + l , . . . , iV).

In the case ?y = 0, since z^v+ / ' )=</!δ J II (n=0, 1,..., N;j = 0, 1,..., r—1), we have

σn = O(h) (n = 0, 1,..., Nt). By Lemma 2 w(

n

μ) = 0(h) (n = 0, 1,..., iV), so that

This completes the proof.

In the case fc = 1 let w(x) be the solution of the initial value problem

w' = g(x)w - φ2(x) - l(x)9 w(a) = 0,

where

(3.27) l(x) = (v"-9iv)l2 + (ew~^ 2e)/6 + Φ ^ Φ ^ o + Φi)

+ δ p l m + δp2b,

(3.28) m(x) = Φ t6 + φίye + ( φ o ^ Λ , Φ - / J i ^ / 4 -f

and Φl9f, etc. denote Φ^x, y(x)l 0), /(x, j(x)), etc. respectively. Then we have

the following

COROLLARY. For one-step methods

(3.29) en = hPe(xn) + h*+ΐv(xn) + /ι^+2vv(xπ) + O ( / Ϊ ^ + 3 ) (n = 0, 1,..., iV)

for sufficiently small h.

For the two-step method of Adams type

(3.30) yn+2 = yn+ί + ftΦ(xπ, yπ, j π + 1 , y n + 2 ; ft),

(3.7) is valid with Z = l and J = l.
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4. Approximation of local truncation errors

In this section besides Conditions I and H we impose the following

CONDITION L: p{ζ) has only one zero of modulus 1 and q}zp+l.

Hence en can be expressed as

(4.1) e ^ ^ W + ^ ^ W + ^ i ^ ^ i W + ^ r 2 ) (n = J , J + l , . . . , J V ) .

4.1. General results

Let E(x9 M0, wl5..., um; v) be a sufficiently smooth function in IxRm+ί xH
and suppose that for any solution z(x) of (1.1)

(4.2) E(x, z(x), z(x + /ι),..., z(x + mh); h) =

(x+jhel; j = 0, 1,..., m; m ^ k),

where σ=0 if

(4.3) φo(x, )0 = 7Φo(^5 J)5 7 7* 0, 1 + y ^ O ,

and σ ^ l otherwise. Let

IT _ d E π - d E π d 2 £ r d 2 £ r _ n i ^
L^~ΈΓ^ L»~'W> E*J " δ u ^ ' L°i-~dϊdU; ( 1 , 7 - 0 , 1,..., iff).

We write E(x, w,..., M; t?), £/x, u,..., M; t;), etc. as £(x, M; t;), £/x, M; t;), etc. re-
spectively. We assume that

(4.4) Σ7-o•/£/*. y; 0) = - α for (JC, y)e/ x R.

LEMMA 3.

(4.5) £(x5y;0) = 0,

(4.6) ΣJJEJ(X9 y; 0)/(x, y) + £r(x, y; 0) = 0,

(4.7) Σj£/*,J>;0) = 0,

(4.8) ΣtjjEjiix, y; 0)/(x, y) + ΣjjEfa y; 0)//x, y) + Σ i ^ ^ y; 0) = 0,

where i and j range from 0 to m.

PROOF. Expanding (4.2) into power series in h and equating to zero the
coefficients of hJ ( ;=0, 1), we have (4.5) and (4.6). Calculation of the partial
derivatives of (4.5) and (4.6) with respect to y yields (4.7) and (4.8). This com-
pletes the proof.
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For simplicity let

(4.9) En = E(xn, yn, yH+l9...9 yn+m; ft) (n = 0, 1,..., N-m).

LEMMA 4. Under Conditions I, H and L

(4.10) En = ft*+1O0(x«) + fcφiW+ hσΦo(*n) + O(fc)J

/or sufficiently small ft.

PROOF. Substituting yj — yix^ + βj C/ = n, n + 1,..., n + m) and (4.1) into £„

and expanding it at x = xn into power series in h, we have (4.10) by Lemma 3,

(4.4), (2.23) and (2.24).

