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1. Introduction

A. Cerezo and F. Rouviere prove that the Casimir operator on a complex

semisimple Lie group G is surjective on C^^G) ([1]). Further J. Rauch and

D. Wigner prove the global solvability of the Casimir operator when G is a

non-compact semisimple Lie group with finite center ([6]). S. Helgason proves

that each invariant differential operator on a symmetric space X of the non-

compact type is surjective on C°°(X) ([3]).

In this paper, we will show that the Laplace operator on an affine symmetric

space induced by the Casimir operator is globally solvable by means of the

method given by J. Rauch and D. Wigner ([6]).

2. Notation and preliminaries

Let M be an infinitely differentiate manifold. We denote by C°°(M),

Cf(M), X(M), and Ωι(M) the space of infinitely differentiate functions on M,

the space of infinitely differentiate functions on M with compact support, the

space of all ι mo 3th vector fields on M and the space of all smooth 1-forms on M,

respectively.

Let G be a non-compact connected real semisimple Lie group with finite

center, g the Lie algebra of G, and B the Killing form of g. Let σ be an involu-

tion of G, Gσ the closed subgroup of G consisting of all the elements left fixed by

or, and H a closed subgroup of G lying between Gσ and the identity component of

Gσ. Then the homogeneous space GjH is said to be an affine symmetric space

and there always exists a G-invariant measure dgH on G/H which is unique

except for a strictly positive factor of proportionality. The eigenvalues of the

involution of g induced by a are 1 and — 1 . Let ϊ) be the eigenspace for 1 and q

the eigenspace for - 1 . The direct decomposition of g is: g = ί) + q. Since there

exists a Cartan involution of g commuting with σ, g decomposes into a vector

space direct sum:

where g = ϊ + p is the Cartan decomposition. Thus we can choose a basis Xί9
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..., Xr, Yi9...9 Ys of g such that ^ e q f l ϊ (/ = l,...,p), X f eί)nϊ (ί = p + l r),

y. e q D p (i = l,..., 4), 7 fe ί) n p 0 = 4 + 1,..., s), B(Xi9 Xj)=-δij ( l < i , ; < r ) , and

Yj) = δij (1 < Ϊ, j <s). Then the Casimir operator of G is of the form

in the universal enveloping algebra (7(gc) of the complexification gc of g. Every

element X in g defines an infinitesimal transformation X* as follows;

(X*f)(gH) = -jΓf(Qχp(-tX)gH)\t=0 (gHeG/H, feC^G/H)).

Then if we associate to each X in g the linear map /»->X*/ of C^iG/H) into

itself, we get a representation of g on C^iG/H) which can be extended to a

representation of l/(gc). For the Casimir operator in C/(gc), we denote by C

the corresponding Laplace operator on C°°(G///) and write that

Now we say that elements (x, X) and (y, Y) in G x q are equivalent if there

exists an h in fί such that y = xh and Y = Ad(/T1)X. We denote by Gx q the
H

quotient space of G x q. Then G x q is naturally isomorphic to the tangent vec-
H

tor bundle T(G/H) of G/H. Set Dxf= ~jff(^P (tX)H) \t=0(XeqJe C^G/H))

and Lx(gH) = xgH (xeG, gH GG/H). Then the map X^DX defines an

isomorphism of q onto TeH(G/H) and the map D*-*LX*D defines an isomorphism

of TeH(G/H) onto TxH(G/H) where Lx* denotes the differential of Lx. Let q* be

the dual space of q. Similarly the quotient space G x q* of G x q* is isomorphic
H

to the cotangent vector bundle T*(G/H) of GjH. Let p be the natural projection

of Gx q* onto Gxq* and [x, 2] the image of (x, A) by p ((x9 λ)eGx q*). For
H

any D in TeH(G/H), we can choose only one XD in q such that Df=

j D)H) U o (/e C°°(G/H)). For any A in q*, we define £A in T*H(G/H)
by ξA(D) = A(XZ)). Then the map λ\-+ξλ defines an isomorphism of q* onto

T*H(G/H) and the map ξ^L%~1ξ defines an isomorphism of T*H(G/H) onto

T*H(G/H) where LJ denotes the codifferential of Lx.

