The order of the canonical elememt in the J-group of the lens space

Kensô Fujii and Masahiro Sugawara
(Received December 18, 1979)

§ 1. Statement of the result

The standard lens space $\bmod m$ is the orbit manifold

$$
L^{n}(m)=S^{2 n+1} / Z_{m} \quad\left(Z_{m}=\left\{z \in S^{1}: z^{m}=1\right\}\right) .
$$

of the $(2 n+1)$-sphere $S^{2 n+1}\left(\subset C^{n+1}\right)$ by the diagonal action $z\left(z_{0}, \ldots, z_{n}\right)=\left(z z_{0}\right.$, $\left.\ldots, z z_{n}\right)$. Let η be the canonical complex line bundle over $L^{n}(m)$, i.e., the induced bundle of the canonical complex line bundle over the complex projective space $C P^{n}=S^{2 n+1} / S^{1}$ by the natural projection $L^{n}(m) \rightarrow C P^{n}$.

Then, the purpose of this note is to prove the following
Theorem 1.1. Let p be an odd prime and r a positive integer. Then, the order of the J-image

$$
J(r \eta-2) \in \tilde{J}\left(L^{n}\left(p^{r}\right)\right)
$$

of the stable class of the real restriction $r \eta$ of the canonical line bundle η is equal to

$$
p^{f(n, r)}, f(n, r)=\max \left\{s+\left[n / p^{s}(p-1)\right] p^{s}: 0 \leqq s<r \text { and } p^{s}(p-1) \leqq n\right\},
$$

where $f(n, r)=\max \varnothing=0$ if $n<p-1$.
We notice that the above theorem is valid also for the case $p=2$ and $r \geqq 2$, by the result in the forthcoming paper [2].

It is proved by J. F. Adams [1] and D. Quillen [4] that

$$
J(X) \cong K O(X) / \sum_{k}\left(\cap_{e} k^{e}\left(\Psi^{k}-1\right) K O(X)\right)
$$

(X : finite dimensional $C W$-complex) where Ψ^{k} is the Adams operation. Based on this result, we prove the theorem in $\S 2$ and study more generally the order of $\operatorname{Jr}\left(\eta^{i}-1\right)(i \geqq 1)$ in $\S 3$, by using the partial results obtained in [3].

§2. Proof of Theorem 1.1

Let p be an odd prime. Consider the $2 n$-skeleton

$$
L_{0}^{n}\left(p^{r}\right)=\left\{\left[z_{0}, \ldots, z_{n}\right] \in L^{n}\left(p^{r}\right): z_{n} \text { is real } \geqq 0\right\}
$$

of a $C W$-complex $L^{n}\left(p^{r}\right)$. Denote the restriction of the canonical line bundle η on $L_{0}^{n}\left(p^{r}\right)$ by the same letter η, and the stable class of η by

$$
\begin{equation*}
\sigma=\eta-1 \in \tilde{K}\left(L^{n}\left(p^{r}\right)\right) \quad \text { or } \quad \tilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right) . \tag{2.1}
\end{equation*}
$$

Then, we have the following (2.2-5) in [3; Prop. 1.3, Prop. 6.3]:

$$
\tilde{J}\left(L^{n}\left(p^{r}\right)\right) \cong \begin{cases}\tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right) \oplus Z_{2} & \text { if } n \equiv 0 \bmod 4 \tag{2.2}\\ \tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right) & \text { otherwise }\end{cases}
$$

by the induced homomorphism of the inclusion.

$$
\begin{equation*}
-\operatorname{Jr} \sigma=\operatorname{Jr}\left(\sigma^{p-1}\right) \quad \text { in } \quad \tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right) \tag{2.3}
\end{equation*}
$$

$(K(X) \xrightarrow{r} K O(X) \xrightarrow{J} J(X)$ are the real restriction and the J-homomorphism).
(2.4) Consider the induced homomorphism

$$
i^{*}: \tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right) \longrightarrow \tilde{J}\left(L_{0}^{n-1}\left(p^{r}\right)\right)
$$

of the natural inclusion i given by $C^{n}=C^{n} \times\{0\} \subset C^{n+1}$.
(i) If $n \neq 0 \bmod p-1$, then i^{*} is an isomorphism.
(ii) If $n=a p^{s}(p-1)$ and $(a, p)=1$, then i^{*} is epimorphic and $\operatorname{Ker} i^{*}$ is the cyclic subgroup of order $p^{\min \{r, s+1\}}$ generated by $\operatorname{Jr}\left(\sigma^{n}\right)$.
(2.5) The order of $\tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right)$ is equal to $p^{v}, v=\sum_{s=0}^{r=1}\left[n / p^{s}(p-1)\right]$.