By this lemma and (4.3) we obtain the following

THEOREM 4. Suppose that Conditions I, H and L are satisfied. Then

(4.11) En = hP+ίφ0(xn) + O(h*>+2) (n = J, J + l , . . . , N-m)

for σ^l, and

(4.12) a£π = rV 0 (x B ) + θ r 2 ) (n = J, J + l,..., N-m)

for σ=0 and a =

4.2. Construction of the formulas

4.2.1. Formulas without interpolation

Let aj and b,- 0 = 0 , 1,..., m) be the constants such that

(4.13) Σ?=o aj = 0, Σj-oJ*j = ~ «>

(4.14) ΣT-oJ1^ = i Σ7-o j'^bj (i = 1, 2,...,

and let

(4.15) £„ = Σy. o α Λ

Then Theorem 4 is valid, and for σ^

(4.16) En » T(xrt; ft) - c(ω + Σ ^ o J 2 ^

(n = J,

For the two-step method (3.30), (4.16) is valid for n^0 if ao=0 and σ^ l .

For explicit one-step methods with p ^ 2 and for σ^2
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(4.17) En = T(xn; h) - (1 + Σ7=oJ2aj)h"+2φΌ(xn)l2

- h^g{xn)φ0{xn)j2 + 0(h^) (n = 0, 1,..., N-m).

Hence if

(4.18) Σ7=o72^- = - 2r - 1 (r = 0, 1,..., m-1),

then

(4.19) En = Γ(xπ+r; A) - hP+2g{xn)φQ(xn)β + O(h*+*) (n = 0, 1,..., N-m);

and if

(4.20) Σj-ofaj = - m,

then

(4.21) m£n = Σ7Γ01 Γ(xn+J ; A) - mh"+2g(xn)φ0(xn)l2 + 0(h"+3)

(n = 0, l,...,JV-m).

EXAMPLB 1. If we impose the condition (4.20) and choose m=4, α = l
and p+σ-Ί, we have

(4.22) En =

+ h(fn + 16/Λ+1 + 36/Λ+2 + 16/Λ+3 +/Λ+4)/70.

There exist also formulas that use the values of/computed already other than
fn+J 0 = 0 , 1,..., m) [4].

4.2.2. Formulas with interpolation
Suppose that there exist constants λv (m>λv>0) that are not integers, and

constants cvj and dγj (v=l, 2,..., ί; j=0, ί,...,m) such that

(4.23) Σ7=ocv, = l,

(4.24) Σ7=oJ'cvJ + i Σ7=oJ'-^j = At (i = 1, 2,..., p+<5),

where δ is a nonnegative integer. Let

(4.25) yn + λ v = Σ7=o cvJyn+j + h Σ?=o d»y/»+J (v = 1, 2,..., ί).

Then we have

LEMMA 5. Ifqϊzp+l and (5_0, then

(4.26) en+Xv = Λ"Φ» + Λ V ) + O(/i"+1) (n = J, J+l , . . . , N - m ; v = 1, 2,..., ί)



On errors in the numerical solution of ordinary differential equations 483

Under Conditions I, H and L if

(4.27) δ*l, Σ?=odv; = 0,

then

(4.28) en+λv = h>e(xΛ+λv) + ft*+M*n+;ιv) + ^ l A ^ i f o + O

PROOF. Substituting (4.1) into

and expanding it at x = xn into power series in ft, we have by (4.23), (4.24) and

(2.23)

eΛ +A v = hPe(xn+λv)

which completes the proof.

Let aj9 bj O'=0, 1,..., m) and b m + v (v = l, 2,..., ί) be the constants such that

(4.29) Σ7=o0y = O, Σ 7 - o J β i = - α ,

(4.30) ΣT-oj'fly = KΣj-oβ-'bj + Σί=i ^ m + v ) (i = 1, 2,..., p+σ)

and let

(4.31) £„ = Σ7=o ̂ B + J ~ ft Σ?=o ¥ » + i - ft Σ U ! i m + v / Λ + λ v .

Then Theorem 4 is valid and (4.16) holds if σ ^ 1 and (4.27) is satisfied.

For explicit one-step methods with p^2, (4.17) holds if σ ^ 2 and (4.27) is

satisfied. For the two-step method (3.30), (4.16) is valid for n^O if α o = 0 , σ ^ l

and (4.27) is satisfied.