Finally, we give general notions. Let M be a C°° manifold. We define

a 1-form θ on the cotangent vector bundle T*M of M a s follows:

Θ£Ό) = <r, π*ϊ;> (r e T*M, v e Tr(Γ*M))

where π is the natural projection of T*M onto M. 0 is called the canonical

1-form on T*M. Set Ω = dθ. Then Ω is a non-degenerate 2-form on T*M.

Thus the map X^c(X)Ω is an isomorphism of X(T*M) onto Ω^T^M) where
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c(X)Ω is the interior product of X and Ω. For each / in C°(T*M) we define
a C00 vector field Hf on T*M by df=c(Hf)Ω. Hf is called the Hamiltonian
vector field on T*M corresponding to /.

3. Hamiltonian vector field

We denote by c the principal symbol of C. Let π be the natural projection
of T*(G/H) onto G/H. It is clear that

c(ξ) = - Σί=i <XIH, ξ>2 + Σ?=i <n*H, ξ>2 (ξ e Γ*(G//ί), π(ξ) = xH).

Since the Casimir operator is contained in the center of U(QC)9 we have

- ΣU1X2 + Σf=i Y2 = - ΣUΛ^d(x)xi)
2 + Σf=

for any x in G. Hence it follows from the above remarks that

= - Σϊ=i <Lχ*ί>x(, €>2 + Σf=i <Lx*DYt, ί> 2

= - Σf-i < L Λ , O 2 + Σf-i <Lx*DYi, O 2

because D x =0 if X is in t). Therefore we obtain that

cφc, X]) = - Σf=i <L,*Dχ(, L Γ 1 ^ ) 2 + Σf-i (Lx*D

Next for each X in cj, we define a C00 vector field X on G x q* by the
formula:

(Xf)(x, λ) = -^-/(xexp(tX), λ) \t=0 (fe C"(G x q*), (x, A)e G x q*).

For each v in q*, we define a C00 vector field 3 v onGx q* by the formula:

(x, A) = ^-/(x, λ + ίv) | r = 0 (/e C«{G x q ), (x, A) e G x q*).

Then T(xλ)(Gx q*) is spanned by X(Xtλ) (Xe g) and 5v(Xjλ) (ve q*). We define
a C00 vector field E on G x q* by the formula:

Taking account of the G-invariance of the Casimir operator, we obtain the fol-
lowing lemma by elementary computations.
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LEMMA 1.

- Σf=i λiX^Xi + Σ?=i KWi = - Σf-i ^(Ad (h)Xd Ad (h)Xt

+ ΣUi ^(Ad (h)Yύ Ad (h)Yi (heH, λe q ).

It follows from the above lemma that

Therefore we can define a C00 vector field E on G x q* by the formula;

Next we shall show that the vector field E is equal to the Hamiltonian vector
field Hc. To do so, we require next two lemmas.

LEMMA 2. Let Θ be the canonical 1-form on Gxq*, and p* the codif-
H

ferentίal of p. Then we have the following properties:

( i ) „ ί XX) (*eq),

t 0 (Xeί>).

(ϋ) (P*θ\Xιλ)(E) = 2 Σf-i KXi)2 ~ 2 Σf-i KYi)2-

(ίii) (P*θ\x,λ)(δv) = 0.

(iv) (p*θ)(x,λ)&E, XJ) = 0 (ΛΓefl).

(v) ( p * 0 W [ £ 3,]) = - 2 Σf-i ^^vίZ,.) + 2 Σί- i

(vi) (<?vW)(O>*0)(£)) = 4 Σf-i xxMxd - 4 Σf-i

PROOF. In view of the definition of θ, we have

(P*θ\x,λ)(v) = β^.A)(p,»)

(o e Γ(XjΛ)(G x q )).

