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Continuity of contractions in a functional Banach space
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In the Dirichlet space theory, contractions on the real line play an important

role in connection with potential theoretic properties. A. Ancona [1] proved

that contractions are continuous in Dirichlet space. Our aim in this note is to

prove that the contractions considered in [3] are continuous in a certain func-

tional Banach space.

Let X be a locally compact space and ξ be a positive (Radon) measure on X.

For measurable functions u and υ on X, we define

u v v = max {u, v}, u A V = min {u, v},

u+ = u v 0 and u~ = - ( M Λ O ) .

Let X=X(X; ζ) be a real reflexive Banach space whose elements are

measurable functions on X. We denote by ||«|| the norm of u e f , by X* the

dual space of X9 and by <M*, M> the value of u* e X* at u e X.

Throughout this note, let Φ be a strictly convex function on & such that

( i ) Φ(u) ^ 0 for all ueX and Φ(u) = 0 if and only if u = 0;

(ii) if {un} c $ and limπ_ ^ Φ(un)=0, then uπ->0 in X

(iii) Φ is bounded on each bounded subset of 9£\ and

(iv) Φ is difierentiable in the sense of Gateaux, i.e., there is an operator

G: &-*&* such that for any u,

The operator G is called the gradient of Φ and denoted by VΦ.

We shall use the following elementary properties of Φ and VΦ without

proof:

(Φ t) Let M G ̂  and u* e X*. Then u* = FΦ(M) if and only if

<M*5 v - M> <; Φ(t;) - Φ(u) for any i? e # .

(Φ2) FΦ is bounded, i.e., it maps bounded sets in X to bounded sets in X*.

For a non-negative measurable function g on X> we define an operator T+ by

= u+
 A g for t / e l



382 Yoshihiro MIZUTA

The operator T+ = T+ with g = oo will be called the positive contraction. We

shall say that T+ operates in SC (with respect to Φ) if T+ue& and

Φ(u + Γ+(ι> - u)) + Φ(v - Tg

+(υ - 11)) g Φ(u) + Φ(t>)

for any u, ve%. If T+ operates in #*, then it is continuous at 0 e # \ From

this it follows that if the positive contraction T+ operates in 3C and un-+u in &,

then M Λ « s e ί and w Λ un-+u in #".

Hereafter we assume that 2£ is a functional space, i.e., the following axiom

is satisfied (cf. [2]):

AXIOM a. For any compact set KczX, there exists a positive constant M

such that

( |u |dξ^Λί | | i i | | for all u e l

LEMMA 1. If T+ operates in % and un-+u in &9 then T+un->T+u weakly

in %.

PROOF. It is easy to see that T+ is a bounded operator in #*, so that {TgUn}

is bounded. By using Axiom a, we see, in the same way as [2; Lemma 2.1], that

Γ+iv +Γ+tt weakly in X.

In the same way as [2; Proposition 2.1], we have the next lemma.

LEMMA 2. The contraction T+ operates in % if and only if ΎgUedC and

<JΦ(u + Γ+i?) - FΦ(u), v - T+v> ^ 0

for any u, υeSC.

LEMMA 3. Let {un}a%; be a sequence converging to u e ί and set vn

= u Λ un. If T+ operates in £9 then T+υn-+T+u in %.

PROOF. By (Φ t) we have

w+ - υt\ u-vn} + <ΓΦ(w+ - i ί), w - v~>.

Since υn-w in % and {FΦ(u+-vϊ)} is bounded in #** by virtue of (Φ2), the

first term tends to zero as n-» 00. Since uj Λ (V~ — u~) = 0, (u+ — yj) -f w+ = u+ and

w — W+ = M~ — v~, where w = ϋn + w~. Hence by Lemma 2, we obtain

lim sup <FΦ(w+ — t J), M~ — v~} ^ lim sup <FΦ(u+), w~ — y~> = 0.
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It follows that limsup,,.^ Φ(u+ — vt)^O, which implies that v+-+u+ in & on

account of (ii).

COROLLARY. // T + operates in # , then T+ is continuous.

PROOF. Let {un} be a sequence in 2£ which converges to w e l Then,

by the above lemma we find that

(14 V UnY = ((-14) Λ (-Un)r - (-U) Λ {~Un) — > ( - W ) + " ( " « ) = " +

in #*. Hence we have again by Lemma 3 that

M+ = (i4 v uπ)+ + (u Λ un)
+ - u+ • u+ i n &9

which means that T+ is continuous.

Now we are ready to prove our main result.

THEOREM. // T+ and T+ operate in SC, then T+ is continuous.

PROOF. Suppose un->u in 2C and M Π Λ0 = 0 for each n. Set wn = uvun.

Then wn->w in # , and hence ( W M - M ) Λ ^ - ^ 0 in £ by the continuity of T+ at 0.

Using (ΦJ, we have

Φ(u A g ~wnA g)^ (FΦ(u A g - wn Λ g\ u A g - wn A g}

= <FΦ(u Λ g - wn A g\ (μ A g + (wn - tι) Λ g) - wn A g}

- (VΦ(u A g - wn A g\ (wn - ύ) A g} .

Since T+(u A g + (wπ - u) A g) = wn A g = T+wπ, Lemma 2 yields

lim sup <FΦ(M Λ gr - wn A g), (μ A g + (wn - ύ) A g) - wn A g}

n-*oo

^ lim sup <FΦ(M Λ g), u A g + (wn — ύ) A g — wn A g} = 0
n->oo

with the aid of Lemma 1. Hence lim sup,,.^ Φ(u Ag — wnAg) ^09 which implies

that wn A g->u A g in X by (ii). If we write

un A g = wn A g + (u A g) A un - u A g,

then we see that un A g-*u A g in 2E by using the fact that vAun-+vAu in 3C for

veθ£ because T+ is continuous. Thus our theorem is proved.
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