We introduce the following notations:

cvj = CvjICV9 dvj = DvjIDv (v = 1, 2,..., t; j = 0, 1,..., m).

EXAMPLE 2. The choice m=2, t=1, p+δ = 5, λ1 = 14- a/3 and a=Λ/T

yields

C i - 1 8 , C 1 0 = 5-2α, C u = 8, C 1 2 = 5+2α,

^ = 54, D 1 0 = 3~α, D 1 1 = 8α, Dί2 = ~ 3 - a .

The conditions α = l and p + σ = 6 lead to
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(4.32) En = [(15 - 8a)yn + I6ayn+1 - (15 + 8o) Λ + 2 ]/30

+ hί(2-a)fn + 8/B + 1 + ( 2 + β ) / . + 2 + 18/n+Λl]/30.

EXAMPLE 3. If we impose the condition (4.27) and choose m = ί = 2 and

= 5, we have

λ1 = l-α/3, λ2 = l + α/3, α = J~6, CX = C2 = 18, C 1 0 = C22 =

Cn = C2ί = 2, C 1 2 = C 2 0 = 8-3α, Dί=D2 = 54, Z)10 = ~i)22 =

D2i = - D n = 2α, D20 = - D 1 2 = 3 - α .

The choice α = l and p + σ = 6 yields

(4.33)> En = (yM - yn+2)l2 - ft(/Λ - 14/.+ 1 + / π + 2 - 9/ π + Λ l - 9/.+Aa)/30,

for which (4.20) is satisfied.

4.3. Milne's device

Let

(4.34) cttyΐ+u + Σ)zlrocjyn+j = hΘ(xn, y^..., yn+k-il h)

be a predictor of order p which satisfies the conditions analogous to Conditions A,

B and R, where αf = 1 and r^O. Put β(ζ) = Σkj = -r^ζJ\ α* = p'(l), and for any

solution z(x) of (1.1) let

Σ } — r « M * + J * ) = * β ( ^ z(x-rfc),..., z(x+(fc-l)fc); A) + T (x, z(x); A).

Assume that T*(x, j ; h) can be expressed as

T*(x, j ; fc) = /i p + 1φ5(^ Jθ + O(/ι^+2).

Then we have the following

THBOREM 5. Suppose that

(4.35) φ$(x, y) = γφo(x9 y), γ Φ 0, α* # αy.

, for the predictor-corrector method (4.34)-(1.4), under Conditions I, H and
L

(4.36) C(yn+k - tf+Jk) = T(xn; h) + O(h>+*) (n = J+r, J + r + 1 , . . . , JV-Λ)

for sufficiently small h, where

(4.37) C = α/(αy-α*).
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PROOF. From (4.34) and the assumptions it follows that

(4.38) p(l) = 0, Θ(x, y 0) = α*/(x, y).

By (1.4) and (4.34) we have

yn+k - y*+k = Σkj=-r<χ*yn+j - hθ(xH9 yH-r9...9 yn+k-ΰ Ό

Substituting (4.1) into the right side, expanding it at x = xn into power series in h
and using (4.38), we have by (2.23)

from which (4.36) follows.

This theorem justifies Milne's device with C defined by (4.37) for sufficiently
small h and large n.

Numerical examples
We use the following predictor and correctors:

(4.39) y*+3 = 9(yn+ί - yn+2) + yn + 6h(fn+2 + / n + 1 ) ,

I. yΛ+3 = Λ + 2 + Λ(9/»+3 + 19/rt+2 ~ 5/n + 1 +/J/24,

II. Λ + 3 = ( 2 Λ + 1 + Λ)/3 + fc(25/B+3 + 91/ r t + 2 + 43/π + 1 + 9/J/72,

III. yn+3 = yn + 3h(fn+3 + 3/n + 2 + 3/M+1 +/J/8,

IV. yn + 3 = Jn+i + Ί ( / n + 3 + 4/π + 2 +/,+ 1)/3.

The following problems are solved by these formulas with /ι = 2""5.

Problem 1. yf = 2y, χθ) = 1.

Problem 2. / = -y\ y(0) = 1.

Problem 3. / = 1 - y2, y(0) = 0.

Problem 4. / = ~5j;, y(0) = 1.