=0 if X e ί) and π^p^X=LχifDx if X e q. Hence

Since π»pΦί(x,Λ)/=-^-/(xexp(ίX)f0l*-o (feC*(GIH)),we obtain that π*

(Zeq) ,

0 (Xeh).
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Thus (i) follows. Since

*,»f = 2 Σf-i KXd-jf

- 2 Σf-i Krd-jfftx exp (tlQH) |,= 0

we have

π*P*E(*M = 2 Σf-i W L ^ D , , - 2 Σf

This completes the proof of (ii). By π*p#dV(XιX)=0, (iii) is easily proved.
We turn to the proof of (iv). We note that

\E, X] = 2 ΣΓ-i«lX» X] - 2 Σf-i m 1%

= 2 Σf-i KXd ίxTxi - 2 ΣU λ(Yt) [ C x ]

Since [Xf, X] e b if X e q and [X,, X] e q if X e b, it follows from (i) that

0 (Xeq).

When X e h, according to Lemma 1 we have

Σf=i A(Ad (exp ίX)X;)2 - Σ?=i A(Ad (exp

Differentiating the above equation at ί=0, we obtain that

2 Σf-i HXdKlx. XJ) - 2 Σf-i KYt)λ(LX, yj) = 0,

which completes the proof of (iv). It is clear that

IE, a,] = - 2 Σf-i ^ ( X ^ l i + 2 Σf-i

Thanks to (i), (v) follows. According to (ii), we have

.= 2 Σf-i

which completes the proof of (vi).

LBMMA 3. Let Ω define the non-degenerate 2-form on Γ*(G/H) by
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Ω=dθ. Then we have

(i) (p*c(E)Ω\x>λ)(X) = 0 (xeg),

(ii) (p*c(E)Ω\xM(dv) = - 2 Σf=i λ(Xt)v(Xi) + 2 Σ?=i

PROOF. For any v in T(xM(G x ς*), we have

= (d(p*θ)\x^E, υ)

= E<x,d(P*θ)(v)) ~ <(P*Θ)(E)) - (P*Θ)(X,X)(IE, vj).

Therefore the present lemma is an immediate consequence of Lemma 2.

Now since p*dc = d(cop) and (cop)(x, λ)= -ΣUi ^(*ί) 2 + Σ?=i K^d1, we

have p*dc=-2Σ?=ίKXi)dλ(Xi) + 2Σi=ιKYi)dλ(Yi\ and so (p*dc)(X) = 0
(X e g) and

(p*dc)(dv) = - 2 Σf=i AίXOv^i) + 2Σ?=i λWWYd (v 6 q*).

Hence according to Lemma 3, we have

p*c(E)Ω = p*dc.

Therefore regarding that the map p* of Ωί(G x q*) into Ωι(G x q*) is injective,
H

we obtain the following proposition.

PROPOSITION 4. The vector field E on T*(G/H) is equal to the Hamil-

tonian vector field Hc corresponding to the principal symbol c of the Laplace

operator C.

4. Global solvability of the Laplace operator

In this section we assume that G/H is non-compact. To show that the

Laplace operator C is surjective on C™(GIH), owing to [6], it suffices to demon-

strate the following conditions:

( I ) The principal symbol c of C is real and tC = C where ' is transpose

with respect to the G-invariant measure dgH.

(II) No null bichar act eristic curve of C lies over a compact subset of G/H.

(III) If u is a distribution on G/H with compact support and Cu = 0, then
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(IV) For any compact set Γ of G/H, there exists a compact set t satisfying
the following properties;
(a) Γ is included in the set Int(t) of all interior points of t.
(b) Ifu is a distribution on GjH with compact support and the support

Supp Cu of Cu is included in Γ, then Supp u is included in t.