Now, let $f(n, r)$ be the non-negative integer such that

$$
\begin{equation*}
\# J r \sigma=p^{f(n, r)} \quad \text { in } \quad \tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right) \quad(n \geqq 0, r \geqq 1) \tag{2.6}
\end{equation*}
$$

by (2.5), where $\# \alpha$ denotes the order of α.
Then, we can prove Theorem 1.1 by the following lemmas.
Lemma 2.7. (i) $\# J r \sigma=p^{f(n, r)}$ in $\tilde{J}\left(L^{n}\left(p^{r}\right)\right)$.
(ii)

$$
f(n, r)=f((p-1)[n /(p-1)], r) .
$$

Proof. We notice that $i^{*} \eta=\eta$ and hence $i^{*} \sigma=\sigma$ by (2.1) for the inclusion $i: L_{0}^{n}\left(p^{r}\right) \subset L^{n}\left(p^{r}\right)$ or $L^{n}\left(p^{r}\right) \subset L_{0}^{n+1}\left(p^{r}\right)$. Then, (i) follows immediately from (2.2) and (2.5) since p is an odd prime, and (ii) from (2.4) (i).
q.e.d.

Lemma 2.8. If $n=(p-1) l$ and $l=m p^{r-1}$, then

$$
f(0, r)=0, \quad f(n, r)=r-1+l \quad \text { for } \quad n>0
$$

Proof. The first equality is trivial since $L_{0}^{0}\left(p^{r}\right)$ consists of one point.
Assume $n>0$. Then $\# \operatorname{Jr}\left(\sigma^{n}\right)=p^{r}$ by (2.4) (ii) and the assumption. On the other hand, we have the equality

$$
p^{r-1} \sigma^{n}=(-1)^{l-1} p^{r-1+l-1} \sigma^{p-1} \quad \text { in } \quad \widetilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right)
$$

by [3; Lemma 3.5]. Thus, we see the lemma by (2.3).
q.e.d.

Lemma 2.9. If $n=(p-1) l, l \neq m p^{r-1}$ and $r \geqq 2$, then

$$
f(n, r)=\max \{f(n-p+1, r), f(n, r-1)\} .
$$

Proof. Consider the commutative diagram

of the induced homomorphisms, where i and i^{\prime} are the inclusions and π and π^{\prime} are the natural projections induced by the inclusion $Z_{p^{r-1}} \subset Z_{p^{r}}$.

By the assumption, $n=a p^{s}(p-1)$ for some a and s with (a, p)=1 and $0 \leqq s$ $<r-1$. Thus, (2.4) implies that $\operatorname{Ker} i^{*}$ and $\operatorname{Ker} i^{*}$ in the above diagram are both the cyclic groups of order p^{s+1} generated by $\operatorname{Jr}\left(\sigma^{n}\right)$. Therefore

$$
\begin{equation*}
\pi^{*} \mid \operatorname{Ker} i^{*}: \operatorname{Ker} i^{*} \cong \operatorname{Ker} i^{\prime *}, \tag{2.10}
\end{equation*}
$$

by noticing that $\pi^{*} \eta=\eta$ and hence $\pi^{*} \sigma^{n}=\sigma^{n}$.
Since $i^{*} \sigma=\sigma$ and $\pi^{*} \sigma=\sigma$, the definition (2.6) implies that

$$
f(n, r) \geqq \max \{f(n-p+1, r), f(n, r-1)\} .
$$

Moreover, if $f(n, r)>\max \{f(n-p+1, r), f(n, r-1)\}$, then the non-zero element $p^{f(n, r)-1} J r \sigma$ in $\tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right)$ is mapped to 0 by i^{*} and π^{*}. This contradicts (2.10). Thus we have the lemma.

Proof of Theorem 1.1. By Lemma 2.7, it is sufficient to show that

$$
\begin{equation*}
f(n, r)=\max \left\{s+\left[l / p^{s}\right] p^{s}: 0 \leqq s<r \text { and } p^{s} \leqq l\right\} \text { for } n=(p-1) l . \tag{2.11}
\end{equation*}
$$

By Lemma 2.8, (2.11) holds if $l=m p^{r-1}$ and especially if $r=1$.
For the case $r \geqq 2$ and $m p^{r-1}<l<(m+1) p^{r-1}$, assume inductively that (2.11) holds for $(n-p+1, r)$ and ($n, r-1$) instead of (n, r). Then, we see easily that the right hand side of the equality in Lemma 2.9 is equal to

$$
\begin{cases}f(n, r-1) & \text { if } m=0, \\ \max \left\{f(n, r-1), r-1+\left[(l-1) / p^{r-1}\right] p^{r-1}\right\} & \text { if } m \geqq 1,\end{cases}
$$

and hence to the right hand side of (2.11). Thus Lemma 2.9 implies (2.11) by induction.

These complete the proof of the theorem.
q.e.d.