Starting values are computed by the Runge-Kutta method. The local truncation
error T and the value M of (4.36) at the step where the approximate value of
y(3) is computed are listed in Table 1. It is to be noted that the correctors III
and IV do not satisfy the first part of Condition L.
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Table 1.

Prob

1

2

3

4

Form

T

M

T

M

T

M

T

M

I

-9.36-06
-8.90-06

2.45-11
2.87-11

-1.24-10
-1.16-10

9.22-13
1.05-12

II

-7.05-06
-6.90-06

2.06—11
2.38-11

-9.33-11
-8.80-11

6.98-13
7.23-13

III

-1.31-05
-1.31-05

3.47-11
-6.48-08

-1.89-10
1.43-08

1.36-12
-1.12-05

IV

-4.02-06
-3.89-06

7.34-12
2.06-08

-4.75-11
-6.92-09

3.71-13
7.42-05

REMARK. For the linear method Φ=Σy=oβ//(x π + ./, yn+j) Condition H is

satisfied if ρ(ζ) has no common factor with σ(ζ) = Σ*=o βjCJ-

5. Approximate computation of errors

In this section we assume that

(5.1) eo = 0, e l «O(A* + ! ) (i = 1, 2,..., fc—1)

and approximate theerrors eJm (j*=0, 1,..., P ; Prn^N) for a fixed positive integer

m.

5.1. Method for approximation

Let A(x9 y; h) be the function such that for any solution z(x) of (1.1)

(5.2) z(x + h) = z(x) + hA(x9 z(x); h).

Then it can be written as

)!

From (2.6) and (2.18) it follows that

0j+i(x) = 0j(x) + 9j(x)9(x) U = 0, 1,...).

Hence gpc) can be written as a sum of products of g(x) and its derivatives in the

form

gj(x) = ΣLό9jk(x) (j = 0, 1,,..).

For instance goo=g, gί0=g' and gti=g2.

LEMMA 6. For any integer s ( l ^ s ^ p + 1 ) there exist an integer r (r^
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and functions A(xn, yn9..., yn+r; h), Ajk(xn, yn9..., yn+r; h) (j, fc=0, 1,..., M) and

S(xn, yn,..., yn+r; en, h) such that

(5.3) en+m = en + mhlΔ(xn, yn; mh) - A(xn, y(xn); mft)] + A

+ h Σf=o V ΣLo Ajkgjk(χn) + h?+^S9

where

(5.4) A = O(h»+ί), AJk = O(hP+i) (Λ fc = 0, l , . . . , M ; M ^ s - 2 ) .

PROOF. Let D be the differential operator and A be the forward difference

operator. Then there exists an integer r (r^m) such that

(5.5) y(x+jh) = y(x) + JlΣUo O'W))*/(fc+l)!]Λ/(x) + O(fc*+*+a)

α = l,2,...,r),

where δ=δJm. Substituting

hD = l o g ( l + Δ ) = A- A2I2 + A3/3 -•••

into (5.5), we have

y(x+jh) = y(x) + ft ΣUo c^ky'{x) + O(ft"+S+*),

which can be rewritten as

(5.6) y(x+jh) = y(x) + h ΣUo cjky'(x+kh) + O(ft"+s+ί) ( = 1, 2,..., r).

Let u(x) be the solution of (1.1) with u(xn)=yn and let

(5.7) un+J = u(xn + J ), dn+J = yn+J - un+J (/ = 0, 1,..., r),

(5.8) wn+J = yn+j - yn-h ΣUo CjJn+k U = 1, 2,..., r).

Since by (5.1) and Theorem 2

(5.9) en+J = Λ'e(x-+j) + O(/t"+1) ( = 0, 1,..., r)

and by GronwalΓs inequality

«.+7 " 3<x.+j) = β. + OCP + 1) ( = 0, 1,..., r),

we have

(5.10) dn+J = en+J + yixn+j) - uH+J = O(ft"+1) (j = 1, 2,..., r).

By (5.6M5.10)

(5.11) dn+j = A Σ i - i c>rf(*,+»)d.+* + wΛ+J + Oik'*"*) (j = 1, 2,..., r),
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from which it follows that

(5.12) wn+j = O(hP+ί) (; = l ,2, . . . , r ) .