PROOF OF (I). It is evident that the principal symbol c of C is real. For
any φ and ψ in Cf(G/H\ set

(φ, Ψ) = \ φ(gH)ψ(gH)dgH.
JG/H

Then since (X*φ, ιA)= —(φ* X*ψ) (X e 9) and

we have (Cφ, tfr) = (φ, Cψ) (φ, ψ e Cf(G/H)).

PROOF OF (II). Recall that the bicharacteristic strips of C are defined as
the integral curves of the Hamiltonian vector field Hc in T*(G/iϊ)\0. Fix [x, λ]
in G x q* such that c([x, λ]) = 0. Set

H

7(0 = I* exp (2ί(Σ KXdXi - Σ λWYd), A] (t eR).

Then by Proposition 4 it is obvious that y(t) is an integral curve of Hc which passes
through [x, λ] in Gxq* and πoy(t) (teR) is a bicharacteristic curve which

H

passes through xH in G/H. To show that no null bicharacteristic curve of C
lies over a compact set in GjH, it suffices to consider the bicharacteristic curve
passing through eH in G/H.

Suppose that yczT*(G/H)\0 is the bicharacteristic strip of C passing through
[e, λ0] (λo#0) and that {π<>γ(i); teR} is relatively compact in G/H. Since the
map gHy-*gσ{g~ι) of G/H into G is continuous, the image

of {πoγ(t);teR}

is also relatively compact. Set

y(t) = exp(4ί(Σ λ^X^X, - Σ W ^ ) (teR).

Let K' be a maximal compact subgroup of G which contains {y(t); teR}. Then

belongs to the Lie algebra V of K'. Consequently c([e, Ao])= - Σ f = i
+ Σ?=i Λ-o(Ti)2<0 because the Killing form B is negative definite on V and λoΦ0.
This contradicts the fact that c([>, λo])=0.
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PROOF OF (III). Let u be a distribution on GjH. In view of Theorem 7.3

in [4], WFA(u)\WFA(Cu) is invariant under the Hamiltonian vector field Hc of C

where WFA(u) is the analytic wave front set of u defined by L. Hδrmander.

Now let u be a distribution on G/H with compact support such that Cu = 0.

Then WFA(u) = φ. In fact, if [x0,Ao] e WFA(u), the null bicharacteristic strip

y(t)(teR) passing through [x0, λo~\ is included in WFA(u). Hence, by (II)

πoy(t) (teR) is not bounded, which contradicts the fact that π(WFA(u)) is compact.

Therefore u is analytic on G/H, and so u = 0 because GjH is connected.

PROOF OF (IV). Taking a maximal abelian subspace aq of p n q, we extend

a maximal abelian subspace a of p such that a^>ar Then a=aθ q + aftΐ)

(direct sum) and aq=a(] q. Set A — expa. Then as is easily seen the map φ of

K x Aj{A n iί) into G/H defined by

= kaH ((k, a A Π # ) e K x i4/(Λ Π iί))

is surjective (see [2] and [5]). For any g in G, write (uniquely)

, Xep)

and set ||gf||=B(Z, Z) 1 / 2 , and so || || is continuous. Given gH in G/H, set

d(gH)=\\gσ(g~1)\\. Then d is invariant under X, that is

d(kgH) = % H ) (feeX, gHeG/H).

Now, for any compact subset Γ of G/H, we can find a compact subset Γo such

that Γcilnt (Γo). Set r=max {d(gH); gHeΓ0} and Br={a A[)HeAI(A n fl);'

d(aH)<r}. Then Γ o c= φ(lC x Br), and moreover

G/H = φ(X x BΓ) U φ(K x (A/(A ΓΊ H)\JBΓ)) (disjoint union).

Evidently φ(K x Br) is compact and φ{Kx{Aj{A Π H)\Br)) has at most two con-

nected components which are unbounded open subsets. Set P = φ(KxBr).

Then by arguments similar to the proof of (III), one can easily show (IV). The

proofs of (I), (II), (III) and (IV) are now complete. Therefore we have the

following theorem.

THEOREM 5. The Laplace operator C is surjective on C°°(G/H).
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