Remark 2.12. If $[n /(p-1)]=\sum_{i=1}^{k} d_{i} p^{s_{i}}$ with $0 \leqq s_{1}<\cdots<s_{k}$ and $0<d_{i}<p$ for $1 \leqq i \leqq k$, then $f(n, r)$ in Theorem 1.1 is equal to

$$
f(n, r)=\max \left\{\sum_{i=j}^{k} d_{i} p^{s_{i}}+\min \left\{s_{j}, r-1\right\}: 1 \leqq j \leqq k\right\}
$$

Furthermore,

$$
f(n, r)=\max \left\{t+\min \left\{v_{p}(t), r-1\right\}: 1 \leqq t \leqq[n /(p-1)]\right\} \quad(n \geqq p-1),
$$

where $v_{p}(t)$ is the exponent of p in the prime power decomposition of t.

§3. The order of $\operatorname{Jr}\left(\eta^{i}-1\right)$

In this section, we prove the following
Theorem 3.1. Let p be an odd prime and r a positive integer. Then for any $i \geqq 1$ with exponent $v=\nu_{p}(i)$ of p in its prime power decomposition,

$$
\# J r\left(\eta^{i}-1\right)=\# \operatorname{Jr}\left(\eta^{p^{v}}-1\right)=p^{f(n, r ; v)} \quad \text { in } \tilde{J}\left(L^{n}\left(p^{r}\right)\right)
$$

where the exponent $f(n, r ; v)$ is equal to

$$
\max \left\{s-v+\left[n / p^{s}(p-1)\right] p^{s-v}: v \leqq s<r \text { and } p^{s}(p-1) \leqq n\right\} \quad(\max \varnothing=0)
$$

The theorem for $i=1$ is Theorem 1.1.
To prove the theorem, we prepare two lemmas. Set

$$
\begin{equation*}
\sigma(s)=\eta^{p^{s}}-1 \in \tilde{K}\left(L^{n}\left(p^{r}\right)\right)=\tilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right) \quad \text { for } \quad s \geqq 0, \tag{3.2}
\end{equation*}
$$

where $\sigma(0)=\sigma$ and $\sigma(s)=0$ if $s \geqq r$ (cf. [3; (1.2)]).
Lemma 3.3. The following equalities hold in $\tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right)$:
(i) $\operatorname{Jr}\left(\eta^{i}-1\right)=\operatorname{Jr} \sigma\left(v_{p}(i)\right) \quad$ for $i \geqq 1$.
(ii) $\operatorname{Jr}\left((\sigma(0) \cdots \sigma(s))^{p-1}\right)=-J r \sigma(s) \quad$ for $0 \leqq s<r$.

Proof. By the proof of [3; Prop. 1.3], we notice that the kernel of $J r$: $K\left(L_{0}^{n}\left(p^{r}\right)\right) \rightarrow J\left(L_{0}^{n}\left(p^{r}\right)\right)$ is generated additively by the elements

$$
\eta^{j} \sigma(s) \quad\left(0 \leqq s<r, 1 \leqq j<p^{s}(p-1)\right) .
$$

(i) If $p^{s} \leqq i<p^{s+1}$, then $\eta^{i}-1=\eta^{j} \sigma(s)+\eta^{j}-1$ where $j=i-p^{s}$ by (3.2). If $j>0$ in addition, then $\operatorname{Jr}\left(\eta^{i}-1\right)=\operatorname{Jr}\left(\eta^{j}-1\right)$ by the above notice and $\sigma(s)=0$
($s \geqq r$). By continuing this, we see easily (i).
(ii) In $\left\{(\sigma(0) \cdots \sigma(s-1))^{p-1} \sigma(s)^{p-2}\right\} \sigma(s)$, (3.2) shows that $\}$ is an integral polynomial in η of degree $p^{s}(p-1)-1$ with constant term -1 . Thus, (ii) follows immediately from the above notice.
q.e.d.

Lemma 3.4. If $n=(p-1) l$ and $l=m p^{r-1}>0$, then for $0 \leqq s<r$,

$$
\# J r \sigma(s)=p^{r-s-1+l / p^{s}} \quad \text { in } \tilde{J}\left(L_{0}^{n}\left(p^{r}\right)\right)
$$