By (5.2) we have

(5.13) en+m = en + mh[_Δ(xn, yn\ mh) - A(xn9 y(xH); mft)]

+ yn+m - yn - mhA(xn, u(xn); mh).

From (5.6) it follows that

mhA(xn, u(xn); mh) = ft Σ r

f c = o c M k /(x π + f c , u(xn+k)) + O

By this and (5.13)

(5.14) en+m = en + m/i[J(xM, yπ; mft) - J(xn, Xxπ); m/z)] + wn

+ h Σr

k=i cmkg(χn+k)dn+k

Substituting (5.11) repeatedly into (5.14) and expanding the functions at

x = xn into power series in ft, we have (5.3) with

(5.15) A = wπ+m, ^ 0 0 = Σrj=i cmJwn+J, Aί0 = Σ i = i K m j wn + J ,

and so on. From (5.12) and this (5.4) follows. Thus the proof is complete.

In some cases we may take r = mby using the interpolation.

Suppose that there exist a method of explicit one-step type for approximating

en+m and constants Kί9 K2 and L such that

(5.16) en+m = en + mhΨ(xn, y n , . . . , y n + r ; en9 ft)

+ h?+d+ιR(xn, y n 9 . . . 9 y n + r ; en, ft) + ft^+1S(xM, y n 9 . . . 9 y n + r ; eΛ9 ft),

(5.17) \R(x9u09...9u/9w9Ό)\£Kl9

(5.18) \S(x9u09...9ur;w9v)\£K29

(5.19) \Ψ(x9 uO9...9 ur\ w, i?) - ψ(χ9 iι0,..., u r ; w, ι>)| ̂  L|w - w|

for υeH, x, χ +rhel9 ui9 u£ —w, ut — w eBM (i — 0, 1,..., r ) .

Let P be an integer such that (P— l)m + r^AT and define ejm ( j = 0, 1,..., P) by

(5.20) en+m = en + mhΨ(xn, y n 9 . . . 9 y n + r ; en9 ft) ( n = j m ; j = 0, 1 , . . . , P ) , e0 = 0 .
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Then we have the following

THEOREM 6. Under the condition (5.1) suppose that there exist functions

Ψ9R and S satisfying (5.16)-(5.19) and let eJm(j = O, 1,...,P) be defined by

(5.20). Then

(5.21) ejm = ejm + 0{h^) (j = 0, 1,..., P)

for sufficiently small h, where ί = min(s, d).

PROOF. Let vk = ek — ek (k=jm; j=0, 1,..., P). Then for n = j m ( 0 ^ j =

P—1) we have

vn+m = vn + mh\_Ψ(xn, yH9...9 yn+r; en, h) - Ψ(xn9 yn,..., yn+r; en, /i)]

+ hP+d+1R + hP+s+ίS.

Let u = 1 + mLh and K be a constant such that

Kxh
d + K2h

s ^ Kh* for heH.

Then

|t>B+J ^ u\vn\

so that

\υjm\ ^ (1 + u + •

g m-1(b-a)eL^b-^KhP+t 0 = 0, 1,...,P).

This completes the proof.

In the case of variable stepsize where

*α+Dm = X/m + why 0 = 0, 1,...,P-1), xPm + (r-m)hp_1 = fc,

if yn+i (/ = 0, 1,..., r) in (5.16) denote the approximate values of y(xn+ihj) (n =

jm), then (5.21) is valid with /i =

5.2. Examples

In this subsection we consider the case m = 4 .

5.2.1. Formulas (5.6)

We use the notation cjk = Cjk/Cj 0 = 1, 2,..., r; /c = 0, 1,,.., r).

EXAMPLE 4. In the case r = 4 we have p + s = 6 and

(5.22) Cί = 720, C 1 0 = 251, C n = 646, C 1 2 = -264, C 1 3 = 106, C 1 4 = - 1 9 ;
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C2 = 90, C 2 0 = 29, C 2 1 = 124, C 2 2 = 24, C 2 3 = 4, C 2 4 = - 1 ;

C 3 = 80, C 3 0 = 27, C 3 1 = 102, C 3 2 = 72, C 3 3 = 42, C 3 4 = - 3 ;

C 4 = 90, C 4 0 = C 4 4 = 28, C 4 1 = C 4 3 = 128, C 4 2 = 48.

