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§ 1. Statement of the result

The standard lens space mod m is the orbit manifold

L*(m) = S2"+1/Zm (Zm = {zeS1:zm = 1})

of the (2n + l)-sphere S2n+ί(aCn+1) by the diagonal action z(z0,..., zn) = (zz0,
..., zZj). Let η be the canonical complex line bundle over Ln(m), i.e., the in-
duced bundle of the canonical complex line bundle over the complex projective
space CPn = S2n+1ISι by the natural projection L"(m)-*CPn.

Then, the purpose of this note is to prove the following

THEOREM 1.1. Let p be an odd prime and r a positive integer. Then, the
order of the J-image

J(rη-2)eJ{L\p'))

of the stable class of the real restriction rη of the canonical line bundle η is equal
to

Pf(n'r\ f(n,r) = max{s + [n/Λ-l)]p s : 0 ̂  s < r and ps(p-l) = n),

where/(n,r) = max0 = 0 ifn<p—\.

We notice that the above theorem is valid also for the case p = 2 and r^2,
by the result in the forthcoming paper [2].

It is proved by J. F. Adams [1] and D. Quillen [4] that

j{X) s κo(x)/Σk (n e k*(Ψk - i)κo(X))

(X: finite dimensional CW-complex) where Ψk is the Adams operation. Based
on this result, we prove the theorem in § 2 and study more generally the order of
Jr(ψ -1) (i g 1) in § 3, by using the partial results obtained in [3].

§ 2. Proof of Theorem 1.1

Let p be an odd prime. Consider the 2rc-skeleton
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Lno(pr) = {[zo . . ^ J e L V ) : zn is real ^ 0}

of a CJF-complex Ln(pr). Denote the restriction of the canonical line bundle η
on Lg(pr) by the same letter η, and the stable class of η by

(2.1) σ = ι/-le£(L»(pO) or

Then, we have the following (2.2-5) in [3; Prop. 1.3, Prop. 6.3]:

Γ J(Lg(pO) θ Z 2 if n = 0 mod 4,
(2.2) J(L"0>'))= „

I J(Lg(pr)) otherwise,

by the induced homomorphism of the inclusion.

(2.3) - Jrσ = Ma?-!) in J(Lg(p')),

(K(X) —r-+ K0(X) —̂ -> J(X) are the real restriction and the J-homomorphism).

(2.4) Consider the induced homomorphism

i :J(L8(pO) ^(Lg-Kp1"))

of the natural inclusion i given by Cn = Cnx {0} c C"+1.
(i) If nφO mod p— 1, ί/ien i* is an isomorphism.
(ii) If n = aps(p—l) and (α,p)=l, ί/ien i* is epimorphic and Ker ΐ* is the

cyclic subgroup of order p^Mr,s+i} generated by Jr(σn).

(2.5) The order of J(Ln

0(pr)) is equal to p\ v = Σϊ=o W Λ " 1 ) ] .

Now, let f(n,r) be the non-negative integer such that

(2.6) Urσ = p ' ^ in J(Ln

0(pr)) (n ^ 0, r ^ 1)

by (2.5), where #α denotes the order of α.

Then, we can prove Theorem 1.1 by the following lemmas.

LEMMA 2.7. (i) %Jrσ = pf<» '> in J(L"(pr)).

(ϋ) /(π,r)

PROOF. We notice that i*η = η and hence i*σ = σ by (2.1) for the inclusion
ί: mpr)^Ln(pr) or Lπ(pr)c=^o+i(P<") Then, (i) follows immediately from (2.2)
and (2.5) since p is an odd prime, and (ii) from (2.4) (i). q.e.d.

LEMMA 2.8. Ifn = (p-l)l and l = mpr~\ then

/(0,r) = 0, f(n,r) = r - 1 + / for n > 0.
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PROOF. The first equality is trivial since L%(pr) consists of one point.
Assume n>0. Then #Jr(σ") = p r by (2.4) (ii) and the assumption. On the

other hand, we have the equality

p'-v = (- ly-y-1-"-1**-1 in

by [3; Lemma 3.5]. Thus, we see the lemma by (2.3). q.e.d.

LEMMA 2.9. Ifn = (p-l)l, lφmpr~ι and r^2, then

f(n,r) = max{/(n-j?+l,r),/(n,r-l)}.

PROOF. Consider the commutative diagram

Ker/* c J(L8(//)) — £ - > J(L8-'+10>0)
L* L'*'

Ker /'• c Jαsί/^"1)) — ^ iίLg-^H^"1))

of the induced homomorphisms, where i and i' are the inclusions and π and π'
are the natural projections induced by the inclusion Zpr-i<=Zpr.

By the assumption, n = aps(p — 1) for some a and 5 with (a,p) = l and O^s
<r—1. Thus, (2.4) implies that Kerΐ* and Kerf* in the above diagram are
both the cyclic groups of order ps+1 generated by Jr(σn). Therefore

(2.10) π* I Ker i*: Ker ί* s Ker i'*,

by noticing that π*η = η and hence π*σw = crM.
Since i*σ = σ and π*σ = σ, the definition (2.6) implies that

/(n,r) ^ max{/(n-p+l, r),/(n,r-l)}.

Moreover, if f(n,r)>max {/(n —p+l,r),/(n,r—1)}, then the non-zero element
pf(n,r)-ijrσ {n J(Lg(pr)) is mapped to 0 by /* and π*. This contradicts (2.10).
Thus we have the lemma. q. e. d.

PROOF OF THEOREM 1.1. By Lemma 2.7, it is sufficient to show that

(2.11) /(n, r) = max {5 + U/PSW' 0 ̂  s < r and ps ^ 1} for n = (p-1)1.