Proof. Set $\sigma^{\prime}(s)=(\sigma(0) \cdots \sigma(s))^{p-1}$ and $\sigma^{\prime}(-1)=1$. Then, under the assumption of the lemma, [3; Prop. 3.2 and Lemma 3.5] implies the following equalities in $\widetilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right)$:

$$
\begin{align*}
& \begin{cases}p^{r-s-i} \sigma^{\prime}(s-1) \sigma(s)^{n(s)+i}=0 & \text { for } \quad 0<i \leqq r-s, \\
p^{r-s+[i /(p-1)]} \sigma^{\prime}(s-1) \sigma(s)^{n(s)-i}=0 & \text { for } 0 \leqq i<n(s) ;\end{cases} \tag{3.5}\\
& p^{r-s-1} \sigma^{\prime}(s-1) \sigma(s)^{n(s)}=(-1)^{i} p^{r-s-1+i} \sigma^{\prime}(s-1) \sigma(s)^{n(s)-(p-1) i} \\
& =-(-1)^{l(s)} p^{r-s-2+l(s)} \sigma^{\prime}(s) \text { for } 0 \leqq i<l(s),
\end{align*}
$$

where $n(s)=n / p^{s}$ and $l(s)=l / p^{s}$. On the other hand, (3.2) implies

$$
\begin{equation*}
\sigma(s)=(1+\sigma(t))^{p}-1=p A(t) \sigma(t)+\sigma(t)^{p} \quad(t=s-1 \geqq 0) \tag{3.7}
\end{equation*}
$$

where $A(t)=\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} \sigma(t)^{i-1}$ is an integral polynomial in $\sigma(t)$ of degree $p-2$ with constant term 1. Therefore, we see for $t=s-1$ that

$$
\begin{align*}
& p^{r-s-2+l(s)} \sigma^{\prime}(s)=-(-1)^{l(s)} p^{r-s-1} \sigma^{\prime}(t) \sigma(s)^{n(s)} \tag{3.6}\\
& \quad=-(-1)^{l(s)} \sum_{i=0}^{n(s)}\binom{n(s)}{i} p^{r-t-2+i} \sigma^{\prime}(t-1) A(t)^{i} \sigma(t)^{n(t)-(p-1)(i-1)} \tag{3.7}\\
& =-(-1)^{l(t)} \sum_{i=1}^{n(s)}\binom{n(s)}{i} p^{r-t-2+i} \sigma^{\prime}(t-1) \sigma(t)^{n(t)-(p-1)(i-1)} \tag{3.5}\\
& \quad=-\sum_{i=1}^{n(s)}\binom{n(s)}{i}(-1)^{i} p^{r-t-2+l(t)} \sigma^{\prime}(t)=p^{r-t-2+l(t)} \sigma^{\prime}(t) \tag{3.6}
\end{align*}
$$

and hence that $p^{r-s-2+l(s)} \sigma^{\prime}(s)=p^{r-2+l} \sigma^{\prime}(0)$ in $\tilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right)$.
Now, the last equality, Lemmas 3.3 (ii) and 2.8 imply the lemma. q.e.d.
Proof of Theorem 3.1. Let $f(n, r ; s)$ be the non-negative integer with

$$
\# \operatorname{Jr\sigma } \sigma(s)=p^{f(n, r ; s)} \quad \text { in } \quad \tilde{J}\left(L_{o}^{n}\left(p^{r}\right)\right)
$$

by (2.5). Then, by Lemma 3.3 (i) and by noticing the similar result to Lemma 2.7, we see that the theorem follows from the equality

$$
\begin{align*}
& f(n, r ; s)=\max \left\{t-s+\left[l / p^{t}\right] p^{t-s}: s \leqq t<r \text { and } p^{t} \leqq l\right\} \tag{3.8}\\
& \qquad \text { for } n=(p-1) l .
\end{align*}
$$

For $s=0$, this is (2.11). Let $s>1$. If $r \leqq s$ or $l=0$, then the both sides of (3.8) are 0 , since $\sigma(s)=0$ in $\tilde{K}\left(L_{0}^{n}\left(p^{r}\right)\right)(r \leqq s), L_{0}^{0}\left(p^{r}\right)=*$ and $\max \emptyset=0$. Furthermore (3.8) also holds if $r>s$ and $l=m p^{r-1}>0$, by Lemma 3.4. For the case $r>s$ $\geqq 1$ and $m p^{r-1}<l<(m+1) p^{r-1}$, we can prove the equality

$$
f(n, r ; s)=\max \{f(n-p+1, r ; s), f(n, r-1 ; s)\} \quad(n=(p-1) l)
$$

by the same proof as Lemma 2.9, and hence (3.8) inductively by the same way as the proof of (2.11). Thus, we have obtained (3.8) and Theorem 3.1. q.e.d.

References

[1] J. F. Adams: On the group $J(X)$, II, Topology, 3 (1965), 137-171.
[2] K. Fujii: J-groups of lens spaces modulo powers of two, Hiroshima Math. J., 10 (1980), to appear.
[3] T. Kobayashi, S. Murakami and M. Sugawara: Note on J-groups of lens spaces, Hiroshima Math. J., 7. (1977), 387-409.
[4] D. Quillen: The Adams conjecture, Topology, 10 (1971), 67-80.

Department of Mathematics,
Faculty of Science, Hiroshima University