EXAMPLE 5. In the case r = 6 we have p + s = Ί and

(5.23) C1 = 60480, C 1 0 = 19087, C n = 65112, C 1 2 = -46461, C 1 3 = 37504,

C 1 4 = -20211, C 1 5 = 6312, C 1 6 = - 8 6 3 ; C 2 = 3780, C 2 0 = 1139,

C 2 1 = 5640, C 2 2 = 33, C 2 3 = 1328, C 2 4 = -807, C 2 5 = 264, C26 = - 3 7 ;

C 3 = 2240, C 3 0 = 685, C 3 1 = 3240, C 3 2 = 1161, C 3 3 = 2176,

C 3 4 = -729, C 3 5 = 216, C 3 6 = - 2 9 ; C 4 = 945, C 4 0 = 286, C 4 1 = 1392,

C 4 2 = 384, C 4 3 = 1504, C 4 4 = 174, C 4 5 = 48, C 4 6 = - 8 ; C 5 = 12096,

C 5 0 = 3715, C 5 1 = 17400, C 5 2 = 6375, C 5 3 = 16000, C 5 4 = 11625,

C 5 5 = 5640, C 5 6 = -275; C 6 = 140, C 6 0 = C 6 6 = 41, C 6 1 - C 6 5 = 216,

5.2.2. Formulas (5.16)

Let

(5.24) F(x, y, u) = /(x, ^) - / ( * , y - u).

EXAMPLE 6. In the case s = 2 and M = 0 let

^ i = ^ n , yn> en), F2 = F(x π + 2 , yn+2, en + 2hF x + i>), ί? =

Then we have

(5.25) en+t = en + A + 4hF2

(5.26) ^ π + 4 = en + ^ + 2 / * ^ + 4F 2

where

F 3 = F(x n + 4 , Λ + 4 , en - 4/ιFx + ShF2 + 2&).

There exists a 4-stage method

(5.27) en+t = en + A + 2h(Fx + 2F 2 + 2F 3 + F4)/3

where
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F 3 = F(x n + 2 , yn+2, en + 2hF2 + b)9

F 4 = F(x π + 4 , Λ + 4 , en + 4/ιF3 + 2b).

EXAMPLE 7. In the case 5^2 we have

(5.28) e n + 4 = en + A + 2/i(Fx + F2) + 0(/ι* + ί + 1 ),

where

F x = F(xn9 yn, en 4- bt), F2 = F(x n + 3 , Λ + 3 , en + 4ΛFX + ί>2),

bi = (3>loo - ^io)/4, b2 = (i41 0 ~ i400)/4, t = min (2, s).

There is also a 3-stage method

(5.29) e n + 4 = eM + A + 4/i(2Fx + 3F 2 + 4F3)/9 + 0 ( / i ^ f + 1 ) ,

where

Fi = F(xn, yni en + bj, F2 = F(xn+2, yn+2, en + 2hF1 + f>2),

F 3 = F(x n + 3 , y n + 3 , ^π + 3fcF2 + b3), bί = (12A00 - 4 ^ 1 0 - A n)/8,

ί>2 = ( 4 1 0 + i 4 n - 3A00)/4, i>3 = (6^00 + ^10 - 2i4n)/16, ί = min (3, s).

5.2.3. Numerical examples

The predictor (4.39) and correctors I-IV are used to solve Problem 3 and the

following problems with h=2~5.

Table 2.

Prob

3

5

6

7

Form

e

e

έ

e

e

έ

e

e

έ

e

e

έ

I

1.96-09
1.97-09
1.97-09

3.38-05
3.33-05
3.37-05

1.34+00
1.32+00
1.30+00

1.02-10
9.52-11
9.45-11

II

6.34-10
6.36-10
6.35-10

1.14-05
1.10-05
1.13-05

4.92-01
5.01-01
4.81-01

2.56-11
2.42-11
2.34-11

III

1.21-08
1.21-08
1.21-08

1.75-05
1.70-05
1.74-05

7.33-01
7.36-01
7.16-01

1.21-05
1.20-05
1.18-05

IV

-6.21-09
-6.20-09
-6.12-09

6.99-06
6.54-06
6.91-06

3.28-01
3.41-01
3.21-01

-7.49-05
-7.46-05
-6.77-05
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Problem 5. y' = y - 2x/y, y(0) = 1.