By Lemma 2.8, (2.11) holds if / = mp1""1 and especially if r = l.
For the case r ^ 2 and mp r" 1</<(m + l)jp

Γ"1, assume inductively that (2.11)
holds for (n — p+ l,r) and (n,r— 1) instead of (n,r). Then, we see easily that the
right hand side of the equality in Lemma 2.9 is equal to

ί /(n,r- l) if m = 0,

1 max{/(n,r-l), r- l + K/-!)/^-1]^"1} if m ̂  1,
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and hence to the right hand side of (2.11). Thus Lemma 2.9 implies (2.11) by

induction.

These complete the proof of the theorem. q. e. d.

REMARK 2.12. If Dι/(p-l)] = Σ*=i άtf1 with O ^ s ^ •••<$* and 0<di<p

for l^i^fc, then f(n,r) in Theorem 1.1 is equal to

f(n,r) = max {ΣU diP

Si + min {sj9r-1}: 1 ^ j ^ k} .

Furthermore,

f(n,r) = max{ί + minίv/O.r- l} : 1 £ ί g [n/(p-l)]} (π ^ p -

where vp(ί) is the exponent of p in the prime power decomposition of t.

§3. The order

In this section, we prove the following

THEOREM 3.1. Let p be an odd prime and r a positive integer. Then for

any ΐ ^ l with exponent v = vp(i) of p in its prime power decomposition,

Mriηi - 1) = %Jr(ηPv - 1) = p/<».'i»> in J(Ln(pr))

where the exponent /(n,r;v) is equal to

max {s - v + [n/ps(p - l)]ps~v :v <Ls < r and ps(p ~ 1) ^ n} (max 0 = 0).

The theorem for ί = 1 is Theorem 1.1.

To prove the theorem, we prepare two lemmas. Set

(3.2) σ(S) = ηPs - 1 e K(Ln(pr)) = K(Ln

0(pr)) for 5 ^ 0,

where σ(0) = σ and σ(s) = 0 if s^r (cf. [3; (1.2)]).

LEMMA 3.3. The following equalities hold in J(L%(pr))\

(i) Jrtf - 1) = Jrσ(vp(ι)) for i £ 1.

(ii) J K W O ) - ^ ) ) ^ 1 ) = - Jrσ(s) for 0 ^ 5 < r.

PROOF. By the proof of [3; Prop. 1.3], we notice that the kernel of Jr:

K(Lξ(pr))-+J(L$(pr)) is generated additively by the elements

(i) If ps^i<p5+ί, then i ' - l ^ ^ ^ + ̂ - l where j = i-ps by (3.2). If

in addition, then Jr(^ — i) = Jr(^ — l) by the above notice and σ(s) = 0
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(s^r). By continuing this, we see easily (i).
(ii) In {(σ(O) σ(s-l))^-1σ(s)P"2}σ(s), (3.2) shows that { } is an integral

polynomial in η of degree ps(p-1)-1 with constant term - 1 . Thus, (ii) follows
immediately from the above notice. q. e. d.

LEMMA 3.4. Ifn=(p-l)l and ί = mp r-1>0, then for 0<^

$Jrσ(s) = pr-s-i+ι/P° i n

PROOF. Set σ/(s)=(σ(0) σ(s))P"1 and σ'(-l) = l. Then, under the as-
sumption of the lemma, [3; Prop. 3.2 and Lemma 3.5] implies the following
equalities in jK(Lg(pr)):

p ( ) ( ) i = 0 for 0 < i ̂  r - s,
(3.5)

[ + [ i / ( υ v ( i ) φ ) n ( s ) - ί = o for 0 g i < n(s);

(3.6) p1"'-V(s

= ~(- l) Z ( s y" s " 2 + Z ( s ) ^(s) for 0 ̂  i < /(s),

where n(s) = n/ps and l(s)=l/ps. On the other hand, (3.2) implies

(3.7) σ(s) = (1 4- σ(t))P - 1 = pA{i)σ(t) + σ(ί)p (ί = s - 1 ̂  0)

where 4̂(0 = Σ^=i —ί^WO'"*1 is a n integral polynomial in σ(ί) of degree p — 2

with constant term 1. Therefore, we see for t = s — 1 that

(by (3.6))

(by ( 3 7 »

^P'1^'^ (by (3.5))

= - ΣΪΛ("^-ly/r^^MO = p-̂ '̂WσXO (by (3.6));

and hence that p'-s-2+i<*V(s)=p'-2+V(0) in K(Ln

o(pr)).

Now, the last equality, Lemmas 3.3 (ii) and 2.8 imply the lemma. q. e. d.

PROOF OF THEOREM 3.1. Let f(n,r;s) be the non-negative integer with

$Jrσ(s) = pf^^ in J(Ln

0{pr))

by (2.5). Then, by Lemma 3.3 (i) and by noticing the similar result to Lemma
2.7, we see that the theorem follows from the equality
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(3.8) f(n,r;s) = max {t-s+V/pW8'- s ύ t < r and f g /}

for w = (p-l)ί.

For s=0, this is (2.11). Let s^l . If r^s or ί = 0, then the both sides of
(3.8) are 0, since σ(s) = 0 in K{Ln

0(pr)) (r^s), LgQ?r) = * and max 0=0. Further-
more (3.8) also holds if r>s and l = mpr~1>0, by Lemma 3.4. For the case r>s
^ 1 and mp1"1 < /<(m +1)]?1"1, we can prove the equality

/(n,r;S) = max {/(n-p + l,r;s),/(n,r-l;s)} (π = (p- l )0

by the same proof as Lemma 2.9, and hence (3.8) inductively by the same way as
the proof of (2.11). Thus, we have obtained (3.8) and Theorem 3.1. q. e. d.
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