Problem 6. / = 2xy, y(0) = 1.

Problem 7. / = 5(1 - y\ y(0) = 0.

Starting values are computed by the Runge-Kutta method. Formula (5.29) is
used with quantities in (5.15) whose coefficients are given by (5.22) and (5.23).
The error e at x = 3 and the values e and e obtained respectively by using (5.22)
and (5.23) are listed in Table 2.

For e we have r = 4, s = ί = 2 and M = l > s - 2 , while for e we have r = 69 s = t
= 3 a n d M = l = 5 - 2 .

5.3 Explicit one-step methods

We show the following

THEOREM 7. Let En be given by (4.15) or by (4.31) satisfying (4.27) and
suppose that σ^2 and (4.20) ΪS satisfied. Then for explicit one-step methods
with

(5.30) A = -mEtt, Aoo = -m2EJ2, s = 2.

PROOF. Let un+j and dn+j (j=0, 1,..., m) be defined by (5.7). Since

un+j+ί =un+j + hΔ(xn+j, un+j; h) (j = 0, 1,..., m - 1 ) ,

(5.31) yn+j+ί = yn+j + hA(xn+j9 yn+j; h) - T(xn+p yn+j; h),

by (5.10) we have dπ = 0,

dn+j + ί = dn+j - hP+iφ0(xn) + O(hP+2) (j = 0, 1,..., m - 1 ) .

From this it follows that

(5.32) dn+J = -jhP+iφo(xn) + O(^+ 2) (7 = 0, 1,..., m).

By (5.31)

(5.33) en+j+1 = ̂ n + i + hlA(xn+p u(xn+j); h) - A(xn+j9 y(xn+j); Λ)]

+ hAy(xn+p yn+j; h)dn+j - T(xn+j; h) + O(h2P+ί)

O = 0, 1,..., m -

Since for any solution z(x) of (1.1)

hΣ?=oΛ(xn+p z(xn+j); h) = mhA(xn, z(xn); mft),

by (5.32) and (5.33) we have
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, yn\ mh) - Δ{xn, y(xn); mh)'] - Σj=o T(xn+j; h)

Substitution of (4.21) into this yields (5.30).

Numerical examples

Problem 5 and the following problem are solved by the Runge-Kutta method

and Kutta's method for m = 4.

Problem 8. / = 2xe*χ2/y\ y(0) = 1.

En is computed by means of (4.22). Formulas (5.26) and (5.27) are used when

p = 3 and 4 respectively.

The same problems are solved by the Runge-Kutta method for m = 2 with

the aid of (4.33) and the formula

(5.34) en+2 = en- 2En + h(Fx + F2)

where

F, = F(xn, yn9 en-b\ F2 = F(xn+2, yn+2, en + 2hFx - 2b)9 b = 2£n/3.

Computation is carried out by the following program:

(1) Compute y( (i = 1, 2,..., m) and em.

(2) If |m£ol > 10"8 max(|^m | , 1), halve the stepsize and go to (1). (Initially

h = 2~3.)

(3) Replace x0, y0 and e0 by xm, ym and em respectively.

The error e and the computed value e are listed in Table 3.

Table 3.

Formula

Prob

5

8

Λ;

3.0
4.0
5.0

3.0
4.0
5.0

(5

e

5.90-06
3.85-05
2.57-04

-1.60-04
-4.07-01
-8.15+02

.26)

e

5.85-06
3.82-05
2.55-04

-1.58-04
-4.06-01
-7.96+02

(5.27)

e

1.96-06
1.29-05
8.65-05

3.70-05
5.14-02
1.03+03

e

1.97-06
1.30-05
8.71-05

3.83-05
5.26-02
1.05+03

(5.34)

e

2.15-06
1.40-05
9.20-05

2.49-04
5.24-02
1.05+03

e

2.18-06
1.43-05
9.59-05

2.49-04
5.26-02
1.05+